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ARTICLE INFO ABSTRACT
Keywords: The UN 2030 Agenda for Sustainable Development Goal 15, termed Life on Land, is monitored by indicators and
Forest quality sub-indicators that largely deal with forest extent. In countries with structurally complex and species-rich forests,

Conservation planning
National sub-indicators
Sustainable Development Goal 15

indicators and sub-indicators of forest quality are also needed to effectively monitor and sustain ecological
integrity. The goal of the paper is to demonstrate the use of complementary sub-indicators of forest quality for
SDG15 reporting and conservation planning. Our objective is to apply these sub-indicators within Colombia,
Ecuador, and Peru and evaluate spatial patterns and trends over time as a basis for revealing how the results
complement the official indicators of forest extent and forest extent in protected areas in informing conservation.
The sub-indicators of forest quality quantify naturalness, riparian forest, forest structure and integrity, forest
fragmentation, and forest connectivity. We quantified change during 2000-2021 in these metrics and highlighted
insights gained from the complementary sub-indicators of forest quality relative to the official sub-indicators
based on forest extent,

Forests covered about 60-70% of the forested ecoregions in each country in 2000 and this proportion declined
in all three countries by approximately 4% by 2021. Only a subset of the forested area was of high forest quality.
Natural forests represented about 40% of forests in Colombian and Ecuador in 2000 and 50% in Peru. Those
proportions declined: by 6.3% in Colombia, 6.5% in Ecuador, and 3.4% in Peru. Even less of the forested area
was Core Forest in 2013; less than 28% among countries. During 2013-2021, the proportion of forest that was
Core decreased by 2.3% in Colombia, 4.5% in Ecuador, and 6.7% in Peru. Connected Forests were about 17-22%
of forests among the countries in 2013 and declined 10.4% in Colombia, 1.6% in Ecuador, and 3.8% in Peru by
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2021. Forests high in forest structure were 10-18% of forests in 2012 among the countries and increased by
1.1-2% by 2021. Forests of high integrity were 7-13% of forests in 2012 and increased by1.4-2% by 2021.
Riparian forests represented less than about 7-9% among the countries and declined by 0.6-1.3% by 2021. Thus,
the area of highly quality forest across the countries was substantially less than full forest extent and high-quality
forest declined at a higher rate than forest extent during 2000-2021. Forest structure and integrity did increase

slightly over this time period.

Our results for trends in forest naturalness, riparian association, within stand structure, fragmentation, and
connectivity demonstrate how consideration of forest quality provides a much stronger basis for evaluating
success in meeting SDG15 targets than consideration of forest extent alone.

1. Introduction

Nature conservation is essential to sustainable development. How-
ever, we are in a global emergency of biodiversity loss, climate change,
infectious diseases, and inequality (IPBES, 2019) which threaten nature
and human sustainability. This reality motivated the 2030 Agenda for
Sustainable Development, which was adopted by all member states of
the United Nations (UN) in 2015." This agenda was designed to provide
a “shared plan for peace and prosperity for people and the planet, now
and in the future”.? The program’s 17 Sustainable Development Goals
(SDGs) deal with human health, equity, and economic status as well as
with nature and climate. The UN has identified for each of the SDGs
specific targets for the year 2030 and indicators (and sub-indicators)
that should be used to monitor progress towards these targets. Imple-
mentation of the SDGs is to be done by member countries. Therefore, the
indicators should be effective for monitoring progress towards the in-
ternational SDG targets but also meaningful to the national SDG targets
and feasible for implementation within countries. In this paper we
introduce indicators of forest quality that are nationally relevant to the
countries of Colombia, Ecuador, and Peru and present methods for
monitoring them and trends in the indicators during 2000-2021.

The UN General Assembly tasked the UN Statistical Commission,
represented by Member States’ National Statistical Offices, to create the
Inter-Agency and Expert Group on Sustainable Development Goals In-
dicators (IAEG-SDGs).® This group then developed a Global Indicators
Framework for the SDGs and targets. The framework specifies the
metrics that are to be used to monitor progress on reaching each target.
These metrics are organized hierarchically, with indicators being the
broader level metrics and sub-indicators being more narrow metrics
within indicators.

In recognition of geographical variation in ecosystems and human
communities, the 2030 Agenda encouraged the development of regional
and national indicators and sub-indicators to complement the global
ones where needed and in alignment with national priorities. These
complementary national indicators and sub-indicators are to be devel-
oped by member states as appropriate to meeting the SDGs (United
Nations, 2017). Thus, countries are encouraged to develop comple-
mentary indicators and sub-indicators for SDG targets that are most
relevant to their individual sustainable development situation.

Among the SDGs is SDG15, termed Life on Land, which aims to
“Protect, restore and promote sustainable use of terrestrial ecosystems,
sustainably manage forests, combat desertification, and halt and reverse
land degradation and halt biodiversity loss”. The 12 targets of this goal
are oriented to conserve and restore terrestrial and freshwater

1 A/RES/70/1 (21 October 2015). Transforming our world. The Agenda for
Sustainable Development. Resolution adopted by the United Nations General
Assembly on 25 September 2015. Available for consultation at: https://sdgs.un.
org/es/2030agenda.

2 https://sdgs.un.org/es/goals.

3 https://unstats.un.org/sdgs/iaeg-sdgs/.

ecosystems, end deforestation, restore degraded forests, and protect
biodiversity and natural habitats.” Given that ecological systems vary
geographically with climate, topography, species pools, and other fac-
tors, the specific indicators and means of achieving these targets are
likely to vary among countries and regions.

Countries in the moist tropical forest biome have unique challenges
for sustaining nature and people. This biome is dominated by dense
rainforests that are unique globally in high levels of biodiversity, carbon
storage, climate mitigation, and unique genetic resources (Dinerstein
et al.,, 2017). Local communities are often highly dependent on the
ecological services provided by these forests. Yet the forests are espe-
cially vulnerable to human pressure (Betts et al., 2017, Pillay et al.
2022a). Thus, achieving the SDG15 targets in this region will require
indicators that consider the unique ecological characteristics of these
ecosystems. Colombia, Ecuador, and Peru, for example, include a variety
of moist and dry tropical forest types. These forests are the most bio-
diverse in the world, contain the largest tracts of the Earth’s remaining
natural forests, and store vast quantities of carbon but also include areas
of intense land use and rapid climate change (Hansen et al., 2020, Pillay
et al. 2020Db). Indicators and sub-indicators are needed that are most
relevant to these globally important ecosystems.

The indicators designed by the IAEG-SDGs for SDG15 largely deal
with forest extent and protected area coverage. For example, indicator
15.1.1 is forest area as a proportion of total land area and indicator
15.1.2 is the proportion of important sites for terrestrial and freshwater
biodiversity that are covered by protected areas, by ecosystem type.
While the amount of forest remaining and forest protection status are
clearly important, they do not take into account the key attributes that
most influence the ecological value of these forests. In addition to forest
extent as specified by the IAEG-SDGs*, there is a need for indicators and
sub-indicators of forest quality.

Forests differ in their contributions to biodiversity and ecosystem
services (Watson et al., 2018, Betts et al., 2022, Hua et al., 2022). Lo-
cations classified as forest may include primary forests and old-growth
forests with large tracts of tall, complex canopies of diverse native
species that function naturally and yield high benefits to biodiversity
and ecosystem services (Lindenmayer et al., 2014). In contrast, in many
countries, industrial tree plantations are also classified as forest
(Chiarucci and Piovesan, 2020). Many plantations are designed to
maximize wood production but are often low in biodiversity and lack
resilience to global change (Rozendaal et al., 2019, Betts et al., 2022,
Hua et al., 2022). Forests fragmented and degraded by logging, fire,
livestock grazing, or other human activities also tend to have reduced
native species richness, impaired ecological function and do not support
levels of connectivity for species to respond to climate change (Gibson
et al., 2011). Thus, in the context of SDG15, monitoring of not only the
extent of forest, but the quality of that forest is critical to developing
effective conservation plans (Watson et al., 2018, Chiarucci and Piove-
san, 2020).

The ecological value of forests can be quantified based on the

4 See the global indicator framework for the SDGs and targets of the 2030
Agenda for Sustainable Development at: https://unstats.un.org/sdgs/indicato
rs/indicators-list/.
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concept of ecological integrity (Hansen et al., 2021, Elsen et al., 2023).
This term refers to the composition, structure and function of an
ecosystem in relation to the system’s natural or historical range of
variation. Human pressures can alter these ecosystem properties and
reduce ecological integrity. Thus, the evaluation of elements of forest
composition, structure, and function relative to reference conditions
allows objective assessment of the extent to which forests may support
the biodiversity and ecosystem services characteristic of a region
(Chiarucci et al. 2020). Consequently, international policy increasingly
calls for sustaining and restoring natural forest, intact forest, old-growth
forest, and forest with high ecological integrity (CBD 2022, European
Commission, 2020). Some elements of ecological integrity can now be
monitored through remote sensing and spatial analysis, particularly if
validated with in-situ data.

We provide in this paper complementary sub-indicators of forest
quality relating to naturalness, canopy structure, and landscape pattern.
They were chosen based on relevance to forest ecological integrity,
experience of our team in monitoring forest condition, and interest to
ministries in each country charged with reporting on SDG15 targets.

The goal of the paper is to demonstrate the use of complementary
sub-indicators of forest quality for SDG15 reporting and conservation
planning. Our objective is to apply these sub-indicators within
Colombia, Ecuador, and Peru and evaluate spatial patterns and trends
over time as a basis for revealing how the results complement the official
indicators of forest extent and forest extent in protected areas in
informing conservation.
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2. Methods
2.1. Study area

The 1,472,259 km? study area of Colombia, Ecuador, and Peru
ranges from the Pacific and Caribbean coasts of South America, over the
Andes Mountains, and into the Amazon Basin (Fig. 1A). The pronounced
topographic and climatic gradients result in 8 biome types and 42
ecoregions (Dinerstein et al., 2017). This area has the highest terrestrial
biodiversity in the world and includes two of the five top global biodi-
versity hotspots that are most endangered (Myers et al., 2000). Over 100
million people live in the Tropical Andes or in regions that depend
directly on these natural resources (Buytaert et al., 2011). Agriculture
and urban areas dominate the slopes of the Andes and the Caribbean dry
forest. Extensive wildlands cover the coastal forests and much of the
Amazon Basin but are increasingly infringed by deforestation fronts
(Armenteras et al., 2017).

We focus here on forested ecoregions within two biomes, Tropical &
Subtropical Moist Broadleaf Forests and Tropical & Subtropical Dry
Broadleaf Forests as defined by the World Wildlife Fund Resolve 2017
classification (Dinerstein et al., 2017). The forested ecoregions within
these biomes in the study area are depicted in Fig. 1B and described in
Table SM1. Protected area boundaries were derived from the World
Database on Protected Areas (WDPA, 2019) and included IUCN cate-
gories I-IV, which represent allocations where conservation of biodi-
versity is a primary objective. While WDPA is the global standard for
protected area mapping, there can be lag-time in updates and the global
dataset may not include the most recently created protected areas within
countries.

All maps shown in this paper use the Equal Earth projection, an

Wicaragua

Source: Ecoregions 2017 © Resolve

Venezuela

1. Apure-Villavicencio dry forests
I 2. Caqueta moist forests

Il 3. Catatumbo moist forests

[ 4. Cauca Valley dry forests

[ 5. Cauca Valley montane forests
[ 6. Choco-Darién moist forests

[EE0 7. Cordillera Oriental montane forests
Il 8. Eastern Cordillera Real montane forests
[C19. Ecuadorian dry forests

I 10. Magdalena Valley dry forests
[C7711. Magdalena Valley montane forests
[ 12. Magdalena-Uraba moist forests
I 13. Marafion dry forests

[ 14. Napo moist forests

[ 15. Negro-Branco moist forests

[T 16. Northwest Andean montane forests
I 17. Peruvian Yungas

[ 18. Santa Marta montane forests

19. Sinti Valley dry forests

I 20. Southwest Amazon moist forests
[721. Tumbes-Piura dry forests

I 22. Ucayali moist forests

[ 23. Western Ecuador moist forests

Fig. 1. Map of the study area showing shaded relief, national boundaries, and major cities (A). Map of World Wildlife Fund ecoregions (B). Location of the study area

in South America (C).
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equal-area pseudo cylindrical projection for world maps.
2.2. Development of the complementary sub-indicators

We developed the sub-indicators of forest quality identified in
Table 1 across the three countries. Among these metrics is a measure of
human pressure (Human Footprint) used to quantify the naturalness of
forests. The three-dimensional forest stand structure is represented by
the Forest Structural Condition Index-Ecoregional Potential (FSCI-ERP)
and the intersection of this index with human pressure is the Forest
Structural Integrity Index-ERP (FSII-ERP). These metrics have been
shown to be associated with reduced endangerment status of forest
vertebrates and carbon storage (Pillay et al. 2022a). We include three
measures of landscape pattern. Extent of Riparian Forest is an indicator
of potential of buffering aquatic systems from the effects of deforesta-
tion. Core Forest is area of moderate to high FSII-ERP that is not exposed
to negative forests/non-forest edge effects, which can emerge from
forest fragmentation. Connected Forest is where a landscape connec-
tivity index indicates high potential for movement of forest-dependent
animals among patches of moderate to high integrity forest. These
complementary sub-indicators are directly relevant to SDG15 targets
and indicators. They allow forest extent (Indicator 15.1.1) and protec-
tion status (Indicator 15.1.2) to be expressed by naturalness, forest
structure, and landscape pattern (Table 2).

We used widely available global data sets to derive these metrics
where possible to demonstrate an approach that could be used elsewhere
in the world for this paper. We also worked in parallel with Colombia,
Ecuador, and Peru to produce national versions using nationally vali-
dated data. For metrics that can be quantified over time, we plotted
values annually during approximately 2001-2021, depending on metric.
We did similar analyses for the official sub-indicators of forest extent for
SDG-15 identified by the UN IAEG-SDGs. This allowed comparison of the
insights gained from our complementary sub-indicators of forest quality
with the official sub-indicators based on forest extent. Methods and
details for each complementary sub-indicator are described below and
in Table SM2. The analyses used in this paper are then described. All
codes and files are available through the Github repository: https://gith
ub.com/gonzalezivan90/SDG15_indicators.

2.3. Forest Extent

We used the forest cover layer of Hansen (2013) that defined forest as
land cover with tree canopy height > 5 m and with a canopy cover > 25
% in 2000, including natural and planted trees, not having undergone
defined as a stand-replacement disturbance since 2001. ‘Forest Cover
Loss’ is defined as a stand-replacement disturbance, or a change from a
forest to non-forest state, during the period 2000-2021.

2.4. Human Footprint and Natural Habitat

Natural habitats are defined as areas that maintain ecological
integrity with “the ability of the system to maintain ecosystem structure
and functions using processes and elements characteristic of its ecor-
egion” (Hansen et al., 2021). We proposed two complementary sub-
indicators of natural forest: proportion of forest that is natural forest
and proportion of natural forest that is protected. Because the national
ministries were also interested in non-forested ecosystems, we also
quantified proportion of land area that is natural.

These metrics were generated based on the Human Footprint (HF) of
Williams et al. (2020), which is a spatial index of cumulative human
pressures on ecosystems. HF has been used to assess intact terrestrial
ecosystems and wilderness areas (Riggio et al., 2020; Watson et al.,
2016; Williams et al., 2020), the risk of species extinction (Di Marco
et al., 2018; Pillay et al., 2022), global effectiveness of the protected
areas (Jones et al., 2018), reductions in terrestrial mammalian move-
ments (Tucker et al., 2018). Areas absent of pressures or with a low HF

Ecological Indicators 159 (2024) 111654

Table 1

Metrics used to develop complementary sub-indicators of forest quality quan-
tified in this analysis. Acronyms are: FSCI-ERP - Forest Structural Condition
Index Ecoregional Potential; and FSII-ERP - Forest Structural Integrity Index

Ecoregional Potential.

Metric Description Relevance to Reference
conservation
Human Human Index of human Human pressure Venter
pressure Footprint pressure basedon  can reduce et al.,
nine measures of native species 2016a
human abundance and
population, richness, favor
infrastructure, invasive species,
and land use. and degrade
ecosystem
processes.

Natural Forest with low Forest with low Venter

Forest Human Footprint human pressure et al.,
(HF < 4), is likely to have 2016b

high ecosystem
integrity,
Canopy FSCI-ERP Vegetation High levels of Hansen
structure structure within the index denote et al.,
forest stands. tall, 2019,2020
Inputs include multilayered,
canopy cover, older forests that
canopy height, are known to
and time since support high
disturbance. ERP levels of
denotes biodiversity,
ecoregional carbon storage,
potential and is and ecosystem
scaled to natural services,
stands within
ecoregions,

FSII-ERP This index Forests with Hansen
integrates the high structural et al.,
FSCI-ERP with condition and 2019,2020
human pressure. low human

pressure are of
high ecological
value because of
the ecological
benefits of well-
developed forest
structure and
lack of
alteration by
human
activities.
Landscape Riparian Proportion of Riparian forests Gonzalez
pattern Forest forests within can buffer et al., 2024
100 m of streams aquatic systems
and rivers, from negative
effects of
deforestation
and other
intense land
uses,

Core Forest  This metric Landscape Vogt et al.,
quantifies pattern, 2007
fragmentation of especially the
moderate and creation of
high FSII-ERP edges and the
forests based on resulting core
the percentage of  forest that is free
core forest from edge
relative to total effects has direct
forest. impacts on a

number of
ecological
processes.

Connected This metric maps Reductions in Compton

Forest least cost tree cover lead etal., 2007,
pathways from to reductions in Kaszta
points within movement for a et al., 2020

forests of

large number of

(continued on next page)
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Table 1 (continued)

Metric

Description

Relevance to
conservation

Reference

moderate and

forest animals
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Table 2

Indicators and sub-indicators for SDG15 Targets identified by the UN Statistics
Division Inter-Agency and Expert Group on Sustainable Development Goals In-
dicators (denoted by IAEG-SDGs) and complementary sub-indicators of forest
quality developed in this project (denoted as Complementary). All sub-
indicators are summarized at national and ecoregional extents. Acronyms are
as defined in Table 1.

high FSII-ERP to especially

all surrounding arboreal species
points using and those
forest integrity in  adapted to

the intervening interior forest
matrix and conditions.
assumptions

about animal

movements.

value have been used to represent ecosystems likely in natural or closer
to natural states (Sanderson et al., 2002; Venter et al., 2016).

HF is derived by summing the influence of eight pressures: built
environments, crop lands, pasture lands, population density, nighttime
lights, and accessibility via roads, railways, and navigable waterways.
The maps were validated through comparison against a similar but in-
dependent measure of cumulative pressures from the visual interpreta-
tion of high-resolution imagery, finding strong agreement between
them. We used the global HF maps from 2000, 2005, 2010 and 2013
(Williams et al., 2020). Natural habitats were designated as areas with
low HF (HF < 4). This value approximates the threshold at which the
landscape becomes human-dominated (Di Marco et al., 2018; Watson
et al., 2016).

2.5. Forest Structural Condition Index — Ecoregional Potential

Forest structure refers to the three-dimensional distribution of
vegetation within a forest. In tropical forest ecosystems, undisturbed
forests (often referred to as primary forests) tend to have tall, multistory
canopies and high variation in plant size, often including large emergent
trees. We refer to such forests as having high structural condition. The
positive influence of forests of high structural condition on biodiversity,
ecological function and ecosystem services is increasingly well under-
stood (Hansen et al., 2020, Pillay et al., 2022). We previously drew on
remote sensing products to develop the Forest Structural Condition
Index (FSCI) by integrating canopy cover, canopy height, and time since
disturbance across the Humid Tropical Forest Biome (Hansen et al.,
2019).

For our application to SDG15 indicators, we use a modified version of
this index called FSCI-ERP (ecoregional potential). This metric is scaled
to the structural conditions typical of natural forests within the ecor-
egion. We developed the FSCI-ERP for both the Humid and Dry Tropical
Forest Biomes within Colombia, Ecuador, and Peru. See Supplementary
Materials for further details on methods.

We focused here on high-FSCI-ERP forest, defined as index > 14. This
level was selected to represent high-structure forests based on map ac-
curacy and representing levels of structure typical of undisturbed nat-
ural forests in the biome. An accuracy assessment found that the FSCI
adequately distinguished forest structure levels up to FSCI = 14 but the
relationship saturated above that level (Hansen et al., 2019).

2.6. Forest Structural Integrity Index — Ecoregional Potential

The original FSII was derived from overlaying the HF of human
pressure (see above) on the FSCI. Human activities can influence forests
in several ways in addition to altering forest structure. Hunting and
poaching alter wildlife populations without direct effects on habitat
(Harrison, 2011, Harrison et al., 2016). Human settlements, roads, and
deforested areas create edge effects that can extend hundreds of meters
into adjacent forests (Haddad et al., 2015). These edge effects include
invasive species, livestock and pet effects, altered ecological processes,
noise and light (Betts et al., 2017). The effects of anthropogenic

Target

Indicator

Sub-indicators

Type of Sub-
indicator

TARGET 15.1: By
2020, ensure the
conservation,
restoration and
sustainable use of
terrestrial and
inland freshwater
ecosystems and
their services, in
particular forests,
wetlands,
mountains and
drylands, in line
with obligations
under
international
agreements

INDICATOR
15.1.1: Forest
area as a
proportion of
total land area

INDICATOR
15.1.2:
Proportion of
important sites
for terrestrial and
freshwater
biodiversity that
are covered by
protected areas,
by ecosystem
type

Percentage of
forest area of the
total land area of
a country
Proportion of
forest area that is
natural forest
Proportion of
forest area that is
riparian forest
Proportion of
forest area in
high FSCI-ERP
Proportion of
forest area in
high FSII-ERP
Proportion of
forest area in
moderate to high
FSII-ERP that is
Core Forest
Proportion of
forest area in
moderate to high
FSII-ERP that is
Connected
Forest.
Proportion of
forest area within
protected areas
Proportion of
natural forest
that is in
protected areas
Proportion of
riparian forest in
protected areas.
Proportion of
high FSCI-ERP
areas in
protected areas
Proportion of
high FSII-ERP
areas in
protected areas
Proportion of
moderate to high
FSII-ERP Core
Forest covered by
protected areas
Proportion of
moderate to high
FSII-ERP
Connected Forest
covered by
protected areas

IAEG-SDGs

Complementary

Complementary

Complementary

Complementary

Complementary

Complementary

IAEG-SDGs

Complementary

Complementary

Complementary

Complementary

Complementary

Complementary

https://unstats.un.org/sdgs/metadata/.

disturbance on biodiversity may exceed that of deforestation (Barlow
et al., 2016). Integrating human pressure with forest structural condi-
tion reveals forests that may be of the highest value for biodiversity and
various ecosystem services. Methods used to derive FSII and FSII-ERP
are described in Supplementary Materials.

We analyzed change over 2012-2022 for the two metrics of forest
structure in terms of loss rates of high FSCI-ERP and high FSII-ERP
forests, mean values of FSCI-ERP and FSII-ERP in remaining forests,
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and representation of high FSCI-ERP and high FSII-ERP in protected
areas. We summarized the proportional representation of forest, high-
FSCI-ERP forest and high-FSII-ERP forest within and outside of pro-
tected areas at the national level.

2.7. Riparian Forest

Two complementary sub-indicators related to the water-forest nexus:
proportion of forest area that is riparian forest; and proportion of ri-
parian forest in protected areas. The role of riparian vegetation includes
the protection of water where it mediates sediment and pollutant
transport. Additionally, riparian vegetation can provide habitat for
species, function as landscape corridors, and regulate physical condi-
tions in aquatic ecosystems, where changes in temperature or light can
trigger degradation of biological communities (Brauman et al., 2007).
The presence of natural vegetation has been found as a main determi-
nant for aquatic ecosystem quality and represents a structural indicator
for ecosystem function since it is related to biota in multiple forms (King
et al., 2005). Given these considerations, the presence of forests in ri-
parian areas becomes an appropriate and viable surrogate to analyze the
interrelationships between aquatic and terrestrial ecosystems (Macfar-
lane et al., 2017, Yirigui et al., 2019).

Riparian zones were identified using buffers adjacent to water
bodies, encompassing the critical interface between water bodies and
vegetation. The riparian areas in this study were identified by extracting
river and stream features from official national hydrographic layers
(lines and polygons at 1:100.000 scale) and buffering them by 100 m.
This width is a relevant value in the context of the three countries’
legislation regarding water policy. We used polygon features to remove
permanent water bodies from the resulting buffer. In the riparian areas,
we identify the presence of forest using the forest extent layer described
in section 2.3. We estimated the percentage of riparian forest relative to
total forest yearly from 2000 to 2021 and aggregated those values na-
tionally and with protected areas.

2.8. Core Forest

We characterized fragmentation of moderate to high-FSII-ERP forest
(>= 10, MHFSII-ERP) using morphological spatial pattern analysis
(MSPA, Vogt et al., 2007) to derive Core Forest. Core Forest represents
an ecologically relevant baseline condition for assessing fragmentation
because most tropical moist forest naturally forms large patches in
which most forest has minimal exposure to edge effects. MSPA uses in-
formation on whether MHFSII-ERP forest is within a user-specified
distance from an edge where edges are defined as shared cell bound-
aries between MHFSII-ERP forest and non-MHFSII-ERP forest. We set
MSPA parameters such that MHFSII-ERP forest greater than 1 km from
an edge was classified as core and edges formed by water, study area
boundaries, and small gaps (<= 1 ha) within MHFSII-ERP forest were
ignored.

We quantified the extent of Core Forest annually from 2012 to 2021
and calculated the percentage of core forest relative to the total available
forest per year.

2.9. Connected Forest

As with fragmentation, we assessed connectivity for MHFSII-ERP
forest annually from 2012 to 2021. We used the cumulative resistant
kernel (CRK) approach (Compton et al., 2007, Cushman et al., 2013,
Diniz et al., 2020) to calculate the probability of moving through the
landscape from a target pixel to all other surrounding pixels within a
user-defined neighborhood. The probability surfaces generated around
each target pixel are then summed on a pixel-wise basis to provide a map
of the magnitude of connectivity between target pixels, allowing the
connectivity contribution of both target pixels and areas between target
pixels to be assessed. To reduce computation time, FSII-ERP values at 30
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m resolution were resampled to 1000 m cells.

We defined the neighborhood around each MHFSII-ERP pixel based
on allometric dispersal distance scaling for a theoretical species of 100
kg with median and maximum dispersal distances of 50 km and 150 km,
respectively (Sutherland et al., 2000).

We assumed that forest integrity is negatively related to resistance to
movement through the landscape and transformed FSII-ERP values
accordingly (Keeley et al., 2016). Finally, to convert resistance to a
probability of dispersal, we parameterized a negative exponential
dispersal kernel such that the median dispersal distance was 50 km.
Thus, in undisturbed forest landscapes, the theoretical forest species
would be expected to move 50 km with a probability of 0.5.

To build the indicator, we calculated the 75th percentile CRK value
in 2012 and used it as the threshold that defines well-connected forest
pixels, generating a binary layer yearly. The resulting “Connected For-
est” indicator relates the percentage of well-connected pixels area to the
total forest area by each year.

3. Results
3.1. Forest Extent

Forests covered about 70 % of the forest biome land area in
Colombian and Ecuador and about 60 % in Peru in 2000 (Fig. 2,
Table 3). The proportion of land area in forests declined in all three
countries by approximately 4 % by 2021. Forest cover and rates of loss
varied among ecoregions (Fig. 3 left). In Colombia, for example, Mag-
dalena-Uraba moist forests and Negro-Branco moist forests underwent
little change, while Magdalena Valley montane forests and Solimoes-
Japur moist forests declined substantially in area.

Protected areas represented 10 % of the land area in Colombia, 4 %
in Peru, and 0 % in Ecuador in 2001 (Table 3). These proportions
increased in all three countries by 2021: by 26 % in Colombia, 108 % in
Peru, and changed from 0 to 3 % of land area in Ecuador. An increase in
protected areas occurred across most of the ecoregions (Fig. 3 right).
While not yet recorded in the World Protected Areas Database used for
this analysis, the protected area coverage increased to 20.65 % of land
area across the three countries by March 2023.

3.2. Natural Habitat

At the national level, we found that the proportion of land area that
was natural habitat decreased at a similar rate in each country between
2000 and 2013 (~-2.5 %). The percentages of remaining natural habitat
in 2013 were notably different among countries, with Ecuador and
Colombia having only 34.94 % and 38.16 % natural habitat remaining
and Peru having 66.72 %. The variation between ecoregions was also
high, with 17 out of 23 losing more than 0.1 % (Table SM4, Fig. 4). The
ecoregions that lost less than 0.1 %, or didn’t lose or gained natural
habitat had little natural habitat left in 2013 (under 0.12 %). The most
considerable losses were found in the Chocé-Darién moist forests (14.49
%). Other ecoregions had a substantial loss of ~ 3.5 % and had relatively
little natural habitat remaining in 2013 (i.e., under 15 %): Western
Ecuador moist forests, Northwest Andean montane forests, Maranén dry
forests, Cordillera Oriental montane forests).

The proportion of forest that was natural in 2000 was 41 % in
Colombia, 37 % in Ecuador and 49 % in Peru (Table 4). This proportion
declined by 3.5-6.5 % by 2013. The proportion of natural forest in
protected areas in 2000 ranged from 15 to 33 % among countries and
this increased from 0.8 to 2.7 % by 2013.

3.3. Forest Structure
Forests high in FSCI-ERP respectively represented 9.7 %, 16.7 %, and

12.3 % of the forested area of Colombia, Ecuador and Peru in 2012
(Table 5). The proportion of forest that was high in FSCI-ERP, however,
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Fig. 2. Distribution of forests within forested ecoregions of the study area in 2021 and areas of forest loss 2001-2021.

Table 3
Proportion of land area in forest or protected in 2000 and 2021 and rate of change 2000-2021.

Country % of land area in % of land area in % change in land area in % of land area % of land area % change in land area
forest 2000 forest 2021 forest 2000-2021 protected in 2000 protected in 2021 protected 2000-2021

Colombia  69.2 66.2 —4.3 10.6 13.4 26.2

Ecuador’ 71.4 68.7 -3.9 0.00 3.00 NA

Peru 60.3 58.1 -3.7 4.0 8,4 108.7

! While not yet recorded in the World Protected Areas Database used for this analysis, the protected area coverage increased to 20.65 of land area by March 2023.
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Fig. 3. Proportion of land area occupied by forest (left) and in protected areas (right) during 2000-2021 by ecoregions within countries.

increased in all three countries to 2021, by 1.8 % in Colombia, 1.1 % in
Peru, and 1.3 % in Ecuador. The proportion of areas high in FSCI-ERP
that were within protected areas in 2012 was 0 % in Ecuador and
about 14-15 % in Colombia and Peru. The level of protection increased
substantially in Ecuador (from O to 4.3 %) and Peru (by 22 %), but less so
in Colombia.

The proportion of forest high in FSII-ERP in 2012 was less than for
forest structural condition, 7 %-13 % among the countries, and rates of
gain were somewhat higher, 1.4 %-1.9 % (Table 6). Forests in the
Amazon Basin were relatively high in forest structure and integrity,
while forests in the Pacific Coast and Andes Mountains were substan-
tially lower (Fig. 5). The level of protection of forest high in FSII-ERP
increased substantially in Ecuador and Peru, but less so in Colombia.

3.4. Riparian Forest

The proportion of forest area that was riparian forest in the year 2000
was about 7.4 %-9.4 % across the countries (Table 7). This proportion
increased by about 1 % by 2021 in Colombia and Ecuador, and
decreased by 0.6 % in Peru. Some 12.2 % — 17.2 % of the riparian forests
were in protected areas across the countries. The proportion increased
by 3.1 %-3.4 % by 2021.

3.5. Landscape Pattern

The core area of the MHFSII was sensitive to the gaps identified by
FSII-ERP values under 10, in addition to the gaps caused by all kinds of
forest loss. This resulted in a percentage of Core Forest relative to the
total forest of 28 % in Colombia, 17 % in Ecuador, and 23 % in Peru in
2013 (Table 8). In 2021 these percentages decreased by 2.3 % in
Colombia, 4.5 % in Ecuador, and 3.4 % in Peru. This indicated that the
Core Forest was lost faster than the total forest in Peru. The resulting
core areas were located mainly inside the Amazon basin. Protected areas
contained 30 % of Colombia’s Core Forest and 15 % in Ecuador and Peru
by 2012, but in 2021 they had an increase of 5 % in Colombia and
Ecuador, and a 6 % decrease in Peru.

Connected Forest represented about 22 % of total forest in Colombia
in 2013, 15 % in Ecuador, and 21 % in Peru, with decreases of 10.4 % in
Colombia, 1.6 % in Ecuador, and 3.8 % in Peru by 2021 (Table 9).
Similarly, the protected area estate contained 17 % of well-connected
forests in Colombia, 31 % in Ecuador, and 9 % in Peru in 2012. Dur-
ing the 2012-2021 period, the losses in protected areas were 36 % in
Colombia and 17 % in Ecuador, with a gain of 3 % in Peru. As for the
Core Forest analysis, most of the Connected Forest was located in the
Amazon basin (Fig. 6). The changes in forest connectivity were influ-
enced not only by the total amount of forest lost but also by the spatial
patterns of these events.

4. Discussion

Countries within the Tropical & Subtropical Moist Broadleaf Forests
biome benefit from the high levels of biodiversity and ecosystem ser-
vices present in the region. Consequently, these countries require SDG15
indicators that consider not only forest extent as is currently specified by
the official SDG indicators. They also need indicators of the quality of
the forests with regards to supporting biodiversity and ecosystem ser-
vices. Indicators of forest quality include measures of human pressure
and forest structure, function, and composition. In this paper we
developed sub-indicators of forest quality that are nationally relevant in
Colombia, Ecuador, and Peru.

In total, our results illustrate how the complementary sub-indicators
of forest quality complement the official indicators developed by the
IAEG-SDGs that deal with forest extent. Forests covered about 70 % of
the forest biome land area in Colombian and Ecuador and about 60 % in
Peru in 2000. The proportion of land area in forests declined in all three
countries by approximately 4 % by 2021. However, only a subset of the
forested area was of high forest quality (Fig. 7).

Natural forests represented about 40 % of forests in Colombian and
Ecuador in 2000 and 50 % in Peru. Those proportions declined: by 6.3 %
in Colombia, 6.5 % in Ecuador, and 3.4 % in Peru by 2021. Even less of
the forested area was Core Forest in 2013: less than 28 % among
countries. During 2013-2021, the proportion of forest that was Core
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Fig. 4. Map of natural habitat (NH) remaining in 2013 and NH change in Peru, Ecuador, and Colombia by ecoregion. The number of ecoregions comes

from Table SM2.

Table 4

Proportion of forest area that is natural forest and proportion of natural forest in protected areas in 2000 and 2013 an rates of change in each 2000-2013.

Country % of forest that is % of forest that is % change in proportion of forest % of natural forest % of natural forest % change in natural forest
natural 2000 natural 2013 that is natural 2000-2013 protected in 2000 protected in 2013 protected 2000-2013

Colombia  40.7 38.2 —6.3 19.5 19.8 1.7

Ecuador 37.4 34.9 —6.5 32.7 329 0.8

Peru 49.1 46.7 —4.85 15.1 5.5 2.7

Table 5

Proportion of forest area high Forest Structural Condition Index (FSCI-ERP) in 2012 and 2021 and percent change to 2012-2021. Identical metrics for proportion of

high FSCI-ERP forest in protected areas.

Country % of forests that are % of forests that are Change in % of forests high % of high FSCI-ERP % of high FSCI-ERP Change in % of high FSCI-ERP
high in FSCI-ERP in high in FCII-ERP in in FSCI-ERP in 2012-2021 forests protected in forests protected in forests protected in
2012 2021 2012 2021 2012-2021

Colombia 9.7 9.9 1.8 13.6 13.7 0.4

Ecuador 16.7 18.9 1.1 0.0 4.3 NA

Peru 12.3 12.4 1.3 15.4 185 22.1

Forest decreased by 2.3 % in Colombia, 4.5 % in Ecuador, and 6.7 % in
Peru. Connected Forests were about 17 %-22 % of forests among the
countries in 2013 and declined 10.4 % in Colombia, 1.6 % in Ecuador,
and 3.8 % in Peru by 2021. Forests high in forest structure were 10 %-18
% of forests in 2012 among the countries and increased by 1.1 % 2 % by
2021. Forests of high integrity were 7-13 % of forests in 2012 and
increased byl.4 % 2 % by 2021. Riparian forests represented less than

about 7 %-9% among the countries and declined by 0.6 %-1.3 % by
2021. Thus, the area of highly quality forest across the countries was
substantially less than full forest extent and high-quality forest declined
at a higher rate than forest extent during 2000-2021. Forest structure
and integrity did increase slightly over this time period.

Colombia, Ecuador, and Peru made substantial progress in expand-
ing protected area coverage during 2001-2019. Consequently, the
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Table 6

Ecological Indicators 159 (2024) 111654

Proportion of forest area high Forest Structural Integrity Index (FSII-ERP) in 2012 and 2021 and percent change to 2012-2021. Identical metrics for proportion of high

FSII-ERP forest in protected areas.

Country % of forests that are % of forests that are Change in % of forests high % of high FSII-ERP % of high FSII-ERP Change in % of high FSII-ERP
high in FSII-ERP in high in FSII-ERP in in FSII-ERP in 2012-2021 forests protected in forests protected in forests protected in
2012 2021 2012 2021 2012-2021
Colombia 7.0 7.1 1.9 19.0 19.0 0.3
Ecuador 13.3 13.4 1.4 0.0 5.3 NA
Peru 11.3 11.4 1.42 16.5 19.7 19.9
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Fig. 5. Distribution of FSCI-ERP and FSII-ERP across the study area in 2021.
Table 7

Proportion of forest area that is riparian forest and proportion of riparian forest in protected areas in 2000 and 2021 and rates of change in each 2000-2021.

Country % of forest that is % of forest that is Change in % of forest that is % of riparian forest % of riparian forest Change in riparian forest
riparian 2000 riparian 2021 riparian 2000-2021 protected in 2000 protected in 2021 protected 2000-2021

Colombia 7.5 7.5 1.3 12.6 13.1 3.4

Ecuador 9.3 9.3 1.0 12.3 12.6 3.2

Peru 7.4 7.4 —0.6 16.5 17.2 4.7

proportion of high-quality forest that were protected increased for ri-
parian forests, high structure and integrity forests, core forests, and
highly connected forests.

Users of these metrics of forest quality will be interested in the
reliability, sensitivity, and operational applicability for SDG15 appli-
cations. The global HF used in this analysis was validated against a
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dataset of visually interpreted high resolution imagery, and found to
have high agreement with a rootmean-square error of 0.116 and a Kappa
statistic of 0.806 (P < 0.01) (Williams et al., 2020). The metric is based
on several inputs on human pressure such as population density and land
use and is likely sensitive to forest changes of interest to the SDG15
targets. A limitation of our analyses was that we used data for the
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Proportion of forest area in moderate to high Forest Structural Integrity Index (MHFSII-ERP) that is Core Forest in 2012 and percent change to 2021 and proportion of
moderate to high Forest Structural Integrity Index (MHFSII-ERP) Core Forest covered by protected areas in 2021 and change to 2021.

Country % of forests that are % of forests that are Change in % MHFSII- % of MHFSII-ERP core % of MHFSII-ERP core Change in % of MHFSII-ERP
MHFSII-ERP core forest ~ MHFSII-ERP core forest ~ ERP core forests forests protected in forests protected in core forests protected in
in 2013 in 2021 2013-2021 2013 2021 2013-2021

Colombia  27.8 27.1 -2.3 29.1 30.4 4.6

Ecuador 14.5 13.9 —-4.5 14.9 15.6 4.7

Peru 22.1 21.3 —-3.4 15.6 14.7 -5.8

bl 2000-2013 period because the more recent versions of the data set were
Table 9

Proportion of forest area in high Forest Structural Integrity Index (FSII-ERP) that
is Connected Forest in 2012 and percent change to 2021 and proportion of high
Forest Structural Integrity Index (FSII-ERP) Connected Forest covered by pro-
tected areas in 2021 and change to 2021.

developed with different methods and were not suitable for change
analyses (Williams et al., 2020). While we used this global version of the
HF, many countries require that only officially government sanctioned
data be used for national reporting. Thus, for operational applications
countries may choose to develop a HF dataset using national data for

Country % of forests Change in % % of high FSII-  Change in % of . .
that are high high FSILERP  ERP high FSILERP inputs. For example, Columbia has comple.ted a HF layer (Corre?a and
FSIL.ERP connectivity connectivity connectivity Ayram 2020) and Ecuador and Peru are in the process of doing so
connectivity forests forests forests (Personal Communication). In each case, the data products were
forest in 2013~ 2013-2021 protected in protected in developed to allow change analysis for 2000-2020.
2013 2013-2021 The FSCI metric of forest structure was validated against airborne
Colombia  22.3 20.0 -2.3 -36.7 lidar data using samples which were available in Brazil (Hansen et al.,
Ecuador ~ 14.5 13.9 —4.5 -17.3 2019). Accuracy was 93 %. The ERP version, which indexes the metric to
Peru 21.16 20.4 -3.8 3.7 . . .
the structure found in natural forests in each ecoregion has not yet been
validated and countries may wish to do so for SDG15 reporting. The
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Fig. 7. Summary of trends for forest extent as a percentage of land area and measures of forest quality as a percentage of forest area during the study period for each

of the three countries.

three input metrics (canopy height, canopy cover, and time since
disturbance) have been found to be sensitive to human modification of
forests (Hansen et al., 2020). As with HF, Ecuador and Peru are in the
process of developing nationally sanctioned versions of FSCI-ERP thus
allowing use for SDG15 reporting (Personal Communication).

Riparian Forest is derived from the global forest maps of Hansen
et al. (2013) and official national hydrographic layers. Each of the three
countries are in the process of using national data on forest cover and
hydrography for use in national reporting.

The other metrics of forest quality used here (FSII-ERP, Core Forest,
and Connected Forest) and derived from the HF and/or the FSCI-ERP
layers. Their reliability, sensitivity, and operational feasibility are
similar to those layers.

Conceptual and empirical support for the Core Forest and Connected
Forest indicators have been well established in numerous publications
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assessing the importance of core area and connectivity for a broad range
of species and ecosystems (Laurance and Jensen 1991, Vogt et al., 2007,
Compton et al., 2007, Asensio et al., 2012, Zeller et al., 2018, Grantham
et al., 2020, Kaszta et al., 2020). Both indicators decrease with forest
quality loss, increase with forest quality gain, and are spatially
comprehensive, registering change if forest quality loss or gain occurs
anywhere in the study area. They are sensitive to where forest quality
change occurs and to parameterization. The Connected Forest indicator
is more sensitive to forest loss that disconnects remaining forest. Both
indicators are more sensitive to forest loss that occurs in core forest
compared to peripheral or already fragmented forest. Connected Forest
results for a given dispersal scale and resistance surface parameteriza-
tion will be different than those for another. This is by design and users
can set the scale of dispersal and resistance surface parameterization to
appropriate values based on their monitoring and assessment goals.
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Similarly, a given value for the edge influence parameter will provide
different Core Forest results, with higher edge influence values resulting
in lower core forest areas. The calculation of both indicators is
straightforward, although computationally demanding for large
geographic domains, and can be conducted in publicly available soft-
ware packages or using common scripting languages (e.g., Python or R).

The implication of our findings for conservation is that during the
initial period that countries have strived towards SDG15 targets,
fundamental attributes of forests have eroded at rates even faster than
loss of forest extent. This is concerning because of the high biodiversity
and ecological value of high-quality forests. Landscape naturalness, for
example, is seen as critical for species adaptation under anthropogenic
climate change as it facilitates individuals and populations to track their
preferred microclimates (Watson et al., 2016). Beyond species-specific
benefits, intact landscapes allow for increased ecosystem function and
resilience by ensuring that nutrient cycling can continue unabated, as
well as other important abiotic conditions such as radiation, wind, light
regimes, humidity, and key hydrological regimes (Haddad et al., 2015).
It is well known that land uses such as farming, urbanization, and un-
sustainable forestry disrupt the intactness of landscapes to various de-
grees (Potapov et al., 2000). We note however, that the forest product
we used in this analysis does not distinguish between natural agents of
forest loss and anthropogenic ones and that the global data can be
complemented with national data for a finer understanding of forest
dynamics.

Similarly, forests of high structural condition are important ecolog-
ically because they tend to be high in biodiversity, productivity, carbon
storage, and water provisioning. Such forests provide high microclimate
and habitat niche diversity and thus support high species diversity
(Rozendaal et al., 2019, Cortés-Gomez et al., 2013). For example,
biodiversity value is 41 % lower in degraded forests (including selec-
tively logged forests, secondary forests and forests converted into
various forms of agriculture) than in primary forest across the humid
tropics (Gibson et al., 2011). More recently, Pillay (2020) found that
high FSCI and FSII forests are associated with considerably lower risk of
humid tropical vertebrate species extinctions and population declines,
when directly compared with forest cover. Forests of high structural
condition are also relatively high in productivity and carbon storage
(Poorter et al., 2015). Primary forests in Brazil, the Democratic Republic
of the Congo, and Indonesia were found to be 38 %-59 % taller in
canopy height, have 100 %-183 % greater aboveground biomass and
store 279 %-866 % more carbon than other dense tree cover (Tur-
ubanova et al., 2018). Tall multistoried forests also influence water
provisioning, providing higher levels of evapotranspiration that
enhance regional precipitation and maintain the conditions for dense
humid forests to persist (Bonan et al. 2018).

Pillay et al. (2022a) have argued that the single most important
policy action nations can take to prevent catastrophic biodiversity loss in
tropical rainforests is to commit to a target of “net gain in area, con-
nectivity, and integrity” of these high-quality forest ecosystems. Just as
important is the development of proactive indicators that provide a
comprehensive picture of progress towards these targets on forest
integrity. Thus, monitoring and reporting trends in forest quality should
be a high priority in the context of SDG15.

Our work adds to a growing body of studies developing comple-
mentary sub-indicators for SDG reporting. Rotllan-Puig et al. (2021), for
example, provided methods for calculating a land productivity sub-
indicator that is relevant to quantifying land degradation. Similarly,
Keys et al. (2021) used machine-learning to develop a sub-indicator of
human pressure for application to SDG reporting.

While monitoring forests based on forest quality has not yet been
officially recommended by the IAEG-SDGs, some countries such as the
United States., Australia, and the European Union have specified the
importance of conserving older and natural forest because of the
perceived benefits such forests have for maintaining biodiversity and
ecosystem function and providing ecological services (Barnett et al.,
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2023, Lindenmayer and Taylor, 2020, O’Brien et al., 2021). Old-growth
forest is late seral stage forest that typically has a range of tree sizes
including large trees and high variation in canopy layers. Primary forest
is that which has never harvested by people. Our sub-indicators of
naturalness, FSCI-ERP and FSII-ERP draw on global satellite and ancil-
lary data sets to allow mapping of components of forest structure, age,
and human pressure that are relevant to forest quality and could be used
to support these efforts to map old growth and primary forest.

The approaches used here are likewise highly relevant for countries
party to the Convention on Biological Diversity, which recently adopted
the landmark Kunming-Montreal Global Biodiversity Framework (GBF),
including 4 goals, 23 targets, and a mission to “put nature on a path to
recovery for the benefit of people and planet” by 2030 (CBD 2022a). The
associated Monitoring Framework of the GBF (CBD 2022b) recognizes
the value of nationally relevant indicators for biodiversity monitoring,
including around forest and ecosystem integrity. As countries work to
develop their monitoring plans in accordance of the Monitoring
Framework by October 2024, the sub-indicators and approaches pre-
sented here may be useful to support the development of monitoring
plans that include measures of forest quality, particularly for Goal A and
Targets 1-3.

5. Conclusion

We recommend adding to the SDG15 indicators of forest extent
developed by the IAEG-SDGs complementary sub-indicators of forest
quality for national monitoring and reporting. Our results for trends in
forest naturalness, riparian association, within stand structure, frag-
mentation, and connectivity demonstrate how consideration of forest
quality provides a much stronger basis for evaluating success in meeting
SDG15 targets than consideration of forest extent alone. The utility of
the approach was demonstrated with application to Colombia, Ecuador,
and Peru, which are proceeding to officially adopt some of these sub-
indicators (Aragon et al. in prep). Further, we showed how the official
SDG15 indicators can be extended and complemented using a few extra
open datasets, appropriate questions, assumptions, and open-source
methods.The provided spatial calculation can be summarized in UN
stats format, but with geographical representation (explicit maps) for
other national and regional usages. Using the forest extent as a baseline,
it is possible to provide a viable spatiotemporal baseline to build upon,
as shown in the new set of indicators. Thus, our approach is highly
generalizable for applications in other countries.
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