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Abstract:

The accuracy of single particle (SP) models for lithium-ion batteries (LIBs) at high C-rates is
constrained by lithium concentration gradients in the electrolyte, which affect ionic conductivity,
overpotential, and reaction rates. This study addresses these limitations using extreme gradient
boosting (XGBoost) machine learning (ML). By training our ML model with data from a
comprehensive electrochemical (P2D) model and performing sensitivity analysis on key battery
parameters, we enhance predictive accuracy. Compared to conventional SP and P2D models under
constant current loading, our ML-based SP model achieves similar predictive accuracy to P2D,
with significant improvements in computational efficiency. Additionally, the ML-based SP model
demonstrates improved predictive accuracy under dynamic loading conditions, providing a
practical framework for improving battery management and safety.
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Lithium-Ion Batteries (LIBs) have revolutionized energy storage technologies, particularly in the
realm of electric vehicles (EVs) and hybrid electric vehicles (HEVs). Their unparalleled energy
and power density render them indispensable for meeting the ever-growing demands of these
transportation sectors'2. However, this widespread adoption has been accompanied by escalating
concerns regarding battery safety, thereby underscoring the urgent need for robust battery
management system (BMS)**. Traditional monitoring techniques, relying predominantly on
voltage, current, and temperature measurements, have proven insufficient in accurately predicting
critical battery parameters such as state of charge (SOC) and state of health (SOH). This
inadequacy not only jeopardizes battery performance but also poses significant safety risks. As
such, there arises a pressing demand for advanced sensing and monitoring technologies capable of
accurately tracking the intricate physical parameters of lithium-ion batteries®. While high-fidelity
electrochemical models such as proposed by Doyle et al.” and their several improved versions offer
unparalleled insights into battery behavior, their computational complexity presents formidable
challenges for real-time BMS implementation®. Simplified models like the equivalent circuit
model (ECM) have been widely adopted due to their computational efficiency. However, the
ECM’s limited predictive capabilities, stemming from its oversimplified representation of battery
dynamics, necessitate alternative approaches’. The single particle (SP) model, derived from
comprehensive electrochemical models, strikes a balance between electrochemical and equivalent
circuit models for physical modeling of battery and computational efficiency. It employs a small
set of ordinary differential equations to explicitly maintain key battery characteristics. Assuming
uniform spherical particles and uniform current distribution in both electrodes, the SP model
simplifies each electrode to a single particle. While it effectively describes general charge-
discharge behavior, it lacks the ability to capture battery dynamics at high C-rates due to the
absence of electrolyte physics!%12. Different strategies have been proposed to incorporate the SP
model with the electrolyte contribution, employing polynomial equations of varying orders'!®.
Generally, the polynomial order determines the accuracy of the approximation. Higher-order
polynomials are expected to provide greater accuracy, although they entail increased
computational complexity for coefficient identification. Thus, while higher-order polynomials
offer enhanced precision, they also incur greater numerical costs in terms of coefficient
determination. Recent advances in battery modeling have leveraged machine learning techniques
to significantly improve performance prediction, useful life estimation'’-1%, state of charge (SOC)
and state of health (SOH) estimation, thereby enhancing predictive accuracy. However, much of
the existing research primarily targets performance prediction and computational efficiency within
established models, without fundamentally addressing the core design limitations of these models.
For instance, Tran et al.'” compare four multivariate multioutput regression ML methods for
predicting battery voltage and temperature, evaluating their feasibility and performance. While
such studies enhance predictive accuracy, they often do not tackle the underlying architectural
constraints of traditional models. In contrast, this manuscript addresses these limitations by
focusing on enhancing the SP model architecture for lithium-ion batteries. Specifically, our work
aims to overcome the key limitation of inadequate electrolyte dynamics in traditional SP model,
offering a more robust and accurate representation of battery behavior.

In this study, we introduce a method to improve the accuracy and efficiency of conventional SP
models in predicting electrolyte overpotential and dynamics across various current rates. Our
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approach involves integrating the extreme gradient boosting (XGBoost) machine learning (ML)
technique into the SP model framework, aimed at enhancing its predictive capabilities. To validate
our method, we compared the results obtained from the proposed model with those from a full-
order electrochemical model and a conventional SP model. Additionally, we conducted
galvanostatic constant discharge tests and dynamic stress tests (DSTs) to demonstrate the accuracy
of our enhanced SP model under different operational scenarios. These validation tests confirm the
reliability and effectiveness of our proposed approach in improving the predictive capabilities of
SP models for lithium-ion batteries.
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FIG. 1 Schematic of single particle model for Li-ion battery

The conventional SP model relies on two primary assumptions: first, that all particles within an
electrode exhibit similar behavior, allowing the entire electrode to be represented by a single
spherical particle, as depicted in Fig. 1. Second, it assumes a uniform distribution of current across
the electrode particles'"> 2. Tonic diffusion of Li ion in each particle is governed by Fick’s second
law:
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The expression describes the solid-phase Li-ion concentration, denoted as ¢ j, with respect to time
(t), radial coordinate (r), and the solid-phase diffusion coefficient (Ds ;). The subscript j = p/n

distinguishes between the positive and negative electrodes. The boundary conditions for the
diffusion problem are:
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where R; is the electrode particle radius.



The rate of electrochemical reaction governing the intercalation and deintercalation of lithium ions
at the interface between the solid electrode and the electrolyte solution can be characterized using
Butler-Volmer kinetics?’.
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The parameter k; denotes the reaction rate constant, ¢, represents the electrolyte concentration, R
stands for the universal gas constant, T signifies the temperature, and F is Faraday’s constant. The
function ¢y j oy (t) is expressed as a function of the particle's surface concentration cg j gy (t) =

Cs,j(Rji t)

The surface overpotential, 7; is expressed as n; = @4 ; — @, ; — U;, where @ ; is the solid-phase
potential, @, ; is solution-phase potential, and U; is the Open Circuit Potential (OCP). The OCP,

in general, is a function of the SOC and temperature. The SOC is expressed as the normalized

Cs,j,surf(t)

surface concentration, . Using reverse hyperbolic function®, the potential difference is

Cjmax

obtained from the reaction rate expression, J-* as
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The overall battery terminal voltage is then obtained from the solid-phase potential difference
between both ends of the cell®.
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The last term in the voltage expression above (®;,(t)|y=; — P2, (t)|x=0) represents the
electrolyte potential difference. In the conventional SP models, the neglect of potential gradients
within the electrolyte is a common simplification. In these models, the addition of a resistance
term to Butler-Volmer kinetics serves the purpose of modeling interface resistance exclusively,
without consideration for potential distribution within the electrolyte. The internal resistance is
typically approximated as an ohmic voltage drop, iqp, Rcerr, Where i, denotes the applied current



density. The value of resistance, R.,;;, is influenced by various intricate mass and charge transfer
phenomena. The R.;; value is subject to various intricate mass and charge transfer phenomena.
Guo et al.2’ proposed an estimation of this resistance based on empirical considerations tied to
both the ambient temperature and the current at the battery terminals. In a separate study?', R ey
was posited to be dependent upon electrode ionic conductivities and electrode thicknesses. This
assumption underscores a significant limitation of the traditional SP model, as it hinders the ability
of model to accurately depict battery dynamics, particularly under high C-rate conditions.
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FIG. 2 (a) Root Mean Square Error (RMSE) of polynomial regression models (orders 3 to 6) and XGBoost
model. The XGBoost model exhibits the lowest RMSE, indicating improved predictive performance. (b)
Predicted A®, values by the XGBoost model and the 5th order polynomial regression model compared to
actual values, showing close alignment with the XGBoost model providing the most accurate predictions.

The main objective of a data-driven methodology is to provide real-time estimations of electrolyte
potential within LIBs. Utilizing XGBoost, a ML technique leveraging gradient boosted decision
trees, aims to accelerate training procedures, and improve predictive accuracy. The decision to
integrate XGBoost into the SP model for electrolyte potential prediction is motivated by its distinct
advantages, notably its swift training capabilities and improved accuracy as documented in
previous studies??>. Nevertheless, polynomial regression model and XGBoost regression model
were compared in terms of predictive accuracy. Polynomial regression was tested with orders 3 to
6, showing decreasing RMSE from 0.0291 for order 3 to 0.00836 for order 5, but a slight increase
to 0.00902 for order 6, indicating overfitting at higher orders. The XGBoost model, with a
maximum depth of 5 and a learning rate of 0.7, achieved an RMSE 0f 0.00176, outperforming the
best polynomial model (Fig. 2a). Hyperparameter tuning through grid search and 5-fold cross-
validation, along with early stopping, validated the XGBoost model’s effectiveness. This model
was selected for further analysis in this study. The training of the ML model is carried out using
dataset obtained from a parametric study based on a comprehensive electrochemical P2D model”
24 Prior to the parametric study, a sensitivity analysis study was conducted to identify key battery
parameters influencing electrolyte dynamics, revealing electrolyte conductivity (k), SOC, and C-
Rate as pivotal for ML model training. The subsequent parametric investigation involved a
diversity of current rates (C-Rate) values: 0.05C, 0.1C, 0.5, 1C, 2C and 5C and adjusting
electrolyte conductivity at 80%, 100%, and 120% of its nominal value, with electrolyte potential
difference (A®,) designated as the dependent variable. Several discharge cycles were run to obtain
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the dataset. Machine learning training utilized 80% of the dataset, with the remaining 20% reserved
as a test set. Figure 2 presents a comparison between electrolyte potential predictions generated by
the trained machine learning model and those from the P2D model, demonstrating a negligible
RMSE of 0.00176. This underscores the exceptional predictive performance of the XGBoost
model.

Table I. Comparison of computational times for P2D, SP, and proposed models at 1C Discharge Rate.

Models Computation time (s)
P2D 43.0

SP 2.0

Proposed model 2.0

Table II. Values of parameters used in the simulations.

Parameter  Value Description

L, 100E-6 Thickness of the negative electrode (m) ’

Lg 52E-6 Thickness of the separator (m) ’

L, 183E-6 Thickness of the positive electrode (m) ’

D, 7.5E10-11 Diffusion coefficient in electrolyte (m?/s)’

F 96487 Faraday’s constant (C /mol )’

Lapp 17.5 xC-rate C-rate times 1 C discharge current density (A m—2)’
D, 3.9E-14 Solid-phase Li diffusivity, negative electrode (m?/s)’
D, 1.0E-13 Solid-phase Li diffusivity, positive electrode (m?/s)’
T 298.15 Ambient temperature (K)

Crmaxpos 22860 Positive maximum concentration (mol/m3)’
Cmaxneg 206390 Negative maximum concentration (mol/m3)’

T 8.0E-6 Particle radius, positive electrode (m) ’

7, 12.5E-6 Particle radius, negative electrode (m) ’

k; 2.0E-6 Reaction rate constant (m?°mol=%°s~1)’

To assess the efficacy of the proposed model, we adopted the LiMn204-LiC6 battery chemistry
utilized by Doyle et al.” Using COMSOL Multiphysics version 6.1, we simulated three models:
the P2D model referred to as ‘P2D’, a conventional SP model referred to as ‘SPM’, and our
proposed machine learning enhanced SP model, referred to as ‘XGBoost model’. Each model
employed a consistent sampling period of 1 second and a discharge cycle with a stopping condition
set at 2.8V to facilitate comparison of computational efficiency. Battery modeling parameters are
listed in table II. Table I presents the execution times recorded for each model in the COMSOL
program. Notably, the computational times for the SP model (2.0 s) and the proposed model (2.0
s) were identical, contrasting with the P2D model’s computational time (43.0 seconds). To assess
the model’s performance under dynamic loading conditions, simulation of the Dynamic Stress Test
(DST) was conducted. This test, designed by the United States Advanced Battery Consortium for
evaluating EV and HEV batteries,>>® features current profiles with high C-Rate values reaching



up to 6C. Our model was trained up to 5C, necessitating extrapolation for higher C-Rate values.
Figure 3 shows the voltage profiles for DST loading, comparing the results with those obtained
from conventional SP and P2D models. Notably, our model demonstrates a notably accurate
prediction even at extrapolated current values, outperforming the SP model. This accuracy
demonstrates that our model generalizes effectively beyond its training data, delivering reliable
predictions even at higher current rates. At 6C, the conventional SP model encounters difficulties
due to its inability to accurately capture steep gradients in electrolyte potential, increased ionic
resistance, and localized potential drops within the electrodes. These limitations lead to reduced
accuracy at high C-rates. In contrast, our model, which is trained to handle conditions up to nearly
6C, addresses these challenges. By incorporating considerations for electrolyte potential variations

and ionic resistance, our model provides improved generalization and prediction accuracy under
high current rates.
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FIG. 3 Evaluation of voltage profiles (3a) and percentage errors (3b) for the SP model and the proposed
XGBoost model, compared to the P2D model under dynamic stress test (DST) loading. The P2D model is
shown in black, the SP model in red, and the proposed XGBoost model in green. Error plots are colored red
for the SP model and blue for the XGBoost model.

In this section, we conducted simulations across three models, spanning cell voltage from 4.2 to
2.8 V for 0.2C, 1C, and 5C C-Rate values. We then compared outcomes from both conventional
and proposed SP models with those from the P2D model as illustrated in Fig. 4. Notably, Figures
4a and 4b exhibited good agreement between the conventional and proposed SP models and P2D
model results, with a percentage error below 0.3%. However, at higher C-rates, the proposed SP
model results (RMSE of 0.00178 for 1C and 0.0122 for 5C) closely aligned with the P2D model
compared to the conventional SP model results (RMSE of 0.00239 for 1C and 0.0175 for 5C), as
shown in Figs. 4c to 4f. This discrepancy at higher C-rates is attributed to the increasing error in
the electrolyte potential difference with rising C-rates, as discussed previously. During the DST,
modern batteries, particularly for HEVs, may operate at current loads up to and exceeding 5C. The
5C rate case (Figs. 4e and 4f) demonstrated a significant increase in error rate for the conventional
SP model compared to the proposed SP model. In summary, results from the proposed SP model
aligned well with those from the P2D model.
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FIG. 4 Comparison of voltage responses and percentage errors for the P2D, SP, and proposed XGBoost
models during discharge cycles at 0.2C (a and b), 1C (c and d), and 5C (e and f). The percentage error is

consistently higher for the SP model compared to the proposed XGBoost model, indicating greater accuracy
of the XGBoost model across all current rates.



Analysis of the electrolyte potential difference in the cell was conducted and plotted in Fig. 5(a,b).
The conventional SPM model exhibited a static electrolyte potential indicated by a horizontal line
in the plot, highlighting the absence of electrolyte dynamics in the model. In contrast, the proposed
model demonstrated changing electrolyte potential values around those obtained from the higher-
order P2D model, indicating improved fidelity to real-world conditions. The error plot further
revealed an initial percentage error in the SPM model exceeding 80%, underscoring the
enhancements introduced by the proposed model. At the onset of discharging, an initial drop in
electrolyte potential occurs due to the ohmic drop, which is a result of the increased demand for
ions to migrate from the anode to the cathode. This ohmic drop arises from the internal resistance
within the battery. Following this initial decrease, the potential typically stabilizes as the battery
continues to deliver current to the load. The SP model does not capture this ohmic drop and the
associated dynamic response, whereas the proposed model effectively addresses these factors.

-0.03 100, ,
a —P2D I b !—gpm .
- SPM I |==Proposed model
-0.04 ~XGBoost model 80 I|
& 60y
S |y
| -y
w 40| \
200 M
! - ” 2
-0.08 ‘ 0 . -
0 1000 2000 3000 0 1000 2000 3000
Time (s) Time (s)
4 C w—P2D (80% electrode size) 4 SPM (80% electrode size) . d
= ==SPM (80% electrode size) + XGB model (80% electrode size)
== XGBoost :nodel (80% e.lectrade size) 25 V;—SPM (120% electrode size)
38 :ggﬂ‘(‘fzm ‘jﬁ}f{;ﬂ‘;ii’) \—XGB model (120% electrode size)
?/ =e=XGBoost model (120% electrode size)| s
o 3.6
&
% 3.4
>
3.2}
3 !
2.8 Y Sad TN
L L L L= - = —
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Time (s) Time (s)

FIG. 5 Analysis of electrolyte potential and voltage profiles. (a) Comparison of electrolyte potential in the
P2D model (black curve), the proposed model, and the SP model (horizontal line). (b) Error analysis for
the SP model and proposed model, with larger errors observed in the SP model. (¢) Discharge voltage
profiles for electrode thicknesses of 80% and 120% of nominal value over time. (d) Percentage error for



the SP model and proposed model relative to the P2D model, showing divergence of the SP model towards
the end of discharge for both electrode thicknesses.

Electrode thickness variations were implemented to assess the sensitivity of the developed model.
Both anode and cathode thicknesses were adjusted to 80% and 120% of nominal values during
discharge at a 1C current load. Reducing electrode thickness correspondingly decreased cell
capacity, accelerating voltage discharge due to reduced active material volume. Conversely,
increasing electrode thickness extended voltage discharge times across all models, including the
developed machine learning-enhanced model (Fig. 5(c,d)). Figure 5(c) depicts the voltage
discharge profiles under varied electrode thicknesses. Despite these variations, the developed
model maintained predictive accuracy comparable to the P2D model. The error plot (Fig. 5(d))
indicates that deviations from the P2D model were minimized in the developed model. However,
the largest discrepancies were observed with thinner electrodes. This trend can be attributed to the
reduced volume of active material in thinner electrodes, which accelerates charge depletion and
amplifies the effects of modeling assumptions, such as the lumped ohmic drop term in the SP
model. Generally, the SP model shows a higher percentage error toward the end of the discharge
profile. This discrepancy arises from the pronounced electrolyte potential gradient that develops
as the concentration gradient increases. As the battery discharges, ions are consumed in
electrochemical reactions, which decreases the ion concentration near the electrode surfaces. This
reduction creates a larger concentration difference between the depleted regions and the bulk
electrolyte, resulting in a steeper electrolyte potential gradient towards the end of the discharge
cycle. The SP model does not capture this behavior, whereas the proposed model effectively
accounts for it.

In conclusion, this study introduces a data-driven approach using XGBoost to estimate electrolyte
potential in LIBs through the single particle (SP) model. Integrating XGBoost improves both
predictive accuracy and computational efficiency compared to traditional Physics-based P2D
models. Training on a dataset derived from a comprehensive parametric study based on the P2D
model achieved a minimal RMSE of 0.00176 for estimating electrolyte potential dynamics. This
demonstrates the model’s performance across discharge rates up to 5C and varying electrolyte
conductivities. Simulation results using COMSOL Multiphysics confirm the effectiveness of the
XGBoost-enhanced SP model under different discharge rates and dynamic loading conditions,
including the DST. Compared to the conventional SP model, the XGBoost-enhanced approach
consistently shows improved performance with lower errors, particularly at high C-rates. Analysis
of electrolyte potential dynamics reveals clear improvements with the XGBoost-enhanced SP
model, capturing similar to those observed in higher-fidelity P2D models. This advancement
signifies closer alignment with real-world electrolyte behaviors. In summary, integrating XGBoost
into the SP model framework represents a significant step forward in battery modeling. This
approach not only enhances predictive capabilities but also offers insights critical for optimizing
LIB design and performance in applications such as electric vehicles and grid-scale energy storage
systems.
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