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Recently, significant strides have been made in the development
of high-fidelity skin organoids, encompassing techniques such
as 3D bioprinting, skin-on-a-chip systems, and models derived
from pluripotent stem cells (PSCs), replicating appendage
structures and diverse skin cell types. Despite the emergence of
these state-of-the-art skin engineering models, human
organotypic cultures (OTCs), initially proposed in the 1970s,
continue to reign as the predominant in vitro cultured three-
dimensional skin model in the field of tissue engineering. This
enduring prevalence is owed to their cost-effectiveness, straight
forward setup, time efficiency, and faithful representation of
native human skin. In this review, we systematically delineate
recent advances in skin OTC models, aiming to inform future
efforts to enhance in vitro skin model fidelity and reproducibility.
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Introduction

T'he skin, as the largest organ in the human body, serves
crucial roles in immunity by safeguarding against pa-
thogens, maintaining body surface hydration levels, and
acting as the primary barrier against diverse environ-
mental threats [1,2]. Furthermore, skin moderates
homeostatic ~ balance, including sensation and

thermoregulation. Given its critical involvement in var-
ious bodily processes, skin-related ailments rank as the
fourth leading nonfatal disease burden globally, affecting
approximately one-third of the population [3,4]. Al-
though these conditions typically do not lead to fatal-
ities, their associated stigma and profound effects on
self-esteem and mental well-being should not be over-
looked. Consequently, in addressing diseases associated
with the loss of skin integrity, animal models and two-
dimensional (2D) iz vitro culture have been extensively
employed to investigate the skin disease mechanisms
and validate therapeutic interventions. However, chal-
lenges such as interspecies variability in animal models
[5] and the imperative to adhere to the 3R (replace, re-
duce, and refine) strategy [6] underscore the limitations
of animal uses. Moreover, 2D monolayer cultures are
constrained by their inability to replicate the stratified
epidermis and lack of 3D cell-to-cel/ECM (extracellular
matrix) interactions [7]. Hence, considerable efforts over
a span of 40 years have been devoted to the develop-
ment of /z vitro cultured 3D skin models, specifically
focusing on skin organotypic cultures (OTCs), with the
primary aim of faithfully replicating 7z vivo human skin-
like structures and functions. This concerted effort is
driven by the imperative to facilitate both research in-
vestigations and clinical applications in the field.

Full-thickness skin equivalents were delineated in the
1980s [8,9], building upon pioneering co-cultures of
keratinocytes (KCs) on fibroblasts (Fibs) at the air-liquid
interface (ALI) [10]. By the close of the last century,
differentiated KC cultures were successfully cultivated
on various substrates, including collagen gels [11], nylon
mesh [12], inert filters [13], lyophilized collagen-GAG
membranes crosslinked by chemical agents [14], and
human de-epidermized dermis (DED) [15]. In these
models, living skin OTCs are nurtured in an ALI,
evolving into a multilayered stratified epidermis with
discernible epidermal cell layers. In the early 2010s, Itoh
et al. [16,17] developed the protocols for differentiating
human induced pluripotent stem cells (hiPSCs) into
both KCs and Fibs, as well as 3D skin equivalents fully
reconstituted from hiPSCs, representing another major
breakthrough. Patient-derived or genetically modified
skin cells have emerged as pivotal components in the
development of OTC models designed to target a wide
range of diseases [18]. This development significantly
enhances the relevance of OT'C models in clinical re-
search pursuits.
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Notable progress has been achieved in the development
of skin spheroids and hPSC-derived organoid models.
These organoids are constructed from a nearly complete
i vitro self-organized skin system differentiated from
hPSCs, forming a hierarchical skin organoid that faith-
fully recapitulates a stratified epidermis, fat-rich dermis,
and pigmented hair follicles equipped with sebaceous
glands [19-21]. Despite the significant attention re-
ceived by hPSC-derived skin organoids, the ALI-based
OTC model persists as a prevalent platform extensively
utilized not only in skin development research but also
in mitigating the limitations associated with PSC-de-
rived skin organoid cysts. However, because of the
planar structure and limited diversity of cell types, most
current human skin OTC models are predominantly 3D
layered skin substitutes devoid of appendages. Hybrid
constructs that combine hPSC-derived cyst-like skin
organoids with subsequent ALI culture techniques re-
present OTC models capable of recapitulating multiple
appendage structures. Development of an iz vivo-like
skin organoid through the activation of the Wingless-
related integration site (WN'T) signaling pathway results
in larger organoids devoid of off-target cartilage differ-
entiation [22]. Employing an ALI-based OTC model,
skin organoids are obtained featuring a stratified squa-
mous epithelium, more closely resembling adult human
skin [22]. Similarly, the application of O'TC-based up-
scaling was also demonstrated in a human conjunctiva
organoid model [23].

Alongside skin OTC models, four additional types of
skin models also serve as significant components in 7z
vitro 3D skin bioengineering (IFigure 1la), which have
been comprehensively discussed elsewhere, including
skin spheroids, PSC-derived skin organoids, as well as
advanced technologies such as 3D bioprinting and skin-
on-a-chip systems. These models collectively contribute
to the current landscape of /# vitro cultured 3D skin
models and hold great promise for various applications in
research and clinical practice. Interestingly, 3D bio-
printing is a technique on the rise that can be applied to
various existing skin models, significantly expanding
their application scenarios, including skin OTC models
that often serve as the basic setup, which is then en-
hanced through bioprinting. As skin OTC models re-
main a cornerstone in skin bioengineering and are
widely used in research (Figure 1b), our focus will be on
providing a synthesis of existing literature pertaining to
human skin OTCs.

Versatility of human organotypic culture
models

Thorough characterization of skin OTC models is im-
perative for precise modeling utilizing the ALI culture
method, which closely mimics the physiological com-
plexity of human skin tissue, including its multilayered

structure that comprises three distinct layers: the epi-
dermis, dermis, and the innermost hypodermis [9,24]. In
general, these models are typically categorized into three
types based on their structural complexity (Figure 2):
human epidermal equivalents (HEEs), human skin
equivalents (HSEs), and advanced human skin equiva-
lents (aHSEs). Different OTC models do not follow a
simple linear evolutionary relationship. Although the
complexity increases from HEE to aHSE models, their
fidelity and consistency do not necessarily improve with
increasing complexity. As a result, each model has its
unique applications and advantages.

Human epidermal equivalents

HEEs represent the simplest form of skin tissue, composed
exclusively of KCs. Initially seeded into transwells, these
cells undergo brief cultivation under submerged conditions
before transitioning to the ALL This transition facilitates the
stratification of the epidermis, complete with identifiable
epidermal cell layers. Although a weakness of HEEs is the
simplicity of its makeup, which does not allow for cell-type
interactions, they do possess barrier properties akin to native
human skin and is an ideal option for investigations focusing
on areas where heightened complexity is unnecessary [25].
For instance, the HEE models offer dependable substitutes
for i vitro permeation testing studies, a domain historically
plagued by the unpredictable availability and exorbitant cost
associated with excised human skin [26]. Owing to its cost-
effectiveness and reproducibility, the HEE model is also
implemented in hazard assessments and regenerative med-
icine, where it is now commercially available from numerous
companies [27,28]. Moreover, recent studies underscore its
significance in skin barrier research and disease modeling.
ATFAP2A-HEEs generated via CRISPR/Cas9 have been
used to investigate whether 7FAPZA knockout and the
consequent loss of KC differentiation gene expression lead
to morphological alterations and epidermal barrier impair-
ments [29]. Additionally, cultured human KCs and HEEs
have been used to establish a preclinical model of Darier
disease (DD) to better understand disease pathogenesis.
Building upon the SERCA2-deficient HEE model, Mitogen
activated protein kinase kinase (MEK) inhibition was shown
as a potential targeted therapy strategy for DD [30]. Pig-
mented HEE models can be used to assess the effect of
melanin following ultraviolet (UV) irradiation [31].

Human skin equivalents

Contemporary skin models predominantly comprise two
discernible layers: the epidermis and dermis. This de-
sign allows for the optimal differentiation of the epi-
dermis and the replication of the complex interactions
between KCs and Fibs, which are crucial for maintaining
skin homeostasis [32]. In their most rudimentary form,
these reconstructed skin models are composed of an
ECM-based biomaterial, such as collagen or DED,
which is primarily populated by Fibs and overlaid with a
stratified epidermis. This structural arrangement ensures
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Different 3D in vitro skin models and their popularity in research. (a) An overview of different 3D in vitro skin models. Graphics generated, in part, using
Biorender. (b) The 10-year trend (2013-2023) of research interest in 3D in vitro skin models. Various models were investigated within the PubMed

database through independent search queries: “(skin) AND ((equivalent) OR (organotypic) OR (organotypic equivalent))”, ”(skin-on-chip) OR (skin-on-
a-chip) OR ((skin) AND (microfluidic devices))", "(skin organoid) AND ((PSC) OR (pluripotent stem cells) OR (iPSC) OR (induced pluripotent stem cells)
OR (embryonic stem cells))", "(skin) AND ((bioprinting) OR (3D printing))", and “(skin) AND (spheroid)". OTCs, organotypic cultures; PSC, pluripotent

stem cells; iPSC, induced pluripotent stem cells.

that the dermal layer remains in direct contact with the pathogenesis associated with various appendages, such as
culture medium, while the epidermis is exposed to the folliculitis.

air. 'The dermal component of HSEs may be scaffold-

free, formed through cell-self-secreted ECM or cell Advanced human skin equivalents

sheets [33,34], utilizing natural scaffolds such as native Extensive efforts have been dedicated to engineering

skin-derived acellular DEDs [35] and collagen, or em- aHSEs capable of integrating additional cell types.
ploying synthetic scaffolds like polymerized hydrogels  These include endothelial cells to vascularize the dermis
[36], electro-spun nanofibers, and porous substrates [37]. [46] and melanocytes to introduce pigmentation [47].

Significantly, collagen- and DED-based HSEs are in- Furthermore, neuronal cells [48,49], lymphatic cells [50],
creasingly recognized as promising skin models in skin immune cells (e.g. dermal dendritic cells [51], mono-
bioengineering owing to their supportive cellular en- cytes [52], T cells [53], and macrophages [54]), adipo-
vironments and low antigenicity [38,39]. cytes and adipose tissue [49,55,56], pluripotent stem

cells [22,36,57], and skin appendages such as hair folli-
HSEs are used to investigate various aspects of normal and cles or sweat glands [18,58] have been incorporated.
abnormal skin biology, including wound healing [40,41], aHSE models offer a high degree of customization, fa-
aging [42,43], and the study of various diseases [18]. Ad- cilitating control over organotypic cell populations,
ditionally, they have been employed directly in studies and genotypes, and culture conditions, thereby enabling
as ‘hybrid’ models, where humanized HSEs are grafted onto meticulously controlled studies on tissue-level biology

immunodeficient mice [44]. Furthermore, in response to [59]. This expansion enhances the application of OTC
challenges associated with donor variability, conventional models for investigating potential therapeutic techni-
primary cell-based HSEs have transitioned to more stan- ques [18,60], particularly in mimicking inflammatory

dardized and reproducible 7 vitro culture models. These skin diseases like psoriasis and atopic dermatitis [59],
models utilize either immortalized cell lines [45] or cells while also studying skin-related bacterial adhesion and
derived from hiPSCs [17]. Despite advancements and the infection [22,45].

ability to replicate various characteristics of native human

skin and disease-specific phenotypes, full-thickness HSE Given their high customizability and potential for sig-
models face limitations due to the absence of vasculature, nificant variation in complexity depending on the in-
appendages, and immune system. This deficiency compli- tended application, 3D printing technology has been
cates the simulation of systemic inflammation and effectively integrated into aHSE models. Notably, the
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Figure 2
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An overview of in vitro skin OTC models. The upper part illustrates the relationship between human skin and in vitro OTC model. The biophysiological
structure of native human skin comprises three distinct layers: epidermis, dermis, and hypodermis, as depicted by a human skin biopsy. Different
layers of the skin correspond to various types of OTC models. The HEE model exists in two formats: epidermis-only and pseudo-full-thickness, which
includes an acellular dermal component; the HSE model consists of both epidermis and dermis, representing a full-thickness bilayer structure; the
aHSE can incorporate additional cell types beyond KCs and Fibs, combine with 3D printing technology, or integrate mechanical features. It may have a
bi- or tri-layered structure. “+/-" denotes inclusion or exclusion of the specified additive; “+” signifies inclusion of at least one of the displayed
additives. The lower part displays the figure legend. OTC, organotypic culture; HEE, human epidermal equivalent model; HSE, human skin equivalent
model; aHSE, advanced human skin equivalent model; NCs, neuronal cells; ECs, endothelial cells; MSs, melanoma spheroids; LCs, lymphatic cells;
DCs, dendritic cells. Partial credit for figure generation is attributed to Biorender.

development of large-scale personalized edgeless wear-
able human skin grafts was further vascularized by
skin-specific endothelial cells, resulting in enhanced
deposition of the ECM, improved mechanical proper-
ties, and site-specific differences in cellular and ECM
organization [61]. Meanwhile, aHSEs can be created
with rete ridges between their epidermal and dermal
layers using 3D-printed stamps coupled with the mi-
cromolding method [62]. The produced rete ridges
comprised rounded features of controlled geometry and
periodicity in the dermal layer, advancing the current
HSE model to a more skin-like state.

While advanced and capable of representing a broad
range of native human skin characteristics and disease
pathology, aHSE models present challenges in terms of
development, being more time-consuming and complex
compared to classical full-thickness HSE models. The
heightened complexity not only raises the specialty
for their widespread adoption but also escalates costs,

particularly when utilizing cells of human origin or PSC-
derived cells. Consequently, striking a balance between
model stability and complexity is crucial in the design of
studies focusing on skin-related research.

llluminating the fidelity of skin organotypic
culture models via single-cell omics

ALI-based planar OTC models for skin offer a robust
platform enabling researchers to manipulate various
types of skin cells and their microenvironments artifi-
cially. Traditionally, skin bioengineering studies have
relied on phenotypic readouts. The planar format and
ample size of skin OTC models theoretically enable the
adaptation and implementation of assessment ap-
proaches utilized on native human skin. Unlike low-
throughput methods such as quantitative polymerase
chain reaction or immunofluorescence, highly sensitive
RNA sequencing (RNA-seq) empowers researchers to
simultaneously analyze the expression levels of all
genes within a sample. This capability facilitates the
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comparison of gene expression or predicted biofunction
profiles across different samples or experimental condi-
tions.

In the wave of technological evolution from bulk to
single-cell level omics, single-cell RNA sequencing
(scRNA-seq) has become a routine method for studying
human skin development. It enables both profiling of
gene expression measurements at a single-cell resolution
and identification of reliable cellular heterogeneity, al-
lowing for the identification of previously unrecognized
levels of cellular heterogeneity, revealing regulatory re-
lationships between genes, and tracking the trajectories
of distinct cell lineages in the same or different devel-
opmental stages [63-66]. Although single-cell research
related to 7z vitro skin models is relatively sparse and still
in its early stages, some interesting conclusions can be
drawn from these studies that would be difficult to ob-
tain otherwise. For instance, scRNA-seq of human KCs
was compared to holoclone signatures, and the resulting
analyses were able to clearly distinguish epidermal ho-
loclone-forming cells from other epidermal cell states
and identify a continuous hierarchical trajectory,
showing that holoclone-forming cells generate mer-
oclone- and paraclone-forming cells [67]. hPSC-derived
skin organoids, with their enhanced complexity, re-
semble a more fetal developmental stage [19], with their
mouse counterparts forming competent morphogenetic
units that can initiate hair growth after transplantation
using epidermal IFNr to induce apical-basal polarity,
dermal-Tgfb to induce basement membranes, and
dermal-Vegf to mediate dermal cell attachment to the
epidermal cyst shell [68]. Finally, a comparison of
HEEs, HSEs, xenograft HEEs, and # vivo epidermis
indicates that these systems also resemble a more fetal-
like developmental state similar to the PSC-based or-
ganoids and contain all the cellular states as their 7z vivo
counterpart but may exhibit defects in the basal and
terminal differentiation programs depending on how
they are cultured [44]. These results also reaffirmed the
presence of cellular stress in 7z vifro models, offering
important insights for future research in tissue culturing
and engineering.

Conclusion and perspectives

The versatile skin OTC-based platform is ideally suited
for investigating a broad range of physiological and pa-
thological scenarios, presenting significant potential for
advancing our understanding of skin developmental
biology, disease modeling, and applications in re-
generative medicine [69-71]. Hence, skin O'T'C models
function as a crucial intermediary between animal
models, traditional 2D cell cultures, and human skin
biopsies, highlighting their adaptability and versatility
within the realm of skin biology.
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Reproducibility of skin organotypic cultures

The importance of standardized protocols for ensuring
experimental reproducibility cannot be overstated. A
major challenge in achieving reproducibility in skin
culture systems stems from the absence of uniform,
standardized protocols, which can lead to variations in
factors such as culture medium, ALI duration, and key
cellular parameters (e.g. fibroblast presence, cell seeding
density, passage number, etc.). This lack of standardi-
zation complicates the comparison of studies performed
under different culture conditions. However, the choice
of appropriate cell sources for model development holds
significant potential for enhancing the reproducibility of
OTCs. For example, using PSC-derived cells or im-
mortalized cell lines may offer advantages over primary
cell sources, which are susceptible to interdonor varia-
bility. Nonetheless, determining which cell source pro-
vides the highest fidelity remains unclear and requires
further investigation.

Future directions

In the realm of skin OTCs, the evolution of iz vitro
models is diverging along two promising paths. One fo-
cuses on replicating the full complexity of human skin,
aiming to recreate its architecture and functionality i
vitro. This path seeks physiological relevance by ap-
proximating the intricacies of living skin. The second
approach emphasizes specialized models tailored to in-
vestigate specific skin features or functions. Irrespective
of the chosen trajectory, single-cell analytical techniques
are crucial for thorough characterization, ensuring the
functional and mechanistic insights necessary to validate
these models.

Within regenerative medicine, autologous skin grafting re-
mains the gold standard for treating skin defects. However,
its clinical limitations, particularly the restricted availability
of donor sites, underscore the need for alternative strategies.
In response to this pressing demand, numerous OT'C-based
cultured epidermis and skin substitute products have be-
come commercially available (e.g. Commercially Available
Skin Substitute Products [72]; Skin and Soft Tissue Sub-
stitutes [73]). Nevertheless, no artificial skin substitute cur-
rently achieves full functional equivalence to autologous
grafts. Addressing these challenges, Nagano et al. recently
succeeded in generating semi-autologous skin iz vivo
through niche encroachment, paving the way for large-scale
human skin graft production in livestock animals [74].

In investigations concerning skin development, skin is
frequently delineated as an intricate network of four
symbiotic barriers: the physical, chemical, immune, and
microbiotic layers [75]. Addressing these aspects, con-
temporary research is channeling resources into enhan-
cing skin models from simplistic bilayer constructs to
elaborate systems that incorporate both immune cells
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and active surface microbiota. Hybrid constructs, amal-
gamating PSC-derived skin organoids with subsequent
ALI culture methods, emerge as a promising founda-
tional approach for the assembly of integrated skin
systems.

To conclude, the advancement of iz vitro skin OTC
models is steadfastly trending toward enhanced com-
plexity and functionality. Harnessing innovations in
biotechnology, skin models on the horizon hold im-
mense potential to revolutionize both scientific inquiry
and practical applications.
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