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Abstract
Machine-learning (ML) technology has been a key enabler in the push towards realizing ever more
sophisticated autonomous-driving features. In deploying such technology, the automotive industry
has relied heavily on using “black-box” software and hardware components that were originally
intended for non-safety-critical contexts, without a full understanding of their real-time capabilities.
A prime example of such a component is CUDA, which is fundamental to the acceleration of ML
algorithms using NVIDIA GPUs. In this paper, evidence is presented demonstrating that CUDA
can cause unbounded task delays. Such delays are the result of CUDA’s usage of synchronization
mechanisms in the POSIX thread (pthread) library, so the latter is implicated as a delay-prone
component as well. Such synchronization delays are shown to be the source of a system failure that
occurred in an actual autonomous vehicle system during testing at WeRide. Motivated by these
findings, a broader experimental study is presented that demonstrates several real-time deficiencies
in CUDA, the glibc pthread library, Linux, and the POSIX interface of the safety-certified QNX
Operating System for Safety. Partial mitigations for these deficiencies are presented and further
actions are proposed for real-time researchers and developers to integrate more complete mitigations.
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1 Introduction

Graphics processing units (GPUs) have been a key technology in enabling advances in
machine learning (ML) generally, and deep learning (DL) specifically. The utility of GPUs
in this regard stems from their ability to accelerate complex ML/DL operations that would
otherwise be performance bottlenecks. Currently, there is much interest in applying DL
algorithms in ever more sophisticated, time-sensitive contexts. Autonomous vehicles (AVs)
are a good exemplar where many challenges exist: here, fast processing most of the time is
not good enough, as any processing delay could potentially cause an accident.

One would hope that, with sufficiently powerful hardware accelerators, such delays would
be a non-issue. Unfortunately, accelerators are subject to contention-related overheads that
are problematic in building real-time DL applications such as AV software. AV systems
often consist of tens to hundreds of DL models of varying sizes with complex dependency
relations [4, 32]. Even seemingly innocuous delays in this complex web of concurrently
executed DL models could potentially cause system-level latencies with safety ramifications.

Focus of this paper. This paper is directed at studying unexplained CPU-side delays
observed when launching GPU-accelerated DL model inference functions in a real-world AV
system under test at WeRide.1 The software in question was built with the NVIDIA CUDA
API, a popular framework for programming GPU-accelerated applications, including DL
inference. In vehicle testing, certain launches of CUDA2 kernels (i.e., DL models) experienced
latencies of around 2 ms, as opposed to the expected 30 µs in normal cases. These abnormal
CUDA kernel launch latencies caused the vehicle to stall and revert to its backup module.

In further experimentation involving synthetic scenarios, we found that kernel launches
can be delayed for over 100 ms, or even become blocked indefinitely. For reference, we found
that 224×224 ViT-S, a state-of-the-art computer-vision model, takes 2 ms to perform an
inference on an NVIDIA Titan V GPU.3 Thus, our observation of 2 ms CPU-side kernel
launch delays implies that initiating the DL model alone could take as long as the inference
execution itself. This significantly complicates timing and schedulability analysis of the
system, which consequently could lead to accidents in the context of an AV. This paper
details our investigation of these delays, revealing their effects across various hardware and
software configurations, and ultimately uncovers their root cause.

The high launch latencies first appeared to be a CUDA-specific problem, but our investi-
gation ultimately revealed that the latencies stem from not only CUDA but also deep-rooted
problems in the C Standard Library (LIBC) and the Linux kernel. For example, we found
that the Linux GNU C Library (glibc) read-write lock implementation contains a critical flaw
that can cause high latencies. Our findings also show that safety-certified operating systems
(OSes), most notably the QNX OS for Safety (“QNX” for short), which CUDA supports,4
are not immune to such lock-contention delays. In this paper, we discuss how deficiencies
in these software components can ultimately contribute to delays in launching DL models.
Although this paper primarily focuses on safety-critical AV contexts, our findings may apply
to other real-time systems that rely on such software as CUDA, LIBC, and Linux.

1 https://www.weride.ai
2 Data is based on experiments with CUDA 11.2.
3 Inference latency is also dependent on the ML compiler and implementation. In this experiment, we

used a publicly accessible ViT-S ONNX implementation and TensorRT.
4 Currently, QNX is the only safety-certified OS supported by CUDA.
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So many black boxes. Our findings have relevance to the broader problem of developers
treating foundational software components such as CUDA, glibc, and Linux as “black boxes.”5

These components serve a fundamental role in building not only safety-critical AV systems,
but also a significant portion of software today. Despite their ubiquity in modern software
development, their implementation details are seldom inspected thoroughly by their users,
including AV developers. This is not without reason: these components are large, complex
code bases that have proven sufficient across a vast range of use cases. A thorough audit of
these sometimes opaque and undocumented implementations would require significant time
and labor. Although the real-time systems community has identified many limitations in
these components with respect to real-time functionality [7, pg. 157], [22,45,48], they are
still deployed in real-time systems without mitigation. While this black-box approach to
system design is by no means new, its increasing usage in the development of safety-critical
systems, such as AVs, warrants scrutiny, as they are deployed in high-stakes scenarios.

Contributions. This paper reports on an investigation into significant delays in key CUDA
functions on a real AV that resulted in problematic system-wise anomalies. Such delays in an
AV can result in catastrophic outcomes, including casualties. This paper aims to identify and
mitigate these delays, and provides tools and techniques that can be employed to address
similar problems. The major contributions of our investigation are threefold.

First, by investigating the delays in our AV via system tracing experiments and source-code
analysis, we reveal that CUDA relies on glibc read-write locks when making asynchronous
CUDA kernel launches. We further show that the read-write lock code in glibc 2.23 has a
critical implementation flaw6 that is the root cause of the significant delays seen in CUDA
in our AV. Expanding on these findings, we conducted additional experiments on the most
recent version of CUDA (12.2.2) and glibc (2.38) in both discrete and unified (Tegra) NVIDIA
GPU architectures to study if they can still result in extensive delays. Our findings reveal two
commonly used CUDA functions to be susceptible to contention and priority-inversion that
lead to extensive delays. This is because they heavily use mutex and read-write locks that lack
proper real-time progress mechanisms. We show that CUDA 12.2.2 and the safety-certified
QNX are not immune to these issues.

Second, we explain in detail the tools and techniques we used in investigating the black-
box software components of relevance to our investigation, providing generalizable insights
into addressing similar issues in other black-box components. We show the extent of the
observed CPU-side delay by profiling a system of common DL models under contention
and provide detailed locking usage patterns across two CUDA versions (11.2 and 12.2.2) in
two widely used CUDA asynchronous functions, cudaLaunchKernel and cudaMemcpyAsync,
which play fundamental roles in DL model inference. These findings are relevant to future
research in ML-enabled real-time systems.

Third, we discuss mitigation strategies for the various problems uncovered herein across
different foundational software components. By reducing contention and offering more
real-time-compatible locking protocols, we demonstrate their trade-offs and benefits through
experiments. Based on prior work in the real-time systems community, we also discuss
directions toward a more general solution to these problems (such a solution would require a
significant engineering effort that is beyond the scope of this paper). As part of this discussion,
we elucidate several actionable items in real-time and ML application development.

5 A black-box software component may or may not have a closed-source implementation. When a
component is strictly treated as a black box, the API it provides is considered in development and
testing, but its internal implementation, even if available, is not.

6 We note that glibc 2.23 is relatively dated. However, Ubuntu 16.04 LTS, which is still maintained and
supported by Canonical until 2026 [54], uses glibc 2.23 as its standard LIBC library.
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Organization. After next providing relevant background (Sec. 2), we present our discoveries
(Sec. 3), discuss mitigations (Sec. 4) and future directions (Sec. 5), and conclude (Sec. 6).

2 Background

In this section, we discuss four black boxes used to develop AV software: Linux, QNX, the
POSIX-Thread (pthread) library, and CUDA. We focus on aspects of these components that
are relevant to our investigation, including their usage in AVs, and provide an overview of
relevant real-time concepts.

2.1 Synchronization Primitives in Linux and QNX
Linux and QNX are the most commonly used OSes in AVs due to CUDA’s compatibility with
them7 [28]. QNX is a safety-certified, POSIX-compliant real-time OS (RTOS) widely used to
expedite the safety-certification process for AV production [5]. However, Linux-based systems
are still common in AV development due to Linux’s large community of users (offering a large
support network) and extensive library of software. To provide certain RTOS features to the
Linux kernel, the PREEMPT_RT kernel patch is often applied. In this paper, all references to
Linux implicitly assume a PREEMPT_RT-patched kernel.

The need for process synchronization is fundamental in concurrent programming, and
suspension-based locks are commonly used for this purpose. Such locks require involvement
with the OS kernel’s scheduler to suspend a process. To encapsulate low-level kernel
invocations and improve portability, the pthread library provides a standard user-space
interface for locking by including functions such as pthread_mutex [40, pg. 3,639] and
pthread_rwlock [40, pg. 3,644]. Henceforth, we refer these two functions as mutex and
rwlock for short. The pthread interface is packaged with the C standard library, LIBC,
which comes with QNX and Linux (i.e., glibc) distributions.

In this section, we primarily focus on the implementation of pthread locks in Linux,
with a detailed discussion of their implementation in both user space (the glibc pthread
library8) and kernel space. For QNX, implementation details are not publicly accessible,
so we only cover the user-space properties of their pthread lock interface, as described in
available documentation [41]. These interfaces will be among the focuses of our investigation.

Futexes. In glibc’s pthread implementation on Linux, most suspension-based locks are
implemented via the fast user-space mutex (futex) [23]. At its core, a futex is a queue-like
data structure and synchronization primitive defined in the Linux kernel that allows user-
space processes to suspend in a wait-queue until a certain condition is met (e.g., an unlock
occurs). In most cases, locking is implemented in user space with two key futex operations:
FUTEX_WAIT and FUTEX_WAKE, as shown in Fig. 1. A futex also provides operations that
take process priority into account by using an rt_mutex [47] for synchronization. rt_mutex
satisfies lock requests in priority order and uses priority inheritance. In glibc on Linux, all
suspension-based locks are implemented using a fast-path/slow-path approach: if a lock is
free, a lock request is handled entirely in user-space (the fast path), otherwise more expensive
futex system calls are performed (the slow path).

7 Other CUDA-supported OSes are Windows and OS X.
8 There exist several other C standard libraries, such as musl LIBC, but this paper only considers glibc

and QNX LIBC as they are the standard system C libraries in Linux and QNX.
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Figure 1 Internal wait-queue structure of a futex in the Linux kernel. An array of hash buckets
is used, where each bucket points to a linked-list structure. Two operations are shown: FUTEX_WAIT
(in yellow) called by Task 7 on address 0x01; and FUTEX_WAKE (in blue) called by an arbitrary task
on address 0x04 with two tasks to be woken up (e.g., Task 6 remains suspended).

Mutex locks. The pthread library includes an interface for mutex locks (“mutexes” for
short), which provide mutually exclusive resource access. It offers the option of using priority
inheritance or immediate priority ceilings9 (“inheritance” and “ceilings,” respectively, for
short) [3, 24, 44, 49, 50]. In Linux, glibc implements a pthread mutex with a single futex,
with inheritance/ceilings disabled by default. In contrast, in QNX’s pthread implementation,
inheritance is enforced by default.

Read-write (RW) locks. A RW lock allows concurrent resource access for multiple reader
processes, while requiring exclusive access for writer processes. Some RW lock implementa-
tions always favor read (resp., write) access requests if any are waiting – these are called
read-preference (resp., write-preference) locks. Such an implementation can starve non-favored
requests (illustrated in Appx. A), which is highly problematic in real-time systems. A better
alternative that avoids starvation is a phase-fair lock [11,13], which alternates between “read
phases” (read requests are satisfied) and “write phases” (a write request is satisfied). The
glibc implementation for Linux allows users to choose between a read- and write-preference
lock, but defaults to read-preference. QNX instead implements a phase-fair RW lock [42].

2.2 NVIDIA CUDA Framework
NVIDIA is the current market leader in the GPU industry. To enable their GPUs to be
applied generally and not just for graphics, NVIDIA created CUDA, a software framework
for writing general-purpose parallel programs in C++, among other languages. This parallel
computational model provided ML researchers with the computational power necessary for
realizing modern DL algorithms. Alternatives to NVIDIA’s CUDA do exist, such as AMD’s
ROCm, but this paper mainly focuses on CUDA-based ML applications, which represent a
significant share of modern AV systems.

We later provide an overview of AV systems that discusses the usage of CUDA. Here, we
provide a description of CUDA’s basic functionality.

9 In POSIX, this is referred to as PRIO_PROTECT [40, pg. 1687]. This mechanism defines a priority
ceiling for a resource (higher or equal to the highest-priority task requesting the resource) and raises a
lock-holder’s priority to the lock priority ceiling upon lock acquisition. This mechanism is also known
as immediate priority inheritance and the highest-locker protocol.

ECRTS 2024
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Algorithm 1 Simplified CUDA program.
1: function Main
2: stream := cudaStreamCreate() ▷ Initialize CUDA stream
3: cudaMemcpyAsync(stream, hostIn, deviceIn) ▷ Copy input from CPU to GPU
4: cudaLaunchKernel(stream, Kernel) ▷ Launch the kernel function on GPU
5: cudaMemcpyAsync(stream, deviceOut, hostOut) ▷ Copy result from GPU to CPU
6: cudaStreamSynchronize(stream) ▷ Block CPU until the stream is done
7: function Kernel
8: . . . ▷ User-defined GPU computations (not shown)
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CUDA Runtime API
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DriverPthread
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Task Scheduler

User Space
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NVIDIA GPU Driver
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Figure 2 CUDA architecture on Linux.
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Figure 3 Alg. 1 executed on CPU and GPU.

CUDA architecture overview. Fig. 2 illustrates the overall architecture of CUDA on Linux.
To facilitate CPU/GPU communication, NVIDIA distributes a kernel driver for Linux (as
well as other OSes, such as QNX). Along with it, NVIDIA provides the CUDA user-space
driver, an API that user-space applications can use to interact with a GPU. This driver
contains functions for copying data between CPU DRAM and GPU DRAM, functions to
send and execute user-written parallelized programs – called CUDA kernels (“kernels” for
short) – on the GPU, as well as GPU memory management and other GPU utility functions.
However, the CUDA user-space driver is cumbersome to use, as it requires tedious setup that
involves significant boilerplate code and careful management of GPU resources throughout
the lifetime of an application. To enable easier GPU programming, NVIDIA provides the
CUDA runtime API, which wraps the unwieldy CUDA user-space driver functions and
boilerplate code with a simplified interface. It is for this reason that the CUDA runtime API
is by far the most common way developers use CUDA. Surrounding the CUDA interface
is an arsenal of DL acceleration libraries and tools allowing for efficient DL training and
inference, such as cuDNN, cuBLAS, and TensorRT.

Asynchronous CUDA functions. Two of the most commonly used functions in the CUDA
runtime API are cudaLaunchKernel, which launches a CUDA kernel to run on a GPU, and
cudaMemcpyAsync, which initiates a data transfer within, to, or from a GPU. For short,
we refer to these two functions as Launch and Memcpy. Both functions are asynchronous:
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Figure 4 A generic AV workload. Each module (represented by boxes) communicate with each
other via data packets. Data dependencies are represented by arrows.

the CPU-side program can immediately proceed to the next instruction after calling these
functions, without the need for blocking. This functionality enables the application to execute
on both the GPU and CPU in parallel and synchronize (by calling cudaStreamSynchronize)
only when necessary. Alg. 1 gives an example CUDA program and Fig. 3 shows how this
program is executed on both the CPU and GPU.

Launch and Memcpy will be the focus of our investigation. From our measurements, these
functions take about ≤ 30µs and 1, 038µs (with 1M FP32 data) on the CPU, respectively,
when executing in complete isolation. However, we show later that this expected execution
time can be greatly exceeded.

2.3 Autonomous-Driving Systems
We now explain how the just-described black boxes (Linux, QNX, the pthread library, and
CUDA) are typically used by AV developers.

ML software and hardware in AVs. Modern AVs rely on ML algorithms to achieve high-
accuracy perception and prediction, which require GPU acceleration for timely processing.
An AV’s perception and control systems are composed of several software modules executing
in a data-driven manner; each module is activated when input data is provided and passes
its results to the next module after completion. For example, a vehicle’s perception system
may include an obstacle detection module that takes image frames from a camera and point
clouds from LiDAR and executes an ML algorithm to detect static obstacles in the frame, as
depicted in Fig. 4. Such modules are implemented as processes on an OS. In the case of ML
workloads, CUDA is the standard approach for GPU acceleration, as mentioned previously.

On top of CUDA, DL inference is performed with DL runtime libraries. A prominent
example is NVIDIA TensorRT, which is widely adopted by ML developers in industry,
including AV developers such as ZOOX [35]. TensorRT has built-in support for CUDA
and allows for optimizations of DL inference latency on NVIDIA GPUs. With TensorRT,
users may compile their ML models into TensorRT inference engine files, which can then
be imported into their CUDA programs to perform DL inference in similar ways to CUDA
kernel functions, as demonstrated in Sec. 2.2.10

10 Throughout this paper, DL inferences are all conducted with TensorRT, but our results are not limited
to this software.

ECRTS 2024
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The only automotive embedded context in which NVIDIA supports CUDA and TensorRT
is their DRIVE AGX platform, centered around their Tegra SoC (a multicore ARM CPU
and an integrated, CUDA-compatible GPU). NVIDIA offers customized Linux and QNX
kernels for the DRIVE AGX platform. As NVIDIA only provides first-party support for
Linux and QNX on their embedded devices, this shoehorns developers into using these OSes.

OSes in AVs. In AV systems, the use of locks is inherent due to the presence of large amounts
of shared data across ML-enabled modules, and to facilitate CPU-GPU synchronization
operations. AV systems based on Linux and QNX either directly or indirectly (e.g., via
dependency libraries and frameworks like CUDA) use pthread locking interfaces to perform
synchronization operations, with their implementations relying heavily on the OS. In addition,
the scheduling of tens to hundreds of GPU-enabled processes falls to the OS.

To support developers using their Tegra SoC for embedded AV applications, NVIDIA
provides a production-grade AV software package called DRIVE OS, which consists of a
customized QNX and Linux kernel, foundational libraries, such as LIBC, and an SDK for
developing hardware-accelerated AV applications. DRIVE OS serves as a convenient platform
to rapidly prototype embedded AV applications, utilizing the black boxes we have discussed.

Safety guarantees. Guaranteeing safety, however, remains a challenge in AV systems. In
an AV, inaccurate or delayed execution of critical decision-making software modules can
lead to catastrophic outcomes. Thus, for AVs to ever reach mass production, their onboard
software must conform to rigid safety requirements. Taken together, the aforementioned
black boxes can be used to realize an AV’s perception and control software, as demonstrated
with DRIVE OS. However, simply joining these black boxes to form an AV platform does
not necessarily guarantee safety. For safety requirements to be truly met, the black boxes
themselves must provide real-time guarantees.

2.4 Real-Time Systems
A major focus in real-time-systems research is to devise algorithms for verifying system
schedulability, i.e., that computations complete “on time,” which is crucial for AV systems,
as noted above. In this section, we provide a brief overview of relevant real-time concepts.

Task scheduling. In the real-time-systems literature, schedulability is studied relative to a
task model. (For our purposes, the details of defining such a model and differences among
different models are unimportant.) The term task refers to a sequential program, and a job
is an instance (i.e., invocation) of a task. Each job requires a set of compute resources (CPU,
GPU, etc.) in order to execute, and often accesses data resource(s) as well. In the context of
an AV system, an ML model is a good example of a task, and each inference performed on the
model is a job of the task.11 A scheduler arbitrates the allocation of compute resources to jobs,
whereas a locking protocol arbitrates shared-data accesses. Two types of CPU scheduling
algorithms exist, clock-driven and priority-driven, and both are used in AV systems. Due to
the rigidity of clock-driven scheduling, priority-driven scheduling is often preferred in the
AV industry. The system considered in our investigation uses priority-driven scheduling,
but some of our findings may extend to clock-driven scheduling as well. We assume that m

CPU cores exist and that a clustered CPU scheduling algorithm is used where the m cores

11 This statement is reflective of the assumption that an ML model inference is executed in a single
GPU-using process scheduled by the OS. In more complex configurations, such execution could be split
across several processes.
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are divided into equal-sized clusters of c cores each; each task is assigned to a cluster and
globally scheduled on the cores in that cluster. Note that partitioned (c = 1) and global
(c = m) scheduling are special cases.12

Pi-blocking. Under the assumption of completely independent jobs, a priority-driven
scheduler simply prioritizes jobs by their assigned priorities. However, due to resource
contention (i.e., locking), a job may be blocked even if its priority is high enough to be
scheduled – this is called a priority inversion. More formally, a job suffers priority-inversion
blocking (pi-blocking) iff it is pending (i.e., not completed) but unscheduled, and there are
fewer than c higher-priority pending jobs in its cluster.13 In a safety-critical AV system,
extensive pi-blocking adds to the overhead of the system and can undermine the system’s
schedulability, so accounting for and minimizing pi-blocking is important for system safety.

Progress mechanisms. In order to bound pi-blocking, a real-time locking protocol must
ensure lock-holder execution using a suitable progress mechanism [13] so that pi-blocked jobs
“make progress” towards lock acquisition. Various progress mechanisms have been considered
in work on real-time multiprocessor systems, including priority inheritance, priority donation,
priority boosting, and migratory inheritance [10]. Some progress mechanisms may only
properly function under certain scheduling assumptions. For example, priority inheritance
is only effective under global scheduling (c = m), and only if the right locking protocol is
used [12], but not under purely clustered (or partitioned) scheduling (c < m) [7, page 125].
Thus, these mechanisms must be integrated into the OS alongside its scheduler to effectively
manage pi-blocking. Prior work on mutexes has shown that O(m) per-request pi-blocking,
which is asymptotically optimal, can be achieved under a variety of schedulers (partitioned,
clustered, global) [1,6,8,9,14,55]. Similarly, for RW locks, asymptotically optimal per-request
pi-blocking of O(m) for writers and O(1) for readers is possible [11,13].

Hereafter, we use the terms “process” and “task” somewhat interchangeably, but do favor
the former (resp., latter) when discussing systems-oriented (resp., analysis-oriented) issues.

3 Investigation and Discoveries

Our investigation was motivated by CUDA-related delays seen in an actual AV. In Sec. 3.1
below, we elaborate on these delays and describe the methods we used to find their source.
Then, in Sec. 3.2, we report on broader findings concerning Linux, QNX, glibc, and CUDA,
obtained using these same methods, and discuss their implications for safety-critical systems.

3.1 Case Study: Motivation, Methods, and Root Cause
The AV system we considered is under commercial development at WeRide. The vehicle
testing platform is an x86 system with an NVIDIA Ampere-generation GPU. The machine
was configured with Linux 5.40, NVIDIA driver 460.84, CUDA 11.2, and glibc 2.23.14 The
vehicle’s AV software stack runs in a data-driven manner, similar to the architecture schema
described in Sec. 2.

12 In practice, processor affinity masks could be used so that scheduling is not purely cluster-based, but
considering affinities would be a major distraction in defining scheduling and locking terminology.

13 Throughout this paper, we assume the use of suspension-oblivious analysis [11], wherein suspension time
is analytically treated as computation time when checking schedulability.

14 This version setup was used to reflect the setup of the AV platform used when the issue introduced in
this section was discovered. It does not reflect the current setup in said AV system’s production.

ECRTS 2024
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Figure 5 Tracing results of CUDA asynchronous functions.

While testing the vehicle in 2022, the system’s safety monitor recorded a series of latency
spikes (30% increase in system end-to-end latency compared to other instances). The latency
spikes would manifest as modules with abnormally long execution times, ultimately causing
the system to revert to its backup system as it was unable to react to real-world events on
time. This section describes the steps we followed to investigate these latency spikes.

Investigation overview. Our investigation involved the following steps. First, we reproduced
the anomalous timing behavior and identified the modules involved in the observed high
latency. Module profiling further revealed two CUDA functions as the main latency source.
We subsequently employed system tracing and shimming (detailed later) techniques to
pinpoint pthread RW lock starvation as the main culprit. Analyzing the glibc pthread source
code ultimately revealed a critical flaw in its RW lock implementation, which proved to be
the underlying cause of the high latency. We now discuss our methodology in detail.

Reproduction. By utilizing our proprietary in-house simulation and profiling tools15 on
hardware and software identical to the AV, we were able to reproduce latency spikes similar
to that observed on the AV after continuously running the AV software for three hours.
Preliminary inspections of the AV profile revealed that all affected modules were performing
ML inference using CUDA when latency spikes occurred. We initially suspected GPU
over-utilization as the culprit. However, our hardware system monitor revealed that the
GPU compute engine was idle at the time of delays. Thus, we instead focused our attention
on the CPU-side behavior during ML inference.

Profiling CUDA. We further profiled the offending modules with NVIDIA Nsight Sys-
tems [33], a GPU and CUDA profiling tool, in the context of the aforementioned reproduction
in AV simulation. Nsight Systems provided statistics and visualization of the exact timing of
GPU execution and CUDA functions as the models executed. This approach confirmed that
the latency source was not caused by on-GPU contention but rather by CPU-side CUDA
functions launching GPU operations. Fig. 5a illustrates these scenarios. As depicted, the

15 Our AV simulation and profiling software are not publicly accessible. However, alternatives can be
devised from open-source resources such as the CARLA simulator [17], LTTng [30], and KUtrace [51].
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Figure 6 Measurements of execution time for GPU memory copy and kernel launch operations
without any interference.

CUDA function Launch, when called by modules from the CPU, incurred significant delays
of up to 2113 µs, whereas the function would normally take less than 30 µs when running in
complete isolation, as shown in Fig. 6b.

The almost concurrent completion of a kernel launch and Memcpy observed in our trace
(Fig. 5a) implicates on-CPU interference between these two CUDA functions as a potential
cause. Even though these functions utilize two disjoint GPU engines (i.e., compute and
copy engine) and may run independently on the GPU [39],16 it was plausible that they
were contending for shared data structures on the CPU. However, the CUDA runtime is a
closed-source black box, making code analysis infeasible. Therefore, to identify the internal
operations causing the delays in CUDA functions, we had to devise alternative techniques.

System tracing. System tracing captures low-level system behavior, such as suspensions,
syscalls, I/O accesses, and faults, so it is useful in holistically understanding intra- and
inter-process interactions in black-box software over a period of time. Such an approach can
provide clues to infer the intent behind a black box’s operations.

In our investigation, we used KUtrace [52] [51], a low-overhead system tracing tool.
Tracing a system involves running the KUtrace control program, which generates a trace
timeline of events in the OS. Fig. 7 shows the structure of tracing timelines produced by
KUtrace in the form of interactive HTML webpages (Appendix B provides an actual output).

Having already identified the two CUDA asynchronous functions, Launch and Memcpy,
as the latency source, we relied on synthetic tracing experiments instead of simulating the
entire AV system, as this provides a more simplified, isolated environment for trace analysis.
Alg. 2 outlines the program we used to perform tracing experiments without involving the
AV software.

By studying CUDA-related system behavior as captured with KUtrace, we discovered that
CUDA memory-copy functions and kernel launches synchronize via several futexes, causing
prolonged suspension in the FUTEX_WAIT system call, as shown in Fig. 5b. These suspensions

16 In this paper, we avoid discussing the intricacies of these two operations on the GPU for the purpose of
simplicity and to focus purely on their CPU behaviors.
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Algorithm 2 Tracing experiment program.
1: function MemcpyThread
2: for ever do cudaMemcpyAsync(. . . ) ▷ Repeatedly call CUDA memcpy function
3: function KernelThread
4: for ever do cudaLaunchKernel(. . . ) ▷ Repeatedly launch CUDA kernel
5: function Main
6: for each tid in 1...m do CreateThread(MemcpyThread) ▷ Start multiple memcpy threads
7: CreateThread(KernelThread) ▷ Start one kernel launch thread

t1

C
PU

1 3 1

2

rwlock_unlock(start) rwlock_unlock(end)

rwlock_rdlock(end)

1

2

t2 t3 Time

2

rwlock_rdlock(start)

W

R

21 3

FUTEX_WAIT

FUTEX_WAKE

SCHEDULE

W Write-Locked

R Read-Locked

KUtrace Marker

Legend

Figure 7 Illustration of a KUtrace output trace for three tasks running on two CPU cores. Task
τ1 has higher priority than τ2, which has higher priority than τ3. This figure depicts RW lock
contention between τ1 (reader) and τ2 (writer). Narrow bands are executions in user space, and
thick bands are those in kernel space.

within CUDA kernel launches were the main source of the studied latency. However, to
better understand what triggered the system calls, more information was needed concerning
the CUDA functions’ internal behavior.

Tracing locking behavior in CUDA. As discussed in Sec. 2, rarely do user libraries such as
CUDA invoke futex operations directly. Instead, futexes are used to implement abstracted
locks in libraries such as the pthread library. Thus, we sought to determine if the CUDA
functions use such abstraction layers atop futex, and, if so, which specific functions are used.

Although CUDA’s reliance on the pthread library is undocumented, confirming this fact
takes little effort. The CUDA runtime API is implemented in the libcudart.so shared-
object file, and the CUDA user-space driver is in libcuda.so. By using the ldd command
in Linux, which lists dynamic dependencies of shared-object files, we found that both link to
libpthread.so, implemented in glibc on Linux by default.

However, identifying the specific pthread locking functions used by CUDA proved difficult,
as source code is required to trigger trace events before and after calling the pthread functions
in CUDA. To overcome this challenge, we utilized a technique known as shimming. In this
technique, a custom shim version of an existing function overrides the original function at
runtime, without modifying the original application. This can be achieved by setting the
LD_PRELOAD environment variable to the shared-object file of the custom shim functions.

In our case, we applied shimming to emit KUtrace event markers around the CUDA
functions’ calls to pthread locking functions, most notably its mutex and RW lock functions.
Fig. 8 illustrates this technique. We accomplished this by first creating shim versions of the
pthread locking functions (e.g., pthread_mutex_lock) in a shared-object file, with KUtrace
events signaling the beginning and completion of the pthread functions. The shim functions
then return back to the calling CUDA functions. The resulting trace from executing our
program (Alg. 2), now containing tracing events for pthread locks, confirmed CUDA’s usage
of pthread mutex and RW locks and revealed their exact usage pattern.
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Pthread Shim Function

  pthread_rwlock_wrlock(args):
KUtraceMarker("wrlk");
// call authentic version
pthread_rwlock_wrlock(args);
KUtraceMarker("/pwrlk");
return;

Authentic Pthread Library
  pthread_rwlock_wrlock(args):

...
return;

CUDA Runtime API

cudaLaunchKernel():
...
pthread_rwlock_wrlock(args);
...

Figure 8 Shimming flowchart. The shim func-
tion can be compiled and loaded via LD_PRELOAD.
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Figure 9 Shimming reveals pthread RW lock
triggered mutex operation and caused suspension.

pthread locking behavior in CUDA. Our trace data showed that CUDA’s asynchronous
function calls use a fixed set of two RW locks and seven mutexes to launch a GPU operation,
employing a complex and nested locking pattern composed of several critical sections. We
discuss the locking patterns more precisely in Sec. 3.2; here, we focus on the main cause of
the latency in our motivating scenario.

Both Launch and Memcpy require read and write accesses, respectively, to a shared
RW lock. As demonstrated in Fig. 9, the pthread RW lock read requests triggered the
FUTEX_WAIT system call and directly caused the prolonged suspension, ultimately causing
the aforementioned failure in our AV system. As this trace data matches what we would
have seen in a write-preference pthread RW lock, demonstrated in Fig. 14a, it may be the
case that CUDA uses this policy intentionally.

However, by adding additional CUDA kernel launch threads in our program (Alg. 2),
our data revealed that the pthread RW locking performed in CUDA functions does not
follow a strict read-preference or write-preference policy. Instead, it follows a read-preference
policy during read phases, but a write-preference policy during write phases (illustration can
be found in Appx. A). In other words, if the lock was unlocked by a writer (write phase),
pending write requests would be satisfied first. However, if the lock was held by a reader
(read phase), newly issued read requests would be satisfied even if there were pending write
requests. This violates the definition for both read- and write-preference RW locks.

To further understand the RW lock’s internal logic, we shimmed the RW lock initialization
function (rwlock_init), where its policy is declared. This method revealed that CUDA
was in fact configuring the lock to use the default policy (i.e., read-preference), despite our
observations clearly displaying violations of that policy. Therefore, a careful analysis of the
pthread RW lock implementation was warranted in Linux glibc.

Identifying the root cause. We consequently examined the glibc source code [25, 27] that
arbitrates the next-to-be-satisfied lock request in the pthread RW lock. Alg. 3 shows a
pseudo-code for glibc’s (version 2.23) implementation of rwlock_unlock. We discovered
a critical flaw within this function: if the lock is set to the read-preference policy, then
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Algorithm 3 pthread_rwlock_unlock.
1: function Rwlock-Unlock(rwlock)
2: if rwlock.is-reader then rwlock.curr-num-readers – – ▷ First, release the lock
3: else rwlock.writer := NULL
4: if rwlock.curr-num-readers = 0 then ▷ If this thread is a writer or the last active reader
5: if rwlock.waiting-writers then ▷ If there’s a pending write request
6: FutexWake(rwlock.wr-futex, 1) ▷ Then give the lock to the next pending writer
7: else
8: FutexWake(rwlock.rd-futex, MAX_INT) ▷ Otherwise, give the lock to all pending readers

after a writer unlocks, instead of favoring pending read requests as expected, the lock will
unconditionally satisfy a pending write request, if one exists (Alg. 3, lines 7–8). Existing in
glibc 2.4 through 2.24, this implementation can starve read and write requests. Although
a read-preference lock causing write-request starvation is permissible, causing read-request
starvation is an error. This is the exact scenario we observed in our trace Fig. 9, where read
requests in kernel launches are starved by write requests in the Memcpy functions.

Implications in AV and real-time systems. We identified the root cause of our AV system
failure. However, our findings posed additional questions regarding the extent to which the
RW lock bug and design deficiencies affect DL systems in AVs. As the two considered CUDA
functions play a significant role in DL inference (detailed in Sec. 3.2), having lock starvation
is gravely dangerous in the context of AV systems, as such delays are undocumented and
remain unknown to AV developers. Furthermore, analysis in prior work on GPU-enabled
real-time systems, such as [2, 21], fails to consider the potentially indefinite synchronization
between these two functions, which are regarded as independent on the GPU. We thus
conducted additional experiments to test how the two CUDA functions’ synchronization
patterns affect DL inference across a wider range of system configurations.

3.2 Broader Findings
In this section, we discuss additional findings on the CPU-side synchronization behavior of
the two CUDA functions Launch and Memcpy in the context of DL inference. To this end,
we demonstrate the extensive usage of these two functions during DL inference, detail the
locking patterns used in these CUDA functions, and reveal our findings regarding CUDA,
glibc (Linux), and QNX Libc using techniques similar to those discussed in Sec. 3.1. All our
findings in this section are based on experiments of discrete GPU architectures using NVIDIA
driver 550.54.14, CUDA 12.2.2, glibc 2.38, and QNX 8.0 unless otherwise indicated.17

CUDA functions in DL inference. CUDA operations are used extensively to accelerate
DL inference tasks. Although we cannot use our proprietary DL model architectures to
demonstrate this effect, publicly accessible DL models and AV workloads can serve as
meaningful surrogates. Tbl. 1 illustrates common DL models used for computer-vision tasks
and the number of CUDA function calls made while performing inference with these models.18

An AV workload consists of several of these models; for example, six such perception-related
DL modules are identified in [32]. Additional, more specialized DL modules are also present in

17 These software versions are the most recent as of writing.
18 The number of CUDA function calls may vary depending on the specific model variant, ML compiler,

and GPU architecture; the statistics provided here only serve as a representation.
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Table 1 CUDA function invocations in common perception DL models and their execution times,
measured on an NVIDIA Titan V in a single run.

DL model Launch Memcpy GPU time
count avg. latency count avg. latency

ViT-S [19] [38] 60 5.5 µs 2 187 µs 2, 208 µs

RegNet-Y [43] [37] 47 6.0 µs 2 1, 793 µs 5, 275 µs

DeiT-B [53] [36] 60 5.8 µs 2 1, 700 µs 4, 902 µs

DETR-R50 [16] [31] 180 5.9 µs 3 743 µs 7, 045 µs

SegFormer-B1 [56] [34] 88 6.2 µs 2 6, 747 µs 16, 222 µs

AVs aside from the six named in [32], such as obstacle detection and traffic-light classification.
In some cases, separate DL pipelines exist for processing LiDAR and camera data in the AV
system.19 Based on this information and the data from Tbl. 1, an AV system containing ten
DL components could (as a fairly conservative estimate) contain 470 Launch calls and 20
Memcpy calls in a single run. As an AV system may perform over ten runs per second to react
to real-world events, even intermittent delays in these two functions could prove disastrous.

Pthread locking usage in CUDA functions. By using the shimming technique mentioned
in Sec. 3.1, we reveal the exact locking operations performed and their timings in Launch
Memcpy using both CUDA 11.2 and 12.2.2 (the most recent version at the time of writing) in
Fig. 10. Our data further demonstrates the extensive usage of locking invoked by CUDA
functions in an AV workload, implying that tens of thousands of such invocations can take
place in a single run. Combining our previous finding that the RW lock operations may
introduce indefinite delays, the data clearly demonstrates the pervasive but latent presence of
locking operations in AV systems, and their high potential for causing AV failures, especially
as the AV’s backup system is not immune to such delays either.20

We observed in our experiments that CUDA’s locking behavior is highly inconsistent
across versions. Fig. 10 reveals the detailed locking usage of locking within CUDA kernel
launch and memory copy functions across three variations. Fig. 10 (top) shows the locking
pattern used in CUDA 11.2 with NVIDIA driver 460, on which our investigation in Sec. 3.1
is based. Using NVIDIA GPU driver version 525 and CUDA 12.2.2 (Fig. 10, middle), we
discovered that kernel launches are no longer using any RW lock. However, using the most
updated driver version 550, CUDA 12.2.2 (Fig. 10, bottom) uses additional locking operations
in its kernel launches.

Another more baffling locking usage can be observed when using glibc 2.23 with CUDA
11.2 and driver 460. With these versions, before invoking rwlock_rdlock (resp., _wrlock),
CUDA will first attempt to call rwlock_timedwrlock (resp., _timedrdlock) with invalid
time as arguments on the same lock address (not shown in Fig. 10 for simplicity). We
hypothesize that CUDA is attempting to exploit the “fast path” for the RW lock, since even
with invalid time arguments, the glibc pthread implementation will still attempt to acquire
the lock first before failing [26]. However, this does not explain why write (resp., read) locks
are attempted before applying for read (resp., write) locks.

19 This paper does not take into account the practice of DL multi-tasking, which allows models to perform
multiple tasks in a shared DL backbone (e.g., RegNet).

20 To assist researchers in understanding CUDA locking usage in future releases, we have provided a source
code for this purpose: https://github.com/sizheliu-unc/ECRTS24/tree/main/cuda_lock_stats.
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Figure 10 The RW lock and mutex usage in functions Memcpy (1M FP32 data copy) and Launch
across versions. Colored arrows denote a lock and unlock pair. Locks with the same number but not
within the same driver version may not represent the same functionality. Notice that RW lock #2
(dark yellow) is used in both functions in driver version 460, whereas mutex #4 (light blue) is used
in both functions in driver version 550. Only locks shared between the two functions are shown.
Timings of repeated locking patterns are not shown.

Linux CUDA locking is contention-prone. As shown in Fig. 10 (top), CUDA 11.2 shares the
same RW lock between Launch and Memcpy. This locking pattern subjects CUDA functions
to prolonged delays when executing them concurrently. Even though these RW locks (Fig. 10,
top, RW lock #2) are dropped in CUDA 12.2 with driver 525, driver 550 (Fig. 10, bottom)
instead replaces them with a mutex (#4) in effect. Therefore, scenarios similar to Fig. 9
can still occur even with the most updated software (CUDA 12.2, driver 550, glibc 2.38),
with the only difference being that the problematic RW lock in 11.2 is replaced by a mutex.
Due to its long critical section in Memcpy (1326µs with 1M FP32 data), having concurrent
executions of Memcpy and Launch can have a cascading effect. As an extreme example, when
launching 100 threads of Memcpy and Launch together, we are able to induce 110 ms delay to
both functions. Such extensive blocking is clearly unacceptable for time-sensitive applications
such as AVs.
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Figure 11 A trace showing priority inversion in CUDA, in which priority is ordered by index.
Task τ1 is running Launch and is pinned to CPU 1, task τ2 is an arbitrary task on CPU 2, and task
τ3 is running Memcpy copy on CPU 2. In an AV context, the high-priority task might execute a
pedestrian-detection algorithm, and the low-priority task might be a data transfer for turn-signal
detection. This situation could lead to unacceptable delays in a critical AV function.

glibc RW lock is starvation-prone, causing CUDA delay. Also problematic is the glibc RW
lock implementation, even with version 2.38. As we discussed, preference RW locks, the only
available policies in glibc, will cause starvation to either readers or writers. Moreover, the
glibc RW lock implementation is not equipped with any progress mechanism. As explained in
Sec. 2, a progress mechanism guarantees lock-holder execution. Without such a mechanism,
a CUDA 11.2 kernel launch can be preempted and cause pi-blocking while holding a RW lock.
This problem is present in all glibc versions. Fig. 11 demonstrates this effect. By increasing
the number of non-GPU-using tasks (depicted as τ2 in Fig. 11), we induced indefinite delay to
Launch in CUDA 11.2. This would prevent applications from performing any ML inference.

Linux CUDA’s mutex is starvation-prone. Even though glibc mutexes do offer inheritance
as a progress mechanism, it is not used in CUDA versions 11.2 and 12.2.2. As shown in
Fig. 10, both CUDA versions internally utilize mutexes as another synchronization mechanism
between kernel launches. Using the shimming method, we were able to confirm that on
Linux, the mutexes used by CUDA (both versions) do not have inheritance enabled, again
allowing for potentially indefinite delays similar to Fig. 11. We also observed that inheritance
is sometimes, but not always, used on the NVIDIA Jetson Orin integrated GPU, indicating
some awareness of pi-blocking among CUDA developers.

Partial mitigations are offered in QNX LIBC. On QNX, RW locks are implemented with a
phase-fair mechanism (discussed in Sec. 2). However, through experiments, we found QNX’s
RW lock, similar to that of glibc, is not equipped with any progress mechanism, and thus
is prone to starvation. Consequently, CUDA applications on DRIVE OS for QNX can still
experience indefinite delays as shown in Fig. 11. QNX is being actively targeted for AV
production (not just testing), and the existence of such a potentially disastrous issue in this
safety-certified RTOS demonstrates the danger of a black-box design approach. Even if such
a black box has passed some level of certification and is widely adopted, it still must undergo
a thorough inspection for the specific safety-critical context to which it is applied.

On the other hand, the inheritance mutex is used by default on QNX, so inheritance is
enabled for all CUDA mutexes. However, inheritance is only effective under specific locking
protocols designed for global scheduling [7, page 125], whereas in most AV systems, clustered
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scheduling is used. The ineffectiveness of inheritance for a partitioned workload stems from
the fact that priorities have relative meaning only within a partition. This partial mitigation
may still induce high overheads to an AV’s complex workload under high contention.

Developers don’t understand the limits of priority inheritance on multicore. Our investi-
gation into the vehicle’s latency spikes required us to read the documentation or source code
for the pthread, Linux, QNX, and glibc black boxes. Through the course of our investigation,
it became apparent that there is a major disconnect with respect to the term “priority
inversion” between the real-time-systems community and the developers who make these
black boxes. We realized many OS developers tend to believe that a task suffers pi-blocking
only when it is blocked by a lower-priority task. However, this definition is only accurate
on a uniprocessor [7]. Fundamentally, pi-blocking occurs when a task should be scheduled
but cannot due to blocking. The formal definition of pi-blocking, which is of relevance to
multicore machines, can be found in Sec. 2.4.

This pi-blocking disconnect has led many developers and users of these black boxes to
believe that inheritance [50] and ceilings [3,24,44,49] are panaceas to control pi-blocking. As
a result, they are the only progress mechanisms provided for synchronization mechanisms on
POSIX-compliant systems, including Linux and QNX. However, these mechanisms break
down under non-global scheduling [7], which is common in embedded AV systems.

In addition, many user-space and kernel-space locking mechanisms on Linux and QNX
are based on priority ordering, believed by many to be a crucial concept in minimizing
worst-case pi-blocking, even though it has been shown to be less effective than FIFO ordering
for this purpose [11]. With n tasks running on m CPU cores, in the worst case, even with
global scheduling, the inheritance mutex induces Ω(n) pi-blocking [12, 20]. Furthermore,
the FMLP [6], which the ceiling-based mutex in glibc highly resembles,21 induces Θ(n)
pi-blocking [6,12]. Thus, both are far from the optimal pi-blocking of O(m) mentioned in
Sec. 2.4. These non-optimal pi-blocking bounds are unsatisfactory for systems like AVs that
likely involve heavy resource contention and where the number of tasks is far greater than
the number of cores.

Unfortunately, only these two progress mechanisms, inheritance and ceilings, exist for
mutexes in POSIX, Linux, QNX, and glibc. Additionally, across all these black-box com-
ponents, no progress mechanism is adopted at all for RW locks, rendering this common
synchronization primitive unsafe in real-time applications such as AVs.

4 Mitigations

In this section, we discuss three specific strategies for mitigating the problems covered in
Sec. 3. These mitigation strategies, even when combined, are by no means a full solution for
ameliorating the shortcomings of the black boxes we have covered. Rather, we intend for
them to serve just as a starting point from which more exhaustive solutions can be obtained
through future work.

21 Because glibc’s implementation results in all blocked tasks having the same priority in futex, blocked
tasks are subject to FIFO ordering, resembling the FMLP.
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Algorithm 4 CUDA graph usage.
1: function Main
2: cudaStreamBeginCapture(stream, graph) ▷ Begin to capture graph
3: cudaMemcpyAsync(stream, hostIn, deviceIn) ▷ Launch operations on the captured stream
4: cudaLaunchKernel(stream, Kernel)
5: cudaMemcpyAsync(stream, deviceOut, hostOut)
6: cudaStreamEndCapture(stream, graph) ▷ End graph capture
7: cudaGraphLaunch(graph) ▷ Actual inference, launch the entire graph
8: cudaStreamSynchronize(stream)
9: . . . ▷ The graph object can be used for consequent launches (not shown)

Table 2 Comparison of end-to-end execution time, launch time, and number of locking operations
of DL inference between using CUDA graphs and not in a single run. Measurements were collected
with 20 seconds of back-to-back execution. Launch time was measured as the difference in time
between the first GPU work launch (including memcpy) and the beginning of the first GPU work.

DL model Avg. End-to-end time Avg. Launch time # of Locking
W/ Graph W/o Graph W/ W/o W/ W/o

ViT-S 2, 356 µs 2, 378 µs 144 µs 152 µs 147 1, 088
RegNet-Y 5, 464 µs 5, 491 µs 148 µs 155 µs 171 1, 242

DeiT-B 5, 052 µs 5, 073 µs 153 µs 154 µs 327 1, 412
DETR 7, 846 µs 8, 432 µs 153 µs 154 µs 192 3, 566

SegFormer 16, 385 µs 16, 743 µs 269 µs 294 µs 71 1, 543

4.1 Reducing Contention Using CUDA Graphs
In Sec. 3, we recounted our findings that CPU-side lock contention can significantly delay
CUDA functions. It would follow that reducing the number of CUDA operations in the
system would reduce lock contention, and hence reduce the likelihood of latency spikes. One
option to achieve this is to use CUDA Graphs [18] to combine multiple CUDA kernel and
memory-copy functions into one, reducing the number of launch operations in the system. As
demonstrated in Alg. 4, modifying existing CUDA programs to use CUDA Graphs involves
adding only a few lines of code. Lines 2-6 specify the graph and only need to execute once.
The resulting graph object can then be used multiple times. More complex dependency
relations can also be specified using CUDA events. In addition, NVIDIA’s ML acceleration
tools, such as TensorRT, natively support CUDA Graphs.

After using CUDA graphs in our AV system modules, the latency spikes from CUDA
operation launches were no longer observed in our testing. It would appear using CUDA
Graph solved the problem completely. As demonstrated in Tbl. 2, CUDA Graph can mildly
reduce the DL model’s execution time and launch time. This is achieved by reducing the
communication cost between CPU and GPU (detailed in Appx. C).

In addition, CUDA Graph may significantly reduce locking usage. As shown in Tbl. 2,
the graph launch of RegNet-Y contains 171 mutex and RW lock operations, whereas 1, 242
locking operations are used when not using CUDA Graph. However, this does not completely
eliminate contentions. From our experiments, more than one hundred mutex operations are
involved even for launching only four GPU operations (three memory copies and one kernel).
The number of locking is proportional to the number of GPU operations and the size of
the memory copy. Our experiments show that each 1M (resp. 1K) FP32 cudaMemcpyAsync
corresponds to ∼ 30 (resp. ∼ 10) mutex operations in the CUDA Graph launch. This number
does not scale linearly with respect to the number of cudaLaunchKernel: with CUDA Graph,
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Figure 12 Detailed timing of mutex lock and unlock operation. Numbers represents the execution
time of each operations in µs. Thick bands represents system calls (i.e. kernel space executions),
and thin bands represents user space executions. “Slow path” is present only under lock contention.
rt_mutex is present only when using the PRIO_INHERIT policy and may vary in execution time
depending on the number of nested locks, whether lock holder’s priority should be adjusted, etc..

launching DeiT-B (60 Launch) contains 327 locking, whereas launching DETR-R50 (180
Launch) involves 192 locking. Since no write locks are involved in launching a CUDA Graph,
RW-lock contention (as in Fig. 9) between graph launches is eliminated.

One caveat of using CUDA graph is that certain operations cannot be expressed with
CUDA Graph. For example, conditional statements acting as a control switch are not
supported for CUDA 12.2 and before. Such statements are needed, for instance, if the output
of one ML model inference dictates which ML model inference is performed next. Such
CUDA operations must therefore be broken into separate graphs. A complex AV system
often involves control switches, and with many graphs executing in parallel, lock contention
may still occur. In our case, CUDA graph is effective in reducing contention and is adopted
in our AV platform.

4.2 Enforcing Inheritance Mutexes
As discussed in Sec. 3, even though priority inheritance only provides a weak solution to reduce
pi-blocking, it is the only existing viable progress mechanism natively supported by Linux and
QNX. The pthread mutex is the only lock type utilizing this progress mechanism. However,
on Linux systems, the inheritance option must be specified during mutex initialization. As we
discovered, on x86 Linux, the most common development platform for ML, CUDA does not
use inheritance mutexes. To enforce inheritance-mutex usage in CUDA or any other software
modules, a simple solution is to use the same shimming technique described in Sec. 3.

We applied this technique to our AV system and found that it increased the overall
maximum latency of our AV modules (with CUDA 12.2 and glibc 2.38) by 5%. We hypothesize
the reason for this increase is likely due to the overhead caused by its underlying rt_mutex,
which involves additional steps to modify task priorities compared to regular futex operations.
As demonstrated by the mutex data in Fig. 12, the execution time of lock and unlock
operations (excluding suspension) is significantly higher for the inheritance mutex compared
to the default policy. Recall from our discussion in Sec. 3 that thousands of such lock
operations take place in an AV during a single run. This additional overhead, when multiplied
by the thousands, can have a significant impact on the system.
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Figure 13 Detailed timing of RW lock and unlock operation. Blocks in dashed lines represents
related functionalities. “Boost/restore priority” block is present only in our RW-lock priority
boosting progress mechanism. “Phase-fair” block is present iff (1) using phase-fair or write-
preference, when applying for a read lock, the lock is in a read phase, and pending write requests
exist; (2) when applying for a write lock, other pending writers exists. “Phase change” occurs
when the lock’s phase (read/write) switches.

Moreover, the inheritance mutex is not an optimal solution, as mentioned in Sec. 3; its
Ω(n) worst-case pi-blocking can induce high costs in complex systems like AVs. This result
demonstrates a current dilemma faced by the AV industry: either use partial solutions like
inheritance mutexes for safety but with high costs, or use non-real-time variants that provide
no guarantee but offer better performance.

4.3 Implementing Phase-Fair RW Locks in Glibc
To reduce preference-induced RW-lock starvation, one strategy is to use a phase-fair RW
lock instead. As mentioned in Sec. 2, a phase-fair RW lock is already integrated in the QNX
pthread library, but glibc does not provide this option. By modifying the pthread RW lock
implementation in glibc,22 we were able to enforce this mechanism on all RW lock usage,
thereby avoiding both write- or read-request starvation under high contention.

This only partially addresses RW-lock-related problems on Linux and QNX, however.
As explained in Sec. 3, the lack of suitable progress mechanisms is an additional challenge.
One of the known progress mechanisms suitable for phase-fair RW locks is priority dona-
tion [14], which enables optimal pi-blocking under clustered (and hence partitioned and
global) scheduling. This mechanism requires knowledge of all tasks in the system instead of
only lock-requesting ones, so implementing it would involve radical modifications to Linux’s
scheduler, breaking portability to other OSes, like QNX. We instead opted to implement a
more basic progress mechanism similar to the ceiling mutex mentioned in Sec. 2, where the
lock-requesting process’s priority is boosted upon blocking and lock acquisition. This locking
mechanism, as shown in Fig. 13, still adds significant overhead to the lock compared to

22 Our implementation of phase-fair RW lock with priority boosting can be found at https://github.
com/sizheliu-unc/ECRTS24/blob/main/glibc-2.38-phase-fair-boosting.patch.
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the default (read-preference) RW lock but can prevent indefinite pi-blocking and starvation
(depicted in Fig. 11) from occurring in the system. Due to the overhead involved in priority
boosting, we are unable to integrate this approach into our system without increasing the
overall latency in our particular AV system.

5 Future Directions

We have discussed how lock contention and problematic lock implementations can lead to
system failures on an actual AV. In this section, we shift our focus to more broadly discussing
action items based on our findings from Sec. 3.

For Linux and QNX developers. Suitable locking protocols and progress mechanisms are
fundamental for safety-critical real-time systems such as AVs. As noted in [15], migratory
priority inheritance could be a suitable candidate to limit pi-blocking in Linux. The compar-
ative study in [57] also showed that the FMLP outperforms inheritance mutexes (referred to
as the PIP in [57]) in practical circumstances. Adopting migratory priority inheritance in
Linux would be ideal, but it would entail some significant changes to the futex, rt_mutex,
and scheduler implementations. Implementing the FMLP, on the other hand, should be
a good starting point for Linux developers, as it only affects the data structure behind
rt_mutex. As for QNX, since its main target is vehicle production, the lack of a suitable
progress mechanism for locking and especially RW locks must be urgently addressed.

Another factor that Linux and QNX developers need to consider is that these foundational
software components are not regularly updated when used in systems such as AVs. In this
case, “upgrading the software” is both a risky and costly solution, as the new upgrades may
break dependencies and require rebuilding the entire system. Therefore, bug fixes to existing
issues should be applied to both the new updates and the affected existing versions.

For CUDA developers. CUDA is closed-source, so the precise reasons for why it uses
locking so extensively remain as a hidden detail. A possible way forward would be for CUDA
to provide options for real-time systems to use inheritance mutexes, and avoid using RW
locks in the implementation due to the lack of a progress mechanism for such locks on both
Linux and QNX. Furthermore, CUDA’s documentation should provide more detail on the
synchronization between CUDA functions so that developers are aware of possible delays.

For AV developers. As we have demonstrated, timing-related issues encountered in AV
systems may be deeply rooted inside several black-box components. AV developers must
realize that high reliability is not equivalent to guaranteed behavior. A full inspection of
these black boxes is optimal but expensive and sometimes infeasible. Case-by-case analysis
thus becomes the only means for AV developers to understand abnormal system behaviors.
This approach is insufficient to truly guarantee safety, however. Thus, a joint effort involving
developers working on AV systems, CUDA, and relevant OSes is needed to introduce robust
real-time guarantees into these components.

For real-time researchers. As the locks used by CUDA do not provide any real-time
guarantees, the common practice of having separate GPU engine locks, as proposed in [21],
will thus still be prone to delays; instead, a single real-time-compatible mutex guarding these
CUDA functions is required, but this can be inefficient in practical situations. Moreover, the
implementation of futex on Linux also implies that some GPU tasks may be inadvertently
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ordered by priority due to CPU-side lock contention instead of the expected FIFO ordering,
potentially causing unexpected delays. A plausible solution for real-time researchers is to use
the shimming method to replace CUDA’s locking usages with real-time-compatible variants.

6 Conclusions

Software developers have always taken advantage of existing code bases to increase produc-
tivity, so it is unsurprising that AV developers have adopted the same approach. However,
AVs fall within a unique category of applications where any system misbehavior can have
catastrophic consequences. Thus, it is simply not acceptable to take a “black-box” approach
to AV system design without a thorough understanding of the components being applied.
In this paper, we have peered into certain aspects of several such black boxes – Linux,
QNX, the glibc pthreads library, and CUDA – and have shown that they can be a source of
consequential timing-related problems. We have also proposed partial mitigations for these
problems. Unfortunately, a full mitigation would require a complete re-design to incorporate
real-time principles into AV-related components, and this would be a herculean task. At the
very least, we hope this paper brings some awareness of the dangers of failing to “look inside
the box.”

In future work, we intend to examine other black boxes commonly used in the AV industry.
Chief among them is ROS (the Robot Operating System) [46], which is widely being used to
facilitate modular system development in AVs. ROS (even recent “real-time” variants of it)
was not designed with real-time predictability as a first-class concern, so its use in contexts
where real-time safety is paramount is highly questionable.
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A Preference RW Lock Starvation

As illustrated in Fig. 14, preference RW locks can induce indefinite delays to read- (in case
of write-preference) and write-requests (in case of read-preference).
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(a) Illustration of read request starvation in a write-
preference RW lock. Task τ2’s read request is starved
by periodic write requests from tasks τ1 and τ3,
causing the lock to never enter the read phase.
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(b) Illustration of write request starvation in a read-
preference RW lock. Task τ2’s write request is
starved by periodic read requests from tasks τ1 and
τ3, causing the lock to never enter the write phase.

Figure 14 Two types of request starvation with preference RW locks, the only options in glibc.

B KUtrace Output

Fig. 15 and Fig. 16 are screen shots taken directly from KUtrace outputs. Specifically, Fig. 15
represents a trace profile for Launch and Fig. 16 shows a trace where two processes calling
Memcpy contends for the same RW lock. The thick band shown in Fig. 16 represents futex
operations (“wakeup” and “futex”).
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Figure 15 KUtrace snippet capturing a test program (running on CPU #23) at the beginning
of a Launch CPU-side execution. Here, the label “kern” represents when the test program called
the CUDA kernel, and “culk” represents when the shimmed version of Launch actually began. The
“l” labels represent when mutex lock operations starts, followed by another label listing the lock’s
address. The “u” labels represent a mutex unlock operation, also followed by a label representing
the lock’s address.

Figure 16 KUtrace snippet capturing a test CUDA program executing simultaneous Memcpy
calls across many threads. The KUtrace events timeline has been organized by PID (shown on
the left), instead of by CPU. The “ml” marker indicates the beginning of a mutex_lock call,
“mu” indicates the beginning of a mutex_unlock call, and “rwul” indicates the beginning of a
rwlock_unlock call. The “/ml” marker indicates a mutex_lock call has returned, “/mu” marker
indicates a mutex_unlock call has returned, “/rwul” indicates a rwlock_unlock call has returned,
“/rwwl” indicates a rwlock_wrlock call has returned, and “/h2d” represents the end of a Memcpy call
that copies data from the CPU to GPU. The marker labels containing numbers will follow a lock
operation marker, and indicates the address of the lock the operation was passed as an argument. At
the top, the thread with PID 14545 starts unlocking (“rwul” marker label) a RW lock with address
278672, just before the 456 µs timestamp. The unlock operation calls the futex syscall, notifying
any waiters of the newly freed lock. This notifies the thread with PID 14549, just before the 466
timestamp, causing it get the RW lock in writer mode (“rwul” marker label) mode.

C CUDA Graph

Fig. 17 demonstrates how CUDA Graph can reduce the end-to-end latency of the DL model.
Without using CUDA Graph, launching a series of small kernels (as most DL models do)
can result in idleness in GPU when the instructions are yet to be sent from the CPU (shown
as gaps within kernel executions in Fig. 17). CUDA Graph resolves this issue by batching
GPU operations together and send them to the GPU at once.
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Figure 17 A high-level illustration of GPU operations launched with and without using CUDA
Graph. CUDA graph reduces the “gaps” between GPU executions by batching GPU operations.
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