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ABSTRACT

5G technology transitions the cellular network core from special-
ized hardware into software-based cloud-native network functions
(NFs). As part of this change, the 3GPP defines an access control
policy to protect NFs from one another and third-party network
applications. A manual review of this policy by the 3GPP identified
an over-privilege flaw that exposes cryptographic keys to all NFs.
Unfortunately, such a manual review is difficult due to ambiguous
documentation. In this paper, we use static program analysis to
extract NF functionality from four 5G core implementations and
compare that functionality to what is permissible by the 3GPP
policy. We discover two previously unknown instances of over-
privilege that can lead denial-of-service and extract sensitive data.
We have reported our findings to the GSMA, who has confirmed
the significance of these policy flaws.
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1 INTRODUCTION

5G technology marks a significant shift in wireless communication,
ushering in a new era of connectivity, speed, and innovation. One
of the most consequential changes of 5G occurs in the network core,
which has been rearchitected to disaggregate specialized hardware
entities (e.g., HSS, MME, P-GW) into many different software Net-
work Functions (NFs) running in public and private clouds. The 5G
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core adopts a service-based architecture to manage NF communica-
tion, which allows application developers to create new services
that directly interact with core functionality. User Equipment (UEs)
depends on the resource isolation of the core NFs to safeguard
their sensitive information (e.g., cryptographic keys and encryption
policy) from disclosure and modification.

The 5G core performs two types of access control decisions:
(1) checks based on runtime NF identifiers (i.e., NFProfile); and
(2) service-level logic (i.e., OAuth policy). Unfortunately, the 3GPP
specifications are known for being ambiguous and under-specified [15,
20, 31, 32, 38]. Akon et al. [8] formally modeled the access control
in the 5G core based on the 3GPP specifications and found that it
fails to sufficiently specify access control checks of runtime iden-
tifiers between logically separate networks (i.e., network slices).
However, their formal model incorrectly assumes that all access
control checks and logic in the specifications are correct.

A manual review of the service-level OAuth policy logic by the
3GPP identified an over-privilege access control flaw that unnec-
essarily exposes read and write access to sensitive subscriber data,
including cryptographic keys (3GPP TR 33.855 Key Issue #29) [1].
Essentially, an OAuth scope was specified at a service-level when it
should have been more fine-grained and specified at an operation-
level. While Akon et al. [8] analyzed 3GPP Release 17 (which fixed
this flaw), their model would not have found the over-privilege,
because they assume the logic is correct.

In this paper, we study over-privilege in the 5G service-level
OAuth policy logic. We overcome the limitations of ambiguous and
underspecified 3GPP policy by leveraging how developers have
interpreted the standards. Specifically, we use the aggregate of
four open-source 5G core implementations to approximate the
required functionality. We use static program analysis to extract
access patterns that define NF calls to privileged operations in other
NFs. In doing so, we identify two service-level OAuth scopes that
are too coarse-grained. We reported our findings to the GSMA who
have issued CVDs and made recommendations to the 3GPP.

Key Results: The newly identified policy flaws (a) allow interrup-
tion of UE connectivity and (b) provide an additional attack vector
to extract subscriber information. The first policy flaw allows dis-
ruption of UE connectivity, which may trigger a re-authentication
with the core network. During this time, the UE cannot directly
connect to the Internet or may have their traffic relayed through a
malicious Access & Mobility Management Function (AMF). The sec-
ond policy flaw allows an attacker to extract sensitive subscription
data for a UE (e.g., subscribed slices, integrity protection, encryption
policy, IP addresses, charging, and QoS policies) from the Unified
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Data Management Function (UDM). This flaw is a variation of the
flaw described in 3GPP TR 33.855 Key Issue #29.
We make the following contributions in this paper:

e We automatically extract 5G NF functionality using a collec-
tion of 5G implementations. NF functionality in 3GPP specifi-
cations is often ambiguous and underspecified. Developers
implementing 5G cores have to interpret the specifications
into working systems.

e We create a program analysis framework to model access con-
trol policy for the 5G core. We define a high-level model that
facilitates analysis from 5G core implementations despite
vast differences. Our framework uses analysis sub-modules
to extract implementation-specific values.

e We identify two previously unknown access control flaws in
the 3GPP policy. In addition to confirming 3GPP TR 33.855
Key Issue #29, we identify over-privilege policy flaws that
enable disruption of UE connectivity and leaking of sensitive
subscription data. The GSMA has agreed these are flaws in
the OAuth policy and assigned 2 CVDs.

Availability: The source code for 5GAC-Analyzer can be accessed
at https://github.com/wspr-ncsu/5GAC

The remainder of the paper proceeds as follows. Section 2 pro-
vides background and motivation. Section 3 provides an overview
of our design. Section 4 describes our policy analysis. Section 5 de-
tails the discovered security flaws. Section 6 describes our proposed
policy. Section 7 discusses limitations. Section 8 overviews related
work. Section 9 concludes.

2 BACKGROUND & MOTIVATION

5G Core Architecture: The 5G core makes many improvements
over the 4G/LTE core. Notably, 5G shifts away from specialized
hardware into a software-defined service-based architecture, which
defines functionality in the core through a REST-based Application
Programming Interface (API) over HTTP. The 3GPP standards allow
some flexibility in NF implementation; for example, developers can
implement NFs as stateful or stateless.

5G operates in two distinct modes: 5G Non-Standalone (NSA)
is a 5G RAN with a 4G core network, and 5G Standalone (SA) is
a 5G RAN and 5G core. Since we consider the 5G core’s access
control policy, we assume 5G SA for the remainder of this paper.
Network slicing is a key enhancement in 5G and is only achievable
in 5G SA [24]. Network slicing allows distributed networks that
achieve specific properties such as low latency or ultra-reliability.
Slicing also enables business customers to create a logical network
isolated from other slices facilitated by NFs. Network core operators
provision and configure slices based on agreements between the
business and operators. The most common NFs deployed in slices
are the User Plane Function (UPF), followed by the AMF and Session
Management Function (SMF), then the Unified Data Repository
Function (UDR) and UDM [10, 11, 24].

The 5G core network or a slice can deploy a 5G application.
This app may access subscriber information and provide additional
content to specific UEs. A sports stadium slice can deploy a 5G app
with specific network requirements to provide an improved fan
experience to consumers. For example, AR, interactive contests, or
other features.
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Figure 1: Example of different 5G slice configurations with anno-
tations describing 3GPP TR 33.855 Key Issue #29. The UDR’s sub-
scription data is more sensitive than the other data it exposes. While
only the UDM needs to access the subscription data, the 3GPP policy
allows all NFs to access it.

5G Slice Architecture: Figure 1 provides an example configura-
tion of a 5G core with multiple slices for different business uses.
Each slice can deploy its own NFs or use the NFs exposed by the
core network to the slice. Deploying NFs in the slice enables fine-
grained control, independence, and isolation from other slices and
the core network. Slices typically deploy a UPF to help achieve low
latency, enforce encryption standards, and avoid user data leaving
the slice [24].

Slice A in Figure 1 represents a typical design for an industrial au-
tomation slice deployed at a single location. This slice configuration
enables robotics and surveillance of a factory by deploying a UPF
and SMF to handle network sessions. Most of the AMF’s mobility
functionality is unnecessary as the devices in the factory are not
moving large distances. Therefore, an AMF deployment in an indus-
trial automation slice may be more applicable when the automation
is highly mobile, such as in outdoor farm equipment [24].

Slice B in Figure 1 shows a slice for a large-scale fleet of vehi-
cles, such as delivery trucks or drones. Cellular-based Vehicle-to-
Everything (V2X) use cases require Ultra-Reliable Low-Latency
Communication (URLLC). Some NFs may be duplicated on the net-
work edge and in the core for redundancy and load balancing. This
slice will have similar requirements as Slice A but with a dedicated
AMF for mobility. This slice is ideal for low latency, high availabil-
ity, and mission-critical applications [10]. The NFs in a slice may
communicate with other NFs in the core network or another slice
depending on how the network is configured.

Access Control in the 5G core: The 3GPP has standardized the
use of OAuth 2.0 for access control between NFs in the 5G core.
While the use of OAuth is defined as optional, it is necessary for
robust access control in the core network, especially when multiple
tenants are involved. Assuming slices agree to share data, the access
control policy determines what NFs among separate slices share
which operations. Additionally, slices may request data from the
core’s NFs about other slices or UEs on no slices. A least-privileged
access control policy is needed to ensure resource isolation among
multiple tenets.

In the 3GPP standards, an access token can be scoped to allow
only a group of operations for a service. Specifically, they define
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Figure 2: 5GAC-Analyzer uses software diversity to identify over-privilege and proposes a revised policy for the 3GPP specifications.

two types of scopes: service-level and operation-level. When an
access token is assigned a service-level scope, it authorizes access
to any operation in that service. An operation-level scope is more
fine-grained and overrides service-level scopes where they are
defined. Operation-level scopes can still be associated with multiple
operations in a service, but they are less-privileged than a service-
level scope (which allows access to all operations). The 3GPP uses
service-level scopes in most cases (e.g., nudm-ee); however, it uses
operation-level scopes for highly privileged operations (e.g., nudm-
ee:subscription:create).

Based on the 3GPP standards [3], OAuth enforcement should
operate as follows. When a consumer NF wants to call an operation
exposed by a producer NF, it will first ask the Network Repository
Function (NRF) for the access token needed. The NRF will validate
the requesting NF’s identity by using TLS mutual authentication
and grant the token with the appropriate OAuth scopes. The client
NF then sends the access token with the request to the producer
NF. When the producer NF receives the request, it will check and
validate that the access token has the OAuth scope required by
the APL. If the validation succeeds, the producer NF performs the
operation and returns the appropriate result to the consumer NF.

3GPP TR 33.855 Key Issue #29: The 3GPP published a technical
report [1] describing security issues within the 5G core service-
based architecture. It found that some operations in an NF’s exposed
services are more sensitive than others. In the report, Key Issue #29
describes the UDR’s data-repository service as providing policy,
exposure, and application data that many NFs access and modify.
However, this service also includes highly-sensitive subscription
data, including cryptographic keys and primitives used for UE
authentication.

Figure 1 shows two slices interacting with the same UDR in the
core network. A Policy Control Function (PCF) in one network slice
can access or modify the core network’s subscription data in the
UDR under the 3GPP access control policy. Furthermore, if network
slices do not operate their own UDR, their highly sensitive data are
exposed to other slices. Figure 1 shows two types of connections
between NFs. The OAuth policy allows connections 1, 3, and 5; how-
ever, 2 and 4 are permitted by the policy but should never happen in
practice. The PCF in slice A could be given subscription information
used by network slice B only, thus breaking the isolation between
slices. The specific problem with the subscription data in 3GPP TR
33.855 Key Issue #29 was that a service-level scope was assigned

to all operations when some were more privileged. The 3GPP con-
cluded that only the UDM should access the subscription data and
created a new operation-level scope for all of the subscription data
operations.

Threat Model and Assumptions: We assume that each NF re-
quires different access levels to different data types in the 5G core.
We consider two types of adversaries that have compromised NFs.
First, we consider adversaries that have compromised the container
or virtual machine that runs an NF by exploiting a vulnerability in
that NF. We assume the NRF cannot be compromised. The NRF per-
forms most access control checks and grants scoped access tokens
to other NFs [2]. If the NRF is compromised, access control in the
core fundamentally breaks down. Second, we consider a malevolent
or curious business customer that may operate its slice in a way
that harms the core network. We assume that every instance of
an NF is on a different physical network than every other NF, and
the 5G core may be distributed across many different locations.
When an NF is compromised, we assume it can create arbitrary
requests to any other NF with exposed API interfaces over HTTP.
We assume that the HTTP interface is encrypted with TLS and
performs mutual authentication between all NFs. Additionally, we
consider the cloud provider, physical hardware, UE, and RAN as
part of the trusted computing base.

3 OVERVIEW

The 3GPP standards define all NFs, services, and operations, includ-
ing parameters and return data types. However, they ambiguously
define the service-level logic of where and when operations should
be called from which NFs. This lack of detail is intentional, as the
3GPP wants to allow developers to design systems in flexible and
creative ways. Our insight is to use static program analysis to ex-
tract access patterns that represent which NFs use which privileged
operations. However, each implementation implements function-
ality in its own way. Therefore, it is insufficient to consider only
one implementation. As such, we take the union of access patterns
across multiple cores to extract the functionality intended by the
standards.

Figure 2 provides a high-level overview of our approach called
5GAC-Analyzer. Specifically, 5GAC-Analyzer is a collection of Cod-
eQL queries and Python scripts that extracts access patterns and
compares those against OAuth rules in the 3GPP specifications.
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Table 1: A unified analysis model is needed to handle how
5G cores implement similar functionality differently.

Core Static API State Function
Routes Machine per API
free5GC (R15) v X v
SD-Core (R15) v X v
OAI (R15) X X M
Open5GS (R16 & R17) X v X

We use these access patterns to (a) provide a set of potential over-
privileged policy flaws for a human analyst and (b) derive a least-
privilege OAuth policy. Section 4 details our analysis framework.
Section 6 describes the generation of a least-privilege policy.

Challenge: 5G cores differ vastly in implementation. Developers
make a range of software design choices when implementing the
5G core. Table 1 shows the high-level differences between the 5G
core implementations relevant to our analysis. In addition to the
choice of programming language, implementations use different
abstractions to call APIs and handle requests. For example, free5GC
statically defines strings for each HTTP REST API and creates a
dedicated function to handle them. In contrast, Open5GS creates
a state machine for each service and demultiplexes HTTP REST
APIs using conditional logic. The 3GPP standards do not generally
specify access patterns; developers need to read and interpret the
standards to determine which ones are necessary. Additionally, the
3GPP standards define alternative methods of implementing the
same functionality. For example, OpenAirInterface (OAI) registers
callbacks between NFs by passing HTTP REST strings as arguments
to other APIs.

To address this challenge, we define a CodeQL model to query
for access patterns similar to how Prolog is used in prior work. We
chose CodeQL because it can analyze multiple programming lan-
guages with the same abstractions. Therefore, defining a CodeQL
model allows us to transfer much of the analysis between imple-
mentations. Using this model, we simplify the static analysis to
creating subqueries to identify key features, such as identifying
service entry points and extracting proxy function calls.

Our CodeQL implementation covers four open-source 5G core
implementations including two versions of one 5G core targeting
two different 3GPP release versions: (1) free5GC version 3.3.0 (R15);
(2) ONF SD-Core version 1.3 (R15), which is a fork of free5GC;
(3) Open5GS versions 2.5.4 (R16) and version 2.6.4 (R17); and (4) OAI
version 1.5.1 (R15). When new access patterns are implemented
into open source cores, we can analyze new portions of the access
control policy.

4 5G CORE ANALYSIS WITH CODEQL

Our CodeQL model translates formal definitions of access patterns
into CodeQL queries. An access pattern represents an API call for
an operation from one NF to another. Extracting access patterns in-
volves capturing all API calls associated with an NF. Any reachable
API calls are added to the list of access patterns for that NF. We
now formally describe the mathematical notation that our CodeQL
model is based on.
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1 from ServiceCall s, string handleName

2 where (exists(Handler hh | isDescendant(s, hh.asFunction()) |
handleName = hh.getName())

3 or (exists(TerminatingFunction f | isDescendant(s, f) |
handleName = f.getName())

4 and not exists(Handler hh | isDescendant(s, hh.
asFunction()))

)
» select s.getHttpType() as http_type,
handleName as serviceCallCFSource,

8§ s.getSourceNF () as sourceNF,

.getName () as serviceCallFunction,

.getTargetNF () as targetNF,

.getColonizedPath() as targetPath,

.getPathRoot () as targetRootPath

S
S
S
S
Figure 3: CodeQL Entry Point Extraction. This query structure ap-
plies to all analyzed cores, even though they are written in Go and C.

Let N be the set of all NFs, S be the set of all services, and O be
the set of all operations. Each NF n € N is a set of services S C S.
Each service s € S is a set of operations O C O. Finally, we assume
a set of permissions P is text strings used to define access control
rules.

Definition 1 (Access Pattern). The set of all possible access pat-
terns A is a set of pairs. Let n € N and o € O be an NF and an
operation respectively. An access pattern a € A is a pair (n,0)
empirically derived through program analysis. Conceptually, an
access pattern captures one NF calling an operation in another NF.
As such, each access pattern consists of a calling NF, receiving NF,
service, and an operation. For simplicity, our formal notation only
includes the calling NF and operation.

Definition 2 (Access Control Policy). Let the set of all possible
access rules R be a set of triples (n, 0, p), where n € N, 0 € O, and
p € P are an NF, an operation, and a permission text string. A
policy I' is a set of access rules.

Conceptually, an access control policy represents the allowed
interactions between NFs and an operation. The policy consists of
many rules, where each rule describes a single interaction between
an NF and an operation. The OpenAPI standard used by the 3GPP
allows specifying permissions (a) for each operation or (b) for a
service, which includes many operations. Each service groups op-
erations by functionality; however, as previously discussed, these
groups do not consider the exposed data.

CodeQL Implementation: For each core implementation, 5GAC-
Analyzer requires a query to identify: (1) the calling NF, (2) an HTTP
type of an API path (e.g: POST, GET, PUT), (3) the API path itself,
and (4) the name of the function that calls the API, or applicable
code location. We implement a query in the model for each of these
pieces of information, shown in Figure 3. Each 5G core needs a
submodule that includes implementation-specific details to identify
an access pattern. To determine reachability, 5GAC-Analyzer begins
at the program’s main entry point and recursively searches for the
corresponding code that calls the APL

Each submodule needs to implement the queries from Figure 3.
Section 4.1 describes how to identify service entry points in the
called NF, which are the getTargetNF() and handleName CodeQL
queries. Section 4.2 describes the getHttpType, getTargetNF, getCol-
onizedPath, and getRootPath queries. Reachability analysis requires
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no additional queries and is included by implementing the above
queries.

4.1 Identifying Service Entry Points

5GAC-Analyzer needs to identify all API entry points in the im-
plementations to determine which 3GPP specification APIs are
supported. In some cases, the specifications alone do not provide
sufficient detail to identify all entry points in a implementation. All
5G cores that we analyzed use the OpenAPI-Generator [19] tool to
create code from the 3GPP specifications. Therefore, our analysis
uses the specifications and name construction patterns to identify
the code implementations for entry points.

Free5GC, SD-Core & OAI: OpenAPI-Generator’s template uses
the operationId field in the OpenAPI specification to name the
function in the source code. Unfortunately, the 3GPP OpenAPI
specification and OpenAPI-Generator have two limitations: (1) the
operationlId is not defined for every operation, and (2) entry points
will use the same function names when the operationld is the
same. OpenAPI-Generator creates these functions with the same
function name because they have the same operationId in the 3GPP
specifications.

We use CodeQL to identify each service’s routing table, which
matches APIs to functions. Importantly, this describes each APIs
implementation for a particular operation in the specifications.
CodeQL identifies the routing table by searching all global variables
for ones that match the routing table type. The routing table is a list
of API paths and a function pointer. In OAI, a C++ class is defined
with function pointers mapping to APIs rather than a routing table,
however, it serves the same purpose.

5GAC-Analyzer assigns the function to the corresponding API
endpoint based on its unique URI that is defined in a routing table
structure for the HTTP service. A backwards call graph analysis
verifies the target service URI from a generated Router object or
function call in OAI This strategy successfully identifies the entry
points in the free5GC, SD-Core, and OAI codebases.

Open5GS: Open5GS entry points have manually-generated func-
tion names. Therefore we can not use the operationId to identify
these functions. Instead, we extract these functions from the state
machines Open5GS uses to handle incoming requests. To identify
these functions, 5GAC-Analyzer needs to: (1) collect all functions
that take the API request structure as a parameter; (2) perform a call
graph analysis to verify that this function is called somewhere in
the call graph; and (3) extract the URI path from the state machine.

4.2 Extracting Proxy Function Calls and Access
Patterns

5GAC-Analyzer extracts the API calls that cross microservice bound-
aries, which we call access patterns. These cross-microservice API
calls typically occur via a proxy function that wraps the HTTP
request. 5GAC-Analyzer’s goal is to identify the proxy functions,
the URI, and receiving NF for every HTTP request. Finally, 5GAC-
Analyzer maps each access pattern to the 3GPP OAuth policy to
extract the access token that is necessary to call all identified APIs.

For all cores, 5GAC-Analyzer starts the process by identifying
the common function that crafts and sends the HTTP request. For C-
based cores, this is some variation of a curl API For Go-based cores,
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1 CoreServiceCall() {
2 exists(Function f, CallExpr c |
c.getCalleeName() = "CallAPI" and
4 c.getEnclosingFunction() = f
| this = f and apicall = c )}

Figure 4: Lower-level CodeQL query to identify proxy functions in
free5GC & SD-Core. Additional checks are made in other queries to
identify a complete list of proxy functions.

this is the CallAPI function, generated by the OpenAPI-Generator.
5GAC-Analyzer uses these common HTTP request functions to
identify the proxy functions in each core.

Free5GC & SD-Core: Figure 4 shows the CodeQL query identify-
ing all functions in the code base that call the Cal1API function. The
target URI in the HTTP request is extracted to map the proxy func-
tion to a target service endpoint. 5SGAC-Analyzer then performs call
graph analysis to connect proxy functions to calling entry points.
This analysis achieves two goals: identifying all auto-generated
proxy functions implemented and connecting API calls with their
calling NF entrypoint. The identified connections create our access
pattern (n, o) tuples.

Open5GS: Open5GS entry points are organized differently than
free5GC and SD-Core. As mentioned previously, Open5GS man-
ages an internal state machine to handle requests and responses
to proxies and stubs. It dispatches requests into separate functions
stemming from the main state machine function. Additional pro-
gram analysis is necessary to identify what API these functions
implement, as they are not named consistently.

API request functions are identified as the callers of common
HTTP request functions containing a service endpoint as the target.
Target HTTP endpoints are encoded inside a message structure
using constant strings in each request function. We use CodeQL
to extract these strings to identify data flows from these message
strings to HTTP network requests. 5GAC-Analyzer maps each func-
tion call to an API in the specification using the HTTP type and path
information. Finally, we identify call paths from the program start
or state machine start that lead to the network request functions.

OALI: OAI presented unique challenges compared to the other cores.
Similar to the other cores, 5GAC-Analyzer starts by identifying
calls to common HTTP request functions and the proxies calling
them. However, OAI does not consistently use constant strings to
identify the target URI of the call. Instead, combinations of string
literals, function calls, and dynamic variables containing both are
used to craft the target URL Many of the target URI’s are determined
at runtime, and are therefore not directly obtainable with static
analysis.

String literals and function calls that return static variables are
directly resolved. Some URIs depend on configuration or other
dynamic information only determined at runtime. In such cases,
HTTP calls are still identified, and we output them for manual
investigation. Functions with dynamic returns are resolved as the
function name, and that name is used in manual post-processing to
identify the target URI path. Variables are recursively resolved to
strings and function names based on the same criteria. Two experts
verified all manual components, mapping function names to 3GPP
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Table 2: Analysis statistics for the analyzed 5G cores. We include the 3GPP release for each 5G core target. We consider the

union of all cores in our analysis.

Dynamic
Open Source Core NFs S_er- APIs Access NF . Stub Access
vices Patterns Interactions APIs

Patterns
free5GC (R15) 10 13 84 66 18 10 0
SD-Core (R15) 8 13 81 68 14 10 0
OAI (R15) 9 12 43 47 16 9 13
Open5GS (R16 & R17) 10 14 48 60 22 12 10
Union | 12 | 19 | 100 83 | 22 | 31 | 23

specifications by examining the OAI source code. In cases where
the URI could not be determined by both 5GAC-Analyzer or manual
investigation, the result was discarded.

OAT’s implementation of functionality as callbacks also poses
challenges for static analysis. Unlike other cores, OAI relies heavily
on callback URLs to receive information, making it difficult to
determine the exact endpoints that will be called statically. For
example, callback URLs often include the URL of the API to call in
the response of registering a callback. Therefore, it is not possible
to determine the endpoint that will get called statically.

5 3GPP OAUTH POLICY ANALYSIS RESULTS

This section details the results of our policy analysis. 5GAC-Analyzer
identified three instances of over-privilege in the 3GPP OAuth pol-
icy. Two of these instances are new; the third confirms 3GPP TR
33.855 Key Issue #29, which was fixed in Release 17. We manu-
ally confirmed the two new instances and reported them to the
GSMA. Independent of 5GAC-Analyzer, we discover a flaw with
how the security requirements are encoded in OpenAPI. This flaw
nullifies all access control scopes when OAuth is enabled. After a de-
tailed discussion, the GSMA issued three CVDs and recommended
changes to the 3GPP, which are currently under consideration. The
remainder of this section details the results of 5GAC-Analyzer and
describes the discovered policy flaws in detail.

5.1 Experimental Setup

We ran our analysis on 3GPP Releases 15-17, depending on which
core we were analyzing. This analysis contains 79 files per 3GPP
release defining the access control policy and API calls. The changes
introduced between 3GPP versions did not impact our findings,
as there were minimal changes in the access control policy. We
obtained the policy files from the 3GPP working area website [5].
We use the policy files defining access control policy and additional
structures for NFs present in free5GC, SD-Core, Open5GS, and OAL
The open-source 5G cores do not implement every NF standardized
in 3GPP Release 15-17, which we discuss further in Section 7. Finally,
we filter out all unused policy files for APIs and services that are
not implemented in any of the cores, leaving a total of 39 policy
files per 3GPP release.

5.2 Static Analysis Results

5GAC-Analyzer uses static analysis to extract access patterns and
therefore may have both false positives and false negatives. For
example, 5GAC-Analyzer cannot detect access patterns that depend

on data determined at runtime. We begin by detailing the access
patterns reported by 5GAC-Analyzer for each of the cores. We then
describe the impact of false positives and false negatives on our
results. In cases where we encountered false positives and false
negatives, we resolved them manually to ensure they did not impact
our findings.

Access Pattern Extraction: Table 2 shows the results of 5GAC-
Analyzer. When considering the union of all 5G cores, we identified
83 access patterns. There was a large overlap between all the cores’
access patterns. However, each core had at least one unique access
pattern. For example, free5GC implemented more access patterns
related to non-3GPP access and many additional APIs between the
UDR and UDM. SD-Core forked an earlier version of free5GC and
has additional access patterns for NF deregistration. Open5GS and
OAI both had unique subscription-callback APIs that no other core
implemented. We did not find any difference in the access patterns
between Open5GS Releases 16 and 17, so we do not include separate
rows in Table 2.

Missing Access Patterns: A dynamic access pattern is an access
pattern that depends on runtime variables. CodeQL cannot fully
resolve dynamic access patterns because it uses static analysis. False
negatives in the extraction of access patterns leads to false positives
in the subsequent policy analysis.

We performed a simple experiment to understand the impact of
dynamic access patterns. Let C be the set of our initial conservative
results. We then obtained a result set L with filters removed or
default values for unresolved attributes. We then examine L — C
for APIs. In this expanded set, there are some unresolved attributes,
but enough information to determine the access pattern manually.
In these cases, our analysis identifies interesting code that requires
further human analysis. We found 23 dynamic access patterns in all
cores and all were redundant with respect to the other cores auto-
mated results. All identified dynamic access patterns are manually
added to our access pattern set before the least privilege analysis.

Erroneous Access Patterns: API stubs are APIs that exist in the
code and are reachable; however, they are not implemented. Most
API stubs include a single print statement indicating it is not im-
plemented. Unimplemented API stubs caused false positives in the
extraction of access patterns, which can cause false negatives in
the policy analysis. We identified 31 stub APIs manually, which we
removed from our list of APIs before considering access patterns.
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Summary: We find there are generally three sources of false results
in our analysis. First, there is not enough information available stat-
ically to determine an access pattern. For example, in subscription-
notification APIs, the endpoint called to the consumer is returned
from a previous API call. Second, 5GAC-Analyzer overapproximates
results as a precaution to handle dynamic access patterns, even if it
occasionally results in an erroneous access pattern. Third, an access
pattern exists in the calling NF, but the API does not exist in the
called NF. This may occur when an implementation has partially
implemented functionality.

5.3 Newly Discovered Policy Flaws

5GAC-Analyzer alerted that 3 of 19 services in the 3GPP specifica-
tions are over-privileged. None of these alerts were false positives.
One of the alerts is for 3GPP TR 33.855 Key Issue #29, whereas
the other two were previously unknown. We also discuss a third
policy problem that was unrelated to our policy analysis which we
reported.

Finding 1 - CVD-2022-0061 (AMF Re-Allocation): A malicious
UE release command may cause DoS or an on-path attack. UE han-
dover APIs within the namf-comm service are exposed to the SMF
and PCF despite being AMF specific. The AMF directly connects
to the RAN and the UE to provide control-plane messages to both.
The AMF handles initial authentication with the core and ensures
the UE is always reachable. NFs can be scaled up and down at any
time depending on network conditions or specific requirements
from slices. Additionally, when a UE moves geographically to a
new RAN, it may make a certain AMF more suitable to serve a UE.
In this scenario, an AMF handover will occur in the core network.
The AMF serving the UE is the only entity that should initiate the
handover to another AMF.

With the current policy, an SMF or PCF may initiate this han-
dover. This over privilege can be exploited by malicious slices. We
assume the attacker may take advantage of other APIs within the
SMF or PCF when performing this attack. For example, a SMF or
PCF can retrieve UE identifiers that are necessary to perform a
handover. Previous work [16] has studied handover flaws that oc-
cur in the RAN, but they have yet to look at how an NF handover
in the core may occur by an access control policy flaw. Slice A,
which hosts an SMF, can access the core network’s AMF to request
a handover for a UE. Slice A can initiate an AMF handover to an
AMF in another slice if Slice A has a UE identifier of any UE in
the core network. Depending on the characteristics of the slices
available, Slice A may move the target UE to an AMF under the
attacker’s control to eavesdrop or deny service.

Figure 5 shows the network connections for an attack exploiting
this policy flaw. The operator AMF is one that the core normally
runs, whereas the malicious AMF is one that an attacker will stand
up on a separate slice of which they have control. In steps 1-3, the
victim UE will begin normal operation with the core to authenticate
and connect to the Internet. In step 4, a UE can make phone calls
and connect to the Internet normally. Sometime later, either the
PCF or SMF will launch one of two attacks, shown in steps 5a and
5b, respectively.

The attacker aims to take a victim UE connected to the core
network offline for the first attack. As shown in step 5a, the attack

WiSec *24, May 27-30, 2024, Seoul, Republic of Korea
UE RAN

1. UE Registration Request
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2. Initial UE Message
—_—

3. 5G-AKA Success

4. Begin Internet Traffic

5a. UE Context Release

6a. UE Context Release Success
—_—

Option 1

5b. UE Context Transfer, skip integrity check
—
6b. UE Context Transfer Response
B S

7b. Request Identity

8. Respond Identity

Option 2

9. 56G-AKA Success

10. DoS or on-path attack

Figure 5: The AMF Re-Allocation attack allows the SMF or PCF to
initiate an AMF switch for a UE. The attacker may switch the UE to a
new slice that the attacker controls, causing DoS or on-path attacks.

has the PCF or SMF from one slice send a malicious request to the
AMF on another slice to release any UE context. Releasing a UE
context should only occur after an AMF handover procedure is
successful, and the initial AMF is to delete data on the transferred
UE. However, releasing UE context is allowed by the PCF and SMF
in the 3GPP access control policy at any time. If the UE context
release request succeeds, shown in step 6a, then DoS will occur for
that UE, shown in step 7a. The UE will try to keep communicating
with the AMF, but the AMF will not have enough information to
serve the UE. At this point, the core network will need to initialize
the UE context causing intermittent connectivity.

The second attack is similar to the first and starts in step 5b.
Instead of requesting a UE context release, a rogue PCF or SMF
can instead request a UE context transfer which begins an AMF
handover procedure, shown in step 5b. If the request reason is
specified as MOBI_REG_UE_VALIDATEED, then the AMF shall not
perform an integrity check on the request, allowing the attack to
proceed [2]. When the request succeeds in step 6b, the malicious
AMF must perform a 5G-AKA with the UE. If 5G-AKA succeeds, the
malicious AMF can perform an on-path attack on the UE’s Internet
traffic shown in step 10. DoS for the UE occurs if any failure occurs
after step 6b is successful.

Finding 2 - CVD-2022-0062 (Subscription Data Management
Exposure): Sensitive UE subscription information is exposed to NFs
besides the UDM. APIs handling subscriber data in nudm-sdm are
exposed to the SMF and AMF. We found an issue similar to 3GPP TR
33.855 Key Issue #29 in the “nudm-sdm” service. This service aims
to read the UE subscription data from the UDR and provide portions
of it to consumer NFs. The nudm-sdm service only achieves its de-
signed purpose with a least-privileged policy. The access control
policy for this service allows any of the consumer NFs to read any of
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1 openapi: 3.0.0

info:
version: 1.0.8
title: Namf_Communication
description: |
AMF Communication Service
© 2022, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI,
TSDSI, TTA, TTC).
All rights reserved.
security:
-
- oAuth2ClientCredentials:
- namf-comm

3 externalDocs:

5 servers:

- url: '{apiRoot}/namf-comm/v1"'

paths:
/ue-contexts/{ueContextId}: ...
/ue-contexts/{ueContextId}/release: ...

Figure 6: Example OAuth policy in the AMF Communication ser-
vice [3]. Line 10 indicates that an OAuth token is optional for all
endpoints in the service [52].

the exposed UE’s subscription data; however, cryptographic infor-
mation is not exposed. For example, the endpoint POST /{supi}/am-
data exposes access and mobility data intended for the internal
operation of the AMF. However, the SMF also has access to this
endpoint and can retrieve information. Additionally, the SMF can
delete a subscription, which will cause instability in the AMF or
another NF that utilizes this service’s subscriptions. The SMF can
create a subscription to data it should not access in the nudm-sdm
service, causing a potential privacy violation. Our analysis deter-
mined that the SMF only needs to access data exposed by the GET
/{supi}/sm-data endpoint.

5.4 Additional Findings

During the process of extracting and modeling the 3GPP OAuth
policy, we identified a problem with how the OAuth policy was
encoded in OpenAPL Specifically, we found that the 3GPP policy
includes null access rules for each operation. While the 3GPP speci-
fication states that OAuth is optional, an implementation enforcing
OAuth will interpret the null access rules as allowing all callers.
Hence, these rules negate the OAuth policy entirely.

Finding 3 - CVD-2022-0060 (Negated OAuth Policy): Figure 6
shows an example service’s YAML security definition. In an Ope-
nAPI security definition, the empty braces on line 10 mean that
OAuth is optional. The security requirements object in OpenAPI
accepts a list of security requirements, and only one list item needs
to be met for the request to be allowed. Therefore, even though addi-
tional OAuth requirements exist on an API on lines 11-12, all rules
following an empty brace are negated. Note that line 10 defines the
security requirements for the entire service. If the policy defines
security requirements for individual APIs, the requirements for the
API override the global requirement. However, we found that the
3GPP specification uses empty braces for all security requirements,
both global and per-APL
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1 Procedure CalculatePolicy(S, A)

2 T« 0

3 fors € Sdo

4 G« 0// Set of 20 x2N pairs

5 foro € sdo

6 C:={n|(n,0) € A} // All n that call o
7 found « false;

8 for (O,N) € G do

9 if N = C then

10 E.append(e) // update O in G
1 found « true;

12 continue;

13 if found = false then

14 ‘ G.append({o},C);
15 for (O,N) € G do

16 p < CREATEPERMISSIONNAME(s, O);

17 foro € O do

18 forn € N do

19 ‘ T'.append(n, o, p);
20 return [

Algorithm 1: Algorithm to create a least-privilege policy for a set of

services S based on a set of access patterns A

This flaw results from a misunderstanding of the empty braces
feature in OpenAPI. The OpenAPI specifications [52] give an ex-
ample of optional policy using empty braces. However, we think
optional enforcement is the intended purpose in the 3GPP specifica-
tions. Given the current policy specification, 5G core implementa-
tions that wish to enforce OAuth must manually remove all empty
braces, which is error prone.

When we reported this flaw to the GSMA they in turn contacted
OpenAPI about the semantics of the specification. After multiple
rounds of email exchange, the GSMA concluded that the existing
policy was ambiguous and requires modification.

6 PROPOSED POLICY FIXES

To address the over-privilege, 5GAC-Analyzer generates a least-
privilege policy. Our policy analysis suggests defining six operation-
level scopes in two services that only define service-level scopes.
Each of the six scopes has a lesser privilege than the two currently
existing access tokens. Note that our proposed changes to the OAuth
policy do not prevent any functionality and instead require each
implementation to request a different access token.

6.1 Generating Least-Privilege Policy

We derive a least-privilege policy based on a set of services S and a
set of access patterns A. Recall that each s € S is a set of operations.
Conceptually, our analysis seeks to achieve least-privilege without
unusable permission bloat (e.g., one permission per operation). The
existing 3GPP policy defines most permissions at the service-level.
Therefore, our analysis uses service-level permissions whenever
possible.

Let O be the set of operations for service s. If all o € Og have the
same set of accessing NFs in A, then we define the permission at
the granularity of the service. Otherwise, we cluster each o by NF
callers and create new permissions based on the set of callers for
each s. The 3GPP policy already uses service names for the scope
in an access token. For finer-grained names, we create names based
on the prefixes of the operation names.
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Table 3: Proposed changes to the access control policy in the 5G core.

Service Consumer NF  Proposed Access Token APIs Finding
namf-comm  SMF namf-comm:nin2-messages ~ POST /ue-contexts/{ueContextld}/n1-n2-messages Finding 1
AMF namf-comm:transfer POST /ue-contexts/{ueContextld}/release Finding 1
POST /ue-contexts/{ueContextId}/transfer
POST /ue-contexts/{ueContextld}/transfer-update
PUT /ue-contexts/{ueContextId}
PCF namf-comm:subscriptions POST /subscriptions Finding 1
nudm-sdm SMF nudm-sdm:sm-data GET /{supi}/sm-data Finding 2
UDM nudm-sdm:shared-data GET /shared-data Finding 2
POST /shared-data-subscriptions
DELETE /shared-data-subscriptions/{subscriptionId}
AMF nudm-sdm:amf-data POST, DELETE /{ueld}/sdm-subscriptions/* Finding 2
GET /{supi}/nssai
PUT, GET /{supi}/am-data/*
GET {supi}/smf-select-data
GET {supi}/ue-context-in-smf-select-data
nudr-dr UDM nudr-dr:subscription-data GET, POST, DELETE, PATCH /subscription-data/* Fixed in 3GPP R17
PCF nudr-dr:policy-data GET, POST, DELETE, PATCH /policy-data/* Fixed in 3GPP R17

Definition 3 (Least-Privilege Policy). Let a T be a policy and A
be a set of access patterns. I' is least-privilege with respect to A if
V(n,0,p) € T, (n,0) € A (security requirement) and V(n,0) € A,
(n,0,_) €T (functionality requirement), where _ represents any
permission.

Conceptually, a least-privilege policy is an access control policy
where each access rule corresponds to an access pattern. Algo-
rithm 1 creates the least-privilege policy based on a set of services
S and access patterns A. It starts with an empty policy I' and builds
it up by going through every service s € S, filling in the structure.
In lines 4-14, we create groups of operations G, which is a tuple
of a set of operations and an NF (O, N). In lines 16-19, we create
a permission for each group of operations, which ensures a new
permission for each access pattern. The result of the algorithm
is an access control policy that can be used to further refine the
specifications.

Policy Changes: We propose six new access tokens to address the
overprivileged policy. Table 3 shows the proposed tokens. These six
access tokens prevent the consumer NF from accessing every API
in the service and limit them to only the APIs described in the table.
The first changes in the access control policy relate to namf-comm
and Finding 1. Three new access tokens separate the exposed APIs
into NF-specific groups, negating the scenarios discussed in Sec-
tion 5.3. These tokens are shown in rows 2-4 of Table 3.

The next changes are in the nudm-sdm service, exposed by the
UDM. This service consumes the subscription data from the UDR
and provides other NFs with only what they need. Three new tokens
prevent consumer NFs from receiving more data than they require.
These tokens are described in rows 5-7 of Table 3. Finally, the
changes described in 3GPP TR 33.855 Key Issue #29 were discovered
independently by our analysis, so we include them in our findings
(nudr-dr). However, the access control policy changes for nudr-dr
were implemented in 3GPP Release 17 [4].

7 DISCUSSION

Incomplete Implementations: Cellular infrastructure always
lags the 3GPP specifications, and even production implementations

often fail to implement all features [38, 43]. The open source cores
we analyzed have not yet implemented every NF and API defined
by the 3GPP; however, they are fully working 5G cores. Infact, OAI
and Open5GS have commercial backing for enterprises [26, 47].
Our analysis is limited to what code is implemented and used in the
union of all analyzed 5G cores. We expect our analysis to continue
working in future 3GPP releases of the open-source implementa-
tions we have analyzed. This is because these implementations will
continue adding new HTTP calls between the NFs in the same way
as they have previously.

We note that if an implementation has incorrectly added access
patterns that should not exist, our analysis will not identify this as
an instance of over-privilege. We believe all of our results are repre-
sentative of the current functionality of the 5G cores, as discussed
in Section 5. Our analysis identifies NF interactions by examining
HTTP calls, therefore, NFs that do not implement a service-based
architecture such as the UPF, or Non-3GPP Interworking Function
(N3IWF) are not included.

OAuth Enforcement in Implementations: While we used the
5G implementations to discover flaws in the 3GPP policy, we did
not discover vulnerabilities in the implementations themselves.
In fact, none of the analyzed implementations currently enforce
OAuth between NFs. To test our least-privileged OAuth policy,
we created 5GAC-Instrumenter, which automatically instruments
NFs in free5GC to request, send, and validate OAuth tokens based
on a policy. All OAuth procedures can be turned on or off with a
configuration option compatible with the existing configuration
in free5GC. 5GAC-Instrumenter inserts access token requests to
all proxies in free5GC and token validation at all entry points. We
did not encounter any problems running free5GC with the least-
privileged OAuth policy. We created pull requests in free5GC with
the OAuth-enforced code base which are under an active discussion.
free5GC only began to implement OAuth functionality when we
created pull requests to add it. The work to implement OAuth in
free5GC is still ongoing [27].
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8 RELATED WORK

Static Analysis for Access Control: Static analysis has been used
in prior work to identify a security policy [17, 37, 40, 53] or confine
system calls within an OS or container [29, 44]. Authorization veri-
fication has been widely studied for at least two decades [23, 28, 60].
Li et al. [40] analyzed microservice code using static analysis to
extract interactions between the microservices and make a security
policy. They enforced the security policy at the container orchestra-
tion level in Kubernetes. This architecture does not apply to a 5G
core as OAuth is the access control mechanism in the 5G core [3].

NLP is also common to extract the access control policy from
standards documents [9, 57]. Xiao et al. [57] introduce Text2Policy
which parses and annotates words in phrases. Then these annota-
tions are used to extract entities, actions and objects of the access
control policy. These are then converted into a machine-readable
format and implemented. Text2Policy identifies between 80 and
90 percent of access control policy-relevant sentences and actions.
NLP-based often has many limitations and misses important infor-
mation. Fortunately, in the 5G specifications, we are given machine-
readable descriptions of all APIs.

OAuth: OAuth 2.0 is a widely used authorization framework that
is used across many platforms, such as web, mobile, and IoT [30, 34,
56]. Most security efforts towards OAuth have focused on errors in
specific implementations [12, 18, 39, 50, 51, 54, 59]. A study of over
600 mobile applications found that around 60% of them incorrectly
implement OAuth and are vulnerable [18]. A more recent study
performed on Android applications found that this number has
decreased to only 32% of applications implementing an OAuth secu-
rity mistake [45]. An analysis of OAuth libraries identified most of
them do not implement Cross-Site Request Forgery protection [51].
Some studies [46, 58] analyzed OAuth provider implementations
to identify flaws in the OAuth protocol. They did not examine par-
ticular access control policies checking for over privilege, but only
that OAuth implementations correctly enforce OAuth.

The OAuth standard is written in natural language [30]. An anal-
ysis of the OAuth protocol revealed four previously unknown vul-
nerabilities [25]. They found these vulnerabilities to be exploitable
in practice and considered all four grant types of OAuth, including
client credentials.

Cellular Network Security: All cellular generations have their
own access control challenges. “phreakers” can be highlighted as the
first instances of failed access control in telecommunications [48].
After the transition to SS7, multiple vulnerabilities were discovered
within the protocol [41]. However, cellular networks have gotten
significantly more complex since 2G. SMS was found to be vulner-
able to large-scale botnet attacks [55]. More recently introduced
protocols also have shortcomings. For example, issues in 5G-AKA
have been identified with Tamarin by modeling the protocol for-
mally [13, 22]. 5G-AKA was found to be vulnerable to spoofing and
authentication bypass race conditions. Multiple works [7, 14, 49]
highlight access control challenges from newly introduced 5G fea-
tures, such as multi-tenancy, and NF virtualization. Concurrent to
our paper, Akon et al. [8], formally analyzed the 3GPP specifications
to identify potential problems in how OAuth is enforced; however,
we expand the analysis to consider the OAuth policy directly.
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LTEInspector and 5GReasoner are symbolic model checkers
for LTE and 5G [31, 32]. Numerous works have analyzed spe-
cific portions of 5G standards and have suggested various im-
provements [6, 21, 33]. All of these 5G works study specifications,
and do not consider implementations. Various LTE protocols have
been fuzzed in real implementations, discovering DoS, spoofing,
and eavesdropping on user traffic [36]. BaseSAFE fuzzes baseband
firmware embedded in phones by targeting individual functions of
interest [42]. BASESPEC compares structures embedded in base-
band firmware with the same structures in the specification, un-
covering 0-day remote execution attacks [35]. Importantly, both
works focus on targeting UE devices rather than the RAN or core
network.

Closest to our work, Akon et al. [8], formally modeled 5G’s
access control between NFs and found many issues related to 5G’s
slicing capability. They found that a malicious NF could obtain
an access token to a NF of a certain type (i.e., AMF) and then use
that token to access an AMF on a slice they should not. Another
flaw they found was that if no network slice was specified in the
access token request, they would be granted access to all slices
in the access token. Among these and other identified flaws, they
tested these attacks work on free5GC. To identify the flaws, they
analyze the NFProfile structure of a NF and consider combinations
of possible values described by the specifications. However, they
do not consider whether the specifications have flaws, which was
highlighted by 3GPP TR 33.855 Key Issue #29.

9 CONCLUSION

The 5G core makes significant advances over the 4G core by switch-
ing from specialized hardware to a service-based architecture run-
ning on commodity cloud infrastructure and supporting third-party
NFs. These changes introduce new attack surfaces that require care-
ful consideration. This paper used static analysis of open-source 5G
core implementations as a source of knowledge to identify flaws in
the 3GPP’s OAuth access control policy. In doing so, we identified
two previously unknown policy flaws. These flaws allow a malicious
NF to interrupt UE network connectivity and extract subscriber
information. We further proposed policy fixes to address overprivi-
lege in the specification which will benefit all implementations. By
adopting our refined policy, the 3GPP can reduce the attack surface
of the 5G core from new threats introduced by changes in 5G.
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