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Over thelast decade, biology has begun utilizing ‘big data’ approaches,
resulting inlarge, comprehensive atlases in modalities ranging from
transcriptomics to neural connectomics. However, these approaches must
be complemented and integrated with ‘small data’ approaches to efficiently
utilize data fromindividual labs. Integration of smaller datasets with major
reference atlases is critical to provide context to individual experiments, and
approaches toward integration of large and small data have been amajor
focusin many fields in recent years. Here we discuss progress in integration
of small data with consortium-sized atlases across multiple modalities, and
its potential applications. We then examine promising future directions for
utilizing the power of small data to maximize the information garnered from
small-scale experiments. We envision that, in the near future, international
consortia comprising many laboratories will work together to collaboratively

build reference atlases and foundation models using small data methods.

Why ‘small data’ methods?

Large single-cell’omics atlases are now almost routinely generated by
consortiasuch as the BRAIN Initiative Cell Census Network (BICCN) and
the Human Cell Atlas, and serve as references for smaller-scale stud-
ies performed by individual labs'. Catalyzed by jumps in single-cell
RNA-sequencing technology, these ‘big data’ approaches have been
instrumental inshaping the current renaissance in science by elucidat-
ing the cellular diversity of the body, region by region*. The colloquial
‘bigdata’ when referring to transcriptomics generally consists of many
often multimodal high-dimensional data points, where data structures
can be complex, and are frequently generated in a high-throughput
manner interms of volume and speed’. However, in recent years experts
in data science and machine learning have announced the arrival of
‘small data’ methods® °, which focus on using small data efficiently
by effectively contextualizing small datasets within large-scale refer-
ence atlases, and which are forecasted herein to be a major driver of
discovery going forward.

Small data methods have the potential to substantially increase
theinsights that can be drawn from studies of any size, greatly improv-
ing cost efficiency in terms of time and money spent'®. Methods such
as ‘transfer learning’, which use machine learning models, often deep
neural networks that are trained to generalize learned ‘rules’ across
datasets, allow scientists to learn from reference atlases'"2. Smaller
datasets canthenbe used to further train the model, and to ultimately
update thereference datainaniterative process. Thisapproach opens
up possibilities for collaboration among hundreds or thousands of
labs to build large, accurate reference atlases, which can be used for
comparinganalyses across brainregions, brain disorders, drug condi-
tions and even species™.

Problems integrating ‘small data’ with ‘big data’

While consortia-produced, single-cell atlases are large, they are in-
creasingly dwarfed in comparison with the combined transcriptomic
assay output of individual labs™. This disparity will only grow as
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transcriptomic and epigenetic assays become increasingly standard-
ized aspects of cellular interrogation across biology.

Individual transcriptomic assays typically interrogate individual
brainregions with limited samplessizes. In this sense, single-cell atlases
can be viewed as analogous to ‘reference genomes’, and individual
assays as ‘reads’. Within this analogy, integration of assays with atlases
iseffectively ‘variant calling’. In practice, this ‘variant calling’ amounts
to discriminatory analyses identifying biological differences between
lab-produced assays and single-cell atlases, and this can range from
cell-type proportion alterations to perturbation analysisin gene regu-
latory networks (GRNs). However, there are several issues impeding
integrative analysis.

Batch effects

First, single-cell transcriptomic assays are typically produced from
relatively few mice, with similar genetic backgrounds, and are pre-
pared consistently across samples'. Since query data and reference
data are often generated in different labs and by different scientists
using different protocols, batch effects can dominate the quality of
the joint embedding, leading to spurious results”. If a large-scale
reference dataset has been generated in a single lab, it may not have
had sufficient exposure to this type of variation to allow a robust map-
ping of novel data, in contrast to a cross-lab integrated atlas. Sophis-
ticated data integration methods are often used to overcome these
batch effects, and typically treat perturbations that affect most cells
as batch effects. However, this can mask real biological differences
between datasets'®.

Computational challenges

Second, integrative analysis co-embedding individual assays with
atlasesis still computationally difficult for many labs butisimportant
when attempting to dissect individual cell types and states”. This is
particularly true when analyzing rare cell types, as identification of
higher-resolution distinct cell states contextualized within cell-type
atlases frequently requires co-embedding approaches, requiring
accessto processed atlas data, and potentially the embedding model*®.
While computational algorithms for minimizing time and resource
requirements exist, these algorithms are relatively new, their useis not
widespread, and their use must be considered before creation of the
atlas itself**”,

Datastandardization

Third, while there are standardized requirements for deposition of raw
(fastaand metadatalevel) single-cell RNA (scRNA) experimental data,
no suchrequirement currently exists for processed data. While many
authors do deposit processed data, and there have been substantial
efforts toward developing databases for cross-conditional comparison
of processed scRNA datasets, performing anything but the most basic
comparisons (for example, cell-type querying, differential expres-
sion) is still time consuming and inefficient. Integrative pseudotime
and GRN analysis is uncommonly used with more than two or three
external datasets.

Coordination

Fourth, while consortiahave made major efforts to enable accessibility
to their cell atlases, this information flow travels only from consortia
outward. Thatis, single-cell atlases are fundamentally non-collaborative
beyond the consortia itself. Many single-cell datasets have been pro-
duced outside consortia, and single-cell atlases at present do not
incorporate this wealth of information. Of course, consortia have valid
reasons for notincorporating this information, ranging fromresource
allocation to data quality, anditisneither incentivized norincumbent
onthemtoinclude datafromoutside sources. The fact remains thatat
present, thereis no concerted fieldwide collaborative effort to create
integrative cell atlases in health and disease.

Avariety of recent approaches have been attempted to ameliorate
some of these issues. New integration methods explicitly model both
technical and biological variation’>*, and recent benchmarks indicate
that top-of-the-lineintegration algorithms can accurately account for
technical variation while retaining biological variation's,

Numerous attempts have been made to construct single-cell data-
sets for public usage and comparison, across multiple fields of biology.
Notable examplesinclude PanglaoDB*, EMBL’s Single Cell Expression
Atlas”, the Broad Institute’s Single Cell Portal* and CZI sciences CZ
CELLxGENE Discover”. Smaller databases have been developed to
investigate specific diseases such as cancer”* and Alzheimer’s disease”.
Onerecent model-based example of note is scGPT, apretrained trans-
formed model trained utilizing 33 million cells®. Critically, the authors
demonstrate that thismodel can be optimized to facilitate downstream
applications such as cell-type annotation, integration, perturbation
response prediction and GRN inference, notably outperforming com-
petitorssuch asscBERT*, Harmony**and GEARS™ at these critical tasks.

However, each of these approaches has only partially fulfilled the
promise of enabling integrative analysis of complex transcriptomic
features (for example, lineage tracing analysis, GRN inference) across
the entire field of biology. We posit that the primary reason for this is
the lack of incentive and technical ability for individual researchers
to integrate and share their own data on these platforms, requiring
database authorstoreanalyze, process and integrate individual data-
sets beforeincorporating theminto databases that still typically only
allow for simple cell-type and differential expression analysis viaonline
portals. Enabling and incentivizing the individual researchers tointe-
grateand share their own datain updateable, collaborative transcrip-
tomicatlasesis critical to development of the field of single-cell omics.

Constructing arobust and accessible updateable
integrated atlas

Creation of an updateable integrable transcriptomic atlas requires a
clear delineation of the technical difficulties attendant thereto (Fig. 1a).
Suchaprojectrequires dedicated organization to standardize updates
and modeltraining. The primary issues are (1) standardization of RNA
preprocessing, (2) choice of updateable atlas approach, (3) mecha-
nisms for integration and validation and (4) computational resource
allocation.

While log-normalized processing of RNA datais still commonand
generally effective®, count matrix normalization has been an active
area of research for almost two decades, and a variety of additional
normalization techniques such as SCTransform™ and scran’s decon-
volution method*® have becomeincreasingly popular. Unfortunately,
many specialized methods are written and maintained in only one
coding language (usually R or Python). Consideration must be given
for accessibility for users of both language ecosystems, and integra-
tionacross normalization techniques is nontrivial. Additionally, some
methods (for example, the scVI framework™) do not require explicit
normalization a priori. Additional preprocessing steps such as mito-
chondrial percentage thresholding® and doublet removal®® are also
critical to consider before integration. Whileiit is possible that optimal
preprocessing algorithms exist, the primary requirements for collabo-
ration are consistency and ease of use.

Givenastandard choice for computational normalization, alow-
dimensional embedding algorithm must be chosen for integration
purposes. Currently, neural network-based methods such as sCANVI
and scVI (a semisupervised expansion of scVI)* are perhaps the best
choice, asthey enable easy updates and cell-type querying, are shown
to preservebiological variation while removing technical variation, can
utilize partial cell-type labeling from current reference atlases, and have
already been shown to work with updateable transfer learning-based
models such as scArches?. SCANORAMA*® and fastMNN* also offer
potential options for integration and have shown improved integra-
tionresults over scANVIin benchmark tests. However, these methods

Nature Methods | Volume 21| September 2024 | 1597-1602

1598


http://www.nature.com/naturemethods

Perspective

https://doi.org/10.1038/s41592-024-02390-8

Preprocessing .
Counts/mito. thresholding Tissue
Normalization, doublet
removal 1 —
OrganisV \
A\ \ |
\ o |\ ‘
4 \
e
Class / ‘

—

Fig.1| Constructing an updateable integrated cell atlas. a, Key points for
construction of cell atlas. b, Graph model of hierarchical structure levels within
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utilize nearest-neighbor approaches, and it is not clear that they are
scalableinterms of speed to collaborative atlases.

It is technically feasible to create an integrated atlas using the
technologies discussed above, and indeed these techniques have been
used many times to construct consortia-sized atlases. The critical point
is that additional considerations regarding collaborative updating
and accessibility are required to consider practical atlas updating and
integrationin adistributed framework.

Mechanisms for integration must maintain quality control
and must ensure integration accuracy. A ‘git-style™*? version control
approach, in which atlas updates are submitted for review before
final validation and publication, is a possible mechanism. This would
require submission of standardized quality-control metrics, among
other possible factors. The updated atlas needs to be compared with
the previous atlas to ensure previous cell-type resolution is retained.
Additional potential forms of validation include k-fold cross-validation
approaches®, independent corroboration of new cell types within
similar datasets, and identification of high-quality marker genes for
new cell types. Critically, the whole atlas does not always need to be
validated during updating, as most individual datasets are restricted
to specific tissues and, in the case of cell sorting, cell types (Fig. 1a).

Alsoadapted fromagitapproach, atlas branches (Fig. 1b) provide
amechanism forin-depthanalysis of cell subtypes, particularlyimpor-
tantinthebrain where over 5,000 replicable distinguishable cell types
have been identified'®. Additionally, this feature would enable com-
parison across genotype, disease condition and drug administration
forindividual cell types without compromising the primary cell atlas.
Inpractice, hierarchical cross-condition atlases canbe independently
created at the organ and cell-type level, continuously updated as data
from additional organisms and animal models are included, creating
acontinuously increasing computational resource for all scientists.

Finally, it is worth considering allocation of computational burden
for atlas updating and integration (Fig. 1c). For ease of use and acces-
sibility, one strategy would enable computation on remote servers
maintained for this purpose. This would reduce the required number
of data transfers (from user to atlas only), ensure equitable access
across researchers, and substantially speed up analysis time frames,
while expanding contextualization of the dataset. Additionally, more
complex analyses (for example, pseudotime, GRN, computational
perturbation) could be computed on these servers, enabling combined
analysis across multiple datasets, drastically increasing the analysis
power of individual datasets.

An alternative to centralized computation is a federated or dis-
tributed learning approach*’. In this framework, individual models are
trained locally by individual labs on their own data. A centralized model
isthen created viaiterative updating based on the weights and losses
computed onindividual nodes. This is an extremely useful framework
whendataprivacyisanissue, forexample, when working with datasets
in the PsychEncode database*. This framework can easily be adapted
foriteratively updating centralized foundational models.

We also note the possibility of integrative frameworks with other
omics modalities. In many ways, transcriptomics is the easiest modal-
ity tointegrate across assays, due to the common feature set (genes).
Integrative atlases of other omics modalities generally do not have
this benefit. The assay for transposase-accessible chromatin with
sequencing (ATAC-seq) for example, utilizes accessibility in genomic
locias its feature space, whichis typically computed separately for each
dataset*. Integrationrequires refinement of peak accessibility, and it is
notyet clear which methods for creating integrated feature sets work
best. However, itis known that uniform binning of the genome typically
underperforms other feature selection methods, which implies diffi-
cultyinselecting a priorifeatures that achieve optimal performance®.
Additionally, these epigenetic assays are increasingly combined with
transcriptomics (or other omics modalities), allowing RNA to serve as
the ‘bridge’ for integrating these modalities, which at present may be a
betterapproachthandirect collaborative atlas creation with single-cell
epigenomic assays.

Use cases for contextualization of ‘small data’
within ‘big data’ atlases

Integration (Fig. 2a) of individual transcriptomics assays with large
datasets enables consistentinterrogation of the same cell types across
multiple studies. Computationally, enormous effort has been put into
single-cell integration (Fig. 2b), enabling creation of consistent tax-
onomies across studies’®*>**** Herein we discuss three specific use
cases for small dataintegration either with large-scale atlases, or with
multiple smaller datasets: (1) computational perturbation analysis
(Fig. 2c), (2) comparative GRN analysis (Fig. 2d) and (3) multispecies
integration for translational medicine.

A case study in integration of mostly ‘small data’ to create large
datasets, is the scPerturb database*’. This database incorporates
44 individual datasets containing scCRNA and epigenetic screens after
(typically CRISPR) induced gene perturbations, primarily from cancer
celllines. scPerturb provides uniformcell-type annotation, RNA counts
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and DNA accessibility matrices to facilitate integrative computational
analysis of RNA and epigenetic perturbationimpact. This database, and
others ofitskind, provides afoundation for the computational analysis
and prediction of gene perturbationimpact viamachine learning mod-
elssuchas the compositional perturbation autoencoder®® or GEARS™.

Asecond use case involves analysis of differential GRN alterationin
the context of disease® >, While integrated atlases cannot (currently)
take the place of paired control animals for GRN studies, they still
provide useful comparisons in two ways. First, comparison of inferred
GRNs from control and atlas data provides a measure of expected
statistical variation between samples, thereby enabling an additional
significance measure for condition- and perturbation-dependent
GRNs****, Second, identified GRNs can themselves be integrated within
databases and frameworks, which will allow researchers to compare
gene regulatory alterations in their disease, to those within similar
or disparate conditions, thereby enabling contextualization of this
information within the wider scheme of pathology.

Neurosciencein particularis primed for application of such meth-
ods, dueto the large number of disease-associated mouse models®™,
and the enormousinflux of omics datafromboth specific brainregions,
and whole brains'®***°, A possible specific application of thisapproach
would analyze transcriptomic alterations in various mouse models
of Alzheimer’s disease. Currently, there are dozens of Alzheimer’s
mouse models, exhibiting varying features (amyloid plaque and tau
tangle deposition distribution and time frame, among others)®*,
created using different genetic strategies. However, comparison of
celltranscriptome alterations between models is frequently limited to

comparison tables of differential gene or gene ensemble expression®.
Anintegrated Alzheimer’s atlas would enable precise comparison of
disease progression and itsimpact on neural transcriptomics, includ-
ing perturbation and gene regulatory analysis.

Finally, collaborative atlas creation would further enable cross-
species comparisons across disease states and drug treatments®’. This
couldimprove the translation ability of medical approaches frombasic
to clinical science, by providingacommon framework for determining
whether treatment mechanisms of action are similar across species.
As failure rates for translation of treatment approaches from animal
models to humans remain over 90%°*, an integrative cross-species
disease atlas could play acritical rolein developing medical treatments.
Overall, there is enormous potential for integrated transcriptomic
atlases across molecular science and beyond.

Concluding remarks and future perspectives

Ultimately, acombination of small datamethods will likely be used by
scientiststo collaboratively train models and build references atlases.
Model training and sharing along with reference atlas updating allows
users to both create their own custom models and references atlases,
and to contribute to public models and atlases. This can pave the
way for automated and standardized analyses of single-cell studies
of brain tissue. By using transfer learning methods, users will share
the most complete and recent models and references atlases, which
canbetrained and updated either locally or centrally. Thus, the entire
field of biology will collaborate to generate a joint embedding, with-
out the need to share full datasets, by mapping their own small-scale
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datasetsinto the public reference atlas. Generalization to multimodal
datasets will allow for reference atlas representations of nucleomics,
epigenomics and proteomics, inaddition to transcriptomics® ™. This
effort will be enormously beneficial to individual labs as identifica-
tion of subtle state-specific biological changes presentin their one-off
small-scale data will be discoverable when contextualized within the
reference dataset.

Acentralized effort to store, maintain, integrate and improve access
to already existing databases is critical for enabling researchers to
maximize the value of their individual assays, and would enable rapid
comparison and analysis of animal and human disease and treatment
models. This approach has the potential to improve our ability toiden-
tify molecular mechanisms of action across animal models, which may
translate into animproved ability to translate discoveries in basic sci-
ence into therapeutic approaches to human disease.
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