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A B S T R A C T   

The UN 2030 Agenda for Sustainable Development Goal 15, termed Life on Land, is monitored by indicators and 
sub-indicators that largely deal with forest extent. In countries with structurally complex and species-rich forests, 
indicators and sub-indicators of forest quality are also needed to effectively monitor and sustain ecological 
integrity. The goal of the paper is to demonstrate the use of complementary sub-indicators of forest quality for 
SDG15 reporting and conservation planning. Our objective is to apply these sub-indicators within Colombia, 
Ecuador, and Peru and evaluate spatial patterns and trends over time as a basis for revealing how the results 
complement the official indicators of forest extent and forest extent in protected areas in informing conservation. 
The sub-indicators of forest quality quantify naturalness, riparian forest, forest structure and integrity, forest 
fragmentation, and forest connectivity. We quantified change during 2000–2021 in these metrics and highlighted 
insights gained from the complementary sub-indicators of forest quality relative to the official sub-indicators 
based on forest extent, 

Forests covered about 60–70% of the forested ecoregions in each country in 2000 and this proportion declined 
in all three countries by approximately 4% by 2021. Only a subset of the forested area was of high forest quality. 
Natural forests represented about 40% of forests in Colombian and Ecuador in 2000 and 50% in Peru. Those 
proportions declined: by 6.3% in Colombia, 6.5% in Ecuador, and 3.4% in Peru. Even less of the forested area 
was Core Forest in 2013; less than 28% among countries. During 2013–2021, the proportion of forest that was 
Core decreased by 2.3% in Colombia, 4.5% in Ecuador, and 6.7% in Peru. Connected Forests were about 17–22% 
of forests among the countries in 2013 and declined 10.4% in Colombia, 1.6% in Ecuador, and 3.8% in Peru by 
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2021. Forests high in forest structure were 10–18% of forests in 2012 among the countries and increased by 
1.1–2% by 2021. Forests of high integrity were 7–13% of forests in 2012 and increased by1.4–2% by 2021. 
Riparian forests represented less than about 7–9% among the countries and declined by 0.6–1.3% by 2021. Thus, 
the area of highly quality forest across the countries was substantially less than full forest extent and high-quality 
forest declined at a higher rate than forest extent during 2000–2021. Forest structure and integrity did increase 
slightly over this time period. 

Our results for trends in forest naturalness, riparian association, within stand structure, fragmentation, and 
connectivity demonstrate how consideration of forest quality provides a much stronger basis for evaluating 
success in meeting SDG15 targets than consideration of forest extent alone.   

1. Introduction 

Nature conservation is essential to sustainable development. How
ever, we are in a global emergency of biodiversity loss, climate change, 
infectious diseases, and inequality (IPBES, 2019) which threaten nature 
and human sustainability. This reality motivated the 2030 Agenda for 
Sustainable Development, which was adopted by all member states of 
the United Nations (UN) in 2015.1 This agenda was designed to provide 
a “shared plan for peace and prosperity for people and the planet, now 
and in the future”.2 The program’s 17 Sustainable Development Goals 
(SDGs) deal with human health, equity, and economic status as well as 
with nature and climate. The UN has identified for each of the SDGs 
specific targets for the year 2030 and indicators (and sub-indicators) 
that should be used to monitor progress towards these targets. Imple
mentation of the SDGs is to be done by member countries. Therefore, the 
indicators should be effective for monitoring progress towards the in
ternational SDG targets but also meaningful to the national SDG targets 
and feasible for implementation within countries. In this paper we 
introduce indicators of forest quality that are nationally relevant to the 
countries of Colombia, Ecuador, and Peru and present methods for 
monitoring them and trends in the indicators during 2000–2021. 

The UN General Assembly tasked the UN Statistical Commission, 
represented by Member States’ National Statistical Offices, to create the 
Inter-Agency and Expert Group on Sustainable Development Goals In
dicators (IAEG-SDGs).3 This group then developed a Global Indicators 
Framework for the SDGs and targets. The framework specifies the 
metrics that are to be used to monitor progress on reaching each target. 
These metrics are organized hierarchically, with indicators being the 
broader level metrics and sub-indicators being more narrow metrics 
within indicators. 

In recognition of geographical variation in ecosystems and human 
communities, the 2030 Agenda encouraged the development of regional 
and national indicators and sub-indicators to complement the global 
ones where needed and in alignment with national priorities. These 
complementary national indicators and sub-indicators are to be devel
oped by member states as appropriate to meeting the SDGs (United 
Nations, 2017). Thus, countries are encouraged to develop comple
mentary indicators and sub-indicators for SDG targets that are most 
relevant to their individual sustainable development situation. 

Among the SDGs is SDG15, termed Life on Land, which aims to 
“Protect, restore and promote sustainable use of terrestrial ecosystems, 
sustainably manage forests, combat desertification, and halt and reverse 
land degradation and halt biodiversity loss”. The 12 targets of this goal 
are oriented to conserve and restore terrestrial and freshwater 

ecosystems, end deforestation, restore degraded forests, and protect 
biodiversity and natural habitats.4 Given that ecological systems vary 
geographically with climate, topography, species pools, and other fac
tors, the specific indicators and means of achieving these targets are 
likely to vary among countries and regions. 

Countries in the moist tropical forest biome have unique challenges 
for sustaining nature and people. This biome is dominated by dense 
rainforests that are unique globally in high levels of biodiversity, carbon 
storage, climate mitigation, and unique genetic resources (Dinerstein 
et al., 2017). Local communities are often highly dependent on the 
ecological services provided by these forests. Yet the forests are espe
cially vulnerable to human pressure (Betts et al., 2017, Pillay et al. 
2022a). Thus, achieving the SDG15 targets in this region will require 
indicators that consider the unique ecological characteristics of these 
ecosystems. Colombia, Ecuador, and Peru, for example, include a variety 
of moist and dry tropical forest types. These forests are the most bio
diverse in the world, contain the largest tracts of the Earth’s remaining 
natural forests, and store vast quantities of carbon but also include areas 
of intense land use and rapid climate change (Hansen et al., 2020, Pillay 
et al. 2020b). Indicators and sub-indicators are needed that are most 
relevant to these globally important ecosystems. 

The indicators designed by the IAEG-SDGs for SDG15 largely deal 
with forest extent and protected area coverage. For example, indicator 
15.1.1 is forest area as a proportion of total land area and indicator 
15.1.2 is the proportion of important sites for terrestrial and freshwater 
biodiversity that are covered by protected areas, by ecosystem type. 
While the amount of forest remaining and forest protection status are 
clearly important, they do not take into account the key attributes that 
most influence the ecological value of these forests. In addition to forest 
extent as specified by the IAEG-SDGs4, there is a need for indicators and 
sub-indicators of forest quality. 

Forests differ in their contributions to biodiversity and ecosystem 
services (Watson et al., 2018, Betts et al., 2022, Hua et al., 2022). Lo
cations classified as forest may include primary forests and old-growth 
forests with large tracts of tall, complex canopies of diverse native 
species that function naturally and yield high benefits to biodiversity 
and ecosystem services (Lindenmayer et al., 2014). In contrast, in many 
countries, industrial tree plantations are also classified as forest 
(Chiarucci and Piovesan, 2020). Many plantations are designed to 
maximize wood production but are often low in biodiversity and lack 
resilience to global change (Rozendaal et al., 2019, Betts et al., 2022, 
Hua et al., 2022). Forests fragmented and degraded by logging, fire, 
livestock grazing, or other human activities also tend to have reduced 
native species richness, impaired ecological function and do not support 
levels of connectivity for species to respond to climate change (Gibson 
et al., 2011). Thus, in the context of SDG15, monitoring of not only the 
extent of forest, but the quality of that forest is critical to developing 
effective conservation plans (Watson et al., 2018, Chiarucci and Piove
san, 2020). 

The ecological value of forests can be quantified based on the 

1 A/RES/70/1 (21 October 2015). Transforming our world. The Agenda for 
Sustainable Development. Resolution adopted by the United Nations General 
Assembly on 25 September 2015. Available for consultation at: https://sdgs.un. 
org/es/2030agenda.  

2 https://sdgs.un.org/es/goals.  
3 https://unstats.un.org/sdgs/iaeg-sdgs/. 

4 See the global indicator framework for the SDGs and targets of the 2030 
Agenda for Sustainable Development at: https://unstats.un.org/sdgs/indicato 
rs/indicators-list/. 
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concept of ecological integrity (Hansen et al., 2021, Elsen et al., 2023). 
This term refers to the composition, structure and function of an 
ecosystem in relation to the system’s natural or historical range of 
variation. Human pressures can alter these ecosystem properties and 
reduce ecological integrity. Thus, the evaluation of elements of forest 
composition, structure, and function relative to reference conditions 
allows objective assessment of the extent to which forests may support 
the biodiversity and ecosystem services characteristic of a region 
(Chiarucci et al. 2020). Consequently, international policy increasingly 
calls for sustaining and restoring natural forest, intact forest, old-growth 
forest, and forest with high ecological integrity (CBD 2022, European 
Commission, 2020). Some elements of ecological integrity can now be 
monitored through remote sensing and spatial analysis, particularly if 
validated with in-situ data. 

We provide in this paper complementary sub-indicators of forest 
quality relating to naturalness, canopy structure, and landscape pattern. 
They were chosen based on relevance to forest ecological integrity, 
experience of our team in monitoring forest condition, and interest to 
ministries in each country charged with reporting on SDG15 targets. 

The goal of the paper is to demonstrate the use of complementary 
sub-indicators of forest quality for SDG15 reporting and conservation 
planning. Our objective is to apply these sub-indicators within 
Colombia, Ecuador, and Peru and evaluate spatial patterns and trends 
over time as a basis for revealing how the results complement the official 
indicators of forest extent and forest extent in protected areas in 
informing conservation. 

2. Methods 

2.1. Study area 

The 1,472,259 km2 study area of Colombia, Ecuador, and Peru 
ranges from the Pacific and Caribbean coasts of South America, over the 
Andes Mountains, and into the Amazon Basin (Fig. 1A). The pronounced 
topographic and climatic gradients result in 8 biome types and 42 
ecoregions (Dinerstein et al., 2017). This area has the highest terrestrial 
biodiversity in the world and includes two of the five top global biodi
versity hotspots that are most endangered (Myers et al., 2000). Over 100 
million people live in the Tropical Andes or in regions that depend 
directly on these natural resources (Buytaert et al., 2011). Agriculture 
and urban areas dominate the slopes of the Andes and the Caribbean dry 
forest. Extensive wildlands cover the coastal forests and much of the 
Amazon Basin but are increasingly infringed by deforestation fronts 
(Armenteras et al., 2017). 

We focus here on forested ecoregions within two biomes, Tropical & 
Subtropical Moist Broadleaf Forests and Tropical & Subtropical Dry 
Broadleaf Forests as defined by the World Wildlife Fund Resolve 2017 
classification (Dinerstein et al., 2017). The forested ecoregions within 
these biomes in the study area are depicted in Fig. 1B and described in 
Table SM1. Protected area boundaries were derived from the World 
Database on Protected Areas (WDPA, 2019) and included IUCN cate
gories I–IV, which represent allocations where conservation of biodi
versity is a primary objective. While WDPA is the global standard for 
protected area mapping, there can be lag-time in updates and the global 
dataset may not include the most recently created protected areas within 
countries. 

All maps shown in this paper use the Equal Earth projection, an 

Fig. 1. Map of the study area showing shaded relief, national boundaries, and major cities (A). Map of World Wildlife Fund ecoregions (B). Location of the study area 
in South America (C). 
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equal-area pseudo cylindrical projection for world maps. 

2.2. Development of the complementary sub-indicators 

We developed the sub-indicators of forest quality identified in 
Table 1 across the three countries. Among these metrics is a measure of 
human pressure (Human Footprint) used to quantify the naturalness of 
forests. The three-dimensional forest stand structure is represented by 
the Forest Structural Condition Index-Ecoregional Potential (FSCI-ERP) 
and the intersection of this index with human pressure is the Forest 
Structural Integrity Index-ERP (FSII-ERP). These metrics have been 
shown to be associated with reduced endangerment status of forest 
vertebrates and carbon storage (Pillay et al. 2022a). We include three 
measures of landscape pattern. Extent of Riparian Forest is an indicator 
of potential of buffering aquatic systems from the effects of deforesta
tion. Core Forest is area of moderate to high FSII-ERP that is not exposed 
to negative forests/non-forest edge effects, which can emerge from 
forest fragmentation. Connected Forest is where a landscape connec
tivity index indicates high potential for movement of forest-dependent 
animals among patches of moderate to high integrity forest. These 
complementary sub-indicators are directly relevant to SDG15 targets 
and indicators. They allow forest extent (Indicator 15.1.1) and protec
tion status (Indicator 15.1.2) to be expressed by naturalness, forest 
structure, and landscape pattern (Table 2). 

We used widely available global data sets to derive these metrics 
where possible to demonstrate an approach that could be used elsewhere 
in the world for this paper. We also worked in parallel with Colombia, 
Ecuador, and Peru to produce national versions using nationally vali
dated data. For metrics that can be quantified over time, we plotted 
values annually during approximately 2001–2021, depending on metric. 
We did similar analyses for the official sub-indicators of forest extent for 
SDG-15 identified by the UN IAEG-SDGs. This allowed comparison of the 
insights gained from our complementary sub-indicators of forest quality 
with the official sub-indicators based on forest extent. Methods and 
details for each complementary sub-indicator are described below and 
in Table SM2. The analyses used in this paper are then described. All 
codes and files are available through the Github repository: https://gith 
ub.com/gonzalezivan90/SDG15_indicators. 

2.3. Forest Extent 

We used the forest cover layer of Hansen (2013) that defined forest as 
land cover with tree canopy height ≥ 5 m and with a canopy cover > 25 
% in 2000, including natural and planted trees, not having undergone 
defined as a stand-replacement disturbance since 2001. ‘Forest Cover 
Loss’ is defined as a stand-replacement disturbance, or a change from a 
forest to non-forest state, during the period 2000–2021. 

2.4. Human Footprint and Natural Habitat 

Natural habitats are defined as areas that maintain ecological 
integrity with “the ability of the system to maintain ecosystem structure 
and functions using processes and elements characteristic of its ecor
egion” (Hansen et al., 2021). We proposed two complementary sub- 
indicators of natural forest: proportion of forest that is natural forest 
and proportion of natural forest that is protected. Because the national 
ministries were also interested in non-forested ecosystems, we also 
quantified proportion of land area that is natural. 

These metrics were generated based on the Human Footprint (HF) of 
Williams et al. (2020), which is a spatial index of cumulative human 
pressures on ecosystems. HF has been used to assess intact terrestrial 
ecosystems and wilderness areas (Riggio et al., 2020; Watson et al., 
2016; Williams et al., 2020), the risk of species extinction (Di Marco 
et al., 2018; Pillay et al., 2022), global effectiveness of the protected 
areas (Jones et al., 2018), reductions in terrestrial mammalian move
ments (Tucker et al., 2018). Areas absent of pressures or with a low HF 

Table 1 
Metrics used to develop complementary sub-indicators of forest quality quan
tified in this analysis. Acronyms are: FSCI-ERP - Forest Structural Condition 
Index Ecoregional Potential; and FSII-ERP - Forest Structural Integrity Index 
Ecoregional Potential.   

Metric Description Relevance to 
conservation 

Reference 

Human 
pressure 

Human 
Footprint 

Index of human 
pressure based on 
nine measures of 
human 
population, 
infrastructure, 
and land use. 

Human pressure 
can reduce 
native species 
abundance and 
richness, favor 
invasive species, 
and degrade 
ecosystem 
processes. 

Venter 
et al., 
2016a  

Natural 
Forest 

Forest with low 
Human Footprint 
(HF < 4), 

Forest with low 
human pressure 
is likely to have 
high ecosystem 
integrity, 

Venter 
et al., 
2016b 

Canopy 
structure 

FSCI-ERP Vegetation 
structure within 
forest stands. 
Inputs include 
canopy cover, 
canopy height, 
and time since 
disturbance. ERP 
denotes 
ecoregional 
potential and is 
scaled to natural 
stands within 
ecoregions, 

High levels of 
the index denote 
tall, 
multilayered, 
older forests that 
are known to 
support high 
levels of 
biodiversity, 
carbon storage, 
and ecosystem 
services, 

Hansen 
et al., 
2019,2020  

FSII-ERP This index 
integrates the 
FSCI-ERP with 
human pressure. 

Forests with 
high structural 
condition and 
low human 
pressure are of 
high ecological 
value because of 
the ecological 
benefits of well- 
developed forest 
structure and 
lack of 
alteration by 
human 
activities. 

Hansen 
et al., 
2019,2020 

Landscape 
pattern 

Riparian 
Forest 

Proportion of 
forests within 
100 m of streams 
and rivers, 

Riparian forests 
can buffer 
aquatic systems 
from negative 
effects of 
deforestation 
and other 
intense land 
uses, 

Gonzalez 
et al., 2024  

Core Forest This metric 
quantifies 
fragmentation of 
moderate and 
high FSII-ERP 
forests based on 
the percentage of 
core forest 
relative to total 
forest. 

Landscape 
pattern, 
especially the 
creation of 
edges and the 
resulting core 
forest that is free 
from edge 
effects has direct 
impacts on a 
number of 
ecological 
processes. 

Vogt et al., 
2007  

Connected 
Forest 

This metric maps 
least cost 
pathways from 
points within 
forests of 

Reductions in 
tree cover lead 
to reductions in 
movement for a 
large number of 

Compton 
et al., 2007, 
Kaszta 
et al., 2020 

(continued on next page) 
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value have been used to represent ecosystems likely in natural or closer 
to natural states (Sanderson et al., 2002; Venter et al., 2016). 

HF is derived by summing the influence of eight pressures: built 
environments, crop lands, pasture lands, population density, nighttime 
lights, and accessibility via roads, railways, and navigable waterways. 
The maps were validated through comparison against a similar but in
dependent measure of cumulative pressures from the visual interpreta
tion of high-resolution imagery, finding strong agreement between 
them. We used the global HF maps from 2000, 2005, 2010 and 2013 
(Williams et al., 2020). Natural habitats were designated as areas with 
low HF (HF < 4). This value approximates the threshold at which the 
landscape becomes human-dominated (Di Marco et al., 2018; Watson 
et al., 2016). 

2.5. Forest Structural Condition Index – Ecoregional Potential 

Forest structure refers to the three-dimensional distribution of 
vegetation within a forest. In tropical forest ecosystems, undisturbed 
forests (often referred to as primary forests) tend to have tall, multistory 
canopies and high variation in plant size, often including large emergent 
trees. We refer to such forests as having high structural condition. The 
positive influence of forests of high structural condition on biodiversity, 
ecological function and ecosystem services is increasingly well under
stood (Hansen et al., 2020, Pillay et al., 2022). We previously drew on 
remote sensing products to develop the Forest Structural Condition 
Index (FSCI) by integrating canopy cover, canopy height, and time since 
disturbance across the Humid Tropical Forest Biome (Hansen et al., 
2019). 

For our application to SDG15 indicators, we use a modified version of 
this index called FSCI-ERP (ecoregional potential). This metric is scaled 
to the structural conditions typical of natural forests within the ecor
egion. We developed the FSCI-ERP for both the Humid and Dry Tropical 
Forest Biomes within Colombia, Ecuador, and Peru. See Supplementary 
Materials for further details on methods. 

We focused here on high-FSCI-ERP forest, defined as index ≥ 14. This 
level was selected to represent high-structure forests based on map ac
curacy and representing levels of structure typical of undisturbed nat
ural forests in the biome. An accuracy assessment found that the FSCI 
adequately distinguished forest structure levels up to FSCI = 14 but the 
relationship saturated above that level (Hansen et al., 2019). 

2.6. Forest Structural Integrity Index – Ecoregional Potential 

The original FSII was derived from overlaying the HF of human 
pressure (see above) on the FSCI. Human activities can influence forests 
in several ways in addition to altering forest structure. Hunting and 
poaching alter wildlife populations without direct effects on habitat 
(Harrison, 2011, Harrison et al., 2016). Human settlements, roads, and 
deforested areas create edge effects that can extend hundreds of meters 
into adjacent forests (Haddad et al., 2015). These edge effects include 
invasive species, livestock and pet effects, altered ecological processes, 
noise and light (Betts et al., 2017). The effects of anthropogenic 

disturbance on biodiversity may exceed that of deforestation (Barlow 
et al., 2016). Integrating human pressure with forest structural condi
tion reveals forests that may be of the highest value for biodiversity and 
various ecosystem services. Methods used to derive FSII and FSII-ERP 
are described in Supplementary Materials. 

We analyzed change over 2012–2022 for the two metrics of forest 
structure in terms of loss rates of high FSCI-ERP and high FSII-ERP 
forests, mean values of FSCI-ERP and FSII-ERP in remaining forests, 

Table 1 (continued )  

Metric Description Relevance to 
conservation 

Reference 

moderate and 
high FSII-ERP to 
all surrounding 
points using 
forest integrity in 
the intervening 
matrix and 
assumptions 
about animal 
movements. 

forest animals 
especially 
arboreal species 
and those 
adapted to 
interior forest 
conditions.  

Table 2 
Indicators and sub-indicators for SDG15 Targets identified by the UN Statistics 
Division Inter-Agency and Expert Group on Sustainable Development Goals In
dicators (denoted by IAEG-SDGs) and complementary sub-indicators of forest 
quality developed in this project (denoted as Complementary). All sub- 
indicators are summarized at national and ecoregional extents. Acronyms are 
as defined in Table 1.  

Target Indicator Sub-indicators Type of Sub- 
indicator 

TARGET 15.1: By 
2020, ensure the 
conservation, 
restoration and 
sustainable use of 
terrestrial and 
inland freshwater 
ecosystems and 
their services, in 
particular forests, 
wetlands, 
mountains and 
drylands, in line 
with obligations 
under 
international 
agreements 

INDICATOR 
15.1.1: Forest 
area as a 
proportion of 
total land area 

Percentage of 
forest area of the 
total land area of 
a country 

IAEG-SDGs 

Proportion of 
forest area that is 
natural forest 

Complementary 

Proportion of 
forest area that is 
riparian forest 

Complementary  

Proportion of 
forest area in 
high FSCI-ERP 

Complementary  

Proportion of 
forest area in 
high FSII-ERP 

Complementary  

Proportion of 
forest area in 
moderate to high 
FSII-ERP that is 
Core Forest 

Complementary  

Proportion of 
forest area in 
moderate to high 
FSII-ERP that is 
Connected 
Forest. 

Complementary 

INDICATOR 
15.1.2: 
Proportion of 
important sites 
for terrestrial and 
freshwater 
biodiversity that 
are covered by 
protected areas, 
by ecosystem 
type 

Proportion of 
forest area within 
protected areas 

IAEG-SDGs 

Proportion of 
natural forest 
that is in 
protected areas 

Complementary 

Proportion of 
riparian forest in 
protected areas. 

Complementary 

Proportion of 
high FSCI-ERP 
areas in 
protected areas 

Complementary 

Proportion of 
high FSII-ERP 
areas in 
protected areas 

Complementary 

Proportion of 
moderate to high 
FSII-ERP Core 
Forest covered by 
protected areas 

Complementary 

Proportion of 
moderate to high 
FSII-ERP 
Connected Forest 
covered by 
protected areas 

Complementary 

https://unstats.un.org/sdgs/metadata/. 
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and representation of high FSCI-ERP and high FSII-ERP in protected 
areas. We summarized the proportional representation of forest, high- 
FSCI-ERP forest and high-FSII-ERP forest within and outside of pro
tected areas at the national level. 

2.7. Riparian Forest 

Two complementary sub-indicators related to the water-forest nexus: 
proportion of forest area that is riparian forest; and proportion of ri
parian forest in protected areas. The role of riparian vegetation includes 
the protection of water where it mediates sediment and pollutant 
transport. Additionally, riparian vegetation can provide habitat for 
species, function as landscape corridors, and regulate physical condi
tions in aquatic ecosystems, where changes in temperature or light can 
trigger degradation of biological communities (Brauman et al., 2007). 
The presence of natural vegetation has been found as a main determi
nant for aquatic ecosystem quality and represents a structural indicator 
for ecosystem function since it is related to biota in multiple forms (King 
et al., 2005). Given these considerations, the presence of forests in ri
parian areas becomes an appropriate and viable surrogate to analyze the 
interrelationships between aquatic and terrestrial ecosystems (Macfar
lane et al., 2017, Yirigui et al., 2019). 

Riparian zones were identified using buffers adjacent to water 
bodies, encompassing the critical interface between water bodies and 
vegetation. The riparian areas in this study were identified by extracting 
river and stream features from official national hydrographic layers 
(lines and polygons at 1:100.000 scale) and buffering them by 100 m. 
This width is a relevant value in the context of the three countries’ 
legislation regarding water policy. We used polygon features to remove 
permanent water bodies from the resulting buffer. In the riparian areas, 
we identify the presence of forest using the forest extent layer described 
in section 2.3. We estimated the percentage of riparian forest relative to 
total forest yearly from 2000 to 2021 and aggregated those values na
tionally and with protected areas. 

2.8. Core Forest 

We characterized fragmentation of moderate to high-FSII-ERP forest 
(>= 10, MHFSII-ERP) using morphological spatial pattern analysis 
(MSPA, Vogt et al., 2007) to derive Core Forest. Core Forest represents 
an ecologically relevant baseline condition for assessing fragmentation 
because most tropical moist forest naturally forms large patches in 
which most forest has minimal exposure to edge effects. MSPA uses in
formation on whether MHFSII-ERP forest is within a user-specified 
distance from an edge where edges are defined as shared cell bound
aries between MHFSII-ERP forest and non-MHFSII-ERP forest. We set 
MSPA parameters such that MHFSII-ERP forest greater than 1 km from 
an edge was classified as core and edges formed by water, study area 
boundaries, and small gaps (<= 1 ha) within MHFSII-ERP forest were 
ignored. 

We quantified the extent of Core Forest annually from 2012 to 2021 
and calculated the percentage of core forest relative to the total available 
forest per year. 

2.9. Connected Forest 

As with fragmentation, we assessed connectivity for MHFSII-ERP 
forest annually from 2012 to 2021. We used the cumulative resistant 
kernel (CRK) approach (Compton et al., 2007, Cushman et al., 2013, 
Diniz et al., 2020) to calculate the probability of moving through the 
landscape from a target pixel to all other surrounding pixels within a 
user-defined neighborhood. The probability surfaces generated around 
each target pixel are then summed on a pixel-wise basis to provide a map 
of the magnitude of connectivity between target pixels, allowing the 
connectivity contribution of both target pixels and areas between target 
pixels to be assessed. To reduce computation time, FSII-ERP values at 30 

m resolution were resampled to 1000 m cells. 
We defined the neighborhood around each MHFSII-ERP pixel based 

on allometric dispersal distance scaling for a theoretical species of 100 
kg with median and maximum dispersal distances of 50 km and 150 km, 
respectively (Sutherland et al., 2000). 

We assumed that forest integrity is negatively related to resistance to 
movement through the landscape and transformed FSII-ERP values 
accordingly (Keeley et al., 2016). Finally, to convert resistance to a 
probability of dispersal, we parameterized a negative exponential 
dispersal kernel such that the median dispersal distance was 50 km. 
Thus, in undisturbed forest landscapes, the theoretical forest species 
would be expected to move 50 km with a probability of 0.5. 

To build the indicator, we calculated the 75th percentile CRK value 
in 2012 and used it as the threshold that defines well-connected forest 
pixels, generating a binary layer yearly. The resulting “Connected For
est” indicator relates the percentage of well-connected pixels area to the 
total forest area by each year. 

3. Results 

3.1. Forest Extent 

Forests covered about 70 % of the forest biome land area in 
Colombian and Ecuador and about 60 % in Peru in 2000 (Fig. 2, 
Table 3). The proportion of land area in forests declined in all three 
countries by approximately 4 % by 2021. Forest cover and rates of loss 
varied among ecoregions (Fig. 3 left). In Colombia, for example, Mag
dalena-Urabá moist forests and Negro-Branco moist forests underwent 
little change, while Magdalena Valley montane forests and Solimoes- 
Japur moist forests declined substantially in area. 

Protected areas represented 10 % of the land area in Colombia, 4 % 
in Peru, and 0 % in Ecuador in 2001 (Table 3). These proportions 
increased in all three countries by 2021: by 26 % in Colombia, 108 % in 
Peru, and changed from 0 to 3 % of land area in Ecuador. An increase in 
protected areas occurred across most of the ecoregions (Fig. 3 right). 
While not yet recorded in the World Protected Areas Database used for 
this analysis, the protected area coverage increased to 20.65 % of land 
area across the three countries by March 2023. 

3.2. Natural Habitat 

At the national level, we found that the proportion of land area that 
was natural habitat decreased at a similar rate in each country between 
2000 and 2013 (~-2.5 %). The percentages of remaining natural habitat 
in 2013 were notably different among countries, with Ecuador and 
Colombia having only 34.94 % and 38.16 % natural habitat remaining 
and Peru having 66.72 %. The variation between ecoregions was also 
high, with 17 out of 23 losing more than 0.1 % (Table SM4, Fig. 4). The 
ecoregions that lost less than 0.1 %, or didn’t lose or gained natural 
habitat had little natural habitat left in 2013 (under 0.12 %). The most 
considerable losses were found in the Chocó-Darién moist forests (14.49 
%). Other ecoregions had a substantial loss of ~ 3.5 % and had relatively 
little natural habitat remaining in 2013 (i.e., under 15 %): Western 
Ecuador moist forests, Northwest Andean montane forests, Marañón dry 
forests, Cordillera Oriental montane forests). 

The proportion of forest that was natural in 2000 was 41 % in 
Colombia, 37 % in Ecuador and 49 % in Peru (Table 4). This proportion 
declined by 3.5–6.5 % by 2013. The proportion of natural forest in 
protected areas in 2000 ranged from 15 to 33 % among countries and 
this increased from 0.8 to 2.7 % by 2013. 

3.3. Forest Structure 

Forests high in FSCI-ERP respectively represented 9.7 %, 16.7 %, and 
12.3 % of the forested area of Colombia, Ecuador and Peru in 2012 
(Table 5). The proportion of forest that was high in FSCI-ERP, however, 
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Fig. 2. Distribution of forests within forested ecoregions of the study area in 2021 and areas of forest loss 2001–2021.  

Table 3 
Proportion of land area in forest or protected in 2000 and 2021 and rate of change 2000–2021.  

Country % of land area in 
forest 2000 

% of land area in 
forest 2021 

% change in land area in 
forest 2000–2021 

% of land area 
protected in 2000 

% of land area 
protected in 2021 

% change in land area 
protected 2000–2021 

Colombia  69.2  66.2  −4.3  10.6 13.4 26.2 
Ecuador1  71.4  68.7  −3.9  0.00 3.00 NA 
Peru  60.3  58.1  −3.7  4.0 8,4 108.7  

1 While not yet recorded in the World Protected Areas Database used for this analysis, the protected area coverage increased to 20.65 of land area by March 2023. 
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increased in all three countries to 2021, by 1.8 % in Colombia, 1.1 % in 
Peru, and 1.3 % in Ecuador. The proportion of areas high in FSCI-ERP 
that were within protected areas in 2012 was 0 % in Ecuador and 
about 14–15 % in Colombia and Peru. The level of protection increased 
substantially in Ecuador (from 0 to 4.3 %) and Peru (by 22 %), but less so 
in Colombia. 

The proportion of forest high in FSII-ERP in 2012 was less than for 
forest structural condition, 7 %-13 % among the countries, and rates of 
gain were somewhat higher, 1.4 %-1.9 % (Table 6). Forests in the 
Amazon Basin were relatively high in forest structure and integrity, 
while forests in the Pacific Coast and Andes Mountains were substan
tially lower (Fig. 5). The level of protection of forest high in FSII-ERP 
increased substantially in Ecuador and Peru, but less so in Colombia. 

3.4. Riparian Forest 

The proportion of forest area that was riparian forest in the year 2000 
was about 7.4 %-9.4 % across the countries (Table 7). This proportion 
increased by about 1 % by 2021 in Colombia and Ecuador, and 
decreased by 0.6 % in Peru. Some 12.2 % – 17.2 % of the riparian forests 
were in protected areas across the countries. The proportion increased 
by 3.1 %-3.4 % by 2021. 

3.5. Landscape Pattern 

The core area of the MHFSII was sensitive to the gaps identified by 
FSII-ERP values under 10, in addition to the gaps caused by all kinds of 
forest loss. This resulted in a percentage of Core Forest relative to the 
total forest of 28 % in Colombia, 17 % in Ecuador, and 23 % in Peru in 
2013 (Table 8). In 2021 these percentages decreased by 2.3 % in 
Colombia, 4.5 % in Ecuador, and 3.4 % in Peru. This indicated that the 
Core Forest was lost faster than the total forest in Peru. The resulting 
core areas were located mainly inside the Amazon basin. Protected areas 
contained 30 % of Colombia’s Core Forest and 15 % in Ecuador and Peru 
by 2012, but in 2021 they had an increase of 5 % in Colombia and 
Ecuador, and a 6 % decrease in Peru. 

Connected Forest represented about 22 % of total forest in Colombia 
in 2013, 15 % in Ecuador, and 21 % in Peru, with decreases of 10.4 % in 
Colombia, 1.6 % in Ecuador, and 3.8 % in Peru by 2021 (Table 9). 
Similarly, the protected area estate contained 17 % of well-connected 
forests in Colombia, 31 % in Ecuador, and 9 % in Peru in 2012. Dur
ing the 2012–2021 period, the losses in protected areas were 36 % in 
Colombia and 17 % in Ecuador, with a gain of 3 % in Peru. As for the 
Core Forest analysis, most of the Connected Forest was located in the 
Amazon basin (Fig. 6). The changes in forest connectivity were influ
enced not only by the total amount of forest lost but also by the spatial 
patterns of these events. 

4. Discussion 

Countries within the Tropical & Subtropical Moist Broadleaf Forests 
biome benefit from the high levels of biodiversity and ecosystem ser
vices present in the region. Consequently, these countries require SDG15 
indicators that consider not only forest extent as is currently specified by 
the official SDG indicators. They also need indicators of the quality of 
the forests with regards to supporting biodiversity and ecosystem ser
vices. Indicators of forest quality include measures of human pressure 
and forest structure, function, and composition. In this paper we 
developed sub-indicators of forest quality that are nationally relevant in 
Colombia, Ecuador, and Peru. 

In total, our results illustrate how the complementary sub-indicators 
of forest quality complement the official indicators developed by the 
IAEG-SDGs that deal with forest extent. Forests covered about 70 % of 
the forest biome land area in Colombian and Ecuador and about 60 % in 
Peru in 2000. The proportion of land area in forests declined in all three 
countries by approximately 4 % by 2021. However, only a subset of the 
forested area was of high forest quality (Fig. 7). 

Natural forests represented about 40 % of forests in Colombian and 
Ecuador in 2000 and 50 % in Peru. Those proportions declined: by 6.3 % 
in Colombia, 6.5 % in Ecuador, and 3.4 % in Peru by 2021. Even less of 
the forested area was Core Forest in 2013: less than 28 % among 
countries. During 2013–2021, the proportion of forest that was Core 

Fig. 3. Proportion of land area occupied by forest (left) and in protected areas (right) during 2000–2021 by ecoregions within countries.  
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Forest decreased by 2.3 % in Colombia, 4.5 % in Ecuador, and 6.7 % in 
Peru. Connected Forests were about 17 %–22 % of forests among the 
countries in 2013 and declined 10.4 % in Colombia, 1.6 % in Ecuador, 
and 3.8 % in Peru by 2021. Forests high in forest structure were 10 %-18 
% of forests in 2012 among the countries and increased by 1.1 % 2 % by 
2021. Forests of high integrity were 7–13 % of forests in 2012 and 
increased by1.4 % 2 % by 2021. Riparian forests represented less than 

about 7 %-9% among the countries and declined by 0.6 %-1.3 % by 
2021. Thus, the area of highly quality forest across the countries was 
substantially less than full forest extent and high-quality forest declined 
at a higher rate than forest extent during 2000–2021. Forest structure 
and integrity did increase slightly over this time period. 

Colombia, Ecuador, and Peru made substantial progress in expand
ing protected area coverage during 2001–2019. Consequently, the 

Fig. 4. Map of natural habitat (NH) remaining in 2013 and NH change in Peru, Ecuador, and Colombia by ecoregion. The number of ecoregions comes 
from Table SM2. 

Table 4 
Proportion of forest area that is natural forest and proportion of natural forest in protected areas in 2000 and 2013 an rates of change in each 2000–2013.  

Country % of forest that is 
natural 2000 

% of forest that is 
natural 2013 

% change in proportion of forest 
that is natural 2000–2013 

% of natural forest 
protected in 2000 

% of natural forest 
protected in 2013 

% change in natural forest 
protected 2000–2013 

Colombia  40.7  38.2  −6.3  19.5  19.8  1.7 
Ecuador  37.4  34.9  −6.5  32.7  32.9  0.8 
Peru  49.1  46.7  −4.85  15.1  5.5  2.7  

Table 5 
Proportion of forest area high Forest Structural Condition Index (FSCI-ERP) in 2012 and 2021 and percent change to 2012–2021. Identical metrics for proportion of 
high FSCI-ERP forest in protected areas.  

Country % of forests that are 
high in FSCI-ERP in 
2012 

% of forests that are 
high in FCII-ERP in 
2021 

Change in % of forests high 
in FSCI-ERP in 2012–2021 

% of high FSCI-ERP 
forests protected in 
2012 

% of high FSCI-ERP 
forests protected in 
2021 

Change in % of high FSCI-ERP 
forests protected in 
2012–2021 

Colombia  9.7  9.9  1.8  13.6  13.7 0.4 
Ecuador  16.7  18.9  1.1  0.0  4.3 NA 
Peru  12.3  12.4  1.3  15.4  18.5 22.1  
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proportion of high-quality forest that were protected increased for ri
parian forests, high structure and integrity forests, core forests, and 
highly connected forests. 

Users of these metrics of forest quality will be interested in the 
reliability, sensitivity, and operational applicability for SDG15 appli
cations. The global HF used in this analysis was validated against a 

dataset of visually interpreted high resolution imagery, and found to 
have high agreement with a rootmean-square error of 0.116 and a Kappa 
statistic of 0.806 (P < 0.01) (Williams et al., 2020). The metric is based 
on several inputs on human pressure such as population density and land 
use and is likely sensitive to forest changes of interest to the SDG15 
targets. A limitation of our analyses was that we used data for the 

Table 6 
Proportion of forest area high Forest Structural Integrity Index (FSII-ERP) in 2012 and 2021 and percent change to 2012–2021. Identical metrics for proportion of high 
FSII-ERP forest in protected areas.  

Country % of forests that are 
high in FSII-ERP in 
2012 

% of forests that are 
high in FSII-ERP in 
2021 

Change in % of forests high 
in FSII-ERP in 2012–2021 

% of high FSII-ERP 
forests protected in 
2012 

% of high FSII-ERP 
forests protected in 
2021 

Change in % of high FSII-ERP 
forests protected in 
2012–2021 

Colombia  7.0  7.1  1.9  19.0  19.0 0.3 
Ecuador  13.3  13.4  1.4  0.0  5.3 NA 
Peru  11.3  11.4  1.42  16.5  19.7 19.9  

Fig. 5. Distribution of FSCI-ERP and FSII-ERP across the study area in 2021.  

Table 7 
Proportion of forest area that is riparian forest and proportion of riparian forest in protected areas in 2000 and 2021 and rates of change in each 2000–2021.  

Country % of forest that is 
riparian 2000 

% of forest that is 
riparian 2021 

Change in % of forest that is 
riparian 2000–2021 

% of riparian forest 
protected in 2000 

% of riparian forest 
protected in 2021 

Change in riparian forest 
protected 2000–2021 

Colombia  7.5  7.5  1.3  12.6  13.1  3.4 
Ecuador  9.3  9.3  1.0  12.3  12.6  3.2 
Peru  7.4  7.4  −0.6  16.5  17.2  4.7  
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2000–2013 period because the more recent versions of the data set were 
developed with different methods and were not suitable for change 
analyses (Williams et al., 2020). While we used this global version of the 
HF, many countries require that only officially government sanctioned 
data be used for national reporting. Thus, for operational applications 
countries may choose to develop a HF dataset using national data for 
inputs. For example, Columbia has completed a HF layer (Correa and 
Ayram 2020) and Ecuador and Peru are in the process of doing so 
(Personal Communication). In each case, the data products were 
developed to allow change analysis for 2000–2020. 

The FSCI metric of forest structure was validated against airborne 
lidar data using samples which were available in Brazil (Hansen et al., 
2019). Accuracy was 93 %. The ERP version, which indexes the metric to 
the structure found in natural forests in each ecoregion has not yet been 
validated and countries may wish to do so for SDG15 reporting. The 

Table 8 
Proportion of forest area in moderate to high Forest Structural Integrity Index (MHFSII-ERP) that is Core Forest in 2012 and percent change to 2021 and proportion of 
moderate to high Forest Structural Integrity Index (MHFSII-ERP) Core Forest covered by protected areas in 2021 and change to 2021.  

Country % of forests that are 
MHFSII-ERP core forest 
in 2013 

% of forests that are 
MHFSII-ERP core forest 
in 2021 

Change in % MHFSII- 
ERP core forests 
2013–2021 

% of MHFSII-ERP core 
forests protected in 
2013 

% of MHFSII-ERP core 
forests protected in 
2021 

Change in % of MHFSII-ERP 
core forests protected in 
2013–2021 

Colombia  27.8  27.1  −2.3  29.1  30.4  4.6 
Ecuador  14.5  13.9  −4.5  14.9  15.6  4.7 
Peru  22.1  21.3  −3.4  15.6  14.7  −5.8  

Table 9 
Proportion of forest area in high Forest Structural Integrity Index (FSII-ERP) that 
is Connected Forest in 2012 and percent change to 2021 and proportion of high 
Forest Structural Integrity Index (FSII-ERP) Connected Forest covered by pro
tected areas in 2021 and change to 2021.  

Country % of forests 
that are high 
FSII-ERP 
connectivity 
forest in 2013 

Change in % 
high FSII-ERP 
connectivity 
forests 
2013–2021 

% of high FSII- 
ERP 
connectivity 
forests 
protected in 
2013 

Change in % of 
high FSII-ERP 
connectivity 
forests 
protected in 
2013–2021 

Colombia  22.3  20.0  −2.3  −36.7 
Ecuador  14.5  13.9  −4.5  −17.3 
Peru  21.16  20.4  −3.8  3.7  

Fig. 6. Maps of Core Forest (A) and Connected Forest (B) in the study area for 2018.  
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three input metrics (canopy height, canopy cover, and time since 
disturbance) have been found to be sensitive to human modification of 
forests (Hansen et al., 2020). As with HF, Ecuador and Peru are in the 
process of developing nationally sanctioned versions of FSCI-ERP thus 
allowing use for SDG15 reporting (Personal Communication). 

Riparian Forest is derived from the global forest maps of Hansen 
et al. (2013) and official national hydrographic layers. Each of the three 
countries are in the process of using national data on forest cover and 
hydrography for use in national reporting. 

The other metrics of forest quality used here (FSII-ERP, Core Forest, 
and Connected Forest) and derived from the HF and/or the FSCI-ERP 
layers. Their reliability, sensitivity, and operational feasibility are 
similar to those layers. 

Conceptual and empirical support for the Core Forest and Connected 
Forest indicators have been well established in numerous publications 

assessing the importance of core area and connectivity for a broad range 
of species and ecosystems (Laurance and Jensen 1991, Vogt et al., 2007, 
Compton et al., 2007, Asensio et al., 2012, Zeller et al., 2018, Grantham 
et al., 2020, Kaszta et al., 2020). Both indicators decrease with forest 
quality loss, increase with forest quality gain, and are spatially 
comprehensive, registering change if forest quality loss or gain occurs 
anywhere in the study area. They are sensitive to where forest quality 
change occurs and to parameterization. The Connected Forest indicator 
is more sensitive to forest loss that disconnects remaining forest. Both 
indicators are more sensitive to forest loss that occurs in core forest 
compared to peripheral or already fragmented forest. Connected Forest 
results for a given dispersal scale and resistance surface parameteriza
tion will be different than those for another. This is by design and users 
can set the scale of dispersal and resistance surface parameterization to 
appropriate values based on their monitoring and assessment goals. 

Fig. 7. Summary of trends for forest extent as a percentage of land area and measures of forest quality as a percentage of forest area during the study period for each 
of the three countries. 
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Similarly, a given value for the edge influence parameter will provide 
different Core Forest results, with higher edge influence values resulting 
in lower core forest areas. The calculation of both indicators is 
straightforward, although computationally demanding for large 
geographic domains, and can be conducted in publicly available soft
ware packages or using common scripting languages (e.g., Python or R). 

The implication of our findings for conservation is that during the 
initial period that countries have strived towards SDG15 targets, 
fundamental attributes of forests have eroded at rates even faster than 
loss of forest extent. This is concerning because of the high biodiversity 
and ecological value of high-quality forests. Landscape naturalness, for 
example, is seen as critical for species adaptation under anthropogenic 
climate change as it facilitates individuals and populations to track their 
preferred microclimates (Watson et al., 2016). Beyond species-specific 
benefits, intact landscapes allow for increased ecosystem function and 
resilience by ensuring that nutrient cycling can continue unabated, as 
well as other important abiotic conditions such as radiation, wind, light 
regimes, humidity, and key hydrological regimes (Haddad et al., 2015). 
It is well known that land uses such as farming, urbanization, and un
sustainable forestry disrupt the intactness of landscapes to various de
grees (Potapov et al., 2000). We note however, that the forest product 
we used in this analysis does not distinguish between natural agents of 
forest loss and anthropogenic ones and that the global data can be 
complemented with national data for a finer understanding of forest 
dynamics. 

Similarly, forests of high structural condition are important ecolog
ically because they tend to be high in biodiversity, productivity, carbon 
storage, and water provisioning. Such forests provide high microclimate 
and habitat niche diversity and thus support high species diversity 
(Rozendaal et al., 2019, Cortés-Gómez et al., 2013). For example, 
biodiversity value is 41 % lower in degraded forests (including selec
tively logged forests, secondary forests and forests converted into 
various forms of agriculture) than in primary forest across the humid 
tropics (Gibson et al., 2011). More recently, Pillay (2020) found that 
high FSCI and FSII forests are associated with considerably lower risk of 
humid tropical vertebrate species extinctions and population declines, 
when directly compared with forest cover. Forests of high structural 
condition are also relatively high in productivity and carbon storage 
(Poorter et al., 2015). Primary forests in Brazil, the Democratic Republic 
of the Congo, and Indonesia were found to be 38 %–59 % taller in 
canopy height, have 100 %–183 % greater aboveground biomass and 
store 279 %–866 % more carbon than other dense tree cover (Tur
ubanova et al., 2018). Tall multistoried forests also influence water 
provisioning, providing higher levels of evapotranspiration that 
enhance regional precipitation and maintain the conditions for dense 
humid forests to persist (Bonan et al. 2018). 

Pillay et al. (2022a) have argued that the single most important 
policy action nations can take to prevent catastrophic biodiversity loss in 
tropical rainforests is to commit to a target of “net gain in area, con
nectivity, and integrity” of these high-quality forest ecosystems. Just as 
important is the development of proactive indicators that provide a 
comprehensive picture of progress towards these targets on forest 
integrity. Thus, monitoring and reporting trends in forest quality should 
be a high priority in the context of SDG15. 

Our work adds to a growing body of studies developing comple
mentary sub-indicators for SDG reporting. Rotllan-Puig et al. (2021), for 
example, provided methods for calculating a land productivity sub- 
indicator that is relevant to quantifying land degradation. Similarly, 
Keys et al. (2021) used machine-learning to develop a sub-indicator of 
human pressure for application to SDG reporting. 

While monitoring forests based on forest quality has not yet been 
officially recommended by the IAEG-SDGs, some countries such as the 
United States., Australia, and the European Union have specified the 
importance of conserving older and natural forest because of the 
perceived benefits such forests have for maintaining biodiversity and 
ecosystem function and providing ecological services (Barnett et al., 

2023, Lindenmayer and Taylor, 2020, O’Brien et al., 2021). Old-growth 
forest is late seral stage forest that typically has a range of tree sizes 
including large trees and high variation in canopy layers. Primary forest 
is that which has never harvested by people. Our sub-indicators of 
naturalness, FSCI-ERP and FSII-ERP draw on global satellite and ancil
lary data sets to allow mapping of components of forest structure, age, 
and human pressure that are relevant to forest quality and could be used 
to support these efforts to map old growth and primary forest. 

The approaches used here are likewise highly relevant for countries 
party to the Convention on Biological Diversity, which recently adopted 
the landmark Kunming-Montreal Global Biodiversity Framework (GBF), 
including 4 goals, 23 targets, and a mission to “put nature on a path to 
recovery for the benefit of people and planet” by 2030 (CBD 2022a). The 
associated Monitoring Framework of the GBF (CBD 2022b) recognizes 
the value of nationally relevant indicators for biodiversity monitoring, 
including around forest and ecosystem integrity. As countries work to 
develop their monitoring plans in accordance of the Monitoring 
Framework by October 2024, the sub-indicators and approaches pre
sented here may be useful to support the development of monitoring 
plans that include measures of forest quality, particularly for Goal A and 
Targets 1–3. 

5. Conclusion 

We recommend adding to the SDG15 indicators of forest extent 
developed by the IAEG-SDGs complementary sub-indicators of forest 
quality for national monitoring and reporting. Our results for trends in 
forest naturalness, riparian association, within stand structure, frag
mentation, and connectivity demonstrate how consideration of forest 
quality provides a much stronger basis for evaluating success in meeting 
SDG15 targets than consideration of forest extent alone. The utility of 
the approach was demonstrated with application to Colombia, Ecuador, 
and Peru, which are proceeding to officially adopt some of these sub- 
indicators (Aragon et al. in prep). Further, we showed how the official 
SDG15 indicators can be extended and complemented using a few extra 
open datasets, appropriate questions, assumptions, and open-source 
methods.The provided spatial calculation can be summarized in UN 
stats format, but with geographical representation (explicit maps) for 
other national and regional usages. Using the forest extent as a baseline, 
it is possible to provide a viable spatiotemporal baseline to build upon, 
as shown in the new set of indicators. Thus, our approach is highly 
generalizable for applications in other countries. 
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