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Small data methods in omics: the power  
of one

Kevin G. Johnston1,2,8, Steven F. Grieco2,3,8, Qing Nie    1,4  , Fabian J. Theis    5,6,7   &  
Xiangmin Xu    2,3 

Over the last decade, biology has begun utilizing ‘big data’ approaches, 
resulting in large, comprehensive atlases in modalities ranging from 
transcriptomics to neural connectomics. However, these approaches must 
be complemented and integrated with ‘small data’ approaches to efficiently 
utilize data from individual labs. Integration of smaller datasets with major 
reference atlases is critical to provide context to individual experiments, and 
approaches toward integration of large and small data have been a major 
focus in many fields in recent years. Here we discuss progress in integration 
of small data with consortium-sized atlases across multiple modalities, and 
its potential applications. We then examine promising future directions for 
utilizing the power of small data to maximize the information garnered from 
small-scale experiments. We envision that, in the near future, international 
consortia comprising many laboratories will work together to collaboratively 
build reference atlases and foundation models using small data methods.

Why ‘small data’ methods?
Large single-cell ’omics atlases are now almost routinely generated by 
consortia such as the BRAIN Initiative Cell Census Network (BICCN) and 
the Human Cell Atlas, and serve as references for smaller-scale stud-
ies performed by individual labs1–3. Catalyzed by jumps in single-cell 
RNA-sequencing technology, these ‘big data’ approaches have been 
instrumental in shaping the current renaissance in science by elucidat-
ing the cellular diversity of the body, region by region4. The colloquial 
‘big data’ when referring to transcriptomics generally consists of many 
often multimodal high-dimensional data points, where data structures 
can be complex, and are frequently generated in a high-throughput 
manner in terms of volume and speed5. However, in recent years experts 
in data science and machine learning have announced the arrival of 
‘small data’ methods6–9, which focus on using small data efficiently 
by effectively contextualizing small datasets within large-scale refer-
ence atlases, and which are forecasted herein to be a major driver of 
discovery going forward.

Small data methods have the potential to substantially increase 
the insights that can be drawn from studies of any size, greatly improv-
ing cost efficiency in terms of time and money spent10. Methods such 
as ‘transfer learning’, which use machine learning models, often deep 
neural networks that are trained to generalize learned ‘rules’ across 
datasets, allow scientists to learn from reference atlases11,12. Smaller 
datasets can then be used to further train the model, and to ultimately 
update the reference data in an iterative process. This approach opens 
up possibilities for collaboration among hundreds or thousands of 
labs to build large, accurate reference atlases, which can be used for 
comparing analyses across brain regions, brain disorders, drug condi-
tions and even species13,14.

Problems integrating ‘small data’ with ‘big data’
While consortia-produced, single-cell atlases are large, they are in
creasingly dwarfed in comparison with the combined transcriptomic 
assay output of individual labs15. This disparity will only grow as 
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A variety of recent approaches have been attempted to ameliorate 
some of these issues. New integration methods explicitly model both 
technical and biological variation22,23, and recent benchmarks indicate 
that top-of-the-line integration algorithms can accurately account for 
technical variation while retaining biological variation18.

Numerous attempts have been made to construct single-cell data-
sets for public usage and comparison, across multiple fields of biology. 
Notable examples include PanglaoDB24, EMBL’s Single Cell Expression 
Atlas25, the Broad Institute’s Single Cell Portal26 and CZI sciences CZ 
CELL×GENE Discover27. Smaller databases have been developed to 
investigate specific diseases such as cancer28 and Alzheimer’s disease29. 
One recent model-based example of note is scGPT, a pretrained trans-
formed model trained utilizing 33 million cells30. Critically, the authors 
demonstrate that this model can be optimized to facilitate downstream 
applications such as cell-type annotation, integration, perturbation 
response prediction and GRN inference, notably outperforming com-
petitors such as scBERT31, Harmony32 and GEARS33 at these critical tasks.

However, each of these approaches has only partially fulfilled the 
promise of enabling integrative analysis of complex transcriptomic 
features (for example, lineage tracing analysis, GRN inference) across 
the entire field of biology. We posit that the primary reason for this is 
the lack of incentive and technical ability for individual researchers 
to integrate and share their own data on these platforms, requiring 
database authors to reanalyze, process and integrate individual data-
sets before incorporating them into databases that still typically only 
allow for simple cell-type and differential expression analysis via online  
portals. Enabling and incentivizing the individual researchers to inte-
grate and share their own data in updateable, collaborative transcrip-
tomic atlases is critical to development of the field of single-cell omics.

Constructing a robust and accessible updateable 
integrated atlas
Creation of an updateable integrable transcriptomic atlas requires a 
clear delineation of the technical difficulties attendant thereto (Fig. 1a). 
Such a project requires dedicated organization to standardize updates 
and model training. The primary issues are (1) standardization of RNA 
preprocessing, (2) choice of updateable atlas approach, (3) mecha-
nisms for integration and validation and (4) computational resource 
allocation.

While log-normalized processing of RNA data is still common and 
generally effective34, count matrix normalization has been an active 
area of research for almost two decades, and a variety of additional 
normalization techniques such as SCTransform35 and scran’s decon-
volution method36 have become increasingly popular. Unfortunately, 
many specialized methods are written and maintained in only one 
coding language (usually R or Python). Consideration must be given 
for accessibility for users of both language ecosystems, and integra-
tion across normalization techniques is nontrivial. Additionally, some 
methods (for example, the scVI framework21) do not require explicit 
normalization a priori. Additional preprocessing steps such as mito-
chondrial percentage thresholding37 and doublet removal38 are also 
critical to consider before integration. While it is possible that optimal 
preprocessing algorithms exist, the primary requirements for collabo-
ration are consistency and ease of use.

Given a standard choice for computational normalization, a low- 
dimensional embedding algorithm must be chosen for integration 
purposes. Currently, neural network-based methods such as scANVI 
and scVI (a semisupervised expansion of scVI)39 are perhaps the best 
choice, as they enable easy updates and cell-type querying, are shown 
to preserve biological variation while removing technical variation, can 
utilize partial cell-type labeling from current reference atlases, and have 
already been shown to work with updateable transfer learning-based 
models such as scArches20. SCANORAMA40 and fastMNN41 also offer 
potential options for integration and have shown improved integra-
tion results over scANVI in benchmark tests. However, these methods 

transcriptomic and epigenetic assays become increasingly standard-
ized aspects of cellular interrogation across biology.

Individual transcriptomic assays typically interrogate individual 
brain regions with limited sample sizes. In this sense, single-cell atlases 
can be viewed as analogous to ‘reference genomes’, and individual 
assays as ‘reads’. Within this analogy, integration of assays with atlases 
is effectively ‘variant calling’. In practice, this ‘variant calling’ amounts 
to discriminatory analyses identifying biological differences between 
lab-produced assays and single-cell atlases, and this can range from 
cell-type proportion alterations to perturbation analysis in gene regu-
latory networks (GRNs). However, there are several issues impeding 
integrative analysis.

Batch effects
First, single-cell transcriptomic assays are typically produced from 
relatively few mice, with similar genetic backgrounds, and are pre-
pared consistently across samples16. Since query data and reference 
data are often generated in different labs and by different scientists 
using different protocols, batch effects can dominate the quality of 
the joint embedding, leading to spurious results17. If a large-scale  
reference dataset has been generated in a single lab, it may not have 
had sufficient exposure to this type of variation to allow a robust map-
ping of novel data, in contrast to a cross-lab integrated atlas. Sophis-
ticated data integration methods are often used to overcome these 
batch effects, and typically treat perturbations that affect most cells 
as batch effects. However, this can mask real biological differences  
between datasets18.

Computational challenges
Second, integrative analysis co-embedding individual assays with 
atlases is still computationally difficult for many labs but is important 
when attempting to dissect individual cell types and states19. This is 
particularly true when analyzing rare cell types, as identification of 
higher-resolution distinct cell states contextualized within cell-type 
atlases frequently requires co-embedding approaches, requiring 
access to processed atlas data, and potentially the embedding model20. 
While computational algorithms for minimizing time and resource 
requirements exist, these algorithms are relatively new, their use is not 
widespread, and their use must be considered before creation of the  
atlas itself20,21.

Data standardization
Third, while there are standardized requirements for deposition of raw 
(fasta and metadata level) single-cell RNA (scRNA) experimental data, 
no such requirement currently exists for processed data. While many 
authors do deposit processed data, and there have been substantial 
efforts toward developing databases for cross-conditional comparison 
of processed scRNA datasets, performing anything but the most basic 
comparisons (for example, cell-type querying, differential expres-
sion) is still time consuming and inefficient. Integrative pseudotime 
and GRN analysis is uncommonly used with more than two or three 
external datasets.

Coordination
Fourth, while consortia have made major efforts to enable accessibility 
to their cell atlases, this information flow travels only from consortia 
outward. That is, single-cell atlases are fundamentally non-collaborative 
beyond the consortia itself. Many single-cell datasets have been pro-
duced outside consortia, and single-cell atlases at present do not 
incorporate this wealth of information. Of course, consortia have valid 
reasons for not incorporating this information, ranging from resource 
allocation to data quality, and it is neither incentivized nor incumbent 
on them to include data from outside sources. The fact remains that at 
present, there is no concerted fieldwide collaborative effort to create 
integrative cell atlases in health and disease.
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utilize nearest-neighbor approaches, and it is not clear that they are 
scalable in terms of speed to collaborative atlases.

It is technically feasible to create an integrated atlas using the 
technologies discussed above, and indeed these techniques have been 
used many times to construct consortia-sized atlases. The critical point 
is that additional considerations regarding collaborative updating 
and accessibility are required to consider practical atlas updating and 
integration in a distributed framework.

Mechanisms for integration must maintain quality control 
and must ensure integration accuracy. A ‘git-style’42 version control 
approach, in which atlas updates are submitted for review before 
final validation and publication, is a possible mechanism. This would 
require submission of standardized quality-control metrics, among 
other possible factors. The updated atlas needs to be compared with 
the previous atlas to ensure previous cell-type resolution is retained. 
Additional potential forms of validation include k-fold cross-validation 
approaches43, independent corroboration of new cell types within 
similar datasets, and identification of high-quality marker genes for 
new cell types. Critically, the whole atlas does not always need to be 
validated during updating, as most individual datasets are restricted 
to specific tissues and, in the case of cell sorting, cell types (Fig. 1a).

Also adapted from a git approach, atlas branches (Fig. 1b) provide 
a mechanism for in-depth analysis of cell subtypes, particularly impor-
tant in the brain where over 5,000 replicable distinguishable cell types 
have been identified16. Additionally, this feature would enable com-
parison across genotype, disease condition and drug administration 
for individual cell types without compromising the primary cell atlas. 
In practice, hierarchical cross-condition atlases can be independently 
created at the organ and cell-type level, continuously updated as data 
from additional organisms and animal models are included, creating 
a continuously increasing computational resource for all scientists.

Finally, it is worth considering allocation of computational burden 
for atlas updating and integration (Fig. 1c). For ease of use and acces-
sibility, one strategy would enable computation on remote servers 
maintained for this purpose. This would reduce the required number 
of data transfers (from user to atlas only), ensure equitable access 
across researchers, and substantially speed up analysis time frames, 
while expanding contextualization of the dataset. Additionally, more 
complex analyses (for example, pseudotime, GRN, computational 
perturbation) could be computed on these servers, enabling combined 
analysis across multiple datasets, drastically increasing the analysis 
power of individual datasets.

An alternative to centralized computation is a federated or dis-
tributed learning approach44. In this framework, individual models are 
trained locally by individual labs on their own data. A centralized model 
is then created via iterative updating based on the weights and losses 
computed on individual nodes. This is an extremely useful framework 
when data privacy is an issue, for example, when working with datasets 
in the PsychEncode database45. This framework can easily be adapted 
for iteratively updating centralized foundational models.

We also note the possibility of integrative frameworks with other 
omics modalities. In many ways, transcriptomics is the easiest modal-
ity to integrate across assays, due to the common feature set (genes). 
Integrative atlases of other omics modalities generally do not have 
this benefit. The assay for transposase-accessible chromatin with 
sequencing (ATAC-seq) for example, utilizes accessibility in genomic 
loci as its feature space, which is typically computed separately for each 
dataset46. Integration requires refinement of peak accessibility, and it is 
not yet clear which methods for creating integrated feature sets work 
best. However, it is known that uniform binning of the genome typically 
underperforms other feature selection methods, which implies diffi-
culty in selecting a priori features that achieve optimal performance47. 
Additionally, these epigenetic assays are increasingly combined with 
transcriptomics (or other omics modalities), allowing RNA to serve as 
the ‘bridge’ for integrating these modalities, which at present may be a 
better approach than direct collaborative atlas creation with single-cell 
epigenomic assays.

Use cases for contextualization of ‘small data’ 
within ‘big data’ atlases
Integration (Fig. 2a) of individual transcriptomics assays with large 
datasets enables consistent interrogation of the same cell types across 
multiple studies. Computationally, enormous effort has been put into 
single-cell integration (Fig. 2b), enabling creation of consistent tax-
onomies across studies18,32,39–41,48. Herein we discuss three specific use 
cases for small data integration either with large-scale atlases, or with 
multiple smaller datasets: (1) computational perturbation analysis 
(Fig. 2c), (2) comparative GRN analysis (Fig. 2d) and (3) multispecies 
integration for translational medicine.

A case study in integration of mostly ‘small data’ to create large 
datasets, is the scPerturb database49. This database incorporates  
44 individual datasets containing scRNA and epigenetic screens after 
(typically CRISPR) induced gene perturbations, primarily from cancer 
cell lines. scPerturb provides uniform cell-type annotation, RNA counts 
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and DNA accessibility matrices to facilitate integrative computational 
analysis of RNA and epigenetic perturbation impact. This database, and 
others of its kind, provides a foundation for the computational analysis 
and prediction of gene perturbation impact via machine learning mod-
els such as the compositional perturbation autoencoder50 or GEARS33.

A second use case involves analysis of differential GRN alteration in 
the context of disease51–53. While integrated atlases cannot (currently) 
take the place of paired control animals for GRN studies, they still 
provide useful comparisons in two ways. First, comparison of inferred 
GRNs from control and atlas data provides a measure of expected 
statistical variation between samples, thereby enabling an additional 
significance measure for condition- and perturbation-dependent 
GRNs54,55. Second, identified GRNs can themselves be integrated within 
databases and frameworks, which will allow researchers to compare 
gene regulatory alterations in their disease, to those within similar 
or disparate conditions, thereby enabling contextualization of this 
information within the wider scheme of pathology.

Neuroscience in particular is primed for application of such meth-
ods, due to the large number of disease-associated mouse models56,57, 
and the enormous influx of omics data from both specific brain regions, 
and whole brains16,58,59. A possible specific application of this approach 
would analyze transcriptomic alterations in various mouse models 
of Alzheimer’s disease. Currently, there are dozens of Alzheimer’s 
mouse models, exhibiting varying features (amyloid plaque and tau 
tangle deposition distribution and time frame, among others)60,61, 
created using different genetic strategies. However, comparison of 
cell transcriptome alterations between models is frequently limited to 

comparison tables of differential gene or gene ensemble expression62. 
An integrated Alzheimer’s atlas would enable precise comparison of 
disease progression and its impact on neural transcriptomics, includ-
ing perturbation and gene regulatory analysis.

Finally, collaborative atlas creation would further enable cross- 
species comparisons across disease states and drug treatments63. This 
could improve the translation ability of medical approaches from basic 
to clinical science, by providing a common framework for determining 
whether treatment mechanisms of action are similar across species. 
As failure rates for translation of treatment approaches from animal 
models to humans remain over 90%64, an integrative cross-species 
disease atlas could play a critical role in developing medical treatments. 
Overall, there is enormous potential for integrated transcriptomic 
atlases across molecular science and beyond.

Concluding remarks and future perspectives
Ultimately, a combination of small data methods will likely be used by 
scientists to collaboratively train models and build references atlases. 
Model training and sharing along with reference atlas updating allows 
users to both create their own custom models and references atlases, 
and to contribute to public models and atlases. This can pave the 
way for automated and standardized analyses of single-cell studies 
of brain tissue. By using transfer learning methods, users will share 
the most complete and recent models and references atlases, which 
can be trained and updated either locally or centrally. Thus, the entire 
field of biology will collaborate to generate a joint embedding, with-
out the need to share full datasets, by mapping their own small-scale 
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datasets into the public reference atlas. Generalization to multimodal 
datasets will allow for reference atlas representations of nucleomics, 
epigenomics and proteomics, in addition to transcriptomics65–67. This 
effort will be enormously beneficial to individual labs as identifica-
tion of subtle state-specific biological changes present in their one-off 
small-scale data will be discoverable when contextualized within the  
reference dataset.

A centralized effort to store, maintain, integrate and improve access 
to already existing databases is critical for enabling researchers to 
maximize the value of their individual assays, and would enable rapid 
comparison and analysis of animal and human disease and treatment 
models. This approach has the potential to improve our ability to iden-
tify molecular mechanisms of action across animal models, which may 
translate into an improved ability to translate discoveries in basic sci-
ence into therapeutic approaches to human disease.
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