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Abstract

Recent advances in single-cell sequencing technologies offer an opportunity 
to explore cell–cell communication in tissues systematically and with 
reduced bias. A key challenge is integrating known molecular interactions and 
measurements into a framework to identify and analyze complex cell–cell 
communication networks. Previously, we developed a computational tool, 
named CellChat, that infers and analyzes cell–cell communication networks 
from single-cell transcriptomic data within an easily interpretable framework. 
CellChat quantifies the signaling communication probability between two cell 
groups using a simplified mass-action-based model, which incorporates the 
core interaction between ligands and receptors with multisubunit structure 
along with modulation by cofactors. Importantly, CellChat performs a 
systematic and comparative analysis of cell–cell communication using a 
variety of quantitative metrics and machine-learning approaches. CellChat 
v2 is an updated version that includes additional comparison functionalities, 
an expanded database of ligand–receptor pairs along with rich functional 
annotations, and an Interactive CellChat Explorer. Here we provide a step-
by-step protocol for using CellChat v2 on single-cell transcriptomic data, 
including inference and analysis of cell–cell communication from one 
dataset and identification of altered intercellular communication, signals 
and cell populations from different datasets across biological conditions. 
The R implementation of CellChat v2 toolkit and its tutorials together with 
the graphic outputs are available at https://github.com/jinworks/CellChat. 
This protocol typically takes ~5 min depending on dataset size and requires 
a basic understanding of R and single-cell data analysis but no specialized 
bioinformatics training for its implementation.

Key points

	• CellChat is a software package 
for systematic inference, 
quantitative analysis and 
intuitive visualization of cell–cell 
communication in an easily 
interpretable way from single-
cell transcriptomic data; it also 
enables comparative analysis 
of intercellular communication 
across different conditions.

	• CellChat v2 is an updated 
version that includes additional 
functionalities for comparative 
analysis and an expanded 
database of ligand–receptor 
pairs along with rich functional 
annotations.
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Introduction

Cell–cell communication orchestrates tissue organization. Recent advances in single-cell 
genomics offer unprecedented opportunities to systematically explore signaling mechanisms 
for cell fate decisions and their consequent tissue phenotypes. Using single-cell transcriptomic 
data and ligand–receptor (L–R) interaction information from prior knowledge, computational 
methods such as CellPhoneDB have been developed for inferring cell–cell communication 
between groups of cells1–4. However, a versatile and easy-to-use toolkit capable of systematic 
analysis and intuitive visualization of cell–cell communication as well as comparison analysis 
across biological conditions was still needed, so we developed CellChat to systematically and 
comprehensively infer and analyze cell–cell communication from single-cell transcriptomic 
data within an easily interpretable framework5.

Development of the protocol
Comprehensive and accurate recapitulation of known molecular interactions is crucial for 
predicting biologically meaningful intercellular communications. We manually curated a 
literature-supported signaling molecule interaction database called CellChatDB5, which 
considers several critical interaction mechanisms that are often neglected. Specifically, 
CellChatDB not only incorporates the multisubunit structure of L–R complexes but also 
accounts for soluble and membrane-bound stimulatory and inhibitory cofactors such as 
agonists, antagonists and coreceptors (Fig. 1). In addition, CellChatDB classifies each L–R pair 
into one of the functionally related signaling pathways (for example, WNT, BMP, CXCL and CCL)  
to construct cell–cell communication networks at a signaling pathway level, where each link 
of the network is computed by summing the interaction strengths of all associated L–R pairs. 
Such information allows the interpretation of inferred intercellular communications at a 
pathway scale. Moreover, the L–R pairs are categorized into different types, including ‘Secreted 
Signaling’, ‘ECM-Receptor’ and ‘Cell–Cell Contact’ (where ECM is extracellular matrix). The 
updated CellChat v2 expands upon the original CellChatDB database to include more than 
1,000 protein and nonprotein interactions (for example, metabolic and synaptic signaling) 
based on the peer-reviewed literature and other existing databases such as CellPhoneDB6 
and NeuronChatDB7. In addition, CellChat v2 includes additional functional annotations of 
L–R pairs, such as UniProtKB keywords (including biological process, molecular function, 
functional class, disease and so on), subcellular location and relevance to neurotransmitter.

To quantify communication between two cell groups mediated by a given ligand and its 
cognate receptor, CellChat leverages the law of mass action to associate each interaction with 
an interaction score5, which is calculated based on the average expression values of a ligand 
by one cell group and that of a receptor by another cell group, as well as their cofactors (Fig. 1).  
CellChat uses Hill functions in the simplified mass action model to reflect the saturation 
effect of the L–R binding. Significant interactions are identified based on a statistical test  
that randomly permutes the group labels of cells. When inferring cell–cell communication, 
CellChat computationally scales well with the number of cells and cell groups in the data, 
as reflected by the observed running time of ~15 min on a single cell atlas of adult human skin 
with ~300,000 cells (Fig. 2). It should be noted that the inferred signaling depends on the 
method for calculating average gene expression per cell group. To demonstrate this point, we 
used a human skin dataset from atopic dermatitis patients to compare the number of inferred 
interactions and the enriched signaling pathways when using ‘triMean’, ‘truncatedMean’ with 
‘trim = 0.1’ and ‘truncatedMean’ with ‘trim = 0.05’, respectively (Procedure 1; Fig. 3a,b). The 
most stringent method, called ‘triMean’, produces fewer but stronger interactions, whereas 
the ‘truncated Mean’ method, with smaller values of ‘trim’ parameter (for example, ‘trim = 0.1’), 
outputs more interactions, leading to the detection of weak signaling.

To obtain biological insights from many complicated cell–cell communication networks, 
CellChat employs quantitative analysis and machine learning approaches for various critical 
analysis tasks5 (Fig. 1). First, to identify critical microenvironment components, CellChat 
determines major signaling sources and targets, as well as mediators and influencers within 
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a given signaling network using network centrality analysis. Second, to reveal how cells and 
signals coordinate together and to explore their communication patterns, CellChat predicts key 
incoming and outgoing signals for specific cell types, as well as coordinated responses among 
different cell types by leveraging pattern recognition approaches. Outgoing patterns reveal how 
sender cells (that is, cells acting as signal sources) coordinate with each other, as well as how 
they coordinate with certain signaling pathways to drive communication. Incoming patterns 
show how target cells (that is, cells acting as signal receivers) coordinate with each other to 
respond to incoming signals. Third, to predict signaling groups sharing similar communication 
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Fig. 1 | Overview of CellChat along with the procedure step numbers. Left: 
required input data and the L–R interaction database CellChatDB. CellChat’s 
input data consist of gene expression data and cell group information. 
CellChatDB considers known composition of the L–R complexes, including 
complexes with multimeric ligands and receptors, as well as several cofactor 
types: soluble agonists, antagonists, costimulatory and coinhibitory membrane-
bound receptors. Rich annotations of all L–R pairs are provided. Middle: CellChat 
models the communication probability based on the law of mass action and 

identifies significant communications using permutation tests. The inferred 
communication probabilities among all pairs of cell groups across all L–R pairs or 
signaling pathways are represented by a three-dimensional (3D) array. CellChat 
analyzes the inferred networks by leveraging social network metrics, pattern 
recognition methods, and manifold learning approaches. Right: CellChat offers 
several intuitive visualization outputs to facilitate data interpretation of different 
analytical tasks. In addition to analyzing individual datasets, CellChat also 
delineates signaling changes across different conditions.
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architecture and interpret the biological functions of poorly studied pathways, CellChat groups 
signaling pathways by defining similarity measures and performing manifold learning from 
both functional and topological perspectives5.

To identify signaling changes across conditions, CellChat identifies altered signaling 
pathways and L–R pairs in terms of network architecture and interaction strength by performing 
joint manifold learning and information flow comparison analysis5. Compared to the original 
CellChat tool, CellChat v2 provides additional functionalities to allow systematic comparisons 
between multiple conditions. CellChat v2 first focuses on the overall signaling changes at the 
cell population level and then narrows down to altered signaling pathways and L–R pairs5,8,9 
(Fig. 1). Specifically, CellChat v2 identifies which interactions between two specific cell groups 
changed notably, as well as the cell group identities showing notable changes in sending or 
receiving signaling patterns across conditions. To identify substantially upregulated and 
downregulated L–R pairs across conditions, CellChat v2 combines cell–cell communication 
analysis with differential gene expression analysis and quantifies the enrichment of L–R pairs 
for each condition by defining an enrichment score8.
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Fig. 2 | CellChat running time in relation to the increase of cell numbers and cell groups. a,b, Running time over 
different cell numbers in the data when calculating average gene expression per cell group using trimean (a) or 10% 
truncated mean (b). c,d, Running time over different numbers of cell groups in the data (no. 20,000 cells) when calculating 
average gene expression per cell group using trimean (c) or 10% truncated mean (d). Here, the running time is the total time 
when running Steps 1–8 and 11–14 in Procedure 1.
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Moreover, CellChat v2 offers an interactive web browser function to allow intuitive 
exploration and visualization of CellChat outputs (Fig. 4). To facilitate intuitive user-guided 
data interpretation, CellChat v2 provides a variety of visualization outputs, including circle plot, 
chord diagram, heatmap, hierarchy plot, bubble plot and word cloud (Fig. 1).

Comparison with other methods
Numerous computational tools have been developed to facilitate cell–cell communication 
exploration and analysis2,10–18. The cell–cell communication inference depends on the reference 
databases of known L–R interactions. The Python tool CellPhoneDB12,19 is a pioneering method 
that considers multiple subunits of ligands and receptors to accurately represent known 
heteromeric molecular complexes. Two other R-based tools, CellChat5 and ICELLNET15, adopted 
the subunit architecture of heteromeric complexes and other tools have since followed their 
lead. Compared with CellPhoneDB and CellChat, which have over 2,000 L–R interactions, 
ICELLNET only has 380 interactions, resulting in partial characterization of signaling pathways. 
Recently, CellPhoneDB v420 added interactions of nonprotein molecules not directly encoded 
by genes, and NeuronChat7 was designed specifically for neuron-to-neuron communication 
mediated by neurotransmitters. In CellChat v2, we add new literature-supported interactions, 
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is performed on a human skin dataset from atopic dermatitis patients with 
5,011 cells and 12 cell groups.
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Fig. 4 | Overview of the Interactive CellChat Explorer created by 
runCellChatApp function in the R package. To facilitate the exploration of 
cell–cell communication, CellChat allows the end-user to visualize and explore 
the data and the inferred signaling interactively. CellChat Explorer (1) visualizes 

cell groups and signaling expression, (2) examines the inferred signaling between 
different cell groups and (3) further visualizes the individual signaling pathway. 
Rich user-guided sliders are provided for flexible exploration, highlight and 
zoom-out of the related information of interest.
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including both proteins and nonproteins acting as ligands, leading to a total of ~3,300 
interactions for both mouse and human. Four unique features of CellChatDB v2 are:
1.	 Incorporation of soluble and membrane-bound stimulatory and inhibitory cofactors. 

This feature is considered because many pathways, such as BMP and WNT, are prominently 
modulated, positively or negatively, by their cofactors.

2.	 Categorization of L–R pairs into different types, including ‘Secreted Signaling’,  
‘ECM-Receptor’, ‘Cell–Cell Contact’ and ‘Non-protein Signaling’. This feature greatly 
facilitates cell–cell communication analysis within a particular type.

3.	 Classification of L–R pairs into functionally related signaling pathways. This feature 
provides useful insights into signaling mechanisms by examining cell–cell communication 
at a signaling pathway scale.

4.	 Rich annotations of each L–R pair. This feature is useful for selecting L–R pairs with similar 
biological functions and interpreting the downstream analysis.
Despite the adoption of different built-in L–R databases, current tools for cell–cell 

communication inference are all somewhat distinct in their performance, visualization 
outputs and downstream analysis. Two recent systematic evaluations of more than 15 cell–cell 
communication inference methods suggest CellChat is among the top-performing methods11,18. 
In addition to the high accuracy of cell–cell communication inference, CellChat offers a variety 
of visualization outputs that allow multiple intuitive user-guided interpretations of the complex 
cell–cell communication. Another key unique feature of CellChat is its ability to analyze the 
inferred cell–cell communications using a systems approach. Methods and concepts from 
social network analysis, pattern recognition and manifold learning are adapted to derive higher-
order network information in an easily interpretable way. Moreover, CellChat is the pioneering 
method for the systematic comparison of communications inferred for different conditions, 
which is critically important for identifying altered signaling mechanisms responsible 
for cell fate decisions in single-cell studies. Afterwards, methods such as Connectome16, 
Tensor-cell2cell17 and multinichenetr21 introduced functionalities for comparison across 
multiple conditions.

Applications of the method
So far, CellChat has been widely used in a broad range of biological systems to dissect signaling 
mechanisms during tissue homeostasis, development and disease22. In our original report5, 
we applied CellChat to a small conditional RNA sequencing (scRNA-seq) dataset on mouse 
skin development and predicted a novel role of Edn3 signaling in stimulating the directed 
migration of melanocytes into placodes during hair follicle formation. Comparative analysis 
of nonlesional and lesional human skin from patients with atopic dermatitis using CellChat 
uncovered major signaling changes in response to disease. CCL19-CCR7 was identified as the 
most important signaling event activated in lesional skin, contributing to the communication 
from inflammatory fibroblasts to dendritic cells. Recently, we used CellChat to study 
aging-dependent dysregulations during skin wound healing in mice8, showing system-level 
differences in the number, strength, route and signaling mediators of putative cell–cell 
communications in young versus aged skin wounds.

Using CellChat, a previous study found a strong increase of key inflammatory pathways in 
the choroid-to-cortex network in patients with coronavirus disease 2019 (COVID-19) compared 
with control individuals23. Another study revealed increased interactions of CD163/LGMN-
macrophages with myofibroblasts, fibroblasts and pericytes at later time points of COVID-19-
induced ‘acute respiratory distress syndrome’24. In a single-cell atlas of the adult human cerebral 
vasculature25, CellChat analysis identified Nd2 as the strongest contributor to abnormal cell 
communications in arteriovenous malformations. Recently, state- and niche-dependent 
signaling pathways for reparative states in proximal and distal tubules have been identified 
by mining healthy and injured human kidney single-cell atlases26. Comparative analysis of 
Gabbr1 mutant and control cortices from adult mice uncovered alterations in astrocyte–neuron 
communication27. CellChat has been used to predict a new role for a unique subset of cancer-
associated fibroblasts in recruiting monocytes and neutrophils using in situ tumor arrays28. 
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A study of PD1 blockade in mismatch repair-deficient colorectal cancer identified an interaction 
between CD4+ T helper cells and germinal center B cells in antitumor immunity during immune 
checkpoint inhibitor treatment29.

Limitations
It is possible that there are missing L–R interactions not covered in CellChatDB. Guidelines 
to update CellChatDB by adding user-defined L–R pairs or integrating other resources are 
provided in Box 1. There are several other limitations to the original CellChat and its updated 
version (v2), including the following:

•	 CellChat infers potential interactions between cell groups without considering heterogeneity 
within the defined cell groups. Users can refine cell grouping via subclustering analysis before 
applying CellChat.

•	 Like other methods, CellChat is limited to hypothesis generation and employs heuristics to 
guide the interpretation of cell–cell communication outputs. With limited benchmarking 
studies10,11,18, the question of how to better validate the inferred signaling networks and their 
downstream gene outputs remains to be answered.

•	 Cross-condition analysis in CellChat is largely restricted to pairwise comparisons. 
Identification of signaling changes across multiple conditions and time series is valuable.

•	 For nonprotein-mediated cellular communication such as metabolic or synaptic signaling 
(where molecules are not directly encoded by genes measured in scRNA-seq), CellChat v2 
approximately estimates the expression of ligands and receptors using the molecules’ key 
mediators or enzymes. More sophisticated computational methods for estimating the 
expression of those signaling molecules could likely improve the inference accuracy.

•	 Given that cell–cell communication occurs within a short spatial distance and at the protein 
level, newly emerging data modalities (for example, spatially resolved transcriptomics22,30,31 
and single-cell multiomics such as single-cell proteomics32 and epigenomics33–35) can be 
used to improve the inference of cell–cell communication. Recently, several methods 
have been developed for spatially resolved transcriptomics4, such as SpaOTsc36, SpaTalk37, 
COMMOT38, CellPhoneDB v313 and HoloNet39, which are better at detecting spatially 
proximal cell–cell communication.

•	 CellChat employs a simplified mass-action-based model to quantify communication 
probability between a given ligand and its cognate receptor, and models with more 
biochemical details can potentially improve inference predictions. Finally, incorporation 
of the downstream signaling events of activated receptors on receiving cells could further 
improve the overall inference accuracy40–44.

Overview of the procedure
Procedure 1 demonstrates the steps to run the CellChat package for inferring (Steps 1–15), 
visualizing (Steps 16–21) and analyzing (Steps 22–27) cell–cell communication from a single 
scRNA-seq dataset. Specifically, Procedure 1 includes the preprocessing of the input data 
(Steps 1–9) and the inference of cell–cell communication at both a L–R pair level and a signaling 
pathway level (Steps 10–15), the visualization of cell–cell communication networks of individual 
(Steps 16–19) and multiple (Step 20) signaling pathways or L–R pairs, the identification of the 
signaling roles and major contributing genes and pathways between cell groups (Steps 22–23), 
the analysis of global communication patterns (Step 24) and the manifold learning and 
classification analysis of signaling networks (Step 25), as well as the interactive exploration 
of the inferred cell–cell communication through a CellChat Shiny App (Step 26).

Procedure 2 demonstrates CellChat’s ability to perform comparative analysis across 
different biological conditions by quantitative contrasts and joint manifold learning, including 
merging different CellChat objects together (Steps 1–4), detecting altered interactions and 
cell populations (Steps 5–9), altered signaling with distinct network architecture (Step 10) 
and interaction strength (Steps 11–13), as well as visually comparing the inferred cell–cell 
communication networks (Steps 14–15).

Procedure 3 briefly demonstrates how to apply CellChat to the comparative analysis of 
multiple conditions with differing cell type compositions (Steps 1–5).
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BOX 1

Updating the L–R interaction database CellChatDB
In this box, we demonstrate the use of the function ‘updateCellChatDB’ to update the L–R interaction database CellChatDB by integrating 
new L–R pairs from other cell–cell communication analysis tools or utilizing a custom L–R interaction database.

Additional material:
Input data:

	• Customized L–R pairs: a data frame with at least two columns named ‘ligand’ and ‘receptor’. To infer cell–cell communication at a signaling 
pathway level, another column named ‘pathway_name’ must be provided, which classifies each L–R pair into one of known signaling pathways

	• (Optional) Additional input files: (1) gene information: a data frame with one column named as ‘Symbol’; (2) complex information: a data 
frame in which each row is the subunit information of either ligand or receptor; and (3) cofactor information: a data frame in which each row 
is the cofactor information of each pair

	 ▲ CRITICAL  Users can check the details of the required input data in the online tutorial (https://htmlpreview.github.io/?https://github.
com/jinworks/CellChat/blob/master/tutorial/Update-CellChatDB.html), particularly the example codes on how to utilize other resources 
such as CellTalkDB and CellPhoneDB.

Procedure
▲ CRITICAL  To demonstrate how to update the L–R interaction database, we use CellTalkDB50 in human as an example. CellTalkDB can be 
downloaded from https://github.com/ZJUFanLab/CellTalkDB.
1.	 Load the customized L–R pairs by typing the following command in RStudio:

db.user <- readRDS("./CellTalkDB-master/database/human_lr_pair.rds")

2.	 (Optional) Load the gene information:

gene_info <- readRDS("./CellTalkDB-master/data/human_gene_info.rds")

3.	 (Optional) Modify the colnames if needed

colnames(db.user) <- plyr::mapvalues(colnames(db.user), from = c("ligand_gene_symbol","receptor_gene_
symbol","lr_pair"), to = c("ligand","receptor","interaction_name"), warn_missing = TRUE)

4.	 Create a new database by using the user-provided gene information (option A), create a new database by using the built-in gene 
information (option B) or integrate the customized L–R pairs into the built-in CellChatDB (option C). 
A.	 Create a new database by using the user-provided gene information:

db.new <- CellChat::updateCellChatDB(db = db.user, gene_info = gene_info)

B.	 Create a new database by using the built-in gene information:

db.new <- CellChat::updateCellChatDB(db = db.user, gene_info = NULL, species_target = "human")

C.	 Integrate the customized L–R pairs into the built-in CellChatDB:

db.new <- updateCellChatDB(db = db.user, merged = TRUE, species_target = "human")

5.	 Use this new database in the Procedure 1, Step 6 for CellChat analysis

cellchat@DB <- db.new

6.	 Save the new database for future use

save(db.new, file = "CellChatDB.human_user.rda")

https://htmlpreview.github.io/?https://github.com/jinworks/CellChat/blob/master/tutorial/Update-CellChatDB.html
https://htmlpreview.github.io/?https://github.com/jinworks/CellChat/blob/master/tutorial/Update-CellChatDB.html
https://github.com/ZJUFanLab/CellTalkDB
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Experimental design
RNA isolation and sequencing data
Although CellChat can, in principle, be used for any single-cell transcriptomics datasets, the 
quality of datasets directly affects the quality of CellChat outputs. First, having sufficient 
sequencing depth is critical to capturing gene expression of ligands and receptors. Expression 
levels are usually low for ligands during development, so sensitivity and depth of sequencing 
become particularly important for such cases. Second, batch effect may introduce output 
variability for any inference method, including CellChat. Whenever possible, it is important to 
use the same RNA isolation protocol for replicates and different conditions. To perform control 
analysis, we include several datasets that have been well explored using CellChat with known 
signaling events or pathways. New CellChat users are encouraged to first test their CellChat code 
on these datasets by comparing the outputs with the deposited cell–cell communication results.

Required input data
CellChat requires two user inputs: one is the gene expression data of cells and the other is the 
user-assigned cell labels. For the gene expression data matrix, genes should be in rows with 
rownames and cells in columns with colnames. Normalized data are required as input for 
CellChat analysis (for example, library-size normalization and then log-transformed with a 
pseudocount of 1). If users input raw count data, CellChat provides a ‘normalizeData’ function 
for normalization. For the cell group information, a dataframe with rownames is required. 
Alternatively, users can use a Seurat, SingleCellExperiment or AnnData object as input.

Inference of cell–cell communication networks
To identify strong or weak cell–cell communications, users can modify the parameters ‘type’ 
and ‘trim’ in the function ‘computeCommunProb’ when inferring cell–cell communication 
networks. The parameter ‘type’ is the method for computing the average gene expression 
per cell group. By default, CellChat uses a statistically robust mean method by setting 
‘type = "triMean"’, producing fewer but stronger interactions. When setting ‘type = 
"truncatedMean"’, a value should be assigned to another parameter ‘trim’, producing more 
interactions. However, we find that CellChat performs well at predicting stronger interactions, 
which is helpful for identifying interactions for further experimental validations. The ‘trimean’ 
approximates 25% truncated mean, implying that the average gene expression is zero if the 
percentage of expressing cells in one group is less than 25%. To identify weak signaling, users 
should use ‘truncatedMean’. In general, users can use 10% truncated mean by setting ‘type = 
"truncatedMean"’ and ‘trim = 0.1’. To determine a proper value of ‘trim’, CellChat provides 
a function ‘computeAveExpr’, which can help to check the average expression of signaling 
genes of interest. Therefore, if well-known signaling events in the studied biological process are 
not predicted, users can try ‘truncatedMean’ with lower values of ‘trim’ to change the method 
for calculating the average gene expression per cell group.

Visualization of cell–cell communication networks
Upon inferring the cell–cell communication networks, CellChat provides various ways to 
visualize such networks, including hierarchical plots, circle plots, chord diagrams, heatmap and 
bubble plots. In hierarchical plots, circle plots and chord diagrams, edge colors are consistent 
with the sources as sender, and edge weights are proportional to the interaction strength. 
Thicker edge lines indicate a stronger signal. One can visualize the inferred communication 
network of signaling pathways using ‘netVisual_aggregate’ and visualize the inferred 
communication networks of individual L–R pairs associated with that signaling pathway 
using ‘netVisual_individual’.

Hierarchical plots consist of two components: the left portion shows autocrine and 
paracrine signaling to certain cell groups of interest, and the right portion shows autocrine 
and paracrine signaling to the remaining cell groups in the dataset. Thus, a hierarchical plot 
provides an informative and intuitive way to visualize autocrine and paracrine signaling 
communications between cell groups of interest. In the hierarchical plot, solid and open 
circles represent the sources and targets, respectively.
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In addition to creating a chord diagram using ‘netVisual_aggregate’ or ‘netVisual_
individual’, CellChat provides another two functions with more adjustable parameters for better 
visualization. ‘netVisual_chord_cell’ is used for visualizing the cell–cell communication 
between different cell groups (where each sector in the chord diagram is a cell group) and 
‘netVisual_chord_gene’ is used for visualizing the cell–cell communication mediated by multiple 
L–Rs or signaling pathways (where each sector in the chord diagram is a ligand, receptor or signaling 
pathway). In the chord diagram, the inner thinner bar colors represent the targets that receive signals 
from the corresponding outer bar. The inner bar size is proportional to the signal strength received by 
the targets. Such an inner bar is helpful for interpreting the complex chord diagram.

Systematic analysis of cell–cell communication
To facilitate the interpretation of complex intercellular communication networks, CellChat 
quantitively measures networks through methods abstracted from graph theory, pattern 
recognition and manifold learning. It can determine major signaling sources and targets, as well 
as mediators and influencers within a given signaling network, using centrality measures from 
network analysis. It can also predict key incoming and outgoing signals for specific cell types 
as well as coordinated responses among different cell types by leveraging pattern recognition 
approaches. Finally, it can group signaling pathways by defining similarity measures and 
performing manifold learning from both functional and topological perspectives.

CellChat identifies dominant senders, receivers, mediators and influencers in the 
intercellular communication network using measures in weighted-directed networks, including 
out-degree, in-degree, flow betweenness and information centrality5,45, respectively. In a 
weighted directed network with the weights as the computed communication probabilities, 
the outdegree (computed as the sum of communication probabilities of the outgoing signaling 
from a cell group) and the in-degree (computed as the sum of the communication probabilities 
of the incoming signaling to a cell group) can be used to identify the dominant cell senders 
and receivers of signaling networks, respectively. CellChat also provides another intuitive way 
to visualize the dominant senders (sources) and receivers (targets) in a two-dimensional (2D) 
space using the function ‘netAnalysis_signalingRole_scatter’. In this plot, the x axis and 
y axis are, respectively, the total outgoing or incoming communication probability associated 
with each cell group. Dot size is proportional to the number of inferred links (both outgoing and 
incoming) associated with each cell group. The dot colors indicate different cell groups. The dot 
shapes indicate different categories of cell groups if the parameter ‘group’ is defined.

CellChat predict key incoming and outgoing signals for specific cell types using the 
function ‘netAnalysis_signalingRole_heatmap’. In this heatmap, colorbar represents 
the relative signaling strength of a signaling pathway across cell groups. The top-colored bar 
plot shows the total signaling strength of a cell group by summarizing all signaling pathways 
displayed in the heatmap. The right bar plot shows the total signaling strength of a signaling 
pathway by summarizing all cell groups displayed in the heatmap.

CellChat employs a pattern recognition method to identify global communication 
patterns. For outgoing (or incoming) patterns, the cell group pattern indicates how these cell 
groups coordinate to send (or receive) signals and the signaling pathway pattern indicates how 
these signaling pathways work together to send (or receive) signals. To intuitively show the 
associations of latent patterns with cell groups and signaling pathways or L–R pairs, we used a 
river (alluvial) plot. As the number of patterns increases, there might be redundant patterns, 
making it difficult to interpret the communication patterns. In addition, CellChat also provides 
the function ‘selectK’ to infer the number of patterns, which is based on two metrics including 
Cophenetic and Silhouette. Both metrics measure the stability for a particular number of 
patterns based on a hierarchical clustering of the consensus matrix. A suitable number of 
patterns is the one at which Cophenetic and Silhouette values begin to drop suddenly.

CellChat can quantify the similarity between all significant signaling pathways and then group 
them based on their cellular communication network similarity. This analysis is helpful to predict 
putative functions of the poorly studied pathways based on their similarity to pathways with 
well-known functions. Signaling pathways can be grouped based on their functional similarity or 
structural similarity. A high degree of functional similarity indicates the major senders and receivers 
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are similar and can be interpreted as the two signaling pathways or two L–R pairs exhibiting similar 
and/or redundant roles. A structural similarity relates to signaling network structure, without 
considering the similarity of senders and receivers. To obtain a manifold embedding of all inferred 
communication networks and further intuitively visualize these networks in a 2D space, we first 
compute the pairwise functional or topological similarity between any pair of inferred networks, 
then smooth the similarity matrix using a shared nearest-neighbor graph, and finally perform a 
uniform manifold approximation and projection (UMAP) on the smoothed similarity matrix.

Comparative analysis of cell–cell communication
CellChat provides versatile functionalities to allow systematic comparisons of cell–cell 
communication between different conditions. Here we present two examples of how we design 
the comparative analysis. CellChat shows the differential number of interactions or interaction 
strengths between pairs of scRNA-seq datasets in greater detail using the function ‘netVisual_
heatmap’. In this heatmap, the top-colored bar plot represents the sum of each column of the 
absolute values displayed in the heatmap (incoming signaling). The right-colored bar plot 
represents the sum of each row of the absolute values (outgoing signaling). Therefore, the bar 
height indicates the degree of change in terms of the number of interactions or interaction 
strength between the two conditions. The colorbar indicates increased (or decreased) signaling 
in the second dataset compared to the first one.

CellChat performs joint manifold learning and classification of all inferred communication 
networks across different conditions. The manifold embeddings are obtained by first computing 
the pairwise functional or topological similarity between any pair of inferred networks and then 
performing UMAP on a shared nearest neighbor-smoothed similarity matrix. UMAP is used for 
visualizing signaling relationships and interpreting our signaling outputs in an intuitive way 
without requiring classification of conditions. By quantifying the similarity between the cellular 
communication networks of signaling pathways across conditions, this analysis highlights 
the potentially altered signaling pathways. CellChat adopts the concept of network rewiring 
from network biology and is based on the hypothesis that the difference between different 
communication networks may affect biological processes across conditions. Furthermore, 
CellChat identifies the signaling networks with larger differences across conditions based on 
their Euclidean distance in the 2D UMAP space. CellChat computes and visualizes this Euclidean 
distance using the function ‘rankSimilarity’. Larger distance implies larger difference of 
the communication networks between two datasets in terms of either functional or structure 
similarity. CellChat only computes the distance of overlapping signaling pathways between two 
datasets. Those signaling pathways that are only identified in one dataset are not included in this 
analysis. If there are more than three datasets, you can do pairwise comparisons by modifying 
the parameter ‘comparison’ in ‘rankSimilarity’.

Materials

Equipment
Hardware

•	 Any desktop workstation or laptop with an Internet connection is sufficient. This protocol 
was run on a MacBook Pro (MacOS Ventura Monterey, Version 13.5) with a 12-Core central  
processing unit (CPU) and 64 GB of random-access memory (RAM). For minimal performance, 
we recommend using a dual-core CPU with at least 16 GB of RAM for analyses

Software
•	 Operating system: Linux, Windows (10) or MacOS
•	 RStudio: an integrated development environment for R, which can be accessed at  

https://posit.co/download/rstudio-desktop/
•	 CellChat: the actively maintained open-source program is freely available at https://github.

com/jinworks/CellChat

https://posit.co/download/rstudio-desktop/
https://github.com/jinworks/CellChat
https://github.com/jinworks/CellChat
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Data files
Required input data:

•	 Gene expression data matrix
•	 User-assigned cell labels

Example datasets: example datasets for running this protocol can be downloaded from 
the open-access repository figshare at https://figshare.com/projects/Example_data_for_cell-
cell_communication_analysis_using_CellChat/157272.

Equipment setup
Installation of CellChat package
We recommend that users install CellChat and perform analysis in RStudio. In an RStudio 
environment, the following commands can be run from an R script or directly in the built-in R 
console. The R commands are the same on MacOS, Linux and Windows.

(Optional) Install RStudio. RStudio can be manually installed by downloading RStudio from 
its official website at https://posit.co/download/rstudio-desktop/.
1.	 (Optional) Install the devtools package from the Comprensive R Archive Network.

install.packages('devtools')

2.	 Install CellChat R packages from our GitHub repository by typing the following commands:

devtools::install_github("jinworks/CellChat")

Procedure 1: inferring cell–cell communication from a single scRNA-seq dataset

● TIMING  4 min
▲ CRITICAL  Procedure 1 demonstrates the R commands needed to run the CellChat package 
for inferring and analyzing cell–cell communication from a single scRNA-seq dataset. The 
equivalent online version, along with the graphical plots, are available in the tutorial directory 
of the CellChat github repository (https://htmlpreview.github.io/?https://github.com/
jinworks/CellChat/blob/master/tutorial/CellChat-vignette.html).

Data input and preprocessing
● TIMING  ~12 s
▲ CRITICAL  The example dataset containing single-cell data and cell metadata can be 
accessed directly from figshare via the following link: https://figshare.com/articles/dataset/
scRNA-seq_data_of_human_skin_from_patients_with_atopic_dermatitis/24470719. Users can 
refer to the online tutorial of the CellChat github repository (https://htmlpreview.github.io/ 
?https://github.com/jinworks/CellChat/blob/master/tutorial/Interface_with_other_single-cell_
analysis_toolkits.html) for further details on preparing the input data for CellChat analysis.
1.	 Prepare the input data by following option A when the normalized count data and 

metadata are available, option B when the Seurat object is available, option C when 
the SingleCellExperiment object is available and option D when the Anndata object is 
available.
(A)	 Generate data input starting from a count data matrix:

	 (i)	 Upload the count data matrix in a .rda or other format:

load("./tutorial/data_humanSkin_CellChat.rda")

	 (ii)	 Obtain the normalized data matrix:

data.input = data_humanSkin$data

https://figshare.com/projects/Example_data_for_cell-cell_communication_analysis_using_CellChat/157272
https://figshare.com/projects/Example_data_for_cell-cell_communication_analysis_using_CellChat/157272
https://posit.co/download/rstudio-desktop/
https://htmlpreview.github.io/?https://github.com/jinworks/CellChat/blob/master/tutorial/CellChat-vignette.html
https://htmlpreview.github.io/?https://github.com/jinworks/CellChat/blob/master/tutorial/CellChat-vignette.html
https://figshare.com/articles/dataset/scRNA-seq_data_of_human_skin_from_patients_with_atopic_dermatitis/24470719
https://figshare.com/articles/dataset/scRNA-seq_data_of_human_skin_from_patients_with_atopic_dermatitis/24470719
https://htmlpreview.github.io/?https://github.com/jinworks/CellChat/blob/master/tutorial/Interface_with_other_single-cell_analysis_toolkits.html
https://htmlpreview.github.io/?https://github.com/jinworks/CellChat/blob/master/tutorial/Interface_with_other_single-cell_analysis_toolkits.html
https://htmlpreview.github.io/?https://github.com/jinworks/CellChat/blob/master/tutorial/Interface_with_other_single-cell_analysis_toolkits.html
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	 (iii)	 Generate a data frame with rown ames containing cell meta data:

meta = data_humanSkin$meta

	 (iv)	 Subset the data from one condition for further analysis:

cell.use = rownames(meta)[meta$condition == "LS"] 
data.input = data.input[, cell.use]
meta = meta[cell.use,]

(B)	 Generate data input starting from a Seurat object:
	 (i)	 Obtain the normalized data matrix:

data.input <- seurat_object[["RNA"]]@data

	 (ii)	 Generate a data frame with row names containing cell meta data:

labels <- Seurat::Idents(seurat.obj)
meta <- data.frame(labels = labels, row.names = names(labels))

(C)	 Generate data input starting from a SingleCellExperiment object:
	 (i)	 Obtain the normalized data matrix:

data.input <- SingleCellExperiment::logcounts(sce_object)

	 (ii)	 Generate a data frame with row names containing cell meta data:

meta <- as.data.frame(SingleCellExperiment::colData(sce_object))
meta$labels <- meta[["sce.clusters"]]

(D)	 Generate data input starting from an Anndata object:
	 (i)	 Upload the Anndata object using the anndata R package:

install.packages("anndata") 
library(anndata) 
ad <- read_h5ad("scanpy_object.h5ad")

	 (ii)	 Obtain the count data matrix:

counts <- t(as.matrix(ad$X))

	 (iii)	 Normalize the count data matrix:

data.input <- normalizeData(counts)

	 (iv)	 Generate a data frame with row names containing cell meta data:

meta <- ad$obs
meta$labels <- meta[["ad_clusters"]]

2.	 Using the ‘createCellChat’ function and the input data files generated in Step 1, create a 
CellChat object by following option A if taking the digital gene expression matrix and cell 
label information as input, option B if taking a Seurat object as input, option C if taking 
a SingleCellExperiment object as input and option D if taking a AnnData object as input. 
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Users should refer to the ‘Required input data’ section in the ‘Experimental design’ section 
for further details.
(A)	� Create a CellChat object from the digital gene expression matrix and cell label 

information

library(CellChat) 
cellchat <- createCellChat(object = data.input, meta = meta, 
group.by = "labels")

(B)	 Create a CellChat object from a Seurat object

library(CellChat) 
cellchat <- createCellChat(object = seurat.obj, group.by = 
"ident", assay = "RNA")

(C)	 Create a CellChat object from a SingleCellExperiment object

library(CellChat) 
cellchat <- createCellChat(object = sce.obj, group.by = "sce.clusters")

(D)	 Create a CellChat object from an AnnData object
	 (i)	 Convert the Anndata object to the SingleCellExperiment object using the zellkon-

verter R package:

sce <- zellkonverter::readH5AD(file = "adata.h5ad") 
assayNames(sce)

	 (ii)	 Obtain the count data matrix:

counts <- assay(sce, "X")

	 (iii)	 Normalize the count data matrix and add a new assay entry ‘logcounts’ if not available:

logcounts(sce) <- normalizeData(counts)

	 (iv)	 Generate a CellChat object from a SingleCellExperiment object:

cellchat <- createCellChat(object = sce, group.by = "sce.clusters")

◆ TROUBLESHOOTING
3.	 (Optional) If cell meta information is not added when creating the CellChat object (Step 2A), 

use the ‘addMeta’ function to add it and the ‘setIdent’ function to assign the cell identities 
to each cell.

cellchat <- addMeta(cellchat, meta = meta) 
cellchat <- setIdent(cellchat, ident.use = "labels")

4.	 Before running CellChat to infer cell–cell communication, select the L–R interaction database 
relevant to the study (for example, use the database CellChatDB.human when analyzing 
human samples or the database CellChatDB.mouse when analyzing mouse samples):

CellChatDB <- CellChatDB.human 
showDatabaseCategory(CellChatDB) 
dplyr::glimpse(CellChatDB$interaction)
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5.	 Select the L–R pairs from the selected CellChatDB database in Step 4 for cell–cell 
communication analysis. Use option A to select a subset of the database, option B to exclude 
nonprotein signaling and option C to select all CellChatDB database.
(A)	 Select a specific subset of the CellChatDB database

CellChatDB.use <- subsetDB(CellChatDB, search = "Secreted 
Signaling")

(B)	 Select all CellChatDB database except for nonprotein signaling

CellChatDB.use <- subsetDB(CellChatDB)

(C)	 Select all CellChatDB database

CellChatDB.use <- CellChatDB

6.	 Set the selected database from Step 5 in the object and then subset the expression data 
matrix using genes relevant to the selected L–R pairs. An updated CellChat object is 
outputted with two updated slots ‘DB’ and ‘data.signaling’.

cellchat@DB <- CellChatDB.use 
cellchat <- subsetData(cellchat)

7.	 Identify over-expressed ligands or receptors in each cell group to infer the cell state-specific 
communications.

future::plan("multisession", workers = 4) 
cellchat <- identifyOverExpressedGenes(cellchat)

8.	 For each overexpressed ligand and receptor obtained in Step 7, identify over-expressed 
L–R interactions if either its associated ligand or receptor is over expressed:

cellchat <- identifyOverExpressedInteractions(cellchat)

9.	 (Optional) Smooth the data when analyzing single-cell data with shallow sequencing 
depth. The smoothed data could help to reduce the dropout effects of signaling genes, 
particularly for possible zero expression of subunits of ligands or receptors. Use a 
built-in protein–protein interaction (PPI) network from CellChat package to smooth 
the data:

cellchat <- smoothData(cellchat, adj = PPI.human)

Inference of cell–cell communication networks
● TIMING  ~39 s
10.	 (Optional) Check the average expression of signaling genes of interest to determine 

a proper value of ‘trim’ when well-known signaling events in the studied biological 
process are not predicted:

computeAveExpr(cellchat, features = c("CXCL12","CXCR4"),  
type = "triMean") 
computeAveExpr(cellchat, features = c("CXCL12","CXCR4"),  
type = "truncatedMean", trim = 0.1)
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11.	 Infer cell–cell communication at a L–R pair level. Users are now ready to infer cell–cell 
communication by using the following command:

cellchat <- computeCommunProb(cellchat, type = "triMean", trim = NULL, 
raw.use = TRUE)

▲ CRITICAL STEP  Important parameters of the ‘computeCommunProb’ function are as 
follows:
•	 type: the method for computing the average gene expression per cell group. By default, 
type = "triMean", producing fewer but stronger interactions. When setting type = 
"truncatedMean", a value should be assigned to the parameter ‘trim’, producing more 
interactions.

•	 trim: the fraction (0–0.25) of observations to be trimmed from each end before the 
mean is computed.

•	 raw.use: whether to use the raw data (that is, ‘object@data.signaling’) or the smoothed 
data (that is, ‘object@data.smooth’). The default is TRUE. Set ‘raw.use = FALSE’ to use 
the smoothed data. When using the smoothed data, the number of inferred interactions 
clearly increases. However, generally, it only introduces very weak communications.

12.	 Filter the cell–cell communication, based on the number of cells in each group. By default, 
the minimum number of cells required in each cell group for cell–cell communication is 10.

cellchat <- filterCommunication(cellchat, min.cells = 10)

13.	 Infer cell–cell communication at a signaling pathway level. CellChat computes 
the communication probability at the signaling pathway level by summarizing the 
communication probabilities of all L–R pairs associated with each signaling pathway. Note 
that the inferred intercellular communication network of each L–R pair and each signaling 
pathway is stored in the slots ‘cellchat@net’ and ‘cellchat@netP’, respectively.

cellchat <- computeCommunProbPathway(cellchat)

14.	 Calculate the aggregated cell–cell communication network. CellChat calculates the 
aggregated cell–cell communication network by counting the number of links or 
summarizing the communication probability across all the cell groups (option A) 
or a subset of cell groups (option B).
(A)	 Perform calculation across all the cell groups

cellchat <- aggregateNet(cellchat)

(B)	 Perform calculation across a subset of cell groups

sources.use = c("FBN1+ FIB","APOE+ FIB","Inflam. FIB") 
targets.use = c("LC","Inflam. DC","cDC2","CD40LG+ TC") 
cellchat <- aggregateNet(cellchat, sources.use = sources.use, 
targets.use = targets.use)

15.	 Export the CellChat object together with the inferred cell–cell communication networks 
and save them as a .rds file.

saveRDS(cellchat, file = "cellchat_humanSkin_LS.rds")

■ PAUSE POINT  The.rds files can be used later as input data for the visualization (Procedure 1, 
Steps 16–21) and the analysis (Procedure 1, Steps 22–27) of the cell–cell communication 
networks, as well as the comparison analysis of the cell–cell communication networks across 
biological conditions (Procedure 2, Steps 1–4).



Nature Protocols 18

Protocol

Visualization of cell–cell communication networks
● TIMING  ~4.8 s
Visualization of cell–cell communication networks of individual signaling pathways
● TIMING  ~0.8 s
▲ CRITICAL  Users can visualize the inferred communication network of signaling pathways 
using ‘netVisual_aggregate’ (Step 16) and visualize the inferred communication network of 
individual L–R pairs associated with that signaling pathway using ‘netVisual_individual’ 
(Step 17). All the signaling pathways showing significant communications can be accessed by 
‘cellchat@netP$pathways’. Here, we take input of the CXCL signaling pathway as an example.
16.	 Using the .rds files from Step 15, visualize the inferred communication network of each 

signaling pathway using circle plot (option A), hierarchy plot (option B), chord diagram 
(option C) and heat map (option D).
(A)	 Circle plot

	 (i)	 Access all the signaling pathways showing significant communications:

pathways.show.all <- cellchat@netP$pathways

	 (ii)	 Select one pathway:

pathways.show <- c("CXCL")

	 (iii)	 Visualize the inferred communication network using the ‘netVisual_aggregate’ 
function:

netVisual_aggregate(cellchat, signaling = pathways.show, layout 
= "circle", color.use = NULL, sources.use = NULL, targets.use = 
NULL, idents.use = NULL)

◆ TROUBLESHOOTING
(B)	 Hierarchy plot

	 (i)	 Access all the signaling pathways showing significant communications:

pathways.show.all <- cellchat@netP$pathways

	 (ii)	 Select one pathway:

pathways.show <- c("CXCL")

	 (iii)	 Visualize the inferred communication network using the ‘netVisual_aggregate’ 
function. To study the cell–cell communication between fibroblasts and immune 
cells, define ‘vertex.receiver’ as all fibroblast cell groups:

vertex.receiver = seq(1,4) 
netVisual_aggregate(cellchat, signaling = pathways.show, layout 
= "hierarchy", vertex.receiver = vertex.receiver)

▲ CRITICAL  The key parameter for this plot is ‘vertex.receiver’, a numeric vector 
giving the index of the cell groups as targets in the left part of the hierarchy plot.

(C)	 Chord diagram
	 (i)	 Create a chord diagram using the universal function ‘netVisual_aggregate’.

pathways.show <- c("CXCL") 
par(mfrow=c(1,1)) 
netVisual_aggregate(cellchat, signaling = pathways.show,  
layout = "chord")
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	 (ii)	 Customize a chord diagram using ‘netVisual_chord_cell’ to flexibly visualize 
cell–cell communication with different purposes and at different levels. For 
example, define a named char vector ‘group’ to create multiple-group chord 
diagram, for example, grouping cell clusters into different cell types.

par(mfrow=c(1,1)) 
group.cellType <- c(rep("FIB", 4), rep("DC", 4), rep("TC", 4)) 
names(group.cellType) <- levels(cellchat@idents)
netVisual_chord_cell(cellchat, signaling = pathways.show, group  
= group.cellType, title.name = paste0(pathways.show, " signaling 
network"))

(D)	 Heat map plot

pathways.show <- c("CXCL") 
par(mfrow=c(1,1)) 
netVisual_heatmap(cellchat, signaling = pathways.show,  
color.heatmap = "Reds")

Visualization of cell–cell communication networks of individual L–R pairs
● TIMING  ~0.5 s
▲ CRITICAL  CellChat can compute the contribution of each associated L–R pair within a 
particular signaling pathway (Step 17) and then visualize the cell–cell communication mediated 
by a single L–R pair.
17.	 Using the .rds files from Step 15, compute and visualize the contribution of each associated 

L–R pair within a particular signaling pathway:

netAnalysis_contribution(cellchat, signaling = pathways.show)

18.	 Extract all the significant L–R pairs for a given signaling pathway:

pairLR.CXCL <- extractEnrichedLR(cellchat, signaling = pathways.show, 
geneLR.return = FALSE)

19.	 Select one L–R pair to visualize the inferred cell–cell communication network using 
the ‘netVisual_individual’ function. Users can also visualize the inferred network 
using other functions (Step 16), such as ‘netVisual_chord_cell’ and ‘netVisual_
heatmap’.

LR.show <- pairLR.CXCL[1,] 
netVisual_individual(cellchat, signaling = pathways.show, pairLR.use = 
LR.show, layout = "circle")

Visualization of cell–cell communication mediated by multiple L–R or signaling  
pathways
● TIMING  ~2 s
20.	 Using the .rds files from Step 15, visualize cell–cell communication mediated by multiple 

L–R or signaling pathways. Visualize all the significant interactions using a bubble plot 
(option A) or chord diagram (option B).
(A)	 Visualize the inferred significant interactions using a Bubble plot

	 (i)	 Show all the significant interactions from some cell groups defined by ‘sources.
use’ to other cell groups defined by ‘targets.use’. By default, the x axis first sorts cell 
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group pairs based on the appearance of signaling sources in ‘sources.use’, and then 
based on the appearance of signaling targets in ‘targets.use’. To change this order, 
refer to (iv–vii).

netVisual_bubble(cellchat, sources.use = 4, targets.use = 
c(5:11), remove.isolate = FALSE)

	 (ii)	 Show all the significant interactions associated with certain signaling pathways 
defined by ‘signaling’:

netVisual_bubble(cellchat, sources.use = 4, targets.use = 
c(5:11), signaling = c("CCL","CXCL"), remove.isolate = FALSE)

	 (iii)	 Show all the significant interactions associated with certain L–R pairs defined by 
‘pairLR.use’:

pairLR.use <- extractEnrichedLR(cellchat, signaling = 
c("CCL","CXCL","FGF")) 
netVisual_bubble(cellchat, sources.use = c(3,4), targets.use = 
c(5:8), pairLR.use = pairLR.use, remove.isolate = TRUE)

	 (iv)	 Show all the significant interactions by sorting cell group pairs based on the 
defined ‘targets.use’

netVisual_bubble(cellchat, targets.use = c("LC","Inflam. 
DC","cDC2","CD40LG+ TC"), pairLR.use = pairLR.use, remove.
isolate = TRUE, sort.by.target = T)

	 (v)	 Show all the significant interactions by sorting cell group pairs based on the 
defined ‘sources.use’:

netVisual_bubble(cellchat, sources.use = c("FBN1+ FIB","APOE+ 
FIB","Inflam. FIB"), pairLR.use = pairLR.use, remove.isolate = 
TRUE, sort.by.source = T)

	 (vi)	 Show all the significant interactions by sorting cell group pairs based on the 
defined ‘sources.use’ and then ‘targets.use’:

netVisual_bubble(cellchat, sources.use = c("FBN1+ FIB", 
"APOE+ FIB","Inflam. FIB"), targets.use = c("LC","Inflam. 
DC","cDC2","CD40LG+ TC"), pairLR.use = pairLR.use, remove.
isolate = TRUE, sort.by.source = T, sort.by.target = T)

	 (vii)	 Show all the significant interactions by sorting cell group pairs based on the 
defined ‘targets.use’ and then ‘sources.use’:

netVisual_bubble(cellchat, sources.use = c("FBN1+ FIB", 
"APOE+ FIB","Inflam. FIB"), targets.use = c("LC","Inflam.  
DC","cDC2","CD40LG+ TC"), pairLR.use = pairLR.use, remove.isolate 
= TRUE, sort.by.source = T, sort.by.target = T, sort.by.source.
priority = FALSE)
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▲ CRITICAL STEP  Important parameters of the netVisual_bubble function are 
as follows:
•	 slot.name: the slot name of object: ‘netP’ or ‘net’. Use ‘netP’ to analyze cell–cell 

communication at the level of signaling pathways and ‘net’ to analyze cell–cell 
communication at the level of L–R pairs

•	 sources.use: a vector giving the index or the name of source cell groups
•	 targets.use: a vector giving the index or the name of target cell groups
•	 signaling: a character vector giving the name of signaling pathways of interest
•	 pairLR.use: a data frame consisting of one column named either ‘interaction_

name’ or ‘pathway_name’, defining the interactions of interest and the order of 
L–R on the y axis

•	 remove.isolate: whether to remove the entire empty columns, that is, 
communication between certain cell groups

•	 sort.by.source, sort.by.target, sort.by.source.priority: reorder the interacting 
cell pairs

(B)	 Visualize the inferred significant interactions using a chord diagram
	 (i)	 Show all the L–R mediated interactions sending from ‘Inflam.FIB’ defined by 

‘sources.use’:

netVisual_chord_gene(cellchat, sources.use = 4, targets.use = 
c(5:11), lab.cex = 0.5,legend.pos.y = 30)

	 (ii)	 Show all the L–R mediated interactions received by ‘Inflam.DC’ defined by  
‘targets.use’:

netVisual_chord_gene(cellchat, sources.use = c(1,2,3,4), 
targets.use = 8, legend.pos.x = 15)

	 (iii)	 Show all the L–R mediated interactions associated with certain signaling pathways 
defined by ‘signaling’:

netVisual_chord_gene(cellchat, sources.use = c(1,2,3,4), 
targets.use = c(5:11), signaling = c("CCL","CXCL"), 
legend.pos.x = 8)

	 (iv)	 Show all the signaling pathways mediated interactions by setting ‘slot.name’ 
as ‘netP’:

netVisual_chord_gene(cellchat, sources.use = c(1,2,3,4), 
targets.use = c(5:11), slot.name = "netP", legend.pos.x = 10)

		  ▲ CRITICAL STEP  Important parameters of the ‘netVisual_chord_gene’ function 
are as follows:
•	 slot.name: the slot name of object: ‘netP’ or ‘net’. Use ‘netP’ to visualize cell–cell 

communication at the level of signaling pathways and ‘net’ to visualize cell–cell 
communication at the level of L–R pairs

•	 signaling: a character vector giving the name of signaling networks
•	 pairLR.use: a data frame consisting of one column named either ‘interaction_

name’ or ‘pathway_name’, defining the interactions of interest
•	 net: a data frame consisting of the interactions of interest. ‘net’ needs to have at 

least three columns: ‘source’, ‘target’ and ‘interaction_name’ when visualizing 
links at the level of ligands/receptors; ‘source’, ‘target’ and ‘pathway_name’ 
when visualizing links at the level of signaling pathway; ‘interaction_name’ and 
‘pathway_name’ must be the matched names in ‘CellChatDB$interaction’

•	 sources.use: a vector giving the index or the name of source cell groups
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•	 targets.use: a vector giving the index or the name of target cell groups
•	 color.use: colors for the cell groups
•	 lab.cex: font size for the text
•	 small.gap: small gap between sectors; if the gene names are overlapping, users 

can adjust the argument ‘small.gap’ by decreasing their values
•	 big.gap: gap between the different sets of sectors, which are defined in the ‘group’ 

parameter

Visualization of signaling gene expression distribution
● TIMING  ~1.5 s
21.	 Visualize signaling gene expression distribution. Once the Seurat R package has been 

installed, CellChat can plot the gene expression distribution of signaling genes related to 
L–R pairs or signaling pathways using a Seurat wrapper function ‘plotGeneExpression’ 
(option A). This function provides three types of visualization, including ‘violin’, ‘dot’ and 
‘bar’. Alternatively, users can extract the signaling genes related to the inferred L–R pairs or 
signaling pathway using the function ‘extractEnrichedLR’ and then plot gene expression 
using Seurat or other packages like Scanpy (option B).
(A)	 Visualize signaling gene expression using CellChat built-in function

plotGeneExpression(cellchat, signaling = "CXCL", enriched.only = TRUE, 
type = "violin")

(B)	 Visualize signaling gene expression using Seurat package

genes.use <- extractEnrichedLR(cellchat, signaling = "CXCL", 
geneLR.return = TRUE)$geneLR 
Seurat::VlnPlot(seu_obj, features = genes.use)

Systematic analysis of cell–cell communication
● TIMING  ~3 min
Identify the signaling roles and major contributing signaling events of cell groups
● TIMING  2 s
22.	 Compute the network centrality scores of the inferred cell–cell communication network.

cellchat <- netAnalysis_computeCentrality(cellchat, slot.name = "netP")

Important parameters of ‘netAnalysis_computeCentrality’ are as follows:
•	 slot.name: the slot name of object that is used to compute centrality measures of 

signaling networks. Setting slot.name = "netP" to compute the network centrality 
scores at the level of signaling pathways and setting slot.name = "net" to compute 
the network centrality scores at the level of L–R pairs.

23.	 Identify the signaling roles of cell groups by visualizing the centrality scores on a heat map 
(option A) and a 2D plot (option B). Alternatively, identify the major contributing signaling 
events (that is, which signals contribute the most to outgoing or incoming signaling of 
certain cell groups) by following option C.
(A)	 Visualize the network centrality scores on a heat map

netAnalysis_signalingRole_network(cellchat, signaling = pathways.show,  
width = 8, height = 2.5, font.size = 10)

(B)	 Visualize dominant senders (sources) and receivers (targets) in a 2D space

netAnalysis_signalingRole_scatter(cellchat)
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Important parameters of ‘netAnalysis_signalingRole_scatter’ are as follows:
•	 signaling: a char vector to specify signaling pathway names of interest. signaling = 

NULL: signaling role analysis on the aggregated cell–cell communication network 
from all signaling pathways

•	 color.use: defining the color for each cell group
•	 slot.name: the slot name of object that is used to compute centrality measures of 

signaling networks
•	 group: a vector to categorize the cell groups, for example, categorize the cell 

groups into two major categories: immune cells and fibroblasts
•	 dot.size: a range defining the size of the symbol, which is proportional to the 

number of inferred links (both outgoing and incoming) associated with each 
cell group

•	 x.measure: The measure used as x axis. This measure should be one of 
‘names(slot(object, slot.name)$centr[[1]])’ computed from ‘netAnalysis_
computeCentrality’. Default = “outdeg” is the weighted outgoing links 
(i.e., outgoing interaction strength). If setting as "outdeg_unweighted", 
it represents the total number of outgoing signaling

•	 y.measure: The measure used as y axis. This measure should be one of 
‘names(slot(object, slot.name)$centr[[1]])’ computed from ‘netAnalysis_
computeCentrality’. Default = "indeg" is the weighted incoming links 
(i.e., incoming interaction strength). If setting as “indeg_unweighted”, 
it represents the total number of incoming signaling

(C)	 Identify the major contributing signaling events of each cell group
	 (i)	 Identify the major outgoing signaling events

ht1 <- netAnalysis_signalingRole_heatmap(cellchat, pattern = 
"outgoing") 
ht1

	 (ii)	 Identify the major incoming signaling events

ht2 <- netAnalysis_signalingRole_heatmap(cellchat, pattern = 
"incoming") 
ht2

	 (iii)	 Show the major outgoing and incoming signaling events together

ht1 + ht2

Important parameters of ‘netAnalysis_signalingRole_heatmap’ are as follows:
•	 signaling: a character vector giving the name of signaling networks
•	 pattern: ‘outgoing’, ‘incoming’ or ‘all’. When pattern = “all”, it aggregates the strength 

of outgoing and incoming signaling events together
•	 slot.name: the slot name of object: ‘netP’ or ‘net’. Use ‘netP’ to analyze cell–cell 

communication at the level of signaling pathways and ‘net’ to analyze cell–cell 
communication at the level of L–R pairs

•	 color.use: the character vector defining the color of each cell group

Analysis of global communication patterns
● TIMING  115 s
24.	 Identify global communication patterns to explore how multiple cell groups and signaling 

events coordinate together. In addition to exploring detailed communications for 
individual pathways (Steps 16–23), an important question is how multiple cell groups and 
signaling pathways coordinate to function. Follow option A to explore outgoing signaling 
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patterns and reveal how the sender cells (that is, cells as signal source) coordinate with 
each other and with certain signaling pathways to drive communication. Follow option B to 
explore incoming signaling patterns and to show how the target cells (that is, cells as signal 
receivers) coordinate with each other and with certain signaling pathways to respond to 
incoming signals.
(A)	 Identify and visualize outgoing communication patterns of secreting cells

	 (i)	 (Optional) Infer the number of outgoing communication patterns

library(NMF) 
library(ggalluvial) 
selectK(cellchat, pattern ="outgoing")

	 (ii)	 Identify outgoing communication patterns via matrix factorization of outgoing 
communication probability

nPatterns = 6 
cellchat <- identifyCommunicationPatterns(cellchat, pattern 
="outgoing", k = nPatterns)

	 (iii)	 Visualize the associations of latent patterns with cell groups and signaling 
pathways

netAnalysis_river(cellchat, slot.name = "netP", pattern 
="outgoing", cutoff = 0.5)

Important parameters of ‘netAnalysis_river’ are as follows:
•	 slot.name: the slot name of object: ‘netP’ or ‘net’. Use ‘netP’ to analyze cell–cell 

communication at the level of signaling pathways and ‘net’ to analyze cell–cell 
communication at the level of L–R pairs;

•	 pattern: ‘outgoing’ or ‘incoming’;
•	 cutoff: the threshold for filtering out weak links.

	 (iv)	 Visualize the direct associations of cell groups and signaling pathways:

netAnalysis_dot(cellchat, slot.name = "netP", pattern 
="outgoing", cutoff = NULL, color.use = NULL, dot.size =  
c(1, 3))

Important parameters of ‘netAnalysis_dot’ are as follows:
•	 cutoff: the threshold for filtering out weak links. Default is 1/R where R is the 

number of latent patterns.
•	 color.use: the character vector defining the color of each cell group
•	 dot.size: a range defining the size of the symbol. This dot size is proportional to 

the contribution score of each cell group to each signaling pathway.
(B)	 Identify and visualize incoming communication patterns of target cells

	 (i)	 (Optional) Infer the number of incoming communication patterns

selectK(cellchat, pattern = "incoming")

	 (ii)	 Identify outgoing communication patterns via matrix factorization of outgoing 
communication probability

nPatterns = 3 
cellchat <- identifyCommunicationPatterns(cellchat, pattern = 
"incoming", k = nPatterns)
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	 (iii)	 Visualize the associations of latent patterns with cell groups and signaling 
pathways

netAnalysis_river(cellchat, pattern = "incoming")

	 (iv)	 Visualize the direct associations of cell groups and signaling pathways:

netAnalysis_dot(cellchat, pattern = "incoming")

Manifold and classification learning analysis of signaling networks
● TIMING  35 s
25.	 Perform manifold and classification learning analysis of signaling networks to group all 

significant signaling pathways based on their cellular communication network similarity. 
Signaling pathways can be grouped based on their functional similarity by following 
option A, or based on their structural similarity by following option B. Functional similarity 
analysis is not applicable to multiple datasets with different cell type compositions, 
whereas structural similarity analysis is applicable to multiple datasets either with the 
same cell type composition or with vastly different cell type compositions. More detailed 
information is available in our previous study5.
(A)	 Functional similarity analysis

	 (i)	 Compute the functional similarity between any pair of inferred networks

cellchat <- computeNetSimilarity(cellchat, type = "functional")

	 (ii)	 Perform manifold learning of inferred communication networks

cellchat <- netEmbedding(cellchat, type = "functional")

	 (iii)	 Perform clustering of inferred communication networks

cellchat <- netClustering(cellchat, type = "functional")

	 (iv)	 Visualize inferred communication networks in a 2D space

netVisual_embedding(cellchat, type = "functional",  
label.size = 3.5)

	 (v)	 (Optional) Zoom in each group of signaling pathways in a 2D space

netVisual_embeddingZoomIn(cellchat, type = "functional",  
nCol = 2)

(B)	 Structure similarity analysis

cellchat <- computeNetSimilarity(cellchat, type = "structural") 
cellchat <- netEmbedding(cellchat, type = "structural") 
cellchat <- netClustering(cellchat, type = "structural") 
netVisual_embedding(cellchat, type = "structural", label.size = 3.5)
# netVisual_embeddingZoomIn(cellchat, type = "structural", nCol = 2)

26.	 Explore cell–cell communication interactively through a CellChat Shiny App. For CellChat 
analysis of single-cell transcriptomics, make sure the ‘cellchat@dr’ contains a low-
dimensional space of the data such as ‘umap’ and ‘tsne’ to produce the feature plot of 
signaling genes.
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	 (i)	 (Optional) Add a new low-dimensional space of the data if not available

cell.embeddings <- read.table("./cellEmbeddings_umap.txt",  
row.names = 1, header = T, sep = "\t") 
cellChat <- addReduction(object = cellchat, dr = cell.embeddings,  
dr.name = "umap")

	 (ii)	 Run the CellChat Shiny App

runCellChatApp(cellchat)

27.	 Export the CellChat object as .rds file as follows:

saveRDS(cellchat, file = "cellchat_humanSkin_LS.rds")

■ PAUSE POINT  Users can store the .rds files for later use.

Procedure 2: comparative analysis of cell–cell communication from pairs of scRNA-seq datasets

● TIMING  30 s
▲ CRITICAL  In Procedure 2, we showcase CellChat’s diverse functionalities for identifying 
major signaling changes across different biological conditions by quantitative contrasts and 
joint manifold learning. Here, this ability of CellChat has been demonstrated by applying it to 
two scRNA-seq datasets from two biological conditions: nonlesional (NL, normal) and lesional 
(LS, diseased) human skin from patients with atopic dermatitis. These two datasets (conditions) 
have the same cell population compositions after joint clustering. If there are different cell 
population compositions between different conditions, users should refer to Procedure 3.
▲ CRITICAL  The equivalent online version and the graphical plots are available in the github 
repository (https://htmlpreview.github.io/?https://github.com/jinworks/CellChat/blob/
master/tutorial/Comparison_analysis_of_multiple_datasets.html).

Load the CellChat object of each dataset and merge them
● TIMING  ~3 s
1.	 Generate a CellChat object for each dataset from NL (or LS) condition, as discussed in 

Procedure 1, Steps 1–15.
2.	 (Optional) If the CellChat objects are obtained using the earlier version (<1.6.0), update by 

running the function ‘updateCellChat’.
3.	 Merge multiple CellChat objects for comparison analysis.

library(CellChat) 
library(patchwork) 
cellchat.NL <- readRDS("./tutorial/cellchat_humanSkin_NL.rds") 
cellchat.LS <- readRDS("./tutorial/cellchat_humanSkin_LS.rds") 
object.list <- list(NL = cellchat.NL, LS = cellchat.LS) 
cellchat <- mergeCellChat(object.list, add.names = names(object.list))

4.	 Export the merged CellChat object and the list of the two separate objects as .RData or .rds 
files for later use:

save(object.list, file = "cellchat_object.list_humanSkin_NL_LS.RData") 
save(cellchat, file = "cellchat_merged_humanSkin_NL_LS.RData")

	 ■ PAUSE POINT  The exported data files can be further processed for data visualization at 
a later date.

https://htmlpreview.github.io/?https://github.com/jinworks/CellChat/blob/master/tutorial/Comparison_analysis_of_multiple_datasets.html
https://htmlpreview.github.io/?https://github.com/jinworks/CellChat/blob/master/tutorial/Comparison_analysis_of_multiple_datasets.html
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Identify altered interactions and cell populations
● TIMING  ~2 s
▲ CRITICAL  CellChat employs a top-down approach (that is, starting with the big picture 
and then refining it in greater detail on the signaling mechanisms) to identify signaling 
changes at different levels, including altered interactions, cell populations, signaling 
pathways and L–R pairs.
5.	 Establish whether the cell–cell communication is enhanced or not by comparing the total 

number of interactions (option A) and the interaction strength (option B) of the inferred 
cell–cell communication networks from different biological conditions.
(A)	 Comparing the total number of interactions

gg1 <- compareInteractions(cellchat, show.legend = F,  
group = c(1,2)) 
gg1

(B)	 Comparing the total interaction strength

gg2 <- compareInteractions(cellchat, show.legend = F,  
group = c(1,2), measure = "weight") 
gg2

6.	 Identify substantially altered interactions between cell populations by comparing the 
number of interactions and interaction strength among different cell populations. Visualize 
differential interactions with a circle plot (option A) or a heat map (option B). Options A 
and B are recommended when working with pairwise datasets. If comparing more than two 
datasets, use Option C to generate multiple circle plots showing the number of interactions 
or interaction strength per dataset. Alternatively, examine the differential number of 
interactions or interaction strength among coarse cell types by aggregating the cell–cell 
communications based on the defined cell groups (option D).
(A)	� Circle plot showing the differential number of interactions or interaction 

strengths among different cell populations across two datasets
	 (i)	 Examine the differential number of interactions

netVisual_diffInteraction(cellchat, weight.scale = T)

	 (ii)	 Examine the differential interaction strengths

netVisual_diffInteraction(cellchat, weight.scale = T,  
measure = "weight")

◆ TROUBLESHOOTING
(B)	� Heat map showing the differential number of interactions or interaction strengths 

among different cell populations across two datasets
	 (i)	 Examine the differential number of interactions

netVisual_heatmap(cellchat)

	 (ii)	 Examine the differential interaction strengths

netVisual_heatmap(cellchat, measure = "weight")

7.	 Circle plot showing the number of interactions or interaction strengths among different 
cell populations across multiple datasets

	 (i)	 Compute the maximum number of cells per cell group and the maximum number 
of interactions across all datasets
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weight.max <- getMaxWeight(object.list, attribute = 
c("idents","count"))

	 (ii)	 Examine the number of interactions between any two cell populations in each 
dataset

par(mfrow = c(1,2), xpd=TRUE) 
for (i in 1:length(object.list)) { 
 netVisual_circle(object.list[[i]]@net$count, weight.scale = T, 
edge.weight.max = weight.max[2], edge.width.max = 12, title.name 
= paste0("Number of interactions - ", names(object.list)[i]))
}

8.	 Circle plot showing the differential number of interactions or interaction strengths 
among coarse cell types

	 ▲ CRITICAL  To simplify the complicated network and gain insights into the cell–cell 
communication at the cell type level, CellChat aggregates the cell–cell communication 
based on the defined cell groups.

	 (i)	 Categorize the cell populations into three major cell types

group.cellType <- c(rep("FIB", 4), rep("DC", 4), rep("TC", 4)) 
group.cellType <- factor(group.cellType, levels = c("FIB",  
"DC", "TC"))

	 (ii)	 Remerge the list of CellChat objects based on the defined major cell types

object.list <- lapply(object.list, function(x) 
{mergeInteractions(x, group.cellType)}) 
cellchat <- mergeCellChat(object.list, add.names =  
names(object.list))

	 (iii)	 Examine the number of interactions between any two major cell types in each 
dataset

weight.max <- getMaxWeight(object.list, slot.name = c("idents", 
"net", "net"), attribute = c("idents","count", "count.merged")) 
par(mfrow = c(1,2), xpd=TRUE) 
for (i in 1:length(object.list)) { 
 netVisual_circle(object.list[[i]]@net$count.merged, weight.
scale = T, label.edge= T, edge.weight.max = weight.max[3], edge.
width.max = 12, title.name = paste0("Number of interactions - ", 
names(object.list)[i])) 
}

	 (iv)	 Examine the differential number of interactions between any two cell types

netVisual_diffInteraction(cellchat, weight.scale = T, measure = 
"count.merged", label.edge = T)

	 (v)	 Examine the differential interaction strengths between any two cell types

netVisual_diffInteraction(cellchat, weight.scale = T, measure = 
"weight.merged", label.edge = T)
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9.	 Compare major sources and targets in a 2D space. Identify cell populations with notable 
changes in sending or receiving signals between different datasets by following option A, 
or identify the signaling changes of specific cell populations by following option B.
(A)	 Identify cell populations with notable changes in sending or receiving signals

	 (i)	 Compute the maximum and minimum number of interactions across all datasets

num.link <- sapply(object.list, function(x) {rowSums(x@
net$count) + colSums(x@net$count)-diag(x@net$count)}) 
weight.MinMax <- c(min(num.link), max(num.link))

	 (ii)	 Visualize the number of outgoing and incoming interactions of each cell popula-
tion in a 2D space. See Step 23 in Procedure 1 for the detailed description of the 
important parameters of ‘netAnalysis_signalingRole_scatter’

gg <- list() 
for (i in 1:length(object.list)) { 
 gg[[i]] <- netAnalysis_signalingRole_scatter(object.list[[i]], 
title = names(object.list)[i], weight.MinMax = weight.MinMax) 
} 
patchwork::wrap_plots(plots = gg)

◆ TROUBLESHOOTING
(B)	 Identify the signaling changes of specific cell populations

netAnalysis_signalingChanges_scatter(cellchat, idents.use = 
"Inflam. DC", signaling.exclude = "MIF")

Identify altered signaling with distinct network architecture
● TIMING  ~15 s
10.	 Identify signaling pathways with larger cell–cell communication network differences 

across different conditions based on the functional or structure similarity. More detailed 
information of the functional and structural similarity is described in Procedure 1, Step 25.

	 (i)	 Compute the functional similarity between any pair of inferred networks

cellchat <- computeNetSimilarityPairwise(cellchat, type = 
"functional")

	 (ii)	 Perform joint manifold learning of inferred communication networks across 
different conditions

cellchat <- netEmbedding(cellchat, type = "functional")

	 (iii)	 Perform joint clustering of inferred communication networks across different 
conditions

cellchat <- netClustering(cellchat, type = "functional")

	 (iv)	 Visualize inferred communication networks in a 2D space

netVisual_embedding(cellchat, type = "functional", label.size = 3.5)

	 (v)	 (Optional) Zoom in each group of signaling pathways in a 2D space

netVisual_embeddingZoomIn(cellchat, type = "functional", nCol = 2)
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	 (vi)	 Compute and visualize the pathway distance in the learned joint manifold

rankSimilarity(cellchat, slot.name = "netP", type = 
"functional", comparison1 = NULL, comparison2 = c(1,2))

Important parameters of ‘rankSimilarity’ are as follows:
•	 slot.name: ‘netP’ or ‘net’, the slot name of object that is used to compute the 

distance of signaling networks; setting slot.name = "netP" to compare the 
distance of signaling networks at the level of signaling pathways and setting 
slot.name = "net" to compute the distance of signaling networks at the level 
of L–R pairs.

•	 type: ‘functional’ or ‘structural’. ‘functional’ (or ‘structural’) means calculation 
of network differences based on the functional (or structure) similarity.

•	 comparison1: a numerical vector giving the datasets for comparison. This should 
be the same as ‘comparison’ in ‘computeNetSimilarityPairwise’;

•	 comparison2: a numerical vector with two elements giving the datasets for 
comparison.

�If there are more than 2 datasets defined in ‘comparison1’, ‘comparison2’ can 
be defined to indicate which two datasets used for computing the distance. For 
example, comparison2 = c(1,3) indicates the first and third datasets defined in 
‘comparison1’ will be used for comparison.

Identify altered signaling with distinct interaction strength
● TIMING  ~4 s
11.	 By comparing the information flow/interaction strength of each signaling pathway, 

CellChat identifies signaling pathways that: (1) turn off, (2) decrease, (3) turn on or (4) 
increase, by changing their information flow at one condition as compared with another 
condition. Identify altered signaling pathways (or L–R pairs) with distinct interaction 
strength based on the overall information flow (option A) or based on the outgoing (or 
incoming) signaling patterns (option B).
(A)	 Compare the overall information flow of each signaling pathway or L–R pair

	 (i)	 Compare the information flow for each signaling pathway using a stacked bar chart

rankNet(cellchat, slot.name = "netP", mode = "comparison", 
measure = "weight", sources.use = NULL, targets.use = NULL, 
stacked = T, do.stat = FALSE)

	 (ii)	 Compare the information flow for each signaling pathway by performing a paired 
Wilcoxon test

rankNet(cellchat, mode = "comparison", measure = "weight", 
stacked = T, do.stat = TRUE)

	 (iii)	 Compare the information flow for each L–R pair by performing a paired 
Wilcoxon test

rankNet(cellchat, slot.name = "net", mode = "comparison", 
measure = "weight", stacked = T, do.stat = TRUE)

	 (iv)	 Compare the information flow for each signaling pathway using a grouped 
bar chart

rankNet(cellchat, mode = "comparison", measure = "weight", 
stacked = F, do.stat = FALSE)
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▲ CRITICAL  Important parameters of the rankNet function are as follows:
•	 slot.name: the slot name of object. Setting slot.name = "netP" to compare the 

information flow for each signaling pathway and setting slot.name = "net" 
to compute the information flow for each L–R pair

•	 measure: ‘weight’ or “count”. Setting measure = "weight" to compare the total 
interaction weights (strength) and setting measure = "count" to compare the 
number of interactions

•	 mode: ‘comparison’ or ‘single’. Setting mode = " comparison" to perform 
comparison analysis across different datasets; and setting mode = "single" to 
rank the enriched signaling in one dataset

•	 comparison: a numerical vector giving the datasets for comparison; a single 
value means ranking for only one dataset and two values means comparison for 
two datasets

•	 color.use: the character vector defining the colors of bar charts
•	 sources.use: a vector giving the index or the name of source cell groups
•	 targets.use: a vector giving the index or the name of target cell groups
•	 stacked: whether to plot the stacked bar plot or not. Default = TRUE
•	 do.stat: whether to do a paired Wilcoxon test to determine whether there is 

significant difference between two datasets. Default = FALSE
•	 signaling.type: a char vector giving the types of signaling from the four categories: 

‘Secreted Signaling’, ‘ECM-Receptor’, ‘Cell–Cell Contact’ and ‘Non-protein Signaling’
(B)	� Compare outgoing (or incoming) signaling patterns associated with each cell 

population
	 ▲ CRITICAL  The above ‘rankNet’ analysis summarizes the information from the 

outgoing and incoming signaling together. CellChat can also compare the outgoing 
(or incoming) signaling pattern between two datasets, allowing to identify signaling 
pathways/L–R that exhibit different signaling patterns.

	 (i)	 Load the required R package for generating heat map plots

library(ComplexHeatmap)

	 (ii)	 Combine all the identified signaling pathways from different datasets

pathway.union <- union(object.list[[1]]@netP$pathways,  
object.list[[2]]@netP$pathways)

	 (iii)	 Assign the contribution of signaling pathways to each cell group within each 
dataset in terms of outgoing interaction strengths

ht1 = netAnalysis_signalingRole_heatmap(object.list[[1]], 
pattern = "outgoing", signaling = pathway.union, title = 
names(object.list)[1], width = 5, height = 6)
ht2 = netAnalysis_signalingRole_heatmap(object.list[[2]], 
pattern = "outgoing", signaling = pathway.union, title = 
names(object.list)[2], width = 5, height = 6)

	 (iv)	 Compare the heat map plots side by side for different datasets

draw(ht1 + ht2, ht_gap = unit(0.5, "cm"))

▲ CRITICAL  Important parameters of the ‘netAnalysis_signalingRole_heatmap’ 
function are as follows:
•	 signaling: a character vector giving the names of signaling networks of interest
•	 pattern: this parameter can be set as ‘outgoing’, ‘incoming’ or ‘all’. When pattern = “all”, 

CellChat aggregates the outgoing and incoming signaling strength together
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•	 slot.name: the slot name of object that is used to examine the signaling patterns 
at the level of signaling pathways (slot.name = "netP") or L–R pairs  
(slot.name = "net")

•	 color.use: the character vector defining the color of each cell group
12.	 Identify dysfunctional signaling by comparing the communication probabilities (option A) 

or by differential expression analysis (option B).
(A)	 Identify dysfunctional signaling by comparing the communication probabilities.

	 (i)	 Compare the communication probabilities mediated by L–R pairs from certain cell 
groups to other cell groups

netVisual_bubble(cellchat, sources.use = 4, targets.use = 
c(5:11), comparison = c(1, 2), angle.x = 45)

	 (ii)	 Identify the up-regulated (that is, increased) L–R pairs in the second dataset 
compared with the first dataset

netVisual_bubble(cellchat, sources.use = 4, targets.use = 
c(5:11), comparison = c(1, 2), max.dataset = 2, title.name = 
"Increased signaling in LS", angle.x = 45, remove.isolate = T)

	 (iii)	 Identify the down-regulated (i.e., decreased) L–R pairs in the second dataset 
compared with the first dataset

netVisual_bubble(cellchat, sources.use = 4, targets.use = 
c(5:11), comparison = c(1, 2), max.dataset = 1, title.name = 
"Decreased signaling in LS", angle.x = 45, remove.isolate = T)

▲ CRITICAL  Important parameters of the ‘netVisual_bubble’ function for the 
comparison analysis are as follows:
•	 sources.use: a vector giving the index or the name of source cell groups
•	 targets.use: a vector giving the index or the name of target cell groups
•	 comparison: a numerical vector giving the datasets for comparison in the merged 

object; e.g., comparison = c(1,2)
•	 group: a numerical vector giving the group information of different datasets; 

e.g., group = c(1,2,2)
•	 max.dataset: a scale, keeping the communications with highest probability in 

max.dataset (i.e., certain condition)
•	 min.dataset: a scale, keeping the communications with lowest probability in  

min.dataset
•	 color.text.use: whether to color the xtick labels according to the dataset origin 

when doing comparison analysis
•	 color.text: the colors for xtick labels according to the dataset origin when doing 

comparison analysis
(B)	� Identify dysfunctional signaling by using differential expression analysis.

CellChat performs differential expression analysis between two biological conditions 
(that is, NL and LS) for each cell group, and then obtains the up-regulated and down-
regulated interactions based on the fold change of ligands in the sender cells and 
receptors in the receiver cells. Such analysis can be done as follows:

	 (i)	 Define a positive dataset (that is, the dataset with positive fold change against 
the other dataset) and a variable name used for storing the results of differential 
expression analysis

pos.dataset = "LS" 
features.name = pos.dataset
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	 (ii)	 Perform differential expression analysis for each cell group

cellchat <- identifyOverExpressedGenes(cellchat, group.dataset = 
"datasets", pos.dataset = pos.dataset, features.name = features.
name, only.pos = FALSE, thresh.pc = 0.1, thresh.fc = 0.05)

	 (iii)	 (Optional) Perform differential expression analysis by ignoring cell group 
information

cellchat <- identifyOverExpressedGenes(cellchat, group.dataset = 
"datasets", pos.dataset = pos.dataset, features.name = features.
name, only.pos = FALSE, thresh.pc = 0.1, thresh.fc = 0.05, 
group.DE.combined = TRUE)

	 (iv)	 Map the results of differential expression analysis onto the inferred cell–cell 
communications to easily subset the L–R pairs of interest

net <- netMappingDEG(cellchat, features.name = features.name)

	 (v)	 Extract the L–R pairs with upregulated ligands in LS

net.up <- subsetCommunication(cellchat, net = net, datasets = 
"LS",ligand.logFC = 0.05, receptor.logFC = NULL)

	 (vi)	 Extract the L–R pairs with upregulated ligands and upregulated recetptors in NL, 
that is,downregulated in LS

net.down <- subsetCommunication(cellchat, net = net, datasets = 
"NL",ligand.logFC = -0.05, receptor.logFC = NULL)

	 (vii)	 (Optional) Perform further deconvolution to obtain the individual signaling genes

gene.up <- extractGeneSubsetFromPair(net.up, cellchat)
gene.down <- extractGeneSubsetFromPair(net.down, cellchat)

	 (viii)	 (Optional) Find all the significant outgoing/incoming/both signaling according to 
the customized features and cell groups of interest

df <- findEnrichedSignaling(object.list[[2]], features = 
c("CCL19", "CXCL12"), idents = c("Inflam. FIB", "COL11A1+ FIB"), 
pattern ="outgoing")

13.	 Visualize the upregulated signaling events identified from the above Step 12B(v) and 
downregulated signaling events identified from the above Step 12B(vi) using a bubble plot 
(option A), chord diagram (option B) or wordcloud (option C). The bubble plot is useful to 
compare the interaction strengths between pairs of cell groups across multiple datasets 
in the same plot, the chord diagram is useful to show the interactions and the associated 
ligands/receptors in one dataset, and the wordcloud is useful to highlight the ligands of the 
dysfunctional signaling in one dataset.
(A)	 Visualize dysfunctional signaling using a bubble plot

	 (i)	 Find all L–R pairs with upregulated signaling strength in the second dataset

pairLR.use.up = net.up[, "interaction_name", drop = F]
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	 (ii)	 Visualize the upregulated signaling in the second dataset

gg1 <- netVisual_bubble(cellchat, pairLR.use = pairLR.use.up,  
sources.use = 4, targets.use = c(5:11), comparison = c(1, 2),  
angle.x = 90, remove.isolate = T,title.name = paste0("Up-regulated 
signaling in ", names(object.list)[2]))

	 (iii)	 Find all L–R pairs with downregulated signaling strength in the second dataset

pairLR.use.down = net.down[, "interaction_name", drop = F]

	 (iv)	 Visualize the downregulated signaling in the second dataset

gg2 <- netVisual_bubble(cellchat, pairLR.use = pairLR.use.down,  
sources.use = 4, targets.use = c(5:11), comparison = c(1, 2),  
angle.x = 90, remove.isolate = T,title.name = paste0("Down-regulated 
signaling in ", names(object.list)[2]))

	 (v)	 Visualize both the upregulated and downregulated signaling in the second dataset

gg1 + gg2

(B)	 Visualize dysfunctional signaling using a chord diagram
	 (i)	 Visualize the upregulated signaling in the second dataset

netVisual_chord_gene(object.list[[2]], sources.use = 4,  
targets.use = c(5:11), slot.name = 'net', net = net.up, lab.cex =  
0.8, small.gap = 3.5, title.name = paste0("Up-regulated signaling 
in ", names(object.list)[2]))

	 (ii)	 Visualize the downregulated signaling in the second dataset

netVisual_chord_gene(object.list[[1]], sources.use = 4, targets.
use = c(5:11), slot.name = 'net', net = net.down, lab.cex = 0.8, 
small.gap = 3.5, title.name = paste0("Down-regulated signaling  
in ", names(object.list)[2]))

(C)	 Visualize dysfunctional signaling using a wordcloud plot
	 (i)	 Visualize the enriched ligands in the second dataset

computeEnrichmentScore(net.up, species = 'human')

	 (ii)	 Visualize the enriched ligands in the first dataset

computeEnrichmentScore(net.down, species = 'human')

Visually compare inferred cell–cell communication networks
● TIMING  ~6 s
▲ CRITICAL  Here, we briefly show two examples of how to visually compare inferred cell–cell 
communication networks using circle plots or heat map plots. More details on alternative 
visualization options (for example, hierarchy plots and chord diagrams) can be found in 
Procedure 1, Step 16.
14.	 Visualize inferred cell–cell communication networks using circle plots (option A) or heat 

maps (option B).
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(A)	 Visualize inferred cell–cell communication networks using circle plots
	 (i)	 Compute the maximum interaction strength of a signaling pathway across all datasets

pathways.show <- c("CXCL") 
weight.max <- getMaxWeight(object.list, slot.name = c("netP"), 
attribute = pathways.show)

	 (ii)	 Visually compare the inferred cell–cell communication network between different 
datasets

par(mfrow = c(1,2), xpd=TRUE)
for (i in 1:length(object.list)) {
netVisual_aggregate(object.list[[i]], signaling = pathways.show, 
layout = "circle", edge.weight.max = weight.max[1], edge.width.
max = 10, signaling.name = paste(pathways.show, names(object.
list)[i]))
}

(B)	 Visualize inferred cell–cell communication networks using heat map plots
	 (i)	 Generate a heat map plot of the inferred cell–cell communication network from 

each dataset

pathways.show <- c("CXCL")
par(mfrow = c(1,2), xpd=TRUE)
ht <- list()
for (i in 1:length(object.list)) {
ht[[i]] <- netVisual_heatmap(object.list[[i]], signaling = 
pathways.show, color.heatmap = "Reds",title.name = paste(pathways.
show, "signaling ",names(object.list)[i]))
}

	 (ii)	 Compare the heat map plots side by side for different datasets

ComplexHeatmap::draw(ht[[1]] + ht[[2]], ht_gap = unit(0.5, "cm"))

15.	 Plot the gene expression distribution of signaling genes related to L–R pairs or signaling 
pathway using the Seurat wrapper function ‘plotGeneExpression’.

	 (i)	 (Optional) Specify the order of the datasets to appear in the plot

cellchat@meta$datasets = factor(cellchat@meta$datasets, levels = 
c("NL", "LS"))

	 (ii)	 Generate a violin plot to compare the gene expression distribution across different 
datasets

plotGeneExpression(cellchat, signaling = "CXCL", split.by = 
"datasets", colors.ggplot = T, type = "violin")

16.	 Export the merged CellChat object and the list of the two separate objects as .RData or  
.rds files.

save(object.list, file = "cellchat_object.list_humanSkin_NL_LS.RData") 
save(cellchat, file = "cellchat_merged_humanSkin_NL_LS.RData")

■ PAUSE POINT  Users can save the .RData or .rds files for later use.
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Procedure 3: comparative analysis of multiple datasets with differing cell type compositions

● TIMING  ~5 s
▲ CRITICAL  Procedure 3 demonstrates how to apply CellChat to the comparative analysis of 
multiple conditions with differing cell type compositions. The equivalent online version along 
with the graphical plots are available in the github repository (https://htmlpreview.github.io/ 
?https://github.com/jinworks/CellChat/blob/master/tutorial/Comparison_analysis_of_
multiple_datasets_with_different_cellular_compositions.html).
▲ CRITICAL  For datasets with differing cell type (group) compositions, CellChat adjusts 
the cell groups to the same cell type compositions across all datasets using the function 
‘liftCellChat’ and then performs comparative analysis as the joint analysis of datasets with 
the same cell type compositions. Here, we take an example of comparative analysis of two 
embryonic mouse skin scRNA-seq datasets from days E13.5 and E14.5. There are 11 skin cell 
populations shared between E13.5 and E14.5 and two additional populations (that is, dermal DC 
and pericytes) specific to E14.5. Therefore, we lift up the cell groups from E13.5 to the same cell 
type compositions as E14.5.
1.	 Load the generated .rds CellChat object of each dataset, which is obtained as described in 

Procedure 1, Steps 1–15.
2.	 (Optional) If the CellChat objects are obtained using the earlier version (< 1.6.0), update by 

running the function ‘updateCellChat’.

cellchat.E13 <- readRDS("./tutorial/cellchat_embryonic_E13.rds")
cellchat.E13 <- updateCellChat(cellchat.E13)
cellchat.E14 <- readRDS("./tutorial/cellchat_embryonic_E14.rds")
cellchat.E14 <- updateCellChat(cellchat.E14)

3.	 Lift up CellChat objects and merge them together. Since there are two additional 
populations specific to E14.5 compared with E13.5, we lift up ‘cellchat.E13’ by lifting 
up the cell groups to the same cell group compositions as E14.5. ‘liftCellChat’ only 
updates the slot related to cell–cell communication network, including slots ‘object@net’, 
‘object@netP’ and ‘object@idents’.

group.new = levels(cellchat.E14@idents) # Define the cell labels to 
lift up
cellchat.E13 <- liftCellChat(cellchat.E13, group.new)
object.list <- list(E13 = cellchat.E13, E14 = cellchat.E14)
cellchat <- mergeCellChat(object.list, add.names = names(object.list), 
cell.prefix = TRUE)

4.	 Once the CellChat object are lifted up and merged together, perform comparative visualization 
and analysis of cell–cell communication as described for the comparative analysis of multiple 
datasets with the same cell type compositions (see Procedure 2, Steps 5–15). Below is an 
example of how to compare the inferred cell–cell communication networks using circle plot:

	 (i)	 Compute the maximum interaction strength of a signaling pathway across all datasets

pathways.show <- c("WNT") 
weight.max <- getMaxWeight(object.list, slot.name = c("netP"), 
attribute = pathways.show)

	 (ii)�	� Visually compare the inferred cell–cell communication network between different 
datasets

par(mfrow = c(1,2), xpd=TRUE)
for (i in 1:length(object.list)) {

https://htmlpreview.github.io/?https://github.com/jinworks/CellChat/blob/master/tutorial/Comparison_analysis_of_multiple_datasets_with_different_cellular_compositions.html
https://htmlpreview.github.io/?https://github.com/jinworks/CellChat/blob/master/tutorial/Comparison_analysis_of_multiple_datasets_with_different_cellular_compositions.html
https://htmlpreview.github.io/?https://github.com/jinworks/CellChat/blob/master/tutorial/Comparison_analysis_of_multiple_datasets_with_different_cellular_compositions.html
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netVisual_aggregate(object.list[[i]], signaling = pathways.show, 
layout = "circle", edge.weight.max = weight.max[1], edge.width.max  
= 10, signaling.name = paste(pathways.show, names(object.list)[i]))
}

5.	 Export the merged CellChat object and the list of the two separate objects as .RData or .rds 
files as follows:

save(object.list, file = "cellchat_object.list_embryonic_E13_E14.RData") 
save(cellchat, file = "cellchat_merged_embryonic_E13_E14.RData")

■ PAUSE POINT  The merged CellChat object and the list of the two separate objects can be 
stored for later use.

Troubleshooting

Troubleshooting advice can be found in Table 1.

Timing

Procedure 1, Steps 1–27; inferring cell–cell communication from a single scRNA-seq  
dataset: ~4 min
Steps 1–9, data input and preprocessing: ~12 s
Steps 10–15, inference of cell–cell communication networks: ~39 s
Steps 16–21 visualization of cell–cell communication networks: ~4.8 s
Steps 22–27, systematic analysis of cell–cell communication: ~3 min

Procedure 2, Steps 1–15; comparative analysis of cell–cell communication from pairs  
of scRNA-seq datasets: 30s
Steps 1–4, load CellChat objects of each dataset and merge them together: ~3 s
Steps 5–9, identify altered interactions and cell populations: ~2 s
Step 10, identify altered signaling with distinct network architecture: ~15 s
Steps 11–13, identify altered signaling with distinct interaction strength: ~4 s
Steps 14–16, visually compare inferred cell–cell communication networks: ~6 s

Procedure 3, Steps 1–5; comparative analysis of multiple datasets with differing cell type 
compositions: ~5 s

Table 1 | Troubleshooting table

Step Problem Possible reason Solution

Procedure 1, 
Step 2D

RStudio encounters FATAL ERROR 
when starting from an AnnData 
object

Compatibility issue of AnnData 
object between Python and R

Install the anndata R package. In addition, ensure that the required data 
files ‘data.input’ and ‘meta’ or the SingleCellExperiment object are saved 
in the user’s local computer and then try to reload them for CellChat 
analysis

Procedure 1, 
Step 16

Error with ‘Length of new attribute 
value…’ when using circle plot

Possible issue of the igraph 
version

User can try degrade igraph form 1.4.0 to 1.3.5; or update the object using 
updateCellchat(); or reinstall the CellChat R package

Procedure 2, 
Step 9

Error in ‘netAnalysis_
computeCentrality’ when using 
the merged CellChat object

‘netAnalysis_computeCentrality’ 
was not run on each individual 
CellChat object

Run ‘netAnalysis_computeCentrality’ on each CellChat object in the  
‘object.list’ separately and then run the function ‘mergeCellChat’
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Anticipated results

Running CellChat’s inference (Procedure 1, Step 11) of the L–R pair-mediated cell–cell 
communication produces the communication probability (that is, interaction strength) array 
and the corresponding P value array, which can be accessed by object@net$prob and object@
net$pval, respectively. Both arrays are three dimensional, where the first, second and third 
dimensions represent sources, targets and L–R pairs, respectively (Fig. 1). For example, given 
an inferred cell–cell communication probability array P(x, y,z), P(xi, yj, zk) is the communication 
probability from cell group xi to cell group yj for a given L–R pair zk. CellChat also infers signaling 
pathway-mediated cell–cell communication (Procedure 1, Step 13), where the communication 
probability array can be accessed by object@netP$prob. CellChat provides several ways to 
visualize the inferred cell–cell communication network, including circle plot, hierarchical 
plot, chord diagram, heatmap and bubble plot. Importantly, users can visualize inferred 
communication networks of an individual L–R pair, a signaling pathway as well as multiple 
L–R pairs or signaling pathways. To facilitate the interpretation of the inferred intercellular 
communication networks within one condition and across different conditions (Fig. 1), CellChat 
v2 can (1) identify signaling roles of cell groups as well as the major contributing signaling within 
a given signaling network; (2) predict key incoming and outgoing signals for specific cell types 
as well as global communication patterns on how multiple cell types and signaling pathways 
coordinate together; (3) group signaling pathways from both functional and topological 
perspectives; (4) identify major signaling changes and altered cell populations across different 
biological conditions using various quantitative metrics and differential expression analysis; and 
(5) perform comparison analysis across different conditions with differing cell type compositions.

As shown in Fig. 3, the inferred cell–cell communications depend on the method for 
computing average expression per cell group. The ‘triMean’ method produces fewer but 
stronger interactions, while the ‘truncatedMean’ method with a smaller value of the ‘trim’ 
parameter (for example, ‘trim = 0.1’) enables the identification of weak signaling. Therefore, 
if known signaling is not observed, users can use ‘truncatedMean’ with lower values of ‘trim’ 
to change the method for calculating the average gene expression per cell group.

Finally, CellChat v2 allows users to visualize and explore the cell–cell communication 
analysis interactively by defining various analysis parameters (Fig. 4). Briefly, it can visualize cell 
groups and signaling expression, examine the inferred signaling between different cell groups, 
and further visualize the individual signaling pathway. A rich user-guided sliders in each panel are 
provided for flexible exploration, highlight and zoom out of the related information of interest.

Reporting summary
Further information on research design is available in the Nature Portfolio Reporting Summary 
linked to this article.

Data availability
The example datasets analyzed in this protocol are all publicly available. The scRNA-seq 
data used in Procedure 1 and Procedure 2 are available at the Gene Expression Omnibus 
under accession GSE14742446. The scRNA-seq data used in Procedure 3 are available at the 
Gene Expression Omnibus under accession GSM3453535, GSM3453536, GSM3453537 and 
GSM345353847. The scRNA-seq data used in Fig. 2 are available at ArrayExpress database under 
accession E-MTAB-814248. In addition, all the preprocessed datasets and CellChat objects 
required to reproduce this protocol are publicly available at https://figshare.com/projects/
Example_data_for_cell-cell_communication_analysis_using_CellChat/157272 (ref. 49).

Code availability
CellChat v2 is publicly available as an R package. Source codes of the R package and this protocol 
have been deposited at the GitHub repository (https://github.com/jinworks/CellChat).
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