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Abstract

Key points

Recent advancesinsingle-cell sequencing technologies offer an opportunity
to explore cell-cell communicationin tissues systematically and with
reduced bias. A key challenge is integrating known molecular interactions and
measurements into a framework to identify and analyze complex cell-cell
communication networks. Previously, we developed a computational tool,
named CellChat, that infers and analyzes cell-cell communication networks
from single-cell transcriptomic data within an easily interpretable framework.
CellChat quantifies the signaling communication probability between two cell
groups using a simplified mass-action-based model, whichincorporates the
coreinteraction between ligands and receptors with multisubunit structure
along with modulation by cofactors. Importantly, CellChat performsa
systematic and comparative analysis of cell-cell communication using a
variety of quantitative metrics and machine-learning approaches. CellChat
v2isanupdated version that includes additional comparison functionalities,
an expanded database of ligand-receptor pairs along with rich functional
annotations, and an Interactive CellChat Explorer. Here we provide a step-
by-step protocol for using CellChat v2 on single-cell transcriptomic data,
including inference and analysis of cell-cell communication from one
dataset and identification of altered intercellular communication, signals
and cell populations from different datasets across biological conditions.
The Rimplementation of CellChat v2 toolkit and its tutorials together with
the graphic outputs are available at https://github.com/jinworks/CellChat.
This protocol typically takes -5 min depending on dataset size and requires
abasic understanding of R and single-cell data analysis but no specialized
bioinformatics training for itsimplementation.
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e CellChat is a software package
for systematic inference,
quantitative analysis and
intuitive visualization of cell-cell
communication in an easily
interpretable way from single-
cell transcriptomic data; it also
enables comparative analysis

of intercellular communication
across different conditions.

e CellChat v2 is an updated
version that includes additional
functionalities for comparative
analysis and an expanded
database of ligand-receptor
pairs along with rich functional
annotations.
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Introduction

Cell-cell communication orchestrates tissue organization. Recent advances in single-cell
genomics offer unprecedented opportunities to systematically explore signaling mechanisms
for cell fate decisions and their consequent tissue phenotypes. Using single-cell transcriptomic
dataand ligand-receptor (L-R) interaction information from prior knowledge, computational
methods such as CellPhoneDB have been developed for inferring cell-cell communication
between groups of cells'*. However, a versatile and easy-to-use toolkit capable of systematic
analysis and intuitive visualization of cell-cell communication as well as comparison analysis
across biological conditions was still needed, so we developed CellChat to systematically and
comprehensively infer and analyze cell-cell communication from single-cell transcriptomic
data within an easily interpretable framework®.

Development of the protocol

Comprehensive and accurate recapitulation of known molecular interactions is crucial for
predicting biologically meaningful intercellular communications. We manually curated a
literature-supported signaling molecule interaction database called CellChatDB®, which
considers several critical interaction mechanisms that are often neglected. Specifically,
CellChatDB not only incorporates the multisubunit structure of L-R complexes but also
accounts for soluble and membrane-bound stimulatory and inhibitory cofactors such as
agonists, antagonists and coreceptors (Fig. 1). Inaddition, CellChatDB classifies each L-R pair
into one of the functionally related signaling pathways (for example, WNT, BMP, CXCL and CCL)
to construct cell-cell communication networks at a signaling pathway level, where each link
of the network is computed by summing the interaction strengths of all associated L-R pairs.
Suchinformation allows the interpretation of inferred intercellular communications ata
pathway scale. Moreover, the L-R pairs are categorized into different types, including ‘Secreted
Signaling’, ‘ECM-Receptor’ and ‘Cell-Cell Contact’ (where ECM is extracellular matrix). The
updated CellChat v2 expands upon the original CellChatDB database to include more than
1,000 protein and nonprotein interactions (for example, metabolic and synaptic signaling)
based on the peer-reviewed literature and other existing databases such as CellPhoneDB°®

and NeuronChatDB’. In addition, CellChat v2 includes additional functional annotations of
L-R pairs, such as UniProtKB keywords (including biological process, molecular function,
functional class, disease and so on), subcellular location and relevance to neurotransmitter.

To quantify communication between two cell groups mediated by a given ligand and its
cognate receptor, CellChat leverages the law of mass action to associate each interaction with
aninteractionscore’, which s calculated based on the average expression values of aligand
by one cell group and that of areceptor by another cell group, as well as their cofactors (Fig. 1).
CellChat uses Hill functions in the simplified mass action model to reflect the saturation
effect of the L-R binding. Significant interactions are identified based on a statistical test
that randomly permutes the group labels of cells. When inferring cell-cell communication,
CellChat computationally scales well with the number of cells and cell groups in the data,
asreflected by the observed running time of ~15 min on a single cell atlas of adult human skin
with~300,000 cells (Fig. 2). It should be noted that the inferred signaling depends on the
method for calculating average gene expression per cell group. To demonstrate this point, we
used a human skin dataset from atopic dermatitis patients to compare the number of inferred
interactions and the enriched signaling pathways when using ‘triMean’, ‘truncatedMean’ with
‘trim = 0.1’ and ‘truncatedMean’ with ‘trim = 0.05’, respectively (Procedure 1; Fig. 3a,b). The
most stringent method, called ‘triMean’, produces fewer but stronger interactions, whereas
the ‘truncated Mean’ method, with smaller values of ‘trim’ parameter (for example, ‘trim=0.1’),
outputs more interactions, leading to the detection of weak signaling.

To obtain biological insights from many complicated cell-cell communication networks,
CellChat employs quantitative analysis and machine learning approaches for various critical
analysis tasks® (Fig. 1). First, to identify critical microenvironment components, CellChat
determines major signaling sources and targets, as well as mediators and influencers within
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Fig.1| Overview of CellChat along with the procedure step numbers. Left:
required input data and the L-Rinteraction database CellChatDB. CellChat’s
input data consist of gene expression data and cell group information.
CellChatDB considers known composition of the L-R complexes, including
complexes with multimeric ligands and receptors, as well as several cofactor
types: soluble agonists, antagonists, costimulatory and coinhibitory membrane-
bound receptors. Rich annotations of all L-R pairs are provided. Middle: CellChat
models the communication probability based on the law of mass action and
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identifies significant communications using permutation tests. The inferred
communication probabilities among all pairs of cell groups across all L-R pairs or
signaling pathways are represented by a three-dimensional (3D) array. CellChat
analyzes the inferred networks by leveraging social network metrics, pattern
recognition methods, and manifold learning approaches. Right: CellChat offers
several intuitive visualization outputs to facilitate data interpretation of different
analytical tasks. In addition to analyzing individual datasets, CellChat also
delineates signaling changes across different conditions.

agiven signaling network using network centrality analysis. Second, to reveal how cells and
signals coordinate together and to explore their communication patterns, CellChat predicts key
incoming and outgoing signals for specific cell types, as well as coordinated responses among
different cell types by leveraging pattern recognition approaches. Outgoing patterns reveal how
sender cells (that is, cells acting as signal sources) coordinate with each other, as well as how
they coordinate with certain signaling pathways to drive communication. Incoming patterns
show how target cells (that is, cells acting as signal receivers) coordinate with each other to
respond to incoming signals. Third, to predict signaling groups sharing similar communication
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Fig.2| CellChat running time in relation to the increase of cell numbers and cell groups. a,b, Running time over
different cellnumbers in the data when calculating average gene expression per cell group using trimean (a) or 10%
truncated mean (b). ¢,d, Running time over different numbers of cell groups in the data (no. 20,000 cells) when calculating
average gene expression per cell group using trimean (c) or 10% truncated mean (d). Here, the running time is the total time
when running Steps1-8 and 11-14 in Procedure 1.

architecture and interpret the biological functions of poorly studied pathways, CellChat groups
signaling pathways by defining similarity measures and performing manifold learning from
both functional and topological perspectives’.

To identify signaling changes across conditions, CellChat identifies altered signaling
pathways and L-R pairs in terms of network architecture and interaction strength by performing
joint manifold learning and information flow comparison analysis®. Compared to the original
CellChat tool, CellChat v2 provides additional functionalities to allow systematic comparisons
between multiple conditions. CellChat v2 first focuses on the overall signaling changes at the
cell population level and then narrows down to altered signaling pathways and L-R pairs>*’
(Fig.1). Specifically, CellChat v2 identifies which interactions between two specific cell groups
changed notably, as well as the cell group identities showing notable changes in sending or
receiving signaling patterns across conditions. To identify substantially upregulated and
downregulated L-R pairs across conditions, CellChat v2 combines cell-cell communication
analysis with differential gene expression analysis and quantifies the enrichment of L-R pairs
for each condition by defining an enrichment score®.
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Fig.3| Comparison of the number of inferred L-R pairs and the identified 5% truncated mean. The most stringent method ‘triMean’ produces fewer but

signaling pathways when using different methods for calculating average stronger interactions, while the ‘truncated Mean’ method with smaller values
gene expression per cell group. a, The number of inferred L-R pairs when of ‘trim’ parameter enables the identification of weak signaling. This analysis
using three different methods for calculating average gene expression per cell is performed on a human skin dataset from atopic dermatitis patients with
group, including trimean, 10% truncated mean and 5% truncated mean. b, The 5,011 cellsand 12 cell groups.

identified signaling pathways when using trimean, 10% truncated mean and

Moreover, CellChat v2 offers an interactive web browser function to allow intuitive
exploration and visualization of CellChat outputs (Fig. 4). To facilitate intuitive user-guided
datainterpretation, CellChat v2 provides a variety of visualization outputs, including circle plot,
chord diagram, heatmap, hierarchy plot, bubble plot and word cloud (Fig. 1).

Comparison with other methods

Numerous computational tools have been developed to facilitate cell-cell communication
exploration and analysis*'°*®, The cell-cell communication inference depends on the reference
databases of known L-Rinteractions. The Python tool CellPhoneDB™*" is a pioneering method
that considers multiple subunits of ligands and receptors to accurately represent known
heteromeric molecular complexes. Two other R-based tools, CellChat’ and ICELLNET", adopted
the subunit architecture of heteromeric complexes and other tools have since followed their
lead. Compared with CellPhoneDB and CellChat, which have over 2,000 L-R interactions,
ICELLNET only has 380 interactions, resulting in partial characterization of signaling pathways.
Recently, CellPhoneDB v4*° added interactions of nonprotein molecules not directly encoded
by genes, and NeuronChat” was designed specifically for neuron-to-neuron communication
mediated by neurotransmitters. In CellChat v2, we add new literature-supported interactions,
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cellgroups and signaling expression, (2) examines the inferred signaling between
different cell groups and (3) further visualizes the individual signaling pathway.
Rich user-guided sliders are provided for flexible exploration, highlight and
zoom-out of the related information of interest.

Fig.4 | Overview of the Interactive CellChat Explorer created by
runCellChatApp functionin the R package. To facilitate the exploration of
cell-cell communication, CellChat allows the end-user to visualize and explore
the dataand the inferred signaling interactively. CellChat Explorer (1) visualizes
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including both proteins and nonproteins acting as ligands, leading to a total of -3,300

interactions for both mouse and human. Four unique features of CellChatDB v2 are:

1. Incorporation of soluble and membrane-bound stimulatory and inhibitory cofactors.

This feature is considered because many pathways, such as BMP and WNT, are prominently

modulated, positively or negatively, by their cofactors.

2. Categorization of L-R pairsinto different types, including ‘Secreted Signaling’,
‘ECM-Receptor’, ‘Cell-Cell Contact’ and ‘Non-protein Signaling’. This feature greatly
facilitates cell-cell communication analysis within a particular type.

3. Classification of L-R pairsinto functionally related signaling pathways. This feature
provides useful insights into signaling mechanisms by examining cell-cell communication
atasignaling pathway scale.

4. Richannotations of each L-R pair. This feature is useful for selecting L-R pairs with similar
biological functions and interpreting the downstream analysis.

Despite the adoption of different built-in L-R databases, current tools for cell-cell
communication inference are all somewhat distinct in their performance, visualization
outputs and downstream analysis. Two recent systematic evaluations of more than 15 cell-cell
communication inference methods suggest CellChat is among the top-performing methods™'®.
Inaddition to the high accuracy of cell-cell communication inference, CellChat offers a variety
of'visualization outputs that allow multiple intuitive user-guided interpretations of the complex
cell-cell communication. Another key unique feature of CellChat is its ability to analyze the
inferred cell-cell communications using a systems approach. Methods and concepts from
social network analysis, pattern recognition and manifold learning are adapted to derive higher-
order network information in an easily interpretable way. Moreover, CellChat is the pioneering
method for the systematic comparison of communications inferred for different conditions,
whichis critically important for identifying altered signaling mechanisms responsible
for cell fate decisions in single-cell studies. Afterwards, methods such as Connectome’,
Tensor-cell2cell” and multinichenetr® introduced functionalities for comparison across
multiple conditions.

Applications of the method

So far, CellChat has been widely used in a broad range of biological systems to dissect signaling
mechanisms during tissue homeostasis, development and disease®. In our original report®,
we applied CellChat to a small conditional RNA sequencing (scRNA-seq) dataset on mouse
skin development and predicted a novel role of Edn3 signaling in stimulating the directed
migration of melanocytes into placodes during hair follicle formation. Comparative analysis
of nonlesional and lesional human skin from patients with atopic dermatitis using CellChat
uncovered major signaling changes in response to disease. CCL19-CCR7 was identified as the
most important signaling event activated in lesional skin, contributing to the communication
from inflammatory fibroblasts to dendritic cells. Recently, we used CellChat to study
aging-dependent dysregulations during skin wound healing in mice®, showing system-level
differences in the number, strength, route and signaling mediators of putative cell-cell
communications in young versus aged skin wounds.

Using CellChat, a previous study found a strong increase of key inflammatory pathways in
the choroid-to-cortex network in patients with coronavirus disease 2019 (COVID-19) compared
with control individuals®. Another study revealed increased interactions of CD163/LGMN-
macrophages with myofibroblasts, fibroblasts and pericytes at later time points of COVID-19-
induced ‘acute respiratory distress syndrome™. In a single-cell atlas of the adult human cerebral
vasculature®, CellChat analysis identified Nd2 as the strongest contributor to abnormal cell
communicationsin arteriovenous malformations. Recently, state- and niche-dependent
signaling pathways for reparative states in proximal and distal tubules have been identified
by mining healthy and injured human kidney single-cell atlases®®. Comparative analysis of
Gabbrl mutant and control cortices from adult mice uncovered alterations in astrocyte-neuron
communication”. CellChat has been used to predict a new role for a unique subset of cancer-
associated fibroblasts in recruiting monocytes and neutrophils using in situ tumor arrays®,
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Asstudy of PD1blockade in mismatch repair-deficient colorectal cancer identified aninteraction
between CD4" T helper cells and germinal center B cells in antitumor immunity duringimmune
checkpointinhibitor treatment®.

Limitations

Itis possible that there are missing L-R interactions not covered in CellChatDB. Guidelines
to update CellChatDB by adding user-defined L-R pairs or integrating other resources are
provided in Box 1. There are several other limitations to the original CellChat and its updated
version (v2), including the following:

- CellChatinfers potential interactions between cell groups without considering heterogeneity
within the defined cell groups. Users can refine cell grouping via subclustering analysis before
applying CellChat.

« Like other methods, CellChat is limited to hypothesis generation and employs heuristics to
guide the interpretation of cell-cell communication outputs. With limited benchmarking
studies'®"'8, the question of how to better validate the inferred signaling networks and their
downstream gene outputs remains to be answered.

- Cross-condition analysisin CellChat is largely restricted to pairwise comparisons.
Identification of signaling changes across multiple conditions and time series is valuable.

 Fornonprotein-mediated cellular communication such as metabolic or synaptic signaling
(where molecules are not directly encoded by genes measured in scRNA-seq), CellChat v2
approximately estimates the expression of ligands and receptors using the molecules’ key
mediators or enzymes. More sophisticated computational methods for estimating the
expression of those signaling molecules could likely improve the inference accuracy.

« Giventhat cell-cell communication occurs within ashort spatial distance and at the protein
level, newly emerging data modalities (for example, spatially resolved transcriptomics?*%>!
and single-cell multiomics such as single-cell proteomics®? and epigenomics® %) can be
used to improve the inference of cell-cell communication. Recently, several methods
have been developed for spatially resolved transcriptomics*, such as SpaOTsc®, SpaTalk®,
COMMOT?, CellPhoneDB v3" and HoloNet*, which are better at detecting spatially
proximal cell-cell communication.

 CellChatemploys a simplified mass-action-based model to quantify communication
probability between a given ligand and its cognate receptor, and models with more
biochemical details can potentiallyimprove inference predictions. Finally, incorporation
of the downstream signaling events of activated receptors on receiving cells could further
improve the overall inference accuracy*® ™.

Overview of the procedure

Procedure 1demonstrates the steps to run the CellChat package for inferring (Steps 1-15),
visualizing (Steps 16-21) and analyzing (Steps 22-27) cell-cell communication from a single
scRNA-seq dataset. Specifically, Procedure 1includes the preprocessing of the input data
(Steps1-9) and the inference of cell-cell communication at both a L-R pair level and a signaling
pathway level (Steps 10-15), the visualization of cell-cell communication networks of individual
(Steps 16-19) and multiple (Step 20) signaling pathways or L-R pairs, the identification of the
signaling roles and major contributing genes and pathways between cell groups (Steps 22-23),
the analysis of global communication patterns (Step 24) and the manifold learning and
classification analysis of signaling networks (Step 25), as well as the interactive exploration

of theinferred cell-cell communication through a CellChat Shiny App (Step 26).

Procedure 2 demonstrates CellChat’s ability to perform comparative analysis across
different biological conditions by quantitative contrasts and joint manifold learning, including
merging different CellChat objects together (Steps1-4), detecting altered interactions and
cell populations (Steps 5-9), altered signaling with distinct network architecture (Step 10)
and interaction strength (Steps 11-13), as well as visually comparing the inferred cell-cell
communication networks (Steps 14-15).

Procedure 3 briefly demonstrates how to apply CellChat to the comparative analysis of
multiple conditions with differing cell type compositions (Steps 1-5).
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BOX1
Updating the L-R interaction database CellChatDB

In this box, we demonstrate the use of the function ‘updateCellChatDB’ to update the L-R interaction database CellChatDB by integrating
new L-R pairs from other cell-cell communication analysis tools or utilizing a custom L-R interaction database.

Additional material:
Input data:
o Customized L-R pairs: a data frame with at least two columns named ‘ligand’ and ‘receptor’. To infer cell-cell communication at a signaling
pathway level, another column named ‘pathway_name’ must be provided, which classifies each L-R pair into one of known signaling pathways
o (Optional) Additional input files: (1) gene information: a data frame with one column named as ‘Symbol’; (2) complex information: a data
frame in which each row is the subunit information of either ligand or receptor; and (3) cofactor information: a data frame in which each row
is the cofactor information of each pair
A CRITICAL Users can check the details of the required input data in the online tutorial (https://htmlpreview.github.io/?https://github.
com/jinworks/CellChat/blob/master/tutorial/Update-CellChatDB.html), particularly the example codes on how to utilize other resources
such as CellTalkDB and CellPhoneDB.
Procedure
A CRITICAL To demonstrate how to update the L-R interaction database, we use CellTalkDB®® in human as an example. CellTalkDB can be
downloaded from https://github.com/ZJUFanLab/CellTalkDB.
1. Load the customized L-R pairs by typing the following command in RStudio:
db.user <- readRDS("./CellTalkDB-master/database/human lr pair.rds")
2. (Optional) Load the gene information:
gene_info <- readRDS("./CellTalkDB-master/data/human gene info.rds")

3. (Optional) Modify the colnames if needed

colnames (db.user) <- plyr::mapvalues (colnames (db.user), from = c("ligand gene symbol", "receptor gene
symbol", "lr pair"), to = c("ligand", "receptor", "interaction name"), warn missing = TRUE)

4. Create a new database by using the user-provided gene information (option A), create a new database by using the built-in gene
information (option B) or integrate the customized L-R pairs into the built-in CellChatDB (option C).
A. Create a new database by using the user-provided gene information:
db.new <- CellChat::updateCellChatDB(db = db.user, gene info = gene info)
B. Create a new database by using the built-in gene information:
db.new <- CellChat::updateCellChatDB(db = db.user, gene info = NULL, species target = "human")
C. Integrate the customized L-R pairs into the built-in CellChatDB:
db.new <- updateCellChatDB(db = db.user, merged = TRUE, species target = "human")
5. Use this new database in the Procedure 1, Step 6 for CellChat analysis
cellchat@DB <- db.new

6. Save the new database for future use

save (db.new, file = "CellChatDB.human user.rda")
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Experimental design

RNA isolation and sequencing data

Although CellChat can, in principle, be used for any single-cell transcriptomics datasets, the
quality of datasets directly affects the quality of CellChat outputs. First, having sufficient
sequencing depthis critical to capturing gene expression of ligands and receptors. Expression
levels are usually low for ligands during development, so sensitivity and depth of sequencing
become particularly important for such cases. Second, batch effect may introduce output
variability for any inference method, including CellChat. Whenever possible, it isimportant to
use the same RNA isolation protocol for replicates and different conditions. To perform control
analysis, we include several datasets that have been well explored using CellChat with known
signaling events or pathways. New CellChat users are encouraged to first test their CellChat code
onthese datasets by comparing the outputs with the deposited cell-cell communication results.

Required input data

CellChatrequires two user inputs: one is the gene expression data of cells and the other is the
user-assigned cell labels. For the gene expression data matrix, genes should be in rows with
rownames and cells in columns with colnames. Normalized data are required as input for
CellChat analysis (for example, library-size normalization and then log-transformed with a
pseudocount of 1). If users input raw count data, CellChat provides a ‘normalizeData’ function
for normalization. For the cell group information, a dataframe with rownames is required.
Alternatively, users can use a Seurat, SingleCellExperiment or AnnData object as input.

Inference of cell-cell communication networks

Toidentify strong or weak cell-cell communications, users can modify the parameters ‘type’
and ‘trim’inthe function ‘computeCommunpProb’ when inferring cell-cell communication
networks. The parameter ‘type’is the method for computing the average gene expression

per cell group. By default, CellChat uses a statistically robust mean method by setting

‘type = "triMean"’,producingfewer butstrongerinteractions. Whensetting ‘type =
"truncatedMean"’, avalue should be assigned to another parameter ‘t rim/, producing more
interactions. However, we find that CellChat performs well at predicting stronger interactions,
which s helpful for identifying interactions for further experimental validations. The ‘t rimean’
approximates 25% truncated mean, implying that the average gene expression is zero if the
percentage of expressing cells in one group is less than 25%. To identify weak signaling, users
should use ‘t runcatedMean’. In general, users can use 10% truncated mean by setting ‘t ype =
"truncatedMean" and‘trim = 0.1".Todeterminea proper value of ‘trim,, CellChat provides
afunction‘computeaveExpr’, which can help to check the average expression of signaling
genes of interest. Therefore, if well-known signaling events in the studied biological process are
not predicted, users cantry ‘t runcatedMean’ with lower values of ‘t rim’ to change the method
for calculating the average gene expression per cell group.

Visualization of cell-cell communication networks

Uponinferring the cell-cell communication networks, CellChat provides various ways to
visualize such networks, including hierarchical plots, circle plots, chord diagrams, heatmap and
bubble plots. In hierarchical plots, circle plots and chord diagrams, edge colors are consistent
with the sources as sender, and edge weights are proportional to the interaction strength.
Thicker edge lines indicate a stronger signal. One can visualize the inferred communication
network of signaling pathways using ‘netvisual aggregate’and visualize theinferred
communication networks of individual L-R pairs associated with that signaling pathway

using ‘netVisual individual’

Hierarchical plots consist of two components: the left portion shows autocrine and
paracrine signaling to certain cell groups of interest, and the right portion shows autocrine
and paracrine signaling to the remaining cell groups in the dataset. Thus, a hierarchical plot
provides aninformative and intuitive way to visualize autocrine and paracrine signaling
communications between cell groups of interest. In the hierarchical plot, solid and open
circlesrepresent the sources and targets, respectively.
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Inaddition to creating a chord diagramusing ‘netvVisual aggregate’or netVisual
individual’, CellChat provides another two functions with more adjustable parameters for better
visualization. netvVisual chord cell’isused for visualizing the cell-cell communication
between different cell groups (where each sector in the chord diagram s a cell group) and
‘netVisual chord gene’isused for visualizing the cell-cell communication mediated by multiple
L-Rs or signaling pathways (where each sector in the chord diagramis aligand, receptor or signaling
pathway). Inthe chord diagram, the inner thinner bar colors represent the targets that receive signals
fromthe corresponding outer bar. The inner bar size is proportional to the signal strength received by
the targets. Such aninner bar is helpful for interpreting the complex chord diagram.

Systematic analysis of cell-cell communication

To facilitate the interpretation of complex intercellular communication networks, CellChat
quantitively measures networks through methods abstracted from graph theory, pattern
recognition and manifold learning. It can determine major signaling sources and targets, as well
as mediators and influencers within a given signaling network, using centrality measures from
network analysis. It can also predict key incoming and outgoing signals for specific cell types

as well as coordinated responses among different cell types by leveraging pattern recognition
approaches. Finally, it can group signaling pathways by defining similarity measures and
performing manifold learning from both functional and topological perspectives.

CellChatidentifies dominant senders, receivers, mediators and influencersin the
intercellular communication network using measures in weighted-directed networks, including
out-degree, in-degree, flow betweenness and information centrality>*, respectively.Ina
weighted directed network with the weights as the computed communication probabilities,
the outdegree (computed as the sum of communication probabilities of the outgoing signaling
froma cell group) and the in-degree (computed as the sum of the communication probabilities
of theincoming signaling to a cell group) can be used to identify the dominant cell senders
andreceivers of signaling networks, respectively. CellChat also provides another intuitive way
to visualize the dominant senders (sources) and receivers (targets) in atwo-dimensional (2D)
spaceusing the function ‘netAnalysis signalingRole scatter’Inthisplot, thexaxisand
yaxis are, respectively, the total outgoing or incoming communication probability associated
with each cell group. Dot size is proportional to the number of inferred links (both outgoing and
incoming) associated with each cell group. The dot colors indicate different cell groups. The dot
shapesindicate different categories of cell groups if the parameter ‘group’ is defined.

CellChat predict key incoming and outgoing signals for specific cell types using the
function‘netAnalysis signalingRole heatmap’Inthis heatmap, colorbar represents
the relative signaling strength of a signaling pathway across cell groups. The top-colored bar
plot shows the total signaling strength of a cell group by summarizing all signaling pathways
displayed in the heatmap. Theright bar plot shows the total signaling strength of a signaling
pathway by summarizing all cell groups displayed in the heatmap.

CellChat employs a pattern recognition method to identify global communication
patterns. For outgoing (or incoming) patterns, the cell group patternindicates how these cell
groups coordinate to send (or receive) signals and the signaling pathway patternindicates how
these signaling pathways work together to send (or receive) signals. To intuitively show the
associations of latent patterns with cell groups and signaling pathways or L-R pairs, we used a
river (alluvial) plot. As the number of patterns increases, there might be redundant patterns,
making it difficult to interpret the communication patterns. In addition, CellChat also provides
the function ‘selectk toinfer the number of patterns, which is based on two metrics including
Cophenetic and Silhouette. Both metrics measure the stability for a particular number of
patterns based on a hierarchical clustering of the consensus matrix. A suitable number of
patternsis the one at which Cophenetic and Silhouette values begin to drop suddenly.

CellChat can quantify the similarity between all significant signaling pathways and then group
thembased on their cellular communication network similarity. This analysis is helpful to predict
putative functions of the poorly studied pathways based on their similarity to pathways with
well-known functions. Signaling pathways can be grouped based on their functional similarity or
structural similarity. A high degree of functional similarity indicates the major senders and receivers
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aresimilar and can be interpreted as the two signaling pathways or two L-R pairs exhibiting similar
and/or redundant roles. A structural similarity relates to signaling network structure, without
considering the similarity of senders and receivers. To obtain amanifold embedding of all inferred
communication networks and further intuitively visualize these networks in a2D space, we first
compute the pairwise functional or topological similarity between any pair of inferred networks,
thensmooth the similarity matrix using ashared nearest-neighbor graph, and finally performa
uniform manifold approximation and projection (UMAP) on the smoothed similarity matrix.

Comparative analysis of cell-cell communication

CellChat provides versatile functionalities to allow systematic comparisons of cell-cell
communication between different conditions. Here we present two examples of how we design
the comparative analysis. CellChat shows the differential number of interactions or interaction
strengths between pairs of scRNA-seq datasets in greater detail using the function ‘netvisual
heatmap’ Inthis heatmap, the top-colored bar plot represents the sum of each column of the
absolute values displayed in the heatmap (incoming signaling). The right-colored bar plot
represents the sum of each row of the absolute values (outgoing signaling). Therefore, the bar
height indicates the degree of change in terms of the number of interactions or interaction
strength between the two conditions. The colorbar indicates increased (or decreased) signaling
inthe second dataset compared to the first one.

CellChat performs joint manifold learning and classification of all inferred communication
networks across different conditions. The manifold embeddings are obtained by first computing
the pairwise functional or topological similarity between any pair of inferred networks and then
performing UMAP on ashared nearest neighbor-smoothed similarity matrix. UMAP is used for
visualizing signaling relationships and interpreting our signaling outputs in an intuitive way
without requiring classification of conditions. By quantifying the similarity between the cellular
communication networks of signaling pathways across conditions, this analysis highlights
the potentially altered signaling pathways. CellChat adopts the concept of network rewiring
from network biology and is based on the hypothesis that the difference between different
communication networks may affect biological processes across conditions. Furthermore,
CellChat identifies the signaling networks with larger differences across conditions based on
their Euclidean distance in the 2D UMAP space. CellChat computes and visualizes this Euclidean
distance using the function ‘rankSimilarity’. Larger distance implies larger difference of
the communication networks between two datasets in terms of either functional or structure
similarity. CellChat only computes the distance of overlapping signaling pathways between two
datasets. Those signaling pathways that are only identified in one dataset are not included in this
analysis. If there are more than three datasets, you can do pairwise comparisons by modifying
the parameter ‘comparison’in‘rankSimilarity’

Materials

Equipment
Hardware
 Anydesktop workstation or laptop with an Internet connection is sufficient. This protocol
was run on aMacBook Pro (MacOS Ventura Monterey, Version13.5) with a12-Core central
processing unit (CPU) and 64 GB of random-access memory (RAM). For minimal performance,
we recommend using a dual-core CPU with at least 16 GB of RAM for analyses

Software
« Operating system: Linux, Windows (10) or MacOS
« RStudio: anintegrated development environment for R, which can be accessed at
https://posit.co/download/rstudio-desktop/
« CellChat: the actively maintained open-source program is freely available at https://github.
com/jinworks/CellChat
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Datafiles
Required input data:
» Gene expression data matrix
 User-assigned cell [abels
Example datasets: example datasets for running this protocol can be downloaded from
the open-access repository figshare at https://figshare.com/projects/Example_data_for_cell-
cell_ communication_analysis_using_CellChat/157272.

Equipment setup
Installation of CellChat package
We recommend that users install CellChat and perform analysis in RStudio. In an RStudio
environment, the following commands canbe run from an R script or directly in the built-in R
console. The R commands are the same on MacOS, Linux and Windows.

(Optional) Install RStudio. RStudio can be manually installed by downloading RStudio from
its official website at https://posit.co/download/rstudio-desktop/.
1. (Optional) Install the devtools package from the Comprensive R Archive Network.

install.packages ('devtools')
2. Install CellChat R packages from our GitHub repository by typing the following commands:

devtools::install github ("jinworks/CellChat")

Procedure 1: inferring cell-cell communication from a single scRNA-seq dataset

O TIMING 4 min

A CRITICAL Procedureldemonstratesthe Rcommands needed to runthe CellChat package
forinferring and analyzing cell-cell communication from a single scRNA-seq dataset. The
equivalent online version, along with the graphical plots, are available in the tutorial directory
of'the CellChat github repository (https://htmlpreview.github.io/?https://github.com/
jinworks/CellChat/blob/master/tutorial/CellChat-vignette.html).

Datainput and preprocessing
O TIMING ~12s
A CRITICAL The example dataset containingsingle-cell dataand cell metadata canbe
accessed directly from figshare via the following link: https://figshare.com/articles/dataset/
scRNA-seq_data_of_human_skin_from_patients_with_atopic_dermatitis/24470719. Users can
refer to the online tutorial of the CellChat github repository (https://htmlpreview.github.io/
?https://github.com/jinworks/CellChat/blob/master/tutorial/Interface_with_other_single-cell_
analysis_toolkits.html) for further details on preparing the input data for CellChat analysis.
1. Preparetheinput databy following option A when the normalized count data and

metadata are available, option Bwhen the Seurat object is available, option Cwhen

the SingleCellExperiment object is available and option D when the Anndata object is

available.

(A) Generate data input starting from a count data matrix:

(i) Upload the count data matrix in a.rda or other format:

load("./tutorial/data humanSkin CellChat.rda")
(ii) Obtain the normalized data matrix:

data.input = data humanSkin$data
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(iii) Generate a data frame with rown ames containing cell meta data:
meta = data humanSkin$meta

(iv) Subset the data from one condition for further analysis:
cell.use = rownames (meta) [metas$condition == "LS"]
data.input = data.input[, cell.use]

meta = metalcell.use,]

(B) Generate data input starting from a Seurat object:
(i) Obtain the normalized data matrix:

data.input <- seurat object [["RNA"]]edata
(ii) Generate a data frame with row names containing cell meta data:

labels <- Seurat::Idents (seurat.obj)
meta <- data.frame(labels = labels, row.names = names (labels))

(C) Generate data input starting from a SingleCellExperiment object:
(i) Obtain the normalized data matrix:

data.input <- SingleCellExperiment::logcounts (sce object)
(ii) Generate a data frame with row names containing cell meta data:

meta <- as.data.frame(SingleCellExperiment::colData(sce object))
metaSlabels <- meta[["sce.clusters"]]

(D) Generate data input starting from an Anndata object:
(i) Upload the Anndata object using the anndata R package:

install.packages ("anndata")

library (anndata)

ad <- read hb5ad("scanpy object.h5ad")
(ii) Obtain the count data matrix:

counts <- t(as.matrix(adsX))
(iii) Normalize the count data matrix:

data.input <- normalizeData (counts)

(iv) Generate a data frame with row names containing cell meta data:

meta <- ad$obs
meta$labels <- meta[["ad clusters"]]

2. Usingthe ‘createCellchat’ functionand theinputdatafiles generatedinStep1, createa
CellChat object by following option A if taking the digital gene expression matrix and cell
label information as input, option Bif taking a Seurat object as input, option C if taking
aSingleCellExperiment object as input and option D if taking a AnnData object as input.
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Users should refer to the ‘Required input data’ section in the ‘Experimental design’ section

for further details.

(A) Create a CellChat object from the digital gene expression matrix and cell label
information

library (CellChat)
cellchat <- createCellChat (object = data.input, meta = meta,
group.by = "labels")

(B) Create a CellChat object from a Seurat object
library (CellChat)
cellchat <- createCellChat (object = seurat.obj, group.by =
"ident", assay = "RNA")

(C) Create a CellChat object from a SingleCellExperiment object

library (CellChat)
cellchat <- createCellChat (object = sce.obj, group.by = "sce.clusters")

(D) Create a CellChat object from an AnnData object
(i) Convertthe Anndata object to the SingleCellExperiment object using the zellkon-
verter R package:

sce <- zellkonverter::readHS5AD(file = "adata.h5ad")
assayNames (sce)

(ii) Obtain the count data matrix:
counts <- assay(sce, "X")

(iii) Normalize the count data matrix and add a new assay entry ‘logcounts’if not available:
logcounts (sce) <- normalizeData (counts)

(iv) Generate a CellChat object from a SingleCellExperiment object:
cellchat <- createCellChat (object = sce, group.by = "sce.clusters")
© TROUBLESHOOTING

3. (Optional) If cell metainformation is not added when creating the CellChat object (Step 2A),
usethe ‘addmeta’ functiontoadditandthe ‘set Ident’ function to assign the cellidentities

toeachcell.

cellchat <- addMeta(cellchat, meta = meta)
cellchat <- setIdent (cellchat, ident.use = "labels")

4. Beforerunning CellChat toinfer cell-cell communication, select the L-R interaction database
relevant to the study (for example, use the database Ce11ChatDB. human whenanalyzing
human samples or the database Ce11ChatDB.mouse when analyzing mouse samples):

CellChatDB <- CellChatDB.human
showDatabaseCategory (CellChatDB)
dplyr::glimpse (CellChatDBSinteraction)
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5. Selectthe L-R pairs from the selected CellChatDB database in Step 4 for cell-cell
communication analysis. Use option A to select a subset of the database, option Bto exclude
nonprotein signaling and option C to select all CellChatDB database.

(A) Selectaspecific subset of the CellChatDB database

CellChatDB.use <- subsetDB(CellChatDB, search = "Secreted
Signaling")

(B) Selectall CellChatDB database except for nonprotein signaling
CellChatDB.use <- subsetDB(CellChatDB)
(C) Selectall CellChatDB database
CellChatDB.use <- CellChatDB
6. Settheselected database from Step 5inthe object and then subset the expression data
matrix using genes relevant to the selected L-R pairs. An updated CellChat object is

outputted with two updated slots ‘DB’ and ‘data.signaling’.

cellchat@DB <- CellChatDB.use
cellchat <- subsetData(cellchat)

7. Identify over-expressed ligands or receptorsin each cell group to infer the cell state-specific
communications.

future: :plan("multisession", workers = 4)
cellchat <- identifyOverExpressedGenes (cellchat)

8. Foreachoverexpressedligand and receptor obtained in Step 7, identify over-expressed
L-Rinteractions if either its associated ligand or receptor is over expressed:

cellchat <- identifyOverExpressedInteractions(cellchat)

9. (Optional) Smooththe data when analyzing single-cell data with shallow sequencing
depth. The smoothed data could help to reduce the dropout effects of signaling genes,
particularly for possible zero expression of subunits of ligands or receptors. Use a
built-in protein—-protein interaction (PPI) network from CellChat package to smooth
the data:

cellchat <- smoothData(cellchat, adj = PPI.human)

Inference of cell-cell communication networks

O TIMING ~39s

10. (Optional) Check the average expression of signaling genes of interest to determine
aproper value of ‘t rim’ when well-known signaling events in the studied biological
process are not predicted:

computeAveExpr (cellchat, features = c("CXCL1l2","CXCR4"),

type = "triMean")
computeAveExpr (cellchat, features = c("CXCL1l2","CXCR4"),
type = "truncatedMean", trim = 0.1)
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11.

12.

13.

14.

15.

Infer cell-cell communication at a L-R pair level. Users are now ready to infer cell-cell
communication by using the following command:

cellchat <- computeCommunProb (cellchat, type = "triMean", trim = NULL,
raw.use = TRUE)

A CRITICAL STEP Important parameters of the ‘computeCommunProb’ function are as

follows:

+ type:the method for computing the average gene expression per cell group. By default,
type = "triMean", producingfewerbutstrongerinteractions. When setting type =
"truncatedMean", avalue should be assigned to the parameter ‘t rim’, producing more
interactions.

« trim:thefraction (0-0.25) of observations to be trimmed from each end before the
meanis computed.

« raw.use:whethertousetheraw data(thatis, ‘object@data.signaling’) orthe smoothed
data (thatis, ‘object@data . smooth’). The defaultis TRUE.Set ‘raw.use = FALSE touse
the smoothed data. When using the smoothed data, the number of inferred interactions
clearly increases. However, generally, it only introduces very weak communications.

Filter the cell-cell communication, based on the number of cells in each group. By default,

the minimum number of cells required in each cell group for cell-cell communicationis 10.

cellchat <- filterCommunication(cellchat, min.cells = 10)

Infer cell-cell communication at a signaling pathway level. CellChat computes

the communication probability at the signaling pathway level by summarizing the
communication probabilities of all L-R pairs associated with each signaling pathway. Note
that the inferred intercellular communication network of each L-R pair and each signaling
pathwayis storedintheslots ‘cellchatenet’and ‘cellchatenetP’, respectively.

cellchat <- computeCommunProbPathway (cellchat)

Calculate the aggregated cell-cell communication network. CellChat calculates the
aggregated cell-cell communication network by counting the number of links or
summarizing the communication probability across all the cell groups (option A)
orasubset of cell groups (option B).

(A) Perform calculation across all the cell groups

cellchat <- aggregateNet (cellchat)
(B) Perform calculation across a subset of cell groups

sources.use = c("FBN1l+ FIB","APOE+ FIB","Inflam. FIB")
targets.use = c("LC","Inflam. DC","cDC2", "CD40LG+ TC")
cellchat <- aggregateNet (cellchat, sources.use = sources.use,
targets.use = targets.use)

Export the CellChat object together with the inferred cell-cell communication networks
and save themasa.rdsfile.

saveRDS (cellchat, file = "cellchat humanSkin LS.rds")

B PAUSE POINT The.rds files can be used later as input data for the visualization (Procedure1,
Steps16-21) and the analysis (Procedure 1, Steps 22-27) of the cell-cell communication
networks, as well as the comparison analysis of the cell-cell communication networks across
biological conditions (Procedure 2, Steps 1-4).
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Visualization of cell-cell communication networks
O TIMING ~4.8s
Visualization of cell-cell communication networks of individual signaling pathways
O® TIMING ~0.8s
A CRITICAL Users can visualize the inferred communication network of signaling pathways
using netVisual aggregate’(Step16)and visualize theinferred communication network of
individual L-R pairs associated with that signaling pathway using ‘netvisual individual’
(Step 17). All the signaling pathways showing significant communications can be accessed by
‘cellchatenetP$pathways’. Here, we take input of the CXCL signaling pathway as an example.
16. Usingthe.rds files from Step 15, visualize the inferred communication network of each
signaling pathway using circle plot (option A), hierarchy plot (option B), chord diagram
(option C) and heat map (option D).
(A) Circle plot
(i) Access all the signaling pathways showing significant communications:

pathways.show.all <- cellchat@netPS$pathways
(ii) Select one pathway:
pathways.show <- c("CXCL")

(iii) Visualize the inferred communication network using the ‘netvisual aggregate’
function:

netVisual aggregate(cellchat, signaling = pathways.show, layout
= "circle", color.use = NULL, sources.use = NULL, targets.use =
NULL, idents.use = NULL)

€ TROUBLESHOOTING
(B) Hierarchy plot
(i) Access all the signaling pathways showing significant communications:

pathways.show.all <- cellchat@netPS$pathways
(ii) Select one pathway:
pathways.show <- c("CXCL")

(iii) Visualize the inferred communication network using the netvisual aggregate’
function. To study the cell-cell communication between fibroblasts and immune
cells, define ‘vertex. receiver’as all fibroblast cell groups:

vertex.receiver = seq(1l,4)
netVisual aggregate(cellchat, signaling = pathways.show, layout
= "hierarchy", vertex.receiver = vertex.receiver)

A CRITICAL Thekey parameter for this plotis ‘vertex.receiver’,anumericvector
giving the index of the cell groups as targets in the left part of the hierarchy plot.
(C) Chord diagram
(i) Create achord diagram using the universal function ‘netvisual aggregate’

pathways.show <- c("CXCL")

par (mfrow=c(1,1))

netVisual aggregate(cellchat, signaling = pathways.show,
layout = "chord")
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(ii) Customize a chord diagram using ‘netvisual chord cell’to flexibly visualize
cell-cell communication with different purposes and at different levels. For
example, define anamed char vector ‘group’ to create multiple-group chord
diagram, for example, grouping cell clusters into different cell types.

par (mfrow=c(1,1))

group.cellType <- c(rep("FIB", 4), rep("DC", 4), rep("TC", 4))
names (group.cellType) <- levels(cellchat@idents)
netVisual chord cell (cellchat, signaling = pathways.show, group
= group.cellType, title.name = pasteO (pathways.show, " signaling
network") )

(D) Heat map plot

pathways.show <- c("CXCL")

par (mfrow=c(1,1))

netVisual heatmap (cellchat, signaling = pathways.show,
color.heatmap = "Reds")

Visualization of cell-cell communication networks of individual L-R pairs

@ TIMING ~0.5s

A CRITICAL CellChat can compute the contribution of each associated L-R pair withina
particular signaling pathway (Step 17) and then visualize the cell-cell communication mediated
by asingle L-R pair.

17.

18.

19.

Using the .rds files from Step 15, compute and visualize the contribution of each associated
L-R pair within a particular signaling pathway:

netAnalysis contribution(cellchat, signaling = pathways.show)
Extract all the significant L-R pairs for a given signaling pathway:

pairLR.CXCL <- extractEnrichedLR(cellchat, signaling = pathways.show,
genelR.return = FALSE)

Select one L-R pair to visualize the inferred cell-cell communication network using
the netvisual individual’function.Userscanalso visualize theinferred network
using other functions (Step 16), such as ‘netvisual chord_cell’and‘netVisual
heatmap’

LR.show <- pairLR.CXCLI[1,]
netVisual individual (cellchat, signaling = pathways.show, pairLR.use =
LR.show, layout = "circle")

Visualization of cell-cell communication mediated by multiple L-R or signaling
pathways
O TIMING ~2s

20.

Using the .rds files from Step 15, visualize cell-cell communication mediated by multiple
L-R or signaling pathways. Visualize all the significant interactions using abubble plot
(option A) or chord diagram (option B).
(A) Visualize the inferred significant interactions using a Bubble plot
(i) Show all the significant interactions from some cell groups defined by ‘sources.
use’ to other cell groups defined by ‘targets.use’. By default, the x axis first sorts cell
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group pairs based on the appearance of signaling sources in ‘sources.use’, and then
based on the appearance of signaling targets in ‘targets.use’. To change this order,
refer to (iv—vii).

netVisual bubble(cellchat, sources.use = 4, targets.use =
c(5:11), remove.isolate = FALSE)

(ii) Show all the significant interactions associated with certain signaling pathways
defined by ‘signaling”:

netVisual bubble(cellchat, sources.use = 4, targets.use =
c(5:11), signaling = c("CCL","CXCL"), remove.isolate = FALSE)

(iii) Show all the significant interactions associated with certain L-R pairs defined by
‘pairLR.use’:

pairLR.use <- extractEnrichedLR (cellchat, signaling =

c("CCL", "CXCL", "FGF") )

netVisual bubble(cellchat, sources.use = c(3,4), targets.use =
c(5:8), pairLR.use = pairLR.use, remove.isolate = TRUE)

(iv) Show all the significant interactions by sorting cell group pairs based on the
defined ‘targets.use’

netVisual bubble(cellchat, targets.use = c("LC","Inflam.
DC","cDC2", "CD40LG+ TC"), pairLR.use = pairLR.use, remove.
isolate = TRUE, sort.by.target = T)

~

Show all the significant interactions by sorting cell group pairs based on the
defined ‘sources.use’:

(v

netVisual bubble(cellchat, sources.use = c("FBN1+ FIB", "APOE+
FIB","Inflam. FIB"), pairLR.use = pairLR.use, remove.isolate =
TRUE, sort.by.source = T)

(vi) Show all the significant interactions by sorting cell group pairs based on the
defined ‘sources.use’ and then ‘targets.use’:

netVisual bubble(cellchat, sources.use = c("FBN1+ FIB",
"APOE+ FIB","Inflam. FIB"), targets.use = c("LC","Inflam.
DC","cDC2", "CD40LG+ TC"), pairLR.use = pairLR.use, remove.
isolate = TRUE, sort.by.source = T, sort.by.target = T)

(vii) Show all the significant interactions by sorting cell group pairs based on the
defined ‘targets.use’ and then ‘sources.use’:

netVisual bubble(cellchat, sources.use = c("FBN1+ FIB",

"APOE+ FIB","Inflam. FIB"), targets.use = c("LC","Inflam.
DC","cDC2", "CD40LG+ TC"), pairLR.use = pairLR.use, remove.isolate
= TRUE, sort.by.source = T, sort.by.target = T, sort.by.source.
priority = FALSE)
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A CRITICAL STEP Important parametersofthenetvVisual bubblefunctionare

asfollows:

- slot.name: the slot name of object: ‘netP’ or ‘net’. Use ‘netP’ to analyze cell-cell
communication at the level of signaling pathways and ‘net’ to analyze cell-cell
communication at the level of L-R pairs

 sources.use: avector giving the index or the name of source cell groups

- targets.use: avector giving the index or the name of target cell groups

- signaling: a character vector giving the name of signaling pathways of interest

 pairLR.use: a data frame consisting of one column named either ‘interaction_
name’ or ‘pathway_name’, defining the interactions of interest and the order of
L-R on the y axis

« remove.isolate: whether to remove the entire empty columns, that is,
communication between certain cell groups

 sort.by.source, sort.by.target, sort.by.source.priority: reorder the interacting
cell pairs

(B) Visualize the inferred significant interactions using a chord diagram
(i) Show all the L-R mediated interactions sending from ‘Inflam.FIB’ defined by
‘sources.use’:

netVisual chord gene(cellchat, sources.use = 4, targets.use =
c(5:11), lab.cex = 0.5,legend.pos.y = 30)

(ii) Show all the L-R mediated interactions received by ‘Inflam.DC’ defined by
‘targets.use’:

netVisual chord gene(cellchat, sources.use = c(1,2,3,4),
targets.use = 8, legend.pos.x = 15)

(iii) Show all the L-R mediated interactions associated with certain signaling pathways
defined by ‘signaling”:

netVisual chord gene(cellchat, sources.use = c(1,2,3,4),
targets.use = c(5:11), signaling = c("CCL", "CXCL"),
legend.pos.x = 8)

(iv) Show all the signaling pathways mediated interactions by setting ‘slot.name’
as‘netP”:

netVisual chord gene(cellchat, sources.use = c(1,2,3,4),
targets.use = c(5:11), slot.name = "netP", legend.pos.x = 10)

A CRITICAL STEP Important parameters of the ‘netvVisual chord gene’function

are as follows:

- slot.name: the slot name of object: ‘netP’ or ‘net’. Use ‘netP’ to visualize cell-cell
communication at the level of signaling pathways and ‘net’ to visualize cell-cell
communication at the level of L-R pairs

- signaling: a character vector giving the name of signaling networks

 pairLR.use: adata frame consisting of one column named either ‘interaction_
name’ or ‘pathway_name’, defining the interactions of interest

 net:adataframe consisting of the interactions of interest. ‘net’ needs to have at
least three columns: ‘source’, ‘target’ and ‘interaction_name’ when visualizing
links at the level of ligands/receptors; ‘source’, ‘target’ and ‘pathway_name’
when visualizing links at the level of signaling pathway; ‘interaction_name’ and
‘pathway_name’ must be the matched names in ‘CellChatDB$interaction’

 sources.use: avector giving the index or the name of source cell groups
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- targets.use:avector giving theindex or the name of target cell groups

« color.use: colors for the cell groups

« lab.cex:fontsize for the text

- small.gap: small gap between sectors; if the gene names are overlapping, users
canadjust the argument ‘small.gap’ by decreasing their values

 big.gap: gap between the different sets of sectors, which are defined in the ‘group’
parameter

Visualization of signaling gene expression distribution

O TIMING ~1.5s

21. Visualize signaling gene expression distribution. Once the Seurat R package has been
installed, CellChat can plot the gene expression distribution of signaling genes related to
L-R pairs or signaling pathways using a Seurat wrapper function ‘plotGeneExpression’
(option A). This function provides three types of visualization, including ‘violin’, ‘dot’and
‘bar’. Alternatively, users can extract the signaling genes related to the inferred L-R pairs or
signaling pathway using the function ‘ext ract EnrichedLR’ and then plot gene expression
using Seurat or other packages like Scanpy (option B).
(A) Visualize signaling gene expression using CellChat built-in function

plotGeneExpression (cellchat, signaling = "CXCL", enriched.only = TRUE,
type = "violin")

(B) Visualize signaling gene expression using Seurat package

genes.use <- extractEnrichedLR (cellchat, signaling = "CXCL",
genelLR.return = TRUE) $geneLR
Seurat::VlnPlot (seu obj, features = genes.use)

Systematic analysis of cell-cell communication

@ TIMING ~3 min

Identify the signaling roles and major contributing signaling events of cell groups

O TIMING 2s

22. Compute the network centrality scores of the inferred cell-cell communication network.

cellchat <- netAnalysis computeCentrality(cellchat, slot.name = "netP")

Important parameters of ‘netAnalysis computeCentrality’ areasfollows:

- slot.name: the slot name of object that is used to compute centrality measures of
signaling networks. Setting slot .name = "netP"tocompute the network centrality
scores at the level of signaling pathways and setting slot .name = "net"tocompute
the network centrality scores at the level of L-R pairs.

23. Identify the signaling roles of cell groups by visualizing the centrality scores on a heat map
(option A) and a 2D plot (option B). Alternatively, identify the major contributing signaling
events (thatis, which signals contribute the most to outgoing or incoming signaling of
certain cell groups) by following option C.

(A) Visualize the network centrality scores on a heat map

netAnalysis signalingRole network (cellchat, signaling = pathways.show,
width = 8, height = 2.5, font.size = 10)

(B) Visualize dominant senders (sources) and receivers (targets) in a 2D space

netAnalysis signalingRole scatter (cellchat)
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Important parameters of netAnalysis signalingRole scatter’areasfollows:

- signaling:a char vector to specify signaling pathway names of interest. signaling =
NULL: signaling role analysis on the aggregated cell-cell communication network
fromallsignaling pathways

« color.use: defining the color for each cell group

« slot.name: the slot name of object that is used to compute centrality measures of
signaling networks

 group:avector to categorize the cell groups, for example, categorize the cell
groups into two major categories: immune cells and fibroblasts

« dot.size: arange defining the size of the symbol, whichis proportional to the
number of inferred links (both outgoing and incoming) associated with each
cell group

« x.measure: The measure used as x axis. This measure should be one of
‘names(slot(object, slot.name)$centr[[1]])’ computed from ‘netAnalysis_
computeCentrality’. Default = “outdeg” is the weighted outgoing links
(i.e., outgoing interaction strength). If setting as "outdeg_unweighted",
itrepresents the total number of outgoing signaling

« y.measure: The measure used as y axis. This measure should be one of
‘names(slot(object, slot.name)$centr[[1]])’ computed from ‘netAnalysis_
computeCentrality’. Default ="indeg" is the weighted incoming links
(i.e.,incominginteraction strength). If setting as “indeg_unweighted”,
itrepresents the total number of incoming signaling

(C) Identify the major contributing signaling events of each cell group
(i) Identify the major outgoing signaling events

htl <- netAnalysis signalingRole heatmap (cellchat, pattern =
"outgoing")

htl

(ii) Identify the major incoming signaling events

ht2 <- netAnalysis signalingRole heatmap (cellchat, pattern
"incoming")
ht2

(iii) Show the major outgoing and incoming signaling events together
htl + ht2

Important parameters of netAnalysis signalingRole heatmap’areasfollows:

- signaling: a character vector giving the name of signaling networks

 pattern: ‘outgoing’, ‘incoming’ or ‘all. When pattern="“all”, it aggregates the strength
of outgoing and incoming signaling events together

« slot.name: the slot name of object: ‘netP’ or ‘net’. Use ‘netP’ to analyze cell-cell
communication at the level of signaling pathways and ‘net’ to analyze cell-cell
communication at the level of L-R pairs

« color.use: the character vector defining the color of each cell group

Analysis of global communication patterns

O TIMING 115s

24. Identify global communication patterns to explore how multiple cell groups and signaling
events coordinate together. In addition to exploring detailed communications for
individual pathways (Steps 16-23), an important question is how multiple cell groups and
signaling pathways coordinate to function. Follow option A to explore outgoing signaling
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patterns and reveal how the sender cells (that s, cells as signal source) coordinate with
each other and with certain signaling pathways to drive communication. Follow option Bto
explore incoming signaling patterns and to show how the target cells (that is, cells as signal
receivers) coordinate with each other and with certain signaling pathways to respond to
incoming signals.
(A) Identify and visualize outgoing communication patterns of secreting cells

(i) (Optional) Infer the number of outgoing communication patterns

library (NMF)
library(ggalluvial)
selectK(cellchat, pattern ="outgoing")

(ii) Identify outgoing communication patterns via matrix factorization of outgoing
communication probability

nPatterns = 6
cellchat <- identifyCommunicationPatterns(cellchat, pattern
="outgoing", k = nPatterns)

(iii) Visualize the associations of latent patterns with cell groups and signaling
pathways

netAnalysis river(cellchat, slot.name = "netP", pattern
="outgoing", cutoff = 0.5)

Important parameters of netAnalysis river areasfollows:

« slot.name: the slot name of object: ‘netP’ or ‘net’. Use ‘netP’ to analyze cell-cell
communication at the level of signaling pathways and ‘net’ to analyze cell-cell
communication at the level of L-R pairs;

» pattern:‘outgoing’ or ‘incoming’;

« cutoff: the threshold for filtering out weak links.

(iv) Visualize the direct associations of cell groups and signaling pathways:

netAnalysis dot (cellchat, slot.name = "netP", pattern
="outgoing", cutoff = NULL, color.use = NULL, dot.size =
c(1, 3))

Important parameters of netAnalysis dot’areas follows:

- cutoff: the threshold for filtering out weak links. Default is1/R where Ris the
number of latent patterns.

- color.use: the character vector defining the color of each cell group

 dot.size: arange defining the size of the symbol. This dot size is proportional to
the contribution score of each cell group to each signaling pathway.

(B) Identify and visualize incoming communication patterns of target cells
(i) (Optional) Infer the number of incoming communication patterns

selectK(cellchat, pattern = "incoming")

(ii) Identify outgoing communication patterns via matrix factorization of outgoing
communication probability

nPatterns = 3
cellchat <- identifyCommunicationPatterns (cellchat, pattern =
"incoming", k = nPatterns)
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(iii) Visualize the associations of latent patterns with cell groups and signaling
pathways

netAnalysis river(cellchat, pattern = "incoming")
(iv) Visualize the direct associations of cell groups and signaling pathways:
netAnalysis dot (cellchat, pattern = "incoming")
Manifold and classification learning analysis of signaling networks
O TIMING 35s
25. Perform manifold and classification learning analysis of signaling networks to group all
significant signaling pathways based on their cellular communication network similarity.
Signaling pathways can be grouped based on their functional similarity by following
option A, or based on their structural similarity by following option B. Functional similarity
analysis is not applicable to multiple datasets with different cell type compositions,
whereas structural similarity analysis is applicable to multiple datasets either with the
same cell type composition or with vastly different cell type compositions. More detailed
information is available in our previous study®.
(A) Functional similarity analysis
(i) Compute the functional similarity between any pair of inferred networks
cellchat <- computeNetSimilarity(cellchat, type = "functional")
(ii) Perform manifold learning of inferred communication networks
cellchat <- netEmbedding(cellchat, type = "functional")
(iii) Perform clustering of inferred communication networks
cellchat <- netClustering(cellchat, type = "functional")

(iv) Visualize inferred communication networks in a 2D space

netVisual embedding(cellchat, type = "functional",
label.size = 3.5)

(v) (Optional) Zoom in each group of signaling pathways in a 2D space

netVisual embeddingZoomIn (cellchat, type = "functional",
nCol = 2)

(B) Structure similarity analysis

cellchat <- computeNetSimilarity(cellchat, type = "structural")
cellchat <- netEmbedding(cellchat, type = "structural")

cellchat <- netClustering(cellchat, type = "structural")

netVisual embedding(cellchat, type = "structural", label.size = 3.5)
# netVisual embeddingZoomIn(cellchat, type = "structural", nCol = 2)

26. Explore cell-cell communicationinteractively through a CellChat Shiny App. For CellChat
analysis of single-cell transcriptomics, make sure the ‘cel1chat@dr’ contains alow-
dimensional space of the data such as ‘umap’ and ‘t sne’ to produce the feature plot of
signaling genes.
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(i) (Optional) Add anew low-dimensional space of the data if not available

cell.embeddings <- read.table("./cellEmbeddings umap.txt",

row.names = 1, header = T, sep = "\t")
cellChat <- addReduction(object = cellchat, dr = cell.embeddings,
dr.name = "umap")

(ii) Runthe CellChat Shiny App
runCellChatApp (cellchat)
27. Exportthe CellChat object as.rds file as follows:
saveRDS (cellchat, file = "cellchat humanSkin LS.rds")

M PAUSE POINT Users canstore the.rds files for later use.

Procedure 2: comparative analysis of cell-cell communication from pairs of scRNA-seq datasets

O TIMING 30s

A CRITICAL InProcedure 2, we showcase CellChat’s diverse functionalities for identifying
major signaling changes across different biological conditions by quantitative contrasts and
joint manifold learning. Here, this ability of CellChat has been demonstrated by applying it to
two scRNA-seq datasets from two biological conditions: nonlesional (NL, normal) and lesional
(LS, diseased) human skin from patients with atopic dermatitis. These two datasets (conditions)
have the same cell population compositions after joint clustering. If there are different cell
population compositions between different conditions, users should refer to Procedure 3.

A CRITICAL Theequivalentonline versionand the graphical plots are available in the github
repository (https://htmlpreview.github.io/?https://github.com/jinworks/CellChat/blob/
master/tutorial/Comparison_analysis_of multiple_datasets.html).

Load the CellChat object of each dataset and merge them

O TIMING ~3s

1. GenerateaCellChat object for each dataset from NL (or LS) condition, as discussed in
Procedurel, Steps1-15.

2. (Optional) Ifthe CellChat objects are obtained using the earlier version (<1.6.0), update by
running the function ‘updateCellChat’.

3. Merge multiple CellChat objects for comparison analysis.

library (CellChat)

library (patchwork)

cellchat .NL <- readRDS("./tutorial/cellchat humanSkin NL.rds")
cellchat.LS <- readRDS("./tutorial/cellchat humanSkin LS.rds")
object.list <- 1list(NL = cellchat.NL, LS = cellchat.LS)

cellchat <- mergeCellChat (object.list, add.names = names (object.list))

4. Exportthe merged CellChat object and the list of the two separate objects as .RData or .rds
files for later use:

save (object.list, file = "cellchat object.list humanSkin NL LS.RData")
save (cellchat, file = "cellchat merged humanSkin NL LS.RData")

B PAUSE POINT Theexported datafiles can be further processed for data visualization at
alater date.
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Identify altered interactions and cell populations

O TIMING ~2s

A CRITICAL CellChatemploysatop-down approach (thatis, starting with the big picture
and thenrefiningitin greater detail on the signaling mechanisms) to identify signaling
changes at different levels, including altered interactions, cell populations, signaling
pathways and L-R pairs.

5.

7.

Establish whether the cell-cell communication is enhanced or not by comparing the total
number of interactions (option A) and the interaction strength (option B) of the inferred
cell-cell communication networks from different biological conditions.

(A) Comparing the total number of interactions

ggl <- comparelnteractions(cellchat, show.legend = F,
group = c(1,2))
ggl

(B) Comparing the total interaction strength

gg2 <- comparelnteractions (cellchat, show.legend = F,
group = c(1,2), measure = "weight")
gg92

Identify substantially altered interactions between cell populations by comparing the
number of interactions and interaction strength among different cell populations. Visualize
differential interactions with a circle plot (option A) or a heat map (option B). Options A
and B are recommended when working with pairwise datasets. If comparing more than two
datasets, use Option C to generate multiple circle plots showing the number of interactions
orinteraction strength per dataset. Alternatively, examine the differential number of
interactions or interaction strength among coarse cell types by aggregating the cell-cell
communications based on the defined cell groups (option D).
(A) Circle plot showing the differential number of interactions or interaction
strengths among different cell populations across two datasets
(i) Examine the differential number of interactions

netVisual diffInteraction(cellchat, weight.scale = T)
(ii) Examine the differential interaction strengths
netVisual diffInteraction(cellchat, weight.scale = T,

measure = "weight")

© TROUBLESHOOTING
(B) Heat map showing the differential number of interactions or interaction strengths
among different cell populations across two datasets
(i) Examine the differential number of interactions

netVisual heatmap (cellchat)
(ii) Examine the differential interaction strengths
netVisual heatmap (cellchat, measure = "weight")
Circle plot showing the number of interactions or interaction strengths among different
cell populations across multiple datasets

(i) Compute the maximum number of cells per cell group and the maximum number
of interactions across all datasets
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weight.max <- getMaxWeight (object.list, attribute =
c("idents", "count"))

(ii) Examine the number of interactions between any two cell populations in each
dataset

par (mfrow = c(1,2), xpd=TRUE)

for (i in 1:length(object.list)) ({

netVisual circle(object.list[[i]]@net$count, weight.scale = T,
edge.weight .max = weight.max[2], edge.width.max = 12, title.name
= pastel ("Number of interactions - ", names (object.list) [i]))

}

8. Circle plot showing the differential number of interactions or interaction strengths
among coarse cell types
A CRITICAL To simplify the complicated network and gain insightsinto the cell-cell
communication at the cell type level, CellChat aggregates the cell-cell communication
based on the defined cell groups.
(i) Categorize the cell populationsinto three major cell types

group.cellType <- c(rep("FIB", 4), rep("DC", 4), rep("TC", 4))
group.cellType <- factor(group.cellType, levels = c("FIB",
npen s HTCII) )

(ii) Remerge the list of CellChat objects based on the defined major cell types

object.list <- lapply(object.list, function (x)
{mergeInteractions (x, group.cellType)})

cellchat <- mergeCellChat (object.list, add.names =
names (object.list))

(iii) Examine the number of interactions between any two major cell types in each
dataset

weight.max <- getMaxWeight (object.list, slot.name = c("idents",
"net", "net"), attribute = c("idents","count", "count.merged"))
par (mfrow = c(1,2), xpd=TRUE)

for (i in 1:length(object.list)) {

netVisual circle(object.list[[i]]@nets$count.merged, weight.
scale = T, label.edge= T, edge.weight.max = weight.max[3], edge.
width.max = 12, title.name = pasteO("Number of interactions - "
names (object.list) [i]))

}

I

(iv) Examine the differential number of interactions between any two cell types

netVisual diffInteraction(cellchat, weight.scale = T, measure =
"count .merged", label.edge = T)

(v

~

Examine the differential interaction strengths between any two cell types

netVisual diffInteraction(cellchat, weight.scale = T, measure =
"weight .merged", label.edge = T)
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9. Compare major sources and targets ina 2D space. Identify cell populations with notable
changesin sending or receiving signals between different datasets by following option A,
oridentify the signaling changes of specific cell populations by following option B.

(A) Identify cell populations with notable changes in sending or receiving signals
(i) Compute the maximum and minimum number of interactions across all datasets

num.link <- sapply(object.list, function(x) {rowSums (x@
net$count) + colSums (x@net$count)-diag(x@net$count) })
weight.MinMax <- c(min(num.link), max(num.link))

(ii) Visualize the number of outgoing and incoming interactions of each cell popula-
tionina2D space. See Step 23 in Procedure 1 for the detailed description of the
important parameters of netAnalysis signalingRole scatter’

gg <- list()

for (i in 1:length(object.list)) {

ggl[[i]] <- netAnalysis signalingRole scatter (object.list[[i]],
title = names (object.list) [1], weight.MinMax = weight.MinMax)

}

patchwork: :wrap plots(plots = gg)

4 TROUBLESHOOTING
(B) Identify the signaling changes of specific cell populations

netAnalysis signalingChanges scatter(cellchat, idents.use =

"Inflam. DC", signaling.exclude = "MIF")

Identify altered signaling with distinct network architecture
O TIMING ~15s
10. Identify signaling pathways with larger cell-cell communication network differences
across different conditions based on the functional or structure similarity. More detailed
information of the functional and structural similarity is described in Procedure 1, Step 25.
(i) Compute the functional similarity between any pair of inferred networks

cellchat <- computeNetSimilarityPairwise(cellchat, type =
"functional")

(ii) Perform joint manifold learning of inferred communication networks across
different conditions

cellchat <- netEmbedding(cellchat, type = "functional")

(iii) Performjoint clustering of inferred communication networks across different
conditions

cellchat <- netClustering(cellchat, type = "functional")
(iv) Visualize inferred communication networks in a 2D space

netVisual embedding(cellchat, type = "functional", label.size = 3.5)
(v) (Optional) Zoom in each group of signaling pathways in a 2D space

netVisual embeddingZoomIn (cellchat, type = "functional", nCol = 2)
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(vi) Compute and visualize the pathway distance in the learned joint manifold

rankSimilarity (cellchat, slot.name = "netP", type =
"functional", comparisonl = NULL, comparison2 = c(1,2))

Important parameters of ‘rankSimilarity’ areasfollows:

« slot.name: ‘netP’ or ‘net’, the slot name of object that is used to compute the
distance of signaling networks; setting slot .name = "netP" tocompare the
distance of signaling networks at the level of signaling pathways and setting
slot.name = "net"tocompute the distance of signaling networks at the level
of L-R pairs.

- type: ‘functional’ or ‘structural’ ‘functional’ (or ‘structural’) means calculation
of network differences based on the functional (or structure) similarity.

< comparisonl: a numerical vector giving the datasets for comparison. This should
be the same as ‘comparison’ in ‘computeNetSimilarityPairwise’;

« comparison2: anumerical vector with two elements giving the datasets for
comparison.

Ifthere are more than 2 datasets defined in ‘comparisonl’,‘comparison2’ can

be defined to indicate which two datasets used for computing the distance. For

example, comparison2 =c(1,3) indicates the first and third datasets defined in

‘comparisonl’ will be used for comparison.

Identify altered signaling with distinct interaction strength

O TIMING ~4s

11. By comparingtheinformation flow/interaction strength of each signaling pathway,
CellChat identifies signaling pathways that: (1) turn off, (2) decrease, (3) turnon or (4)
increase, by changing their information flow at one condition as compared with another
condition. Identify altered signaling pathways (or L-R pairs) with distinct interaction
strength based on the overallinformation flow (option A) or based on the outgoing (or
incoming) signaling patterns (option B).
(A) Compare the overall information flow of each signaling pathway or L-R pair

(i) Compare the information flow for each signaling pathway using a stacked bar chart

rankNet (cellchat, slot.name = "netP", mode = "comparison",
measure = "weight", sources.use = NULL, targets.use = NULL,
stacked = T, do.stat = FALSE)

(ii) Compare the information flow for each signaling pathway by performing a paired
Wilcoxon test

rankNet (cellchat, mode = "comparison", measure = "weight",
stacked = T, do.stat = TRUE)

(iii) Compare the information flow for each L-R pair by performing a paired
Wilcoxon test

rankNet (cellchat, slot.name = "net", mode = "comparison",
measure = "weight", stacked = T, do.stat = TRUE)

(iv) Compare the information flow for each signaling pathway using a grouped
bar chart

rankNet (cellchat, mode = "comparison", measure = "weight",
stacked = F, do.stat = FALSE)
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A CRITICAL Important parameters of the rankNet function are as follows:
- slot.name: the slot name of object. Setting slot .name = "netP"tocomparethe
information flow for each signaling pathway and setting slot .name = "net"
to compute the information flow for each L-R pair
« measure: ‘weight’ or “count”. Settingmeasure = "weight" tocompare thetotal
interaction weights (strength) and settingmeasure = "count"tocomparethe
number of interactions
« mode:‘comparison’ or ‘single’. Settingmode = " comparison" toperform
comparison analysis across different datasets; and settingmode = "single"to
rank the enriched signaling in one dataset
< comparison: anumerical vector giving the datasets for comparison; asingle
value means ranking for only one dataset and two values means comparison for
two datasets
« color.use: the character vector defining the colors of bar charts
 sources.use: avector giving the index or the name of source cell groups
- targets.use:avector giving the index or the name of target cell groups
- stacked: whether to plot the stacked bar plot or not. Default =TRUE
« do.stat: whether to do a paired Wilcoxon test to determine whether there is
significant difference between two datasets. Default = FALSE
- signaling.type: a char vector giving the types of signaling from the four categories:
‘Secreted Signaling’, '/ECM-Receptor’, ‘Cell-Cell Contact’ and ‘Non-protein Signaling’
(B) Compare outgoing (or incoming) signaling patterns associated with each cell
population
A CRITICAL The above ‘rankNet’ analysis summarizes the information from the
outgoing and incoming signaling together. CellChat can also compare the outgoing
(orincoming) signaling pattern between two datasets, allowing to identify signaling
pathways/L-R that exhibit different signaling patterns.
(i) Load the required R package for generating heat map plots

library (ComplexHeatmap)
(ii) Combine all the identified signaling pathways from different datasets

pathway.union <- union(object.list[[1]]@netPSpathways,
object.list[[2]]@netPS$pathways)

(iii) Assignthe contribution of signaling pathways to each cell group within each
dataset in terms of outgoing interaction strengths

htl = netAnalysis signalingRole heatmap (object.list[[1]],
pattern = "outgoing", signaling = pathway.union, title =
names (object.list) [1], width = 5, height = 6)
ht2 = netAnalysis signalingRole heatmap (object.list[[2]],
pattern = "outgoing", signaling = pathway.union, title =
names (object.list) [2], width = 5, height = 6)

(iv) Compare the heat map plots side by side for different datasets
draw(htl + ht2, ht gap = unit (0.5, "cm"))

A CRITICAL Important parameters of the ‘netAnalysis signalingRole heatmap’

function are as follows:

- signaling: acharacter vector giving the names of signaling networks of interest

- pattern: this parameter can be set as ‘outgoing’, ‘incoming’ or ‘all. When pattern ="“all”,
CellChat aggregates the outgoing and incoming signaling strength together
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- slot.name: the slot name of object that is used to examine the signaling patterns
atthelevel of signaling pathways (s1ot .name = "netP")orL-Rpairs
(slot.name = "net")

« color.use: the character vector defining the color of each cell group

12. Identify dysfunctional signaling by comparing the communication probabilities (option A)
or by differential expression analysis (option B).
(A) Identify dysfunctional signaling by comparing the communication probabilities.

(M

(i)

(iii)

Compare the communication probabilities mediated by L-R pairs from certain cell
groups to other cell groups

netVisual bubble(cellchat, sources.use = 4, targets.use =
c(5:11), comparison = c(1l, 2), angle.x = 45)

Identify the up-regulated (that is, increased) L-R pairs in the second dataset
compared with the first dataset

netVisual bubble(cellchat, sources.use = 4, targets.use =
c(5:11), comparison = c(l, 2), max.dataset = 2, title.name =
"Increased signaling in LS", angle.x = 45, remove.isolate = T)

Identify the down-regulated (i.e., decreased) L-R pairs in the second dataset
compared with the first dataset

netVisual bubble(cellchat, sources.use = 4, targets.use =
c(5:11), comparison = c(1l, 2), max.dataset = 1, title.name =
"Decreased signaling in LS", angle.x = 45, remove.isolate = T)

A CRITICAL Important parameters of the ‘netvisual bubble’function forthe

comparison analysis are as follows:

+ sources.use: avector giving the index or the name of source cell groups

« targets.use:avector giving the index or the name of target cell groups

< comparison: anumerical vector giving the datasets for comparison in the merged
object; e.g.,comparison=c(1,2)

< group:anumerical vector giving the group information of different datasets;
e.g.,group=c(1,2,2)

+ max.dataset: ascale, keeping the communications with highest probability in
max.dataset (i.e., certain condition)

- min.dataset: ascale, keeping the communications with lowest probability in
min.dataset

« color.text.use: whether to color the xtick labels according to the dataset origin
when doing comparison analysis

« color.text: the colors for xtick labels according to the dataset origin when doing
comparison analysis

(B) Identify dysfunctional signaling by using differential expression analysis.
CellChat performs differential expression analysis between two biological conditions
(thatis, NLand LS) for each cell group, and then obtains the up-regulated and down-
regulated interactions based on the fold change of ligands in the sender cells and
receptorsinthe receiver cells. Such analysis can be done as follows:

(M

Define a positive dataset (that is, the dataset with positive fold change against
the other dataset) and a variable name used for storing the results of differential
expression analysis

pos.dataset = "LS"
features.name = pos.dataset
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(ii) Perform differential expression analysis for each cell group

cellchat <- identifyOverExpressedGenes (cellchat, group.dataset =
"datasets", pos.dataset = pos.dataset, features.name = features.
name, only.pos = FALSE, thresh.pc = 0.1, thresh.fc = 0.05)

(iii) (Optional) Perform differential expression analysis by ignoring cell group
information

cellchat <- identifyOverExpressedGenes (cellchat, group.dataset =
"datasets", pos.dataset = pos.dataset, features.name = features.
name, only.pos = FALSE, thresh.pc = 0.1, thresh.fc = 0.05,
group.DE.combined = TRUE)

(iv) Map theresults of differential expression analysis onto the inferred cell-cell
communications to easily subset the L-R pairs of interest

net <- netMappingDEG (cellchat, features.name = features.name)

~

(v) Extract the L-R pairs with upregulated ligands in LS
net.up <- subsetCommunication(cellchat, net = net, datasets =
"LS",ligand.logFC = 0.05, receptor.logFC = NULL)

(vi) Extract the L-R pairs with upregulated ligands and upregulated recetptorsin NL,
thatis,downregulatedin LS

net.down <- subsetCommunication(cellchat, net = net, datasets =
"NL",ligand.logFC = -0.05, receptor.logFC = NULL)

(vii) (Optional) Perform further deconvolution to obtain the individual signaling genes

gene.up <- extractGeneSubsetFromPair (net.up, cellchat)
gene.down <- extractGeneSubsetFromPair (net.down, cellchat)

(viii) (Optional) Find all the significant outgoing/incoming/both signaling according to
the customized features and cell groups of interest

df <- findEnrichedSignaling(object.list[[2]], features =
c("CccLio", "CXCL1l2"), idents = c("Inflam. FIB", "COL1llAl+ FIB"),
pattern ="outgoing")

13. Visualize the upregulated signaling events identified from the above Step 12B(v) and
downregulated signaling events identified from the above Step 12B(vi) using a bubble plot
(option A), chord diagram (option B) or wordcloud (option C). The bubble plot is useful to
compare the interaction strengths between pairs of cell groups across multiple datasets
inthe same plot, the chord diagram is useful to show the interactions and the associated
ligands/receptors in one dataset, and the wordcloud is useful to highlight the ligands of the
dysfunctional signaling in one dataset.

(A) Visualize dysfunctional signaling using a bubble plot
(i) Find all L-R pairs with upregulated signaling strength in the second dataset

pairlR.use.up = net.up[, "interaction name", drop = F]
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(ii) Visualize the upregulated signaling in the second dataset
ggl <- netVisual bubble(cellchat, pairLR.use = pairLR.use.up,
sources.use = 4, targets.use = c¢(5:11), comparison = c(1l, 2),
angle.x = 90, remove.isolate = T,title.name = pasteO ("Up-regulated
signaling in ", names (object.list) [2]))

(iii) Find all L-R pairs with downregulated signaling strength in the second dataset
pairLR.use.down = net.down[, "interaction name", drop = F]

(iv) Visualize the downregulated signaling in the second dataset
gg2 <- netVisual bubble(cellchat, pairLR.use = pairLR.use.down,
sources.use = 4, targets.use = c¢(5:11), comparison = c(1, 2),
angle.x = 90, remove.isolate = T,title.name = paste0O ("Down-regulated
signaling in ", names (object.list) [2]))

(v) Visualize both the upregulated and downregulated signaling in the second dataset

ggl + gg2

(B) Visualize dysfunctional signaling using a chord diagram
(i) Visualize the upregulated signaling in the second dataset

netVisual chord gene (object.list[[2]], sources.use = 4,

targets.use = c(5:11), slot.name = 'net', net = net.up, lab.cex =
0.8, small.gap = 3.5, title.name = pasteO ("Up-regulated signaling
in ", names (object.list) [2]))

(ii) Visualize the downregulated signaling in the second dataset

netVisual chord gene (object.list[[1]], sources.use = 4, targets.

use = c¢(5:11), slot.name = 'net', net = net.down, lab.cex = 0.8,
small.gap = 3.5, title.name = pasteO("Down-regulated signaling
in ", names (object.list) [2]))

(C) Visualize dysfunctional signaling using a wordcloud plot
(i) Visualize the enriched ligands in the second dataset

computeEnrichmentScore (net.up, species = 'human')
(ii) Visualize the enriched ligands in the first dataset

computeEnrichmentScore (net.down, species = 'human')

Visually compare inferred cell-cell communication networks

O TIMING ~6s

A CRITICAL Here, we briefly show two examples of how to visually compare inferred cell-cell

communication networks using circle plots or heat map plots. More details on alternative

visualization options (for example, hierarchy plots and chord diagrams) can be found in

Procedurel, Step16.

14. Visualize inferred cell-cell communication networks using circle plots (option A) or heat
maps (option B).
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(A) Visualize inferred cell-cell communication networks using circle plots
(i) Compute the maximum interaction strength of a signaling pathway across all datasets

pathways.show <- c("CXCL")

weight.max <- getMaxWeight (object.list, slot.name = c("netP"),
attribute = pathways.show)

(ii) Visually compare the inferred cell-cell communication network between different
datasets

par (mfrow = c(1,2), xpd=TRUE)
for (i in 1:length(object.list)) {
netVisual aggregate (object.list[[i]], signaling = pathways.show,

layout = "circle", edge.weight.max = weight.max[1l], edge.width.
max = 10, signaling.name = paste (pathways.show, names (object.
list) [i]))

}

(B) Visualize inferred cell-cell communication networks using heat map plots

(i) Generate a heat map plot of the inferred cell-cell communication network from
each dataset

pathways.show <- c("CXCL")
par (mfrow = c(1,2), xpd=TRUE)

ht <- list()

for (i in 1:length(object.list))

ht[[i]] <- netVisual heatmap (object.list[[i]], signaling =

pathways.show, color.heatmap = "Reds",title.name = paste (pathways.
show, "signaling ",names (object.list) [i]))
}

(ii) Compare the heat map plots side by side for different datasets
ComplexHeatmap: :draw(ht [[1]] + ht[[2]], ht gap = unit (0.5, "cm"))
15. Plotthe gene expression distribution of signaling genes related to L-R pairs or signaling
pathway using the Seurat wrapper function ‘plotGeneExpression.

(i) (Optional) Specify the order of the datasets to appear in the plot

cellchat@metasdatasets = factor(cellchat@metaSdatasets, levels =
C(IINLH’ IILSII) )

(ii) Generate aviolin plot to compare the gene expression distribution across different

datasets
plotGeneExpression(cellchat, signaling = "CXCL", split.by =
"datasets", colors.ggplot = T, type = "violin")

16. Exportthe merged CellChat object and the list of the two separate objects as .RData or

.rdsfiles.
save (object.list, file = "cellchat object.list humanSkin NL LS.RData")
save (cellchat, file = "cellchat merged humanSkin NL LS.RData")

M PAUSE POINT Users cansave the .RData or .rds files for later use.
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Procedure 3: comparative analysis of multiple datasets with differing cell type compositions

O TIMING -5s

A CRITICAL Procedure 3 demonstrates how to apply CellChat to the comparative analysis of

multiple conditions with differing cell type compositions. The equivalent online version along

with the graphical plots are available in the github repository (https://htmlpreview.github.io/

?https://github.com/jinworks/CellChat/blob/master/tutorial/Comparison_analysis_of_

multiple_datasets_with_different_cellular_compositions.html).

A CRITICAL For datasets with differing cell type (group) compositions, CellChat adjusts

the cell groups to the same cell type compositions across all datasets using the function

‘liftcellchat’andthen performs comparative analysis as the joint analysis of datasets with

the same cell type compositions. Here, we take an example of comparative analysis of two

embryonic mouse skin scCRNA-seq datasets from days E13.5 and E14.5. There are 11 skin cell

populations shared between E13.5 and E14.5 and two additional populations (that is, dermal DC

and pericytes) specific to E14.5. Therefore, we lift up the cell groups from E13.5 to the same cell

type compositions as E14.5.

1. Loadthegenerated.rds CellChat object of each dataset, whichis obtained as described in
Procedurel, Steps1-15.

2. (Optional) Ifthe CellChat objects are obtained using the earlier version (<1.6.0), update by
running the function ‘updateCellChat’.

cellchat.E13 <- readRDS("./tutorial/cellchat embryonic E13.rds")
cellchat.E13 <- updateCellChat (cellchat.E13)
cellchat.E14 <- readRDS("./tutorial/cellchat embryonic E14.rds")
cellchat.E1l4 <- updateCellChat (cellchat.E14)

3. Liftup CellChat objects and merge them together. Since there are two additional
populations specific to E14.5 compared with E13.5, we lift up ‘cel1chat . E13’ by lifting
up the cell groups to the same cell group compositions as E14.5.‘1i ftCel1Chat’ only
updates the slot related to cell-cell communication network, including slots ‘objectenet’,
‘object@netP’and ‘object@idents’.

group.new = levels(cellchat.El4@idents) # Define the cell labels to
lift up

cellchat.E13 <- 1iftCellChat (cellchat.E13, group.new)

object.list <- 1list(E13 = cellchat.E13, E14 = cellchat.E14)

cellchat <- mergeCellChat (object.list, add.names = names (object.list),
cell.prefix = TRUE)

4. Oncethe CellChat object arelifted up and merged together, perform comparative visualization
and analysis of cell-cell communication as described for the comparative analysis of multiple
datasets with the same cell type compositions (see Procedure 2, Steps 5-15). Belowis an
example of how to compare the inferred cell-cell communication networks using circle plot:

(i) Compute the maximum interaction strength of a signaling pathway across all datasets

pathways.show <- c ("WNT")
weight .max <- getMaxWeight (object.list, slot.name = c("netP"),
attribute = pathways.show)

(ii) Visually compare the inferred cell-cell communication network between different
datasets

par (mfrow = c(1,2), xpd=TRUE)
for (i in 1:length(object.list)) {
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netVisual aggregate(object.list[[i]], signaling = pathways.show,
layout = "circle", edge.weight.max = weight.max[1l], edge.width.max
= 10, signaling.name = paste (pathways.show, names (object.list) [i]))

}

5. Exportthe merged CellChat object and the list of the two separate objects as .RData or .rds
files as follows:

save (object.list, file = "cellchat object.list embryonic E13 E14.RData")
save (cellchat, file = "cellchat merged embryonic E13 E14.RData")

W PAUSE POINT The merged CellChat object and the list of the two separate objects can be
stored for later use.

Troubleshooting

Troubleshooting advice can be foundin Table 1.

Table 1| Troubleshooting table

Step Problem Possible reason Solution

Procedure1, RStudio encounters FATALERROR Compatibility issue of AnnData Install the anndata R package. In addition, ensure that the required data

Step 2D when starting from an AnnData object between Pythonand R files ‘data.input’ and ‘meta’ or the SingleCellExperiment object are saved
object in the user’s local computer and then try to reload them for CellChat

analysis

Procedure1, Error with ‘Length of new attribute Possible issue of the igraph User can try degrade igraph form 1.4.0 to 1.3.5; or update the object using

Step 16 value.. when using circle plot version updateCellchat(); or reinstall the CellChat R package

Procedure 2, Errorin ‘netAnalysis_ ‘netAnalysis_computeCentrality’  Run ‘netAnalysis_computeCentrality’ on each CellChat object in the

Step 9 computeCentrality’ when using was not run on each individual ‘object.list’ separately and then run the function ‘mergeCellChat’
the merged CellChat object CellChat object

Timing

Procedure 1, Steps 1-27; inferring cell-cell communication from a single scRNA-seq
dataset: ~4 min

Steps1-9, datainput and preprocessing: -12s

Steps10-15, inference of cell-cell communication networks: -39 s
Steps16-21visualization of cell-cell communication networks: -4.8 s

Steps 22-27, systematic analysis of cell-cell communication: -3 min

Procedure 2, Steps 1-15; comparative analysis of cell-cell communication from pairs
of scRNA-seq datasets: 30s

Steps 1-4, load CellChat objects of each dataset and merge them together: -3 s

Steps 5-9, identify altered interactions and cell populations: -2 s

Step 10, identify altered signaling with distinct network architecture: ~15s

Steps 11-13, identify altered signaling with distinct interaction strength: ~4 s

Steps 14-16, visually compare inferred cell-cell communication networks: -6 s

Procedure 3, Steps 1-5; comparative analysis of multiple datasets with differing cell type
compositions:~5s
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Anticipated results

Running CellChat’s inference (Procedure1, Step 11) of the L-R pair-mediated cell-cell
communication produces the communication probability (that is, interaction strength) array
and the corresponding Pvalue array, which canbe accessed by objectenet $proband objecte
net$pval, respectively. Both arrays are three dimensional, where the first, second and third
dimensions represent sources, targets and L-R pairs, respectively (Fig.1). For example, given
aninferred cell-cell communication probability array P(x,,2), P(x; ¥, z;) is the communication
probability from cell group x; to cell group y;for agiven L-R pair z,. CellChat also infers signaling
pathway-mediated cell-cell communication (Procedure1, Step 13), where the communication
probability array canbe accessed by objectenet P$prob. CellChat provides several ways to
visualize the inferred cell-cell communication network, including circle plot, hierarchical

plot, chord diagram, heatmap and bubble plot. Importantly, users can visualize inferred
communication networks of anindividual L-R pair, a signaling pathway as well as multiple

L-R pairs or signaling pathways. To facilitate the interpretation of the inferred intercellular
communication networks within one condition and across different conditions (Fig. 1), CellChat
v2 can (1) identify signaling roles of cell groups as well as the major contributing signaling within
agiven signaling network; (2) predict key incoming and outgoing signals for specific cell types
as well as global communication patterns on how multiple cell types and signaling pathways
coordinate together; (3) group signaling pathways from both functional and topological
perspectives; (4) identify major signaling changes and altered cell populations across different
biological conditions using various quantitative metrics and differential expression analysis; and
(5) perform comparison analysis across different conditions with differing cell type compositions.

AsshowninFig. 3, the inferred cell-cell communications depend on the method for
computing average expression per cell group. The ‘triMean’ method produces fewer but
stronger interactions, while the ‘t runcatedMean’ method with a smaller value of the ‘t rim’
parameter (forexample, ‘trim = 0.1’) enablestheidentification of weak signaling. Therefore,
if known signalingis not observed, users can use ‘t runcatedMean’ with lower values of ‘trim’
to change the method for calculating the average gene expression per cell group.

Finally, CellChat v2 allows users to visualize and explore the cell-cell communication
analysis interactively by defining various analysis parameters (Fig. 4). Briefly, it can visualize cell
groups and signaling expression, examine the inferred signaling between different cell groups,
and further visualize the individual signaling pathway. A rich user-guided sliders in each panel are
provided for flexible exploration, highlight and zoom out of the related information of interest.

Reporting summary
Furtherinformation on research designis available in the Nature Portfolio Reporting Summary
linked to this article.

Data availability

The example datasets analyzed in this protocol are all publicly available. The scRNA-seq
datausedinProcedureland Procedure2 are available at the Gene Expression Omnibus

under accession GSE147424*, The scRNA-seq data used in Procedure 3 are available at the
Gene Expression Omnibus under accession GSM3453535, GSM3453536, GSM3453537 and
GSM3453538*. The scRNA-seq data used in Fig. 2 are available at ArrayExpress database under
accession E-MTAB-8142*, In addition, all the preprocessed datasets and CellChat objects
required to reproduce this protocol are publicly available at https://figshare.com/projects/
Example_data_for_cell-cell_communication_analysis_using_CellChat/157272 (ref. 49).

Code availability
CellChat v2is publicly available as an R package. Source codes of the R package and this protocol
have been deposited at the GitHub repository (https://github.com/jinworks/CellChat).
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