
5GAC-Analyzer: Identifying Over-Privilege
Between 5G Core Network Functions

Seaver Thorn
swthorn@ncsu.edu
North Carolina State

University
Raleigh, NC, USA

K. Virgil English
kvenglis@ncsu.edu
North Carolina State

University
Raleigh, NC, USA

Kevin R. B. Butler
butler@cise.ufl.edu
University of Florida
Gainesville, FL, USA

William Enck
whenck@ncsu.edu
North Carolina State

University
Raleigh, NC, USA

ABSTRACT

5G technology transitions the cellular network core from special-

ized hardware into software-based cloud-native network functions

(NFs). As part of this change, the 3GPP de�nes an access control

policy to protect NFs from one another and third-party network

applications. A manual review of this policy by the 3GPP identi�ed

an over-privilege �aw that exposes cryptographic keys to all NFs.

Unfortunately, such a manual review is di�cult due to ambiguous

documentation. In this paper, we use static program analysis to

extract NF functionality from four 5G core implementations and

compare that functionality to what is permissible by the 3GPP

policy. We discover two previously unknown instances of over-

privilege that can lead denial-of-service and extract sensitive data.

We have reported our �ndings to the GSMA, who has con�rmed

the signi�cance of these policy �aws.

CCS CONCEPTS

• Security and privacy→Mobile and wireless security;Access

control; • Networks→Mobile networks.

KEYWORDS

5G Core; OAuth; Access Control

ACM Reference Format:

Seaver Thorn, K. Virgil English, Kevin R. B. Butler, and William Enck. 2024.

5GAC-Analyzer: Identifying Over-Privilege Between 5G Core Network

Functions. In Proceedings of the 17th ACM Conference on Security and Privacy

in Wireless and Mobile Networks (WiSec ’24), May 27–30, 2024, Seoul, Republic

of Korea. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3643

833.3656134

1 INTRODUCTION

5G technology marks a signi�cant shift in wireless communication,

ushering in a new era of connectivity, speed, and innovation. One

of the most consequential changes of 5G occurs in the network core,

which has been rearchitected to disaggregate specialized hardware

entities (e.g., HSS, MME, P-GW) into many di�erent software Net-

work Functions (NFs) running in public and private clouds. The 5G

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

WiSec ’24, May 27–30, 2024, Seoul, Republic of Korea

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0582-3/24/05. . . $15.00
https://doi.org/10.1145/3643833.3656134

core adopts a service-based architecture to manage NF communica-

tion, which allows application developers to create new services

that directly interact with core functionality. User Equipment (UEs)

depends on the resource isolation of the core NFs to safeguard

their sensitive information (e.g., cryptographic keys and encryption

policy) from disclosure and modi�cation.

The 5G core performs two types of access control decisions:

(1) checks based on runtime NF identi�ers (i.e., NFPro�le); and

(2) service-level logic (i.e., OAuth policy). Unfortunately, the 3GPP

speci�cations are known for being ambiguous and under-speci�ed [15,

20, 31, 32, 38]. Akon et al. [8] formally modeled the access control

in the 5G core based on the 3GPP speci�cations and found that it

fails to su�ciently specify access control checks of runtime iden-

ti�ers between logically separate networks (i.e., network slices).

However, their formal model incorrectly assumes that all access

control checks and logic in the speci�cations are correct.

A manual review of the service-level OAuth policy logic by the

3GPP identi�ed an over-privilege access control �aw that unnec-

essarily exposes read and write access to sensitive subscriber data,

including cryptographic keys (3GPP TR 33.855 Key Issue #29) [1].

Essentially, an OAuth scope was speci�ed at a service-level when it

should have been more �ne-grained and speci�ed at an operation-

level. While Akon et al. [8] analyzed 3GPP Release 17 (which �xed

this �aw), their model would not have found the over-privilege,

because they assume the logic is correct.

In this paper, we study over-privilege in the 5G service-level

OAuth policy logic. We overcome the limitations of ambiguous and

underspeci�ed 3GPP policy by leveraging how developers have

interpreted the standards. Speci�cally, we use the aggregate of

four open-source 5G core implementations to approximate the

required functionality. We use static program analysis to extract

access patterns that de�ne NF calls to privileged operations in other

NFs. In doing so, we identify two service-level OAuth scopes that

are too coarse-grained. We reported our �ndings to the GSMA who

have issued CVDs and made recommendations to the 3GPP.

Key Results: The newly identi�ed policy �aws (a) allow interrup-

tion of UE connectivity and (b) provide an additional attack vector

to extract subscriber information. The �rst policy �aw allows dis-

ruption of UE connectivity, which may trigger a re-authentication

with the core network. During this time, the UE cannot directly

connect to the Internet or may have their tra�c relayed through a

malicious Access & Mobility Management Function (AMF). The sec-

ond policy �aw allows an attacker to extract sensitive subscription

data for a UE (e.g., subscribed slices, integrity protection, encryption

policy, IP addresses, charging, and QoS policies) from the Uni�ed

5GAC-Analyzer: Identifying Over-Privilege

Between 5G Core Network Functions WiSec ’24, May 27–30, 2024, Seoul, Republic of Korea

3GPP OpenAPI

Speci�cations

OAuth

Policy

API

Speci�cations

free5GC SD-Core OAI Open5GS ... Future Core

Code

Analysis
Access

Patterns

Policy

Generator

Policy

Analysis

5GAC-Analyzer

Least-Privilege

OAuth Policy

Over-Privilege

Flaws

Figure 2: 5GAC-Analyzer uses software diversity to identify over-privilege and proposes a revised policy for the 3GPP speci�cations.

two types of scopes: service-level and operation-level. When an

access token is assigned a service-level scope, it authorizes access

to any operation in that service. An operation-level scope is more

�ne-grained and overrides service-level scopes where they are

de�ned. Operation-level scopes can still be associated with multiple

operations in a service, but they are less-privileged than a service-

level scope (which allows access to all operations). The 3GPP uses

service-level scopes in most cases (e.g., nudm-ee); however, it uses

operation-level scopes for highly privileged operations (e.g., nudm-

ee:subscription:create).

Based on the 3GPP standards [3], OAuth enforcement should

operate as follows. When a consumer NF wants to call an operation

exposed by a producer NF, it will �rst ask the Network Repository

Function (NRF) for the access token needed. The NRF will validate

the requesting NF’s identity by using TLS mutual authentication

and grant the token with the appropriate OAuth scopes. The client

NF then sends the access token with the request to the producer

NF. When the producer NF receives the request, it will check and

validate that the access token has the OAuth scope required by

the API. If the validation succeeds, the producer NF performs the

operation and returns the appropriate result to the consumer NF.

3GPP TR 33.855 Key Issue #29: The 3GPP published a technical

report [1] describing security issues within the 5G core service-

based architecture. It found that some operations in an NF’s exposed

services are more sensitive than others. In the report, Key Issue #29

describes the UDR’s data-repository service as providing policy,

exposure, and application data that many NFs access and modify.

However, this service also includes highly-sensitive subscription

data, including cryptographic keys and primitives used for UE

authentication.

Figure 1 shows two slices interacting with the same UDR in the

core network. A Policy Control Function (PCF) in one network slice

can access or modify the core network’s subscription data in the

UDR under the 3GPP access control policy. Furthermore, if network

slices do not operate their own UDR, their highly sensitive data are

exposed to other slices. Figure 1 shows two types of connections

between NFs. The OAuth policy allows connections 1, 3, and 5; how-

ever, 2 and 4 are permitted by the policy but should never happen in

practice. The PCF in slice A could be given subscription information

used by network slice B only, thus breaking the isolation between

slices. The speci�c problem with the subscription data in 3GPP TR

33.855 Key Issue #29 was that a service-level scope was assigned

to all operations when some were more privileged. The 3GPP con-

cluded that only the UDM should access the subscription data and

created a new operation-level scope for all of the subscription data

operations.

Threat Model and Assumptions: We assume that each NF re-

quires di�erent access levels to di�erent data types in the 5G core.

We consider two types of adversaries that have compromised NFs.

First, we consider adversaries that have compromised the container

or virtual machine that runs an NF by exploiting a vulnerability in

that NF. We assume the NRF cannot be compromised. The NRF per-

forms most access control checks and grants scoped access tokens

to other NFs [2]. If the NRF is compromised, access control in the

core fundamentally breaks down. Second, we consider a malevolent

or curious business customer that may operate its slice in a way

that harms the core network. We assume that every instance of

an NF is on a di�erent physical network than every other NF, and

the 5G core may be distributed across many di�erent locations.

When an NF is compromised, we assume it can create arbitrary

requests to any other NF with exposed API interfaces over HTTP.

We assume that the HTTP interface is encrypted with TLS and

performs mutual authentication between all NFs. Additionally, we

consider the cloud provider, physical hardware, UE, and RAN as

part of the trusted computing base.

3 OVERVIEW

The 3GPP standards de�ne all NFs, services, and operations, includ-

ing parameters and return data types. However, they ambiguously

de�ne the service-level logic of where and when operations should

be called from which NFs. This lack of detail is intentional, as the

3GPP wants to allow developers to design systems in �exible and

creative ways. Our insight is to use static program analysis to ex-

tract access patterns that represent which NFs use which privileged

operations. However, each implementation implements function-

ality in its own way. Therefore, it is insu�cient to consider only

one implementation. As such, we take the union of access patterns

across multiple cores to extract the functionality intended by the

standards.

Figure 2 provides a high-level overview of our approach called

5GAC-Analyzer. Speci�cally, 5GAC-Analyzer is a collection of Cod-

eQL queries and Python scripts that extracts access patterns and

compares those against OAuth rules in the 3GPP speci�cations.

WiSec ’24, May 27–30, 2024, Seoul, Republic of Korea Seaver Thorn, K. Virgil English, Kevin R. B. Butler, and William Enck

Table 1: A uni�ed analysis model is needed to handle how

5G cores implement similar functionality di�erently.

Core
Static API
Routes

State
Machine

Function
per API

free5GC (R15) ✓ ✗ ✓

SD-Core (R15) ✓ ✗ ✓

OAI (R15) ✗ ✗ ✓

Open5GS (R16 & R17) ✗ ✓ ✗

We use these access patterns to (a) provide a set of potential over-

privileged policy �aws for a human analyst and (b) derive a least-

privilege OAuth policy. Section 4 details our analysis framework.

Section 6 describes the generation of a least-privilege policy.

Challenge: 5G cores di�er vastly in implementation. Developers

make a range of software design choices when implementing the

5G core. Table 1 shows the high-level di�erences between the 5G

core implementations relevant to our analysis. In addition to the

choice of programming language, implementations use di�erent

abstractions to call APIs and handle requests. For example, free5GC

statically de�nes strings for each HTTP REST API and creates a

dedicated function to handle them. In contrast, Open5GS creates

a state machine for each service and demultiplexes HTTP REST

APIs using conditional logic. The 3GPP standards do not generally

specify access patterns; developers need to read and interpret the

standards to determine which ones are necessary. Additionally, the

3GPP standards de�ne alternative methods of implementing the

same functionality. For example, OpenAirInterface (OAI) registers

callbacks between NFs by passing HTTP REST strings as arguments

to other APIs.

To address this challenge, we de�ne a CodeQL model to query

for access patterns similar to how Prolog is used in prior work. We

chose CodeQL because it can analyze multiple programming lan-

guages with the same abstractions. Therefore, de�ning a CodeQL

model allows us to transfer much of the analysis between imple-

mentations. Using this model, we simplify the static analysis to

creating subqueries to identify key features, such as identifying

service entry points and extracting proxy function calls.

Our CodeQL implementation covers four open-source 5G core

implementations including two versions of one 5G core targeting

two di�erent 3GPP release versions: (1) free5GC version 3.3.0 (R15);

(2) ONF SD-Core version 1.3 (R15), which is a fork of free5GC;

(3) Open5GS versions 2.5.4 (R16) and version 2.6.4 (R17); and (4) OAI

version 1.5.1 (R15). When new access patterns are implemented

into open source cores, we can analyze new portions of the access

control policy.

4 5G CORE ANALYSIS WITH CODEQL

Our CodeQL model translates formal de�nitions of access patterns

into CodeQL queries. An access pattern represents an API call for

an operation from one NF to another. Extracting access patterns in-

volves capturing all API calls associated with an NF. Any reachable

API calls are added to the list of access patterns for that NF. We

now formally describe the mathematical notation that our CodeQL

model is based on.

1 from ServiceCall s, string handleName

2 where (exists(Handler hh | isDescendant(s, hh.asFunction ()) |

handleName = hh.getName ())

3 or (exists(TerminatingFunction f | isDescendant(s, f) |

handleName = f.getName ())

4 and not exists(Handler hh | isDescendant(s, hh.

asFunction ()))

5))

6 select s.getHttpType () as http_type ,

7 handleName as serviceCallCFSource ,

8 s.getSourceNF () as sourceNF ,

9 s.getName () as serviceCallFunction ,

10 s.getTargetNF () as targetNF ,

11 s.getColonizedPath () as targetPath ,

12 s.getPathRoot () as targetRootPath

Figure 3: CodeQL Entry Point Extraction. This query structure ap-

plies to all analyzed cores, even though they are written in Go and C.

Let N be the set of all NFs, S be the set of all services, and O be

the set of all operations. Each NF = ∈ N is a set of services (⊆ S.

Each service B ∈ S is a set of operations$ ⊆ O. Finally, we assume

a set of permissions P is text strings used to de�ne access control

rules.

De�nition 1 (Access Pattern). The set of all possible access pat-

terns A is a set of pairs. Let = ∈ N and > ∈ O be an NF and an

operation respectively. An access pattern 0 ∈ A is a pair (=, >)

empirically derived through program analysis. Conceptually, an

access pattern captures one NF calling an operation in another NF.

As such, each access pattern consists of a calling NF, receiving NF,

service, and an operation. For simplicity, our formal notation only

includes the calling NF and operation.

De�nition 2 (Access Control Policy). Let the set of all possible

access rules R be a set of triples (=, >, ?), where = ∈ N , > ∈ O, and

? ∈ P are an NF, an operation, and a permission text string. A

policy Γ is a set of access rules.

Conceptually, an access control policy represents the allowed

interactions between NFs and an operation. The policy consists of

many rules, where each rule describes a single interaction between

an NF and an operation. The OpenAPI standard used by the 3GPP

allows specifying permissions (a) for each operation or (b) for a

service, which includes many operations. Each service groups op-

erations by functionality; however, as previously discussed, these

groups do not consider the exposed data.

CodeQL Implementation: For each core implementation, 5GAC-

Analyzer requires a query to identify: (1) the calling NF, (2) an HTTP

type of an API path (e.g: POST, GET, PUT), (3) the API path itself,

and (4) the name of the function that calls the API, or applicable

code location. We implement a query in the model for each of these

pieces of information, shown in Figure 3. Each 5G core needs a

submodule that includes implementation-speci�c details to identify

an access pattern. To determine reachability, 5GAC-Analyzer begins

at the program’s main entry point and recursively searches for the

corresponding code that calls the API.

Each submodule needs to implement the queries from Figure 3.

Section 4.1 describes how to identify service entry points in the

called NF, which are the getTargetNF() and handleName CodeQL

queries. Section 4.2 describes the getHttpType, getTargetNF, getCol-

onizedPath, and getRootPath queries. Reachability analysis requires

5GAC-Analyzer: Identifying Over-Privilege

Between 5G Core Network Functions WiSec ’24, May 27–30, 2024, Seoul, Republic of Korea

no additional queries and is included by implementing the above

queries.

4.1 Identifying Service Entry Points

5GAC-Analyzer needs to identify all API entry points in the im-

plementations to determine which 3GPP speci�cation APIs are

supported. In some cases, the speci�cations alone do not provide

su�cient detail to identify all entry points in a implementation. All

5G cores that we analyzed use the OpenAPI-Generator [19] tool to

create code from the 3GPP speci�cations. Therefore, our analysis

uses the speci�cations and name construction patterns to identify

the code implementations for entry points.

Free5GC, SD-Core & OAI: OpenAPI-Generator’s template uses

the operationId �eld in the OpenAPI speci�cation to name the

function in the source code. Unfortunately, the 3GPP OpenAPI

speci�cation and OpenAPI-Generator have two limitations: (1) the

operationId is not de�ned for every operation, and (2) entry points

will use the same function names when the operationId is the

same. OpenAPI-Generator creates these functions with the same

function name because they have the same operationId in the 3GPP

speci�cations.

We use CodeQL to identify each service’s routing table, which

matches APIs to functions. Importantly, this describes each APIs

implementation for a particular operation in the speci�cations.

CodeQL identi�es the routing table by searching all global variables

for ones that match the routing table type. The routing table is a list

of API paths and a function pointer. In OAI, a C++ class is de�ned

with function pointers mapping to APIs rather than a routing table,

however, it serves the same purpose.

5GAC-Analyzer assigns the function to the corresponding API

endpoint based on its unique URI that is de�ned in a routing table

structure for the HTTP service. A backwards call graph analysis

veri�es the target service URI from a generated Router object or

function call in OAI. This strategy successfully identi�es the entry

points in the free5GC, SD-Core, and OAI codebases.

Open5GS: Open5GS entry points have manually-generated func-

tion names. Therefore we can not use the operationId to identify

these functions. Instead, we extract these functions from the state

machines Open5GS uses to handle incoming requests. To identify

these functions, 5GAC-Analyzer needs to: (1) collect all functions

that take the API request structure as a parameter; (2) perform a call

graph analysis to verify that this function is called somewhere in

the call graph; and (3) extract the URI path from the state machine.

4.2 Extracting Proxy Function Calls and Access
Patterns

5GAC-Analyzer extracts theAPI calls that crossmicroservice bound-

aries, which we call access patterns. These cross-microservice API

calls typically occur via a proxy function that wraps the HTTP

request. 5GAC-Analyzer’s goal is to identify the proxy functions,

the URI, and receiving NF for every HTTP request. Finally, 5GAC-

Analyzer maps each access pattern to the 3GPP OAuth policy to

extract the access token that is necessary to call all identi�ed APIs.

For all cores, 5GAC-Analyzer starts the process by identifying

the common function that crafts and sends the HTTP request. For C-

based cores, this is some variation of a curl API. For Go-based cores,

1 CoreServiceCall () {

2 exists(Function f, CallExpr c |

3 c.getCalleeName () = "CallAPI" and

4 c.getEnclosingFunction () = f

5 | this = f and apicall = c)}

Figure 4: Lower-level CodeQL query to identify proxy functions in

free5GC & SD-Core. Additional checks are made in other queries to

identify a complete list of proxy functions.

this is the CallAPI function, generated by the OpenAPI-Generator.

5GAC-Analyzer uses these common HTTP request functions to

identify the proxy functions in each core.

Free5GC & SD-Core: Figure 4 shows the CodeQL query identify-

ing all functions in the code base that call the CallAPI function. The

target URI in the HTTP request is extracted to map the proxy func-

tion to a target service endpoint. 5GAC-Analyzer then performs call

graph analysis to connect proxy functions to calling entry points.

This analysis achieves two goals: identifying all auto-generated

proxy functions implemented and connecting API calls with their

calling NF entrypoint. The identi�ed connections create our access

pattern (n, o) tuples.

Open5GS: Open5GS entry points are organized di�erently than

free5GC and SD-Core. As mentioned previously, Open5GS man-

ages an internal state machine to handle requests and responses

to proxies and stubs. It dispatches requests into separate functions

stemming from the main state machine function. Additional pro-

gram analysis is necessary to identify what API these functions

implement, as they are not named consistently.

API request functions are identi�ed as the callers of common

HTTP request functions containing a service endpoint as the target.

Target HTTP endpoints are encoded inside a message structure

using constant strings in each request function. We use CodeQL

to extract these strings to identify data �ows from these message

strings to HTTP network requests. 5GAC-Analyzer maps each func-

tion call to an API in the speci�cation using the HTTP type and path

information. Finally, we identify call paths from the program start

or state machine start that lead to the network request functions.

OAI: OAI presented unique challenges compared to the other cores.

Similar to the other cores, 5GAC-Analyzer starts by identifying

calls to common HTTP request functions and the proxies calling

them. However, OAI does not consistently use constant strings to

identify the target URI of the call. Instead, combinations of string

literals, function calls, and dynamic variables containing both are

used to craft the target URI. Many of the target URI’s are determined

at runtime, and are therefore not directly obtainable with static

analysis.

String literals and function calls that return static variables are

directly resolved. Some URIs depend on con�guration or other

dynamic information only determined at runtime. In such cases,

HTTP calls are still identi�ed, and we output them for manual

investigation. Functions with dynamic returns are resolved as the

function name, and that name is used in manual post-processing to

identify the target URI path. Variables are recursively resolved to

strings and function names based on the same criteria. Two experts

veri�ed all manual components, mapping function names to 3GPP

WiSec ’24, May 27–30, 2024, Seoul, Republic of Korea Seaver Thorn, K. Virgil English, Kevin R. B. Butler, and William Enck

Table 2: Analysis statistics for the analyzed 5G cores. We include the 3GPP release for each 5G core target. We consider the

union of all cores in our analysis.

Open Source Core NFs
Ser-
vices

APIs
Access
Patterns

NF
Interactions

Stub
APIs

Dynamic
Access
Patterns

free5GC (R15) 10 13 84 66 18 10 0
SD-Core (R15) 8 13 81 68 14 10 0
OAI (R15) 9 12 43 47 16 9 13

Open5GS (R16 & R17) 10 14 48 60 22 12 10

Union 12 19 100 83 22 31 23

speci�cations by examining the OAI source code. In cases where

the URI could not be determined by both 5GAC-Analyzer or manual

investigation, the result was discarded.

OAI’s implementation of functionality as callbacks also poses

challenges for static analysis. Unlike other cores, OAI relies heavily

on callback URLs to receive information, making it di�cult to

determine the exact endpoints that will be called statically. For

example, callback URLs often include the URL of the API to call in

the response of registering a callback. Therefore, it is not possible

to determine the endpoint that will get called statically.

5 3GPP OAUTH POLICY ANALYSIS RESULTS

This section details the results of our policy analysis. 5GAC-Analyzer

identi�ed three instances of over-privilege in the 3GPP OAuth pol-

icy. Two of these instances are new; the third con�rms 3GPP TR

33.855 Key Issue #29, which was �xed in Release 17. We manu-

ally con�rmed the two new instances and reported them to the

GSMA. Independent of 5GAC-Analyzer, we discover a �aw with

how the security requirements are encoded in OpenAPI. This �aw

nulli�es all access control scopes when OAuth is enabled. After a de-

tailed discussion, the GSMA issued three CVDs and recommended

changes to the 3GPP, which are currently under consideration. The

remainder of this section details the results of 5GAC-Analyzer and

describes the discovered policy �aws in detail.

5.1 Experimental Setup

We ran our analysis on 3GPP Releases 15-17, depending on which

core we were analyzing. This analysis contains 79 �les per 3GPP

release de�ning the access control policy and API calls. The changes

introduced between 3GPP versions did not impact our �ndings,

as there were minimal changes in the access control policy. We

obtained the policy �les from the 3GPP working area website [5].

We use the policy �les de�ning access control policy and additional

structures for NFs present in free5GC, SD-Core, Open5GS, and OAI.

The open-source 5G cores do not implement every NF standardized

in 3GPP Release 15-17, whichwe discuss further in Section 7. Finally,

we �lter out all unused policy �les for APIs and services that are

not implemented in any of the cores, leaving a total of 39 policy

�les per 3GPP release.

5.2 Static Analysis Results

5GAC-Analyzer uses static analysis to extract access patterns and

therefore may have both false positives and false negatives. For

example, 5GAC-Analyzer cannot detect access patterns that depend

on data determined at runtime. We begin by detailing the access

patterns reported by 5GAC-Analyzer for each of the cores. We then

describe the impact of false positives and false negatives on our

results. In cases where we encountered false positives and false

negatives, we resolved themmanually to ensure they did not impact

our �ndings.

Access Pattern Extraction: Table 2 shows the results of 5GAC-

Analyzer. When considering the union of all 5G cores, we identi�ed

83 access patterns. There was a large overlap between all the cores’

access patterns. However, each core had at least one unique access

pattern. For example, free5GC implemented more access patterns

related to non-3GPP access and many additional APIs between the

UDR and UDM. SD-Core forked an earlier version of free5GC and

has additional access patterns for NF deregistration. Open5GS and

OAI both had unique subscription-callback APIs that no other core

implemented. We did not �nd any di�erence in the access patterns

between Open5GS Releases 16 and 17, so we do not include separate

rows in Table 2.

Missing Access Patterns: A dynamic access pattern is an access

pattern that depends on runtime variables. CodeQL cannot fully

resolve dynamic access patterns because it uses static analysis. False

negatives in the extraction of access patterns leads to false positives

in the subsequent policy analysis.

We performed a simple experiment to understand the impact of

dynamic access patterns. Let� be the set of our initial conservative

results. We then obtained a result set ! with �lters removed or

default values for unresolved attributes. We then examine ! − �

for APIs. In this expanded set, there are some unresolved attributes,

but enough information to determine the access pattern manually.

In these cases, our analysis identi�es interesting code that requires

further human analysis. We found 23 dynamic access patterns in all

cores and all were redundant with respect to the other cores auto-

mated results. All identi�ed dynamic access patterns are manually

added to our access pattern set before the least privilege analysis.

Erroneous Access Patterns: API stubs are APIs that exist in the

code and are reachable; however, they are not implemented. Most

API stubs include a single print statement indicating it is not im-

plemented. Unimplemented API stubs caused false positives in the

extraction of access patterns, which can cause false negatives in

the policy analysis. We identi�ed 31 stub APIs manually, which we

removed from our list of APIs before considering access patterns.

WiSec ’24, May 27–30, 2024, Seoul, Republic of Korea Seaver Thorn, K. Virgil English, Kevin R. B. Butler, and William Enck

1 openapi: 3.0.0

2 info:

3 version: 1.0.8

4 title: Namf_Communication

5 description: |

6 AMF Communication Service

7 © 2022, 3GPP Organizational Partners (ARIB , ATIS , CCSA , ETSI ,

TSDSI , TTA , TTC).

8 All rights reserved.

9 security:

10 - {}

11 - oAuth2ClientCredentials:

12 - namf-comm

13 externalDocs:

14 ...

15 servers:

16 - url: '{apiRoot }/namf -comm/v1'

17 ...

18 paths:

19 /ue -contexts /{ ueContextId }: ...

20 /ue -contexts /{ ueContextId }/ release: ...

21 ...

Figure 6: Example OAuth policy in the AMF Communication ser-

vice [3]. Line 10 indicates that an OAuth token is optional for all

endpoints in the service [52].

the exposed UE’s subscription data; however, cryptographic infor-

mation is not exposed. For example, the endpoint POST /{supi}/am-

data exposes access and mobility data intended for the internal

operation of the AMF. However, the SMF also has access to this

endpoint and can retrieve information. Additionally, the SMF can

delete a subscription, which will cause instability in the AMF or

another NF that utilizes this service’s subscriptions. The SMF can

create a subscription to data it should not access in the nudm-sdm

service, causing a potential privacy violation. Our analysis deter-

mined that the SMF only needs to access data exposed by the GET

/{supi}/sm-data endpoint.

5.4 Additional Findings

During the process of extracting and modeling the 3GPP OAuth

policy, we identi�ed a problem with how the OAuth policy was

encoded in OpenAPI. Speci�cally, we found that the 3GPP policy

includes null access rules for each operation. While the 3GPP speci-

�cation states that OAuth is optional, an implementation enforcing

OAuth will interpret the null access rules as allowing all callers.

Hence, these rules negate the OAuth policy entirely.

Finding 3 - CVD-2022-0060 (Negated OAuth Policy): Figure 6

shows an example service’s YAML security de�nition. In an Ope-

nAPI security de�nition, the empty braces on line 10 mean that

OAuth is optional. The security requirements object in OpenAPI

accepts a list of security requirements, and only one list item needs

to be met for the request to be allowed. Therefore, even though addi-

tional OAuth requirements exist on an API on lines 11–12, all rules

following an empty brace are negated. Note that line 10 de�nes the

security requirements for the entire service. If the policy de�nes

security requirements for individual APIs, the requirements for the

API override the global requirement. However, we found that the

3GPP speci�cation uses empty braces for all security requirements,

both global and per-API.

1 Procedure CalculatePolicy((,�)
2 Γ ← ∅;

3 for B ∈ (do

4 � ← ∅ // Set of 2
$ × 2# pairs

5 for > ∈ B do
6 � := {= | (=,>) ∈ �} // All = that call >

7 found← false;

8 for ($, #) ∈ � do
9 if # = � then
10 �.append(4) // update $ in �

11 found← true;

12 continue;

13 if found = false then
14 �.append({> },�) ;

15 for ($, #) ∈ � do
16 ? ← CreatePermissionName(B,$);

17 for > ∈ $ do
18 for = ∈ # do
19 Γ.append(=,>, ?) ;

20 return Γ;

Algorithm 1: Algorithm to create a least-privilege policy for a set of

services (based on a set of access patterns �

This �aw results from a misunderstanding of the empty braces

feature in OpenAPI. The OpenAPI speci�cations [52] give an ex-

ample of optional policy using empty braces. However, we think

optional enforcement is the intended purpose in the 3GPP speci�ca-

tions. Given the current policy speci�cation, 5G core implementa-

tions that wish to enforce OAuth must manually remove all empty

braces, which is error prone.

When we reported this �aw to the GSMA they in turn contacted

OpenAPI about the semantics of the speci�cation. After multiple

rounds of email exchange, the GSMA concluded that the existing

policy was ambiguous and requires modi�cation.

6 PROPOSED POLICY FIXES

To address the over-privilege, 5GAC-Analyzer generates a least-

privilege policy. Our policy analysis suggests de�ning six operation-

level scopes in two services that only de�ne service-level scopes.

Each of the six scopes has a lesser privilege than the two currently

existing access tokens. Note that our proposed changes to the OAuth

policy do not prevent any functionality and instead require each

implementation to request a di�erent access token.

6.1 Generating Least-Privilege Policy

We derive a least-privilege policy based on a set of services (and a

set of access patterns �. Recall that each B ∈ (is a set of operations.

Conceptually, our analysis seeks to achieve least-privilege without

unusable permission bloat (e.g., one permission per operation). The

existing 3GPP policy de�nes most permissions at the service-level.

Therefore, our analysis uses service-level permissions whenever

possible.

Let$B be the set of operations for service B . If all > ∈ $B have the

same set of accessing NFs in �, then we de�ne the permission at

the granularity of the service. Otherwise, we cluster each > by NF

callers and create new permissions based on the set of callers for

each B . The 3GPP policy already uses service names for the scope

in an access token. For �ner-grained names, we create names based

on the pre�xes of the operation names.

5GAC-Analyzer: Identifying Over-Privilege

Between 5G Core Network Functions WiSec ’24, May 27–30, 2024, Seoul, Republic of Korea

Table 3: Proposed changes to the access control policy in the 5G core.

Service Consumer NF Proposed Access Token APIs Finding

namf-comm SMF namf-comm:n1n2-messages POST /ue-contexts/{ueContextId}/n1-n2-messages Finding 1

AMF namf-comm:transfer POST /ue-contexts/{ueContextId}/release
POST /ue-contexts/{ueContextId}/transfer
POST /ue-contexts/{ueContextId}/transfer-update
PUT /ue-contexts/{ueContextId}

Finding 1

PCF namf-comm:subscriptions POST /subscriptions Finding 1

nudm-sdm SMF nudm-sdm:sm-data GET /{supi}/sm-data Finding 2

UDM nudm-sdm:shared-data GET /shared-data
POST /shared-data-subscriptions
DELETE /shared-data-subscriptions/{subscriptionId}

Finding 2

AMF nudm-sdm:amf-data POST, DELETE /{ueId}/sdm-subscriptions/*
GET /{supi}/nssai
PUT, GET /{supi}/am-data/*
GET {supi}/smf-select-data
GET {supi}/ue-context-in-smf-select-data

Finding 2

nudr-dr UDM nudr-dr:subscription-data GET, POST, DELETE, PATCH /subscription-data/* Fixed in 3GPP R17

PCF nudr-dr:policy-data GET, POST, DELETE, PATCH /policy-data/* Fixed in 3GPP R17

De�nition 3 (Least-Privilege Policy). Let a Γ be a policy and �

be a set of access patterns. Γ is least-privilege with respect to � if

∀(=, >, ?) ∈ Γ, (=, >) ∈ � (security requirement) and ∀(=, >) ∈ �,

(=, >, _) ∈ Γ (functionality requirement), where _ represents any

permission.

Conceptually, a least-privilege policy is an access control policy

where each access rule corresponds to an access pattern. Algo-

rithm 1 creates the least-privilege policy based on a set of services

(and access patterns �. It starts with an empty policy Γ and builds

it up by going through every service B ∈ (, �lling in the structure.

In lines 4-14, we create groups of operations � , which is a tuple

of a set of operations and an NF ($, #). In lines 16-19, we create

a permission for each group of operations, which ensures a new

permission for each access pattern. The result of the algorithm

is an access control policy that can be used to further re�ne the

speci�cations.

Policy Changes:We propose six new access tokens to address the

overprivileged policy. Table 3 shows the proposed tokens. These six

access tokens prevent the consumer NF from accessing every API

in the service and limit them to only the APIs described in the table.

The �rst changes in the access control policy relate to namf-comm

and Finding 1. Three new access tokens separate the exposed APIs

into NF-speci�c groups, negating the scenarios discussed in Sec-

tion 5.3. These tokens are shown in rows 2-4 of Table 3.

The next changes are in the nudm-sdm service, exposed by the

UDM. This service consumes the subscription data from the UDR

and provides other NFs with only what they need. Three new tokens

prevent consumer NFs from receiving more data than they require.

These tokens are described in rows 5-7 of Table 3. Finally, the

changes described in 3GPP TR 33.855 Key Issue #29 were discovered

independently by our analysis, so we include them in our �ndings

(nudr-dr). However, the access control policy changes for nudr-dr

were implemented in 3GPP Release 17 [4].

7 DISCUSSION

Incomplete Implementations: Cellular infrastructure always

lags the 3GPP speci�cations, and even production implementations

often fail to implement all features [38, 43]. The open source cores

we analyzed have not yet implemented every NF and API de�ned

by the 3GPP; however, they are fully working 5G cores. Infact, OAI

and Open5GS have commercial backing for enterprises [26, 47].

Our analysis is limited to what code is implemented and used in the

union of all analyzed 5G cores. We expect our analysis to continue

working in future 3GPP releases of the open-source implementa-

tions we have analyzed. This is because these implementations will

continue adding new HTTP calls between the NFs in the same way

as they have previously.

We note that if an implementation has incorrectly added access

patterns that should not exist, our analysis will not identify this as

an instance of over-privilege. We believe all of our results are repre-

sentative of the current functionality of the 5G cores, as discussed

in Section 5. Our analysis identi�es NF interactions by examining

HTTP calls, therefore, NFs that do not implement a service-based

architecture such as the UPF, or Non-3GPP Interworking Function

(N3IWF) are not included.

OAuth Enforcement in Implementations:While we used the

5G implementations to discover �aws in the 3GPP policy, we did

not discover vulnerabilities in the implementations themselves.

In fact, none of the analyzed implementations currently enforce

OAuth between NFs. To test our least-privileged OAuth policy,

we created 5GAC-Instrumenter, which automatically instruments

NFs in free5GC to request, send, and validate OAuth tokens based

on a policy. All OAuth procedures can be turned on or o� with a

con�guration option compatible with the existing con�guration

in free5GC. 5GAC-Instrumenter inserts access token requests to

all proxies in free5GC and token validation at all entry points. We

did not encounter any problems running free5GC with the least-

privileged OAuth policy. We created pull requests in free5GC with

the OAuth-enforced code base which are under an active discussion.

free5GC only began to implement OAuth functionality when we

created pull requests to add it. The work to implement OAuth in

free5GC is still ongoing [27].

WiSec ’24, May 27–30, 2024, Seoul, Republic of Korea Seaver Thorn, K. Virgil English, Kevin R. B. Butler, and William Enck

8 RELATED WORK

Static Analysis for Access Control: Static analysis has been used

in prior work to identify a security policy [17, 37, 40, 53] or con�ne

system calls within an OS or container [29, 44]. Authorization veri-

�cation has been widely studied for at least two decades [23, 28, 60].

Li et al. [40] analyzed microservice code using static analysis to

extract interactions between the microservices and make a security

policy. They enforced the security policy at the container orchestra-

tion level in Kubernetes. This architecture does not apply to a 5G

core as OAuth is the access control mechanism in the 5G core [3].

NLP is also common to extract the access control policy from

standards documents [9, 57]. Xiao et al. [57] introduce Text2Policy

which parses and annotates words in phrases. Then these annota-

tions are used to extract entities, actions and objects of the access

control policy. These are then converted into a machine-readable

format and implemented. Text2Policy identi�es between 80 and

90 percent of access control policy-relevant sentences and actions.

NLP-based often has many limitations and misses important infor-

mation. Fortunately, in the 5G speci�cations, we are given machine-

readable descriptions of all APIs.

OAuth: OAuth 2.0 is a widely used authorization framework that

is used across many platforms, such as web, mobile, and IoT [30, 34,

56]. Most security e�orts towards OAuth have focused on errors in

speci�c implementations [12, 18, 39, 50, 51, 54, 59]. A study of over

600 mobile applications found that around 60% of them incorrectly

implement OAuth and are vulnerable [18]. A more recent study

performed on Android applications found that this number has

decreased to only 32% of applications implementing an OAuth secu-

rity mistake [45]. An analysis of OAuth libraries identi�ed most of

them do not implement Cross-Site Request Forgery protection [51].

Some studies [46, 58] analyzed OAuth provider implementations

to identify �aws in the OAuth protocol. They did not examine par-

ticular access control policies checking for over privilege, but only

that OAuth implementations correctly enforce OAuth.

The OAuth standard is written in natural language [30]. An anal-

ysis of the OAuth protocol revealed four previously unknown vul-

nerabilities [25]. They found these vulnerabilities to be exploitable

in practice and considered all four grant types of OAuth, including

client credentials.

Cellular Network Security: All cellular generations have their

own access control challenges. “phreakers” can be highlighted as the

�rst instances of failed access control in telecommunications [48].

After the transition to SS7, multiple vulnerabilities were discovered

within the protocol [41]. However, cellular networks have gotten

signi�cantly more complex since 2G. SMS was found to be vulner-

able to large-scale botnet attacks [55]. More recently introduced

protocols also have shortcomings. For example, issues in 5G-AKA

have been identi�ed with Tamarin by modeling the protocol for-

mally [13, 22]. 5G-AKA was found to be vulnerable to spoo�ng and

authentication bypass race conditions. Multiple works [7, 14, 49]

highlight access control challenges from newly introduced 5G fea-

tures, such as multi-tenancy, and NF virtualization. Concurrent to

our paper, Akon et al. [8], formally analyzed the 3GPP speci�cations

to identify potential problems in how OAuth is enforced; however,

we expand the analysis to consider the OAuth policy directly.

LTEInspector and 5GReasoner are symbolic model checkers

for LTE and 5G [31, 32]. Numerous works have analyzed spe-

ci�c portions of 5G standards and have suggested various im-

provements [6, 21, 33]. All of these 5G works study speci�cations,

and do not consider implementations. Various LTE protocols have

been fuzzed in real implementations, discovering DoS, spoo�ng,

and eavesdropping on user tra�c [36]. BaseSAFE fuzzes baseband

�rmware embedded in phones by targeting individual functions of

interest [42]. BASESPEC compares structures embedded in base-

band �rmware with the same structures in the speci�cation, un-

covering 0-day remote execution attacks [35]. Importantly, both

works focus on targeting UE devices rather than the RAN or core

network.

Closest to our work, Akon et al. [8], formally modeled 5G’s

access control between NFs and found many issues related to 5G’s

slicing capability. They found that a malicious NF could obtain

an access token to a NF of a certain type (i.e., AMF) and then use

that token to access an AMF on a slice they should not. Another

�aw they found was that if no network slice was speci�ed in the

access token request, they would be granted access to all slices

in the access token. Among these and other identi�ed �aws, they

tested these attacks work on free5GC. To identify the �aws, they

analyze the NFPro�le structure of a NF and consider combinations

of possible values described by the speci�cations. However, they

do not consider whether the speci�cations have �aws, which was

highlighted by 3GPP TR 33.855 Key Issue #29.

9 CONCLUSION

The 5G core makes signi�cant advances over the 4G core by switch-

ing from specialized hardware to a service-based architecture run-

ning on commodity cloud infrastructure and supporting third-party

NFs. These changes introduce new attack surfaces that require care-

ful consideration. This paper used static analysis of open-source 5G

core implementations as a source of knowledge to identify �aws in

the 3GPP’s OAuth access control policy. In doing so, we identi�ed

two previously unknown policy �aws. These �aws allow amalicious

NF to interrupt UE network connectivity and extract subscriber

information. We further proposed policy �xes to address overprivi-

lege in the speci�cation which will bene�t all implementations. By

adopting our re�ned policy, the 3GPP can reduce the attack surface

of the 5G core from new threats introduced by changes in 5G.

ACKNOWLEDGMENTS

This work is supported in part by NSF grants CNS-2054911 and

CNS-2055014. Any �ndings and opinions expressed in this material

are those of the authors and do not necessarily re�ect the views

of the funding agencies. We also thank Patrick Traynor and Roger

Brown for their feedback during the writing of this paper.

REFERENCES
[1] 3GPP. 2020. Study on security aspects of the 5G Service Based Architecture (SBA).

Technical Report (TR). 3rd Generation Partnership Project (3GPP). https://port
al.3gpp.org/desktopmodules/Speci�cations/Speci�cationDetails.aspx?speci�cat
ionId=3481

[2] 3GPP. 2022. 3rd Generation Partnership Project; Technical Speci�cation Group
Core Network and Terminals; 5G System; Uni�ed Data Management Services; Stage
3. Technical Standard (TS) 29.503. 3rd Generation Partnership Project (3GPP).

5GAC-Analyzer: Identifying Over-Privilege

Between 5G Core Network Functions WiSec ’24, May 27–30, 2024, Seoul, Republic of Korea

https://portal.3gpp.org/desktopmodules/Speci�cations/Speci�cationDetails.asp
x?speci�cationId=3342

[3] 3GPP. 2022. 3rd Generation Partnership Project; Technical Speci�cation group
Services and System Aspects; Security architecture and procedures for 5G system.
Technical Standard (TS) 33.501. 3rd Generation Partnership Project (3GPP). https:
//portal.3gpp.org/desktopmodules/Speci�cations/Speci�cationDetails.aspx?spe
ci�cationId=3169

[4] 3GPP. 2022. Release 17. https://www.3gpp.org/speci�cations-technologies/rel
eases/release-17

[5] 3GPP. 2023. 3GPP Portal > Home. https://portal.3gpp.org/#/
[6] Ijaz Ahmad, Tanesh Kumar,Madhusanka Liyanage, Jude Okwuibe,Mika Ylianttila,

and Andrei Gurtov. 2017. 5G security: Analysis of threats and solutions. In 2017
IEEE Conference on Standards for Communications and Networking (CSCN). IEEE,
193–199.

[7] Ijaz Ahmad, Tanesh Kumar,Madhusanka Liyanage, Jude Okwuibe,Mika Ylianttila,
and Andrei Gurtov. 2018. Overview of 5G security challenges and solutions. IEEE
Communications Standards Magazine 2, 1 (2018), 36–43.

[8] Mujtahid Akon, Tianchang Yang, Yilu Dong, and Syed Ra�ul Hussain. 2023.
Formal Analysis of Access ControlMechanism of 5GCoreNetwork. In Proceedings
of the 2023 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’23). Association for Computing Machinery, Copenhagen, Denmark.

[9] Manar Alohaly, Hassan Takabi, and Eduardo Blanco. 2018. A Deep Learning
Approach for Extracting Attributes of ABAC Policies. In Proceedings of the 23nd
ACM on Symposium on Access Control Models and Technologies (SACMAT ’18).
Association for Computing Machinery, New York, NY, USA, 137–148. https:
//doi.org/10.1145/3205977.3205984 event-place: Indianapolis, Indiana, USA.

[10] 5G Americas. 2021. Private & Enterprise Networks. Technical Report. 5G Americas,
Bellevue, WA. 39 pages. https://www.5gamericas.org/private-and-enterprise-
networks/

[11] 5G Americas. 2021. Security for 5G. Technical Report. 5G Americas, Bellevue,
WA. 39 pages. https://www.5gamericas.org/security-for-5g/

[12] Chetan Bansal, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, and Sergio
Ma�eis. 2014. Discovering concrete attacks on website authorization by formal
analysis. Journal of Computer Security 22, 4 (2014), 601–657. Publisher: IOS Press.

[13] David Basin, Jannik Dreier, Lucca Hirschi, Saša Radomirovic, Ralf Sasse, and
Vincent Stettler. 2018. A Formal Analysis of 5G Authentication. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security
(Toronto, Canada) (CCS ’18). Association for Computing Machinery, New York,
NY, USA, 1383–1396. https://doi.org/10.1145/3243734.3243846

[14] P Bisson and J Waryet. 2017. 5G PPP phase1 security landscape. 5G PPP Security
Group White Paper (2017), 66 pages.

[15] Evangelos Bitsikas, Syed Khandker, Ahmad Salous, Aanjhan Ranganathan, Roger
Piqueras Jover, and Christina Pöpper. 2023. UE Security Reloaded: Developing
a 5G Standalone User-Side Security Testing Framework. In Proceedings of the
16th ACM Conference on Security and Privacy in Wireless and Mobile Networks
(WiSec ’23). Association for Computing Machinery, New York, NY, USA, 121–132.
https://doi.org/10.1145/3558482.3590194 event-place: Guildford, United Kingdom.

[16] Evangelos Bitsikas and Christina Pöpper. 2021. Don’t hand it Over: Vulnerabilities
in the Handover Procedure of Cellular Telecommunications. In Annual Computer
Security Applications Conference (ACSAC). Association for Computing Machinery,
New York, NY, USA, 900–915. https://doi.org/10.1145/3485832.3485914

[17] Paolina Centonze, Robert J. Flynn, and Marco Pistoia. 2007. Combining Static and
Dynamic Analysis for Automatic Identi�cation of Precise Access-Control Policies.
In Twenty-Third Annual Computer Security Applications Conference (ACSAC 2007).
292–303. https://doi.org/10.1109/ACSAC.2007.39

[18] Eric Y. Chen, Yutong Pei, Shuo Chen, Yuan Tian, Robert Kotcher, and Patrick
Tague. 2014. OAuth Demysti�ed for Mobile Application Developers. In Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security. ACM, Scottsdale Arizona USA, 892–903. https://doi.org/10.1145/2660
267.2660323

[19] William Cheng, Jim Schubert, Christopher Bornet, Jeremie Bresson, sunn, and
Justin Black. 2024. Hello from OpenAPI Generator. https://openapi-generator.
tech/

[20] Merlin Chlosta, David Rupprecht, and Thorsten Holz. 2021. On the challenges
of automata reconstruction in LTE networks. In Proceedings of the 14th ACM
Conference on Security and Privacy in Wireless and Mobile Networks (WiSec ’21).
Association for Computing Machinery, New York, NY, USA, 164–174. https:
//doi.org/10.1145/3448300.3469133

[21] Merlin Chlosta, David Rupprecht, Christina Pöpper, and Thorsten Holz. 2021. 5G
SUCI-catchers: still catching them all?. In Proceedings of the 14th ACM Conference
on Security and Privacy in Wireless and Mobile Networks. 359–364.

[22] Cas Cremers and Martin Dehnel-Wild. 2019. Component-based formal analysis
of 5G-AKA: Channel assumptions and session confusion. (2019).

[23] Antony Edwards, Trent Jaeger, and Xiaolan Zhang. 2002. Runtime Veri�cation
of Authorization Hook Placement for the Linux Security Modules Framework. In
Proceedings of the 9th ACM Conference on Computer and Communications Security
(CCS ’02). Association for Computing Machinery, New York, NY, USA, 225–234.
https://doi.org/10.1145/586110.586141 event-place: Washington, DC, USA.

[24] Ericsson. 2021. The essential building blocks of E2E network slicing. Technical
Report. Ericsson, Stockholm, Sweden. 11 pages.

[25] Daniel Fett, Ralf Küsters, and Guido Schmitz. 2016. A Comprehensive Formal
Security Analysis of OAuth 2.0. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’16). Association for Computing
Machinery, New York, NY, USA, 1204–1215. https://doi.org/10.1145/2976749.29
78385 event-place: Vienna, Austria.

[26] Firecell. 2023. Orion 5G - �recell.io. https://�recell.io/orion-5g/
[27] free5gc 2024. free5GC. https://www.free5gc.org/
[28] Vinod Ganapathy, Trent Jaeger, and Somesh Jha. 2005. Automatic Placement of

Authorization Hooks in the Linux Security Modules Framework. In Proceedings
of the 12th ACM Conference on Computer and Communications Security (CCS ’05).
Association for Computing Machinery, New York, NY, USA, 330–339. https:
//doi.org/10.1145/1102120.1102164 event-place: Alexandria, VA, USA.

[29] Seyedhamed Ghavamnia, Tapti Palit, Azzedine Benameur, and Michalis Poly-
chronakis. 2020. Con�ne: Automated SystemCall Policy Generation for Container
Attack Surface Reduction. In 23rd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2020). USENIX Association, San Sebastian, 443–458.
https://www.usenix.org/conference/raid2020/presentation/ghavanmnia

[30] Dick Hardt. 2012. The OAuth 2.0 Authorization Framework. Request for Comments
RFC 6749. Internet Engineering Task Force. https://doi.org/10.17487/RFC6749
Num Pages: 76.

[31] Syed Hussain, Omar Chowdhury, Shagufta Mehnaz, and Elisa Bertino. 2018.
LTEInspector: A systematic approach for adversarial testing of 4G LTE. In Net-
work and Distributed Systems Security (NDSS) Symposium 2018.

[32] Syed Ra�ul Hussain, Mitziu Echeverria, Imtiaz Karim, Omar Chowdhury, and
Elisa Bertino. 2019. 5GReasoner: A Property-Directed Security and Privacy
Analysis Framework for 5G Cellular Network Protocol. In Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security. ACM,
London United Kingdom, 669–684. https://doi.org/10.1145/3319535.3354263

[33] Madhusanka Liyanage IjazAhmad, Shahriar Shahabuddin, Mika Ylianttila, and
Andrei Gurtov. 2018. Design principles for 5G security. A Comprehensive Guide
to 5G Security (2018), 75.

[34] Michael Jones, John Bradley, and Nat Sakimura. 2015. JSON Web Token (JWT).
https://doi.org/10.17487/RFC7519 Issue: 7519 Num Pages: 30 Series: Request for
Comments Published: RFC 7519.

[35] Eunsoo Kim, Dongkwan Kim, CheolJun Park, Insu Yun, and Yongdae Kim. 2021.
BaseSpec: Comparative Analysis of Baseband Software and Cellular Speci�cations
for L3 Protocols. In Proceedings 2021 Network and Distributed System Security
Symposium. Internet Society, Virtual. https://doi.org/10.14722/ndss.2021.24365

[36] Hongil Kim, Jiho Lee, Eunkyu Lee, and Yongdae Kim. 2019. Touching the un-
touchables: Dynamic security analysis of the LTE control plane. In 2019 IEEE
Symposium on Security and Privacy (SP). IEEE, 1153–1168.

[37] Sven Lachmund. 2010. Auto-generating access control policies for applications
by static analysis with user input recognition. In Proceedings of the 2010 ICSE
Workshop on Software Engineering for Secure Systems - SESS ’10. ACM Press, Cape
Town, South Africa, 8–14. https://doi.org/10.1145/1809100.1809102

[38] Oscar Lasierra, Gines Garcia-Aviles, Esteban Municio, Antonio Skarmeta, and
Xavier Costa-Pérez. 2023. European 5G Security in the Wild: Reality versus
Expectations. In Proceedings of the 16th ACM Conference on Security and Privacy in
Wireless and Mobile Networks (WiSec ’23). Association for Computing Machinery,
Guildford, Surrey, United Kingdom, 6. https://doi.org/10.1145/3558482.3581776

[39] Wanpeng Li and Chris J Mitchell. 2014. Security issues in OAuth 2.0 SSO im-
plementations. In International Conference on Information Security. Springer,
529–541.

[40] Xing Li, Yan Chen, Zhiqiang Lin, Xiao Wang, and Jim Hao Chen. 2021. Automatic
Policy Generation for Inter-Service Access Control of Microservices. In 30th
USENIX Security Symposium (USENIX Security 21). USENIX Association, 3971–
3988. https://www.usenix.org/conference/usenixsecurity21/presentation/li-xing

[41] G Lorenz, T Moore, G Manes, J Hale, and S Shenoi. 2001. Securing ss7 telecom-
munications networks. In Proceedings of the 2001 IEEE Workshop on Information
Assurance and Security, Vol. 2. Workshop on Information Assurance and Security,
West Point, NY, 273–278.

[42] Dominik Maier, Lukas Seidel, and Shinjo Park. 2020. BaseSAFE: Baseband SAni-
tized Fuzzing through Emulation. In Proceedings of the 13th ACM Conference on
Security and Privacy in Wireless and Mobile Networks. ACM, Linz Austria, 122–132.
https://doi.org/10.1145/3395351.3399360

[43] Shiyue Nie, Yiming Zhang, Tao Wan, Haixin Duan, and Song Li. 2022. Measuring
the Deployment of 5G Security Enhancement. In Proceedings of the 15th ACM
Conference on Security and Privacy in Wireless and Mobile Networks (WiSec ’22).
Association for Computing Machinery, New York, NY, USA, 169–174. https:
//doi.org/10.1145/3507657.3528559

[44] Shankara Pailoor, Xinyu Wang, Hovav Shacham, and Isil Dillig. 2020. Auto-
mated policy synthesis for system call sandboxing. Proceedings of the ACM
on Programming Languages 4, OOPSLA (Nov. 2020), 135:1–135:26. https:
//doi.org/10.1145/3428203 Number: OOPSLA.

[45] Tamjid Al Rahat, Yu Feng, and Yuan Tian. 2019. OAUTHLINT: An Empirical Study
on OAuth Bugs in Android Applications. In 2019 34th IEEE/ACM International

WiSec ’24, May 27–30, 2024, Seoul, Republic of Korea Seaver Thorn, K. Virgil English, Kevin R. B. Butler, and William Enck

Conference on Automated Software Engineering (ASE). IEEE, San Diego, CA, USA,
293–304. https://doi.org/10.1109/ASE.2019.00036

[46] Tamjid Al Rahat, Yu Feng, and Yuan Tian. 2022. Cerberus: Query-Driven Scal-
able Vulnerability Detection in OAuth Service Provider Implementations. In
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS ’22). Association for Computing Machinery, New York, NY,
USA, 2459–2473. https://doi.org/10.1145/3548606.3559381 event-place: Los
Angeles, CA, USA.

[47] RAKwireless. 2023. RAK All-in-One. 5G – Build Your Own Private 5G Network.
https://www.rakwireless.com/en-us/5g

[48] Ron Rosenbaum. 1971. Secrets of the little blue box. Esquire Magazine 76 (1971),
117–125.

[49] AdaptiveMobile Security. 2021. White Paper: A Slice in Time: Slicing Security in 5g
Core Networks. Technical Report. https://info.adaptivemobile.com/5g-network-
slicing-security

[50] Mohamed Shehab and Fadi Mohsen. 2014. Towards enhancing the security of
oauth implementations in smart phones. In 2014 IEEE International Conference on
Mobile Services. IEEE, 39–46.

[51] Ethan Shernan, Henry Carter, Dave Tian, Patrick Traynor, and Kevin Butler.
2015. More guidelines than rules: CSRF vulnerabilities from noncompliant OAuth
2.0 implementations. In International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment. Springer, 239–260.

[52] SmartBear Software. 2020. OpenAPI Speci�cation - Version 3.0.3 | Swagger.
https://swagger.io/speci�cation/#security-requirement-object

[53] Fangqi Sun, Liang Xu, and Zhendong Su. 2011. Static Detection of Access Control
Vulnerabilities in Web Applications. In 20th USENIX Security Symposium (USENIX
Security 11). USENIX Association, San Francisco, CA. https://www.usenix.org/c
onference/usenix-security-11/static-detection-access-control-vulnerabilities-
web-applications

[54] San-Tsai Sun and Konstantin Beznosov. 2012. The devil is in the (implementation)
details: an empirical analysis of OAuth SSO systems. In Proceedings of the 2012
ACMConference on Computer and Communications Security (CCS ’12). Association

for Computing Machinery, New York, NY, USA, 378–390. https://doi.org/10.114
5/2382196.2382238 event-place: Raleigh, North Carolina, USA.

[55] Patrick Traynor, Michael Lin, Machigar Ongtang, Vikhyath Rao, Trent Jaeger,
Patrick McDaniel, and Thomas La Porta. 2009. On cellular botnets: measuring
the impact of malicious devices on a cellular network core. In Proceedings of the
16th ACM conference on Computer and communications security. ACM, Chicago
Illinois USA, 223–234. https://doi.org/10.1145/1653662.1653690

[56] Hui Wang, Yuanyuan Zhang, Juanru Li, Hui Liu, Wenbo Yang, Bodong Li, and
Dawu Gu. 2015. Vulnerability Assessment of OAuth Implementations in Android
Applications. In Proceedings of the 31st Annual Computer Security Applications
Conference (ACSAC ’15). Association for Computing Machinery, New York, NY,
USA, 61–70. https://doi.org/10.1145/2818000.2818024 event-place: Los Angeles,
CA, USA.

[57] Xusheng Xiao, Amit Paradkar, Suresh Thummalapenta, and Tao Xie. 2012. Au-
tomated Extraction of Security Policies from Natural-Language Software Doc-
uments. In Proceedings of the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering (FSE ’12). Association for Computing
Machinery, New York, NY, USA, 11. https://doi.org/10.1145/2393596.2393608
event-place: Cary, North Carolina.

[58] Ronghai Yang,Wing Cheong Lau, Jiongyi Chen, and Kehuan Zhang. 2018. Vetting
Single Sign-On SDK Implementations via Symbolic Reasoning. In 27th USENIX
Security Symposium (USENIX Security 18). USENIX Association, Baltimore, MD,
1459–1474. https://www.usenix.org/conference/usenixsecurity18/presentation/
yang

[59] Ronghai Yang, Guanchen Li, Wing Cheong Lau, Kehuan Zhang, and Pili Hu.
2016. Model-based Security Testing: An Empirical Study on OAuth 2.0 Imple-
mentations. In Proceedings of the 11th ACM on Asia Conference on Computer and
Communications Security (ASIA CCS ’16). Association for Computing Machinery,
New York, NY, USA, 651–662. https://doi.org/10.1145/2897845.2897874

[60] Xiaolan Zhang, Antony Edwards, and Trent Jaeger. 2002. Using CQUAL for Static
Analysis of Authorization Hook Placement. In Proceedings of the 11th USENIX
Security Symposium. USENIX Association, USA, 33–48.

	Abstract
	1 Introduction
	2 Background & Motivation
	3 Overview
	4 5G Core Analysis With CodeQL
	4.1 Identifying Service Entry Points
	4.2 Extracting Proxy Function Calls and Access Patterns

	5 3GPP OAuth Policy Analysis Results
	5.1 Experimental Setup
	5.2 Static Analysis Results
	5.3 Newly Discovered Policy Flaws
	5.4 Additional Findings

	6 Proposed Policy Fixes
	6.1 Generating Least-Privilege Policy

	7 Discussion
	8 Related Work
	9 Conclusion
	References

