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Diversity of human skin three-dimensional organotypic 
cultures
Yunlong Y Jia1 and Scott X Atwood1,2,3,4

Recently, significant strides have been made in the development 
of high-fidelity skin organoids, encompassing techniques such 
as 3D bioprinting, skin-on-a-chip systems, and models derived 
from pluripotent stem cells (PSCs), replicating appendage 
structures and diverse skin cell types. Despite the emergence of 
these state-of-the-art skin engineering models, human 
organotypic cultures (OTCs), initially proposed in the 1970s, 
continue to reign as the predominant in vitro cultured three- 
dimensional skin model in the field of tissue engineering. This 
enduring prevalence is owed to their cost-effectiveness, straight 
forward setup, time efficiency, and faithful representation of 
native human skin. In this review, we systematically delineate 
recent advances in skin OTC models, aiming to inform future 
efforts to enhance in vitro skin model fidelity and reproducibility.
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Introduction
The skin, as the largest organ in the human body, serves 
crucial roles in immunity by safeguarding against pa-
thogens, maintaining body surface hydration levels, and 
acting as the primary barrier against diverse environ-
mental threats [1,2]. Furthermore, skin moderates 
homeostatic balance, including sensation and 

thermoregulation. Given its critical involvement in var-
ious bodily processes, skin-related ailments rank as the 
fourth leading nonfatal disease burden globally, affecting 
approximately one-third of the population [3,4]. Al-
though these conditions typically do not lead to fatal-
ities, their associated stigma and profound effects on 
self-esteem and mental well-being should not be over-
looked. Consequently, in addressing diseases associated 
with the loss of skin integrity, animal models and two- 
dimensional (2D) in vitro culture have been extensively 
employed to investigate the skin disease mechanisms 
and validate therapeutic interventions. However, chal-
lenges such as interspecies variability in animal models 
[5] and the imperative to adhere to the 3R (replace, re-
duce, and refine) strategy [6] underscore the limitations 
of animal uses. Moreover, 2D monolayer cultures are 
constrained by their inability to replicate the stratified 
epidermis and lack of 3D cell-to-cell/ECM (extracellular 
matrix) interactions [7]. Hence, considerable efforts over 
a span of 40 years have been devoted to the develop-
ment of in vitro cultured 3D skin models, specifically 
focusing on skin organotypic cultures (OTCs), with the 
primary aim of faithfully replicating in vivo human skin- 
like structures and functions. This concerted effort is 
driven by the imperative to facilitate both research in-
vestigations and clinical applications in the field.

Full-thickness skin equivalents were delineated in the 
1980s [8,9], building upon pioneering co-cultures of 
keratinocytes (KCs) on fibroblasts (Fibs) at the air–liquid 
interface (ALI) [10]. By the close of the last century, 
differentiated KC cultures were successfully cultivated 
on various substrates, including collagen gels [11], nylon 
mesh [12], inert filters [13], lyophilized collagen-GAG 
membranes crosslinked by chemical agents [14], and 
human de-epidermized dermis (DED) [15]. In these 
models, living skin OTCs are nurtured in an ALI, 
evolving into a multilayered stratified epidermis with 
discernible epidermal cell layers. In the early 2010s, Itoh 
et al. [16,17] developed the protocols for differentiating 
human induced pluripotent stem cells (hiPSCs) into 
both KCs and Fibs, as well as 3D skin equivalents fully 
reconstituted from hiPSCs, representing another major 
breakthrough. Patient-derived or genetically modified 
skin cells have emerged as pivotal components in the 
development of OTC models designed to target a wide 
range of diseases [18]. This development significantly 
enhances the relevance of OTC models in clinical re-
search pursuits.
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Notable progress has been achieved in the development 
of skin spheroids and hPSC-derived organoid models. 
These organoids are constructed from a nearly complete 
in vitro self-organized skin system differentiated from 
hPSCs, forming a hierarchical skin organoid that faith-
fully recapitulates a stratified epidermis, fat-rich dermis, 
and pigmented hair follicles equipped with sebaceous 
glands [19–21]. Despite the significant attention re-
ceived by hPSC-derived skin organoids, the ALI-based 
OTC model persists as a prevalent platform extensively 
utilized not only in skin development research but also 
in mitigating the limitations associated with PSC-de-
rived skin organoid cysts. However, because of the 
planar structure and limited diversity of cell types, most 
current human skin OTC models are predominantly 3D 
layered skin substitutes devoid of appendages. Hybrid 
constructs that combine hPSC-derived cyst-like skin 
organoids with subsequent ALI culture techniques re-
present OTC models capable of recapitulating multiple 
appendage structures. Development of an in vivo–like 
skin organoid through the activation of the Wingless- 
related integration site (WNT) signaling pathway results 
in larger organoids devoid of off-target cartilage differ-
entiation [22]. Employing an ALI-based OTC model, 
skin organoids are obtained featuring a stratified squa-
mous epithelium, more closely resembling adult human 
skin [22]. Similarly, the application of OTC-based up-
scaling was also demonstrated in a human conjunctiva 
organoid model [23].

Alongside skin OTC models, four additional types of 
skin models also serve as significant components in in 
vitro 3D skin bioengineering (Figure 1a), which have 
been comprehensively discussed elsewhere, including 
skin spheroids, PSC-derived skin organoids, as well as 
advanced technologies such as 3D bioprinting and skin- 
on-a-chip systems. These models collectively contribute 
to the current landscape of in vitro cultured 3D skin 
models and hold great promise for various applications in 
research and clinical practice. Interestingly, 3D bio-
printing is a technique on the rise that can be applied to 
various existing skin models, significantly expanding 
their application scenarios, including skin OTC models 
that often serve as the basic setup, which is then en-
hanced through bioprinting. As skin OTC models re-
main a cornerstone in skin bioengineering and are 
widely used in research (Figure 1b), our focus will be on 
providing a synthesis of existing literature pertaining to 
human skin OTCs.

Versatility of human organotypic culture 
models
Thorough characterization of skin OTC models is im-
perative for precise modeling utilizing the ALI culture 
method, which closely mimics the physiological com-
plexity of human skin tissue, including its multilayered 

structure that comprises three distinct layers: the epi-
dermis, dermis, and the innermost hypodermis [9,24]. In 
general, these models are typically categorized into three 
types based on their structural complexity (Figure 2): 
human epidermal equivalents (HEEs), human skin 
equivalents (HSEs), and advanced human skin equiva-
lents (aHSEs). Different OTC models do not follow a 
simple linear evolutionary relationship. Although the 
complexity increases from HEE to aHSE models, their 
fidelity and consistency do not necessarily improve with 
increasing complexity. As a result, each model has its 
unique applications and advantages.

Human epidermal equivalents
HEEs represent the simplest form of skin tissue, composed 
exclusively of KCs. Initially seeded into transwells, these 
cells undergo brief cultivation under submerged conditions 
before transitioning to the ALI. This transition facilitates the 
stratification of the epidermis, complete with identifiable 
epidermal cell layers. Although a weakness of HEEs is the 
simplicity of its makeup, which does not allow for cell-type 
interactions, they do possess barrier properties akin to native 
human skin and is an ideal option for investigations focusing 
on areas where heightened complexity is unnecessary [25]. 
For instance, the HEE models offer dependable substitutes 
for in vitro permeation testing studies, a domain historically 
plagued by the unpredictable availability and exorbitant cost 
associated with excised human skin [26]. Owing to its cost- 
effectiveness and reproducibility, the HEE model is also 
implemented in hazard assessments and regenerative med-
icine, where it is now commercially available from numerous 
companies [27,28]. Moreover, recent studies underscore its 
significance in skin barrier research and disease modeling. 
ΔTFAP2A-HEEs generated via CRISPR/Cas9 have been 
used to investigate whether TFAP2A knockout and the 
consequent loss of KC differentiation gene expression lead 
to morphological alterations and epidermal barrier impair-
ments [29]. Additionally, cultured human KCs and HEEs 
have been used to establish a preclinical model of Darier 
disease (DD) to better understand disease pathogenesis. 
Building upon the SERCA2-deficient HEE model, Mitogen 
activated protein kinase kinase (MEK) inhibition was shown 
as a potential targeted therapy strategy for DD [30]. Pig-
mented HEE models can be used to assess the effect of 
melanin following ultraviolet (UV) irradiation [31].

Human skin equivalents
Contemporary skin models predominantly comprise two 
discernible layers: the epidermis and dermis. This de-
sign allows for the optimal differentiation of the epi-
dermis and the replication of the complex interactions 
between KCs and Fibs, which are crucial for maintaining 
skin homeostasis [32]. In their most rudimentary form, 
these reconstructed skin models are composed of an 
ECM-based biomaterial, such as collagen or DED, 
which is primarily populated by Fibs and overlaid with a 
stratified epidermis. This structural arrangement ensures 
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that the dermal layer remains in direct contact with the 
culture medium, while the epidermis is exposed to the 
air. The dermal component of HSEs may be scaffold- 
free, formed through cell-self-secreted ECM or cell 
sheets [33,34], utilizing natural scaffolds such as native 
skin-derived acellular DEDs [35] and collagen, or em-
ploying synthetic scaffolds like polymerized hydrogels 
[36], electro-spun nanofibers, and porous substrates [37]. 
Significantly, collagen- and DED-based HSEs are in-
creasingly recognized as promising skin models in skin 
bioengineering owing to their supportive cellular en-
vironments and low antigenicity [38,39].

HSEs are used to investigate various aspects of normal and 
abnormal skin biology, including wound healing [40,41], 
aging [42,43], and the study of various diseases [18]. Ad-
ditionally, they have been employed directly in studies and 
as ‘hybrid’ models, where humanized HSEs are grafted onto 
immunodeficient mice [44]. Furthermore, in response to 
challenges associated with donor variability, conventional 
primary cell-based HSEs have transitioned to more stan-
dardized and reproducible in vitro culture models. These 
models utilize either immortalized cell lines [45] or cells 
derived from hiPSCs [17]. Despite advancements and the 
ability to replicate various characteristics of native human 
skin and disease-specific phenotypes, full-thickness HSE 
models face limitations due to the absence of vasculature, 
appendages, and immune system. This deficiency compli-
cates the simulation of systemic inflammation and 

pathogenesis associated with various appendages, such as 
folliculitis.

Advanced human skin equivalents
Extensive efforts have been dedicated to engineering 
aHSEs capable of integrating additional cell types. 
These include endothelial cells to vascularize the dermis 
[46] and melanocytes to introduce pigmentation [47]. 
Furthermore, neuronal cells [48,49], lymphatic cells [50], 
immune cells (e.g. dermal dendritic cells [51], mono-
cytes [52], T cells [53], and macrophages [54]), adipo-
cytes and adipose tissue [49,55,56], pluripotent stem 
cells [22,36,57], and skin appendages such as hair folli-
cles or sweat glands [18,58] have been incorporated. 
aHSE models offer a high degree of customization, fa-
cilitating control over organotypic cell populations, 
genotypes, and culture conditions, thereby enabling 
meticulously controlled studies on tissue-level biology 
[59]. This expansion enhances the application of OTC 
models for investigating potential therapeutic techni-
ques [18,60], particularly in mimicking inflammatory 
skin diseases like psoriasis and atopic dermatitis [59], 
while also studying skin-related bacterial adhesion and 
infection [22,45].

Given their high customizability and potential for sig-
nificant variation in complexity depending on the in-
tended application, 3D printing technology has been 
effectively integrated into aHSE models. Notably, the 

Figure 1  
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Different 3D in vitro skin models and their popularity in research. (a) An overview of different 3D in vitro skin models. Graphics generated, in part, using 
Biorender. (b) The 10-year trend (2013–2023) of research interest in 3D in vitro skin models. Various models were investigated within the PubMed 
database through independent search queries: “(skin) AND ((equivalent) OR (organotypic) OR (organotypic equivalent))”, ”(skin-on-chip) OR (skin-on- 
a-chip) OR ((skin) AND (microfluidic devices))", "(skin organoid) AND ((PSC) OR (pluripotent stem cells) OR (iPSC) OR (induced pluripotent stem cells) 
OR (embryonic stem cells))", "(skin) AND ((bioprinting) OR (3D printing))", and "(skin) AND (spheroid)". OTCs, organotypic cultures; PSC, pluripotent 
stem cells; iPSC, induced pluripotent stem cells.  
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development of large-scale personalized edgeless wear-
able human skin grafts was further vascularized by 
skin-specific endothelial cells, resulting in enhanced 
deposition of the ECM, improved mechanical proper-
ties, and site-specific differences in cellular and ECM 
organization [61]. Meanwhile, aHSEs can be created 
with rete ridges between their epidermal and dermal 
layers using 3D-printed stamps coupled with the mi-
cromolding method [62]. The produced rete ridges 
comprised rounded features of controlled geometry and 
periodicity in the dermal layer, advancing the current 
HSE model to a more skin-like state.

While advanced and capable of representing a broad 
range of native human skin characteristics and disease 
pathology, aHSE models present challenges in terms of 
development, being more time-consuming and complex 
compared to classical full-thickness HSE models. The 
heightened complexity not only raises the specialty 
for their widespread adoption but also escalates costs, 

particularly when utilizing cells of human origin or PSC- 
derived cells. Consequently, striking a balance between 
model stability and complexity is crucial in the design of 
studies focusing on skin-related research.

Illuminating the fidelity of skin organotypic 
culture models via single-cell omics
ALI-based planar OTC models for skin offer a robust 
platform enabling researchers to manipulate various 
types of skin cells and their microenvironments artifi-
cially. Traditionally, skin bioengineering studies have 
relied on phenotypic readouts. The planar format and 
ample size of skin OTC models theoretically enable the 
adaptation and implementation of assessment ap-
proaches utilized on native human skin. Unlike low- 
throughput methods such as quantitative polymerase 
chain reaction or immunofluorescence, highly sensitive 
RNA sequencing (RNA-seq) empowers researchers to 
simultaneously analyze the expression levels of all 
genes within a sample. This capability facilitates the 

Figure 2  
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An overview of in vitro skin OTC models. The upper part illustrates the relationship between human skin and in vitro OTC model. The biophysiological 
structure of native human skin comprises three distinct layers: epidermis, dermis, and hypodermis, as depicted by a human skin biopsy. Different 
layers of the skin correspond to various types of OTC models. The HEE model exists in two formats: epidermis-only and pseudo-full-thickness, which 
includes an acellular dermal component; the HSE model consists of both epidermis and dermis, representing a full-thickness bilayer structure; the 
aHSE can incorporate additional cell types beyond KCs and Fibs, combine with 3D printing technology, or integrate mechanical features. It may have a 
bi- or tri-layered structure. “+/−” denotes inclusion or exclusion of the specified additive; “+” signifies inclusion of at least one of the displayed 
additives. The lower part displays the figure legend. OTC, organotypic culture; HEE, human epidermal equivalent model; HSE, human skin equivalent 
model; aHSE, advanced human skin equivalent model; NCs, neuronal cells; ECs, endothelial cells; MSs, melanoma spheroids; LCs, lymphatic cells; 
DCs, dendritic cells. Partial credit for figure generation is attributed to Biorender.  
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comparison of gene expression or predicted biofunction 
profiles across different samples or experimental condi-
tions.

In the wave of technological evolution from bulk to 
single-cell level omics, single-cell RNA sequencing 
(scRNA-seq) has become a routine method for studying 
human skin development. It enables both profiling of 
gene expression measurements at a single-cell resolution 
and identification of reliable cellular heterogeneity, al-
lowing for the identification of previously unrecognized 
levels of cellular heterogeneity, revealing regulatory re-
lationships between genes, and tracking the trajectories 
of distinct cell lineages in the same or different devel-
opmental stages [63–66]. Although single-cell research 
related to in vitro skin models is relatively sparse and still 
in its early stages, some interesting conclusions can be 
drawn from these studies that would be difficult to ob-
tain otherwise. For instance, scRNA-seq of human KCs 
was compared to holoclone signatures, and the resulting 
analyses were able to clearly distinguish epidermal ho-
loclone-forming cells from other epidermal cell states 
and identify a continuous hierarchical trajectory, 
showing that holoclone-forming cells generate mer-
oclone- and paraclone-forming cells [67]. hPSC-derived 
skin organoids, with their enhanced complexity, re-
semble a more fetal developmental stage [19], with their 
mouse counterparts forming competent morphogenetic 
units that can initiate hair growth after transplantation 
using epidermal IFNr to induce apical-basal polarity, 
dermal-Tgfb to induce basement membranes, and 
dermal-Vegf to mediate dermal cell attachment to the 
epidermal cyst shell [68]. Finally, a comparison of 
HEEs, HSEs, xenograft HEEs, and in vivo epidermis 
indicates that these systems also resemble a more fetal- 
like developmental state similar to the PSC-based or-
ganoids and contain all the cellular states as their in vivo 
counterpart but may exhibit defects in the basal and 
terminal differentiation programs depending on how 
they are cultured [44]. These results also reaffirmed the 
presence of cellular stress in in vitro models, offering 
important insights for future research in tissue culturing 
and engineering.

Conclusion and perspectives
The versatile skin OTC-based platform is ideally suited 
for investigating a broad range of physiological and pa-
thological scenarios, presenting significant potential for 
advancing our understanding of skin developmental 
biology, disease modeling, and applications in re-
generative medicine [69–71]. Hence, skin OTC models 
function as a crucial intermediary between animal 
models, traditional 2D cell cultures, and human skin 
biopsies, highlighting their adaptability and versatility 
within the realm of skin biology.

Reproducibility of skin organotypic cultures
The importance of standardized protocols for ensuring 
experimental reproducibility cannot be overstated. A 
major challenge in achieving reproducibility in skin 
culture systems stems from the absence of uniform, 
standardized protocols, which can lead to variations in 
factors such as culture medium, ALI duration, and key 
cellular parameters (e.g. fibroblast presence, cell seeding 
density, passage number, etc.). This lack of standardi-
zation complicates the comparison of studies performed 
under different culture conditions. However, the choice 
of appropriate cell sources for model development holds 
significant potential for enhancing the reproducibility of 
OTCs. For example, using PSC-derived cells or im-
mortalized cell lines may offer advantages over primary 
cell sources, which are susceptible to interdonor varia-
bility. Nonetheless, determining which cell source pro-
vides the highest fidelity remains unclear and requires 
further investigation.

Future directions
In the realm of skin OTCs, the evolution of in vitro 
models is diverging along two promising paths. One fo-
cuses on replicating the full complexity of human skin, 
aiming to recreate its architecture and functionality in 
vitro. This path seeks physiological relevance by ap-
proximating the intricacies of living skin. The second 
approach emphasizes specialized models tailored to in-
vestigate specific skin features or functions. Irrespective 
of the chosen trajectory, single-cell analytical techniques 
are crucial for thorough characterization, ensuring the 
functional and mechanistic insights necessary to validate 
these models.

Within regenerative medicine, autologous skin grafting re-
mains the gold standard for treating skin defects. However, 
its clinical limitations, particularly the restricted availability 
of donor sites, underscore the need for alternative strategies. 
In response to this pressing demand, numerous OTC-based 
cultured epidermis and skin substitute products have be-
come commercially available (e.g. Commercially Available 
Skin Substitute Products [72]; Skin and Soft Tissue Sub-
stitutes [73]). Nevertheless, no artificial skin substitute cur-
rently achieves full functional equivalence to autologous 
grafts. Addressing these challenges, Nagano et al. recently 
succeeded in generating semi-autologous skin in vivo 
through niche encroachment, paving the way for large-scale 
human skin graft production in livestock animals [74].

In investigations concerning skin development, skin is 
frequently delineated as an intricate network of four 
symbiotic barriers: the physical, chemical, immune, and 
microbiotic layers [75]. Addressing these aspects, con-
temporary research is channeling resources into enhan-
cing skin models from simplistic bilayer constructs to 
elaborate systems that incorporate both immune cells 
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and active surface microbiota. Hybrid constructs, amal-
gamating PSC-derived skin organoids with subsequent 
ALI culture methods, emerge as a promising founda-
tional approach for the assembly of integrated skin 
systems.

To conclude, the advancement of in vitro skin OTC 
models is steadfastly trending toward enhanced com-
plexity and functionality. Harnessing innovations in 
biotechnology, skin models on the horizon hold im-
mense potential to revolutionize both scientific inquiry 
and practical applications.
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ferentiation of skin-relevant epithelial organoids.
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