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Abstract: 

The accuracy of single particle (SP) models for lithium-ion batteries (LIBs) at high C-rates is 

constrained by lithium concentration gradients in the electrolyte, which affect ionic conductivity, 

overpotential, and reaction rates. This study addresses these limitations using extreme gradient 

boosting (XGBoost) machine learning (ML). By training our ML model with data from a 

comprehensive electrochemical (P2D) model and performing sensitivity analysis on key battery 

parameters, we enhance predictive accuracy. Compared to conventional SP and P2D models under 

constant current loading, our ML-based SP model achieves similar predictive accuracy to P2D, 

with significant improvements in computational efficiency. Additionally, the ML-based SP model 

demonstrates improved predictive accuracy under dynamic loading conditions, providing a 

practical framework for improving battery management and safety. 
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Lithium-Ion Batteries (LIBs) have revolutionized energy storage technologies, particularly in the 

realm of electric vehicles (EVs) and hybrid electric vehicles (HEVs). Their unparalleled energy 

and power density render them indispensable for meeting the ever-growing demands of these 

transportation sectors1-2. However, this widespread adoption has been accompanied by escalating 

concerns regarding battery safety, thereby underscoring the urgent need for robust battery 

management system (BMS)3-4. Traditional monitoring techniques, relying predominantly on 

voltage, current, and temperature measurements, have proven insufficient in accurately predicting 

critical battery parameters such as state of charge (SOC) and state of health (SOH). This 

inadequacy not only jeopardizes battery performance but also poses significant safety risks. As 

such, there arises a pressing demand for advanced sensing and monitoring technologies capable of 

accurately tracking the intricate physical parameters of lithium-ion batteries5-6. While high-fidelity 

electrochemical models such as proposed by Doyle et al.7 and their several improved versions offer 

unparalleled insights into battery behavior, their computational complexity presents formidable 

challenges for real-time BMS implementation8. Simplified models like the equivalent circuit 

model (ECM) have been widely adopted due to their computational efficiency. However, the 

ECM’s limited predictive capabilities, stemming from its oversimplified representation of battery 

dynamics, necessitate alternative approaches9. The single particle (SP) model, derived from 

comprehensive electrochemical models, strikes a balance between electrochemical and equivalent 

circuit models for physical modeling of battery and computational efficiency. It employs a small 

set of ordinary differential equations to explicitly maintain key battery characteristics. Assuming 

uniform spherical particles and uniform current distribution in both electrodes, the SP model 

simplifies each electrode to a single particle. While it effectively describes general charge-

discharge behavior, it lacks the ability to capture battery dynamics at high C-rates due to the 

absence of electrolyte physics10-12. Different strategies have been proposed to incorporate the SP 

model with the electrolyte contribution, employing polynomial equations of varying orders13-16. 

Generally, the polynomial order determines the accuracy of the approximation. Higher-order 

polynomials are expected to provide greater accuracy, although they entail increased 

computational complexity for coefficient identification. Thus, while higher-order polynomials 

offer enhanced precision, they also incur greater numerical costs in terms of coefficient 

determination. Recent advances in battery modeling have leveraged machine learning techniques 

to significantly improve performance prediction, useful life estimation17-18, state of charge (SOC) 

and state of health (SOH) estimation, thereby enhancing predictive accuracy. However, much of 

the existing research primarily targets performance prediction and computational efficiency within 

established models, without fundamentally addressing the core design limitations of these models. 

For instance, Tran et al.19 compare four multivariate multioutput regression ML methods for 

predicting battery voltage and temperature, evaluating their feasibility and performance. While 

such studies enhance predictive accuracy, they often do not tackle the underlying architectural 

constraints of traditional models. In contrast, this manuscript addresses these limitations by 

focusing on enhancing the SP model architecture for lithium-ion batteries. Specifically, our work 

aims to overcome the key limitation of inadequate electrolyte dynamics in traditional SP model, 

offering a more robust and accurate representation of battery behavior. 

In this study, we introduce a method to improve the accuracy and efficiency of conventional SP 

models in predicting electrolyte overpotential and dynamics across various current rates. Our 



3 
 

approach involves integrating the extreme gradient boosting (XGBoost) machine learning (ML) 

technique into the SP model framework, aimed at enhancing its predictive capabilities. To validate 

our method, we compared the results obtained from the proposed model with those from a full-

order electrochemical model and a conventional SP model. Additionally, we conducted 

galvanostatic constant discharge tests and dynamic stress tests (DSTs) to demonstrate the accuracy 

of our enhanced SP model under different operational scenarios. These validation tests confirm the 

reliability and effectiveness of our proposed approach in improving the predictive capabilities of 

SP models for lithium-ion batteries. 

 

 

FIG. 1 Schematic of single particle model for Li-ion battery 
The conventional SP model relies on two primary assumptions: first, that all particles within an 

electrode exhibit similar behavior, allowing the entire electrode to be represented by a single 

spherical particle, as depicted in Fig. 1. Second, it assumes a uniform distribution of current across 

the electrode particles11, 20. Ionic diffusion of Li ion in each particle is governed by Fick’s second 

law: 

                                                       
𝜕𝑐𝑠,𝑗(𝑟,𝑡)

𝜕𝑡
=

𝐷𝑠,𝑗

𝑟2

𝜕

𝜕𝑟
(𝑟2 𝜕𝑐𝑠,𝑗(𝑟,𝑡)

𝜕𝑟
)       Eq. (1) 

The expression describes the solid-phase Li-ion concentration, denoted as 𝑐𝑠,𝑗, with respect to time 

(𝑡), radial coordinate (𝑟), and the solid-phase diffusion coefficient (𝐷𝑠,𝑗). The subscript 𝑗 = 𝑝/𝑛 

distinguishes between the positive and negative electrodes. The boundary conditions for the 

diffusion problem are:  

𝐷𝑠,𝑗

𝜕𝑐𝑠𝑗

𝜕𝑟
= 0 ∶ (𝑟 = 0) 

        𝐷𝑠,𝑗
𝜕𝑐𝑠𝑗

𝜕𝑟
= −𝐽𝐿𝑖 ∶ (𝑟 = 𝑅𝑗)     Eq. (2) 

where 𝑅𝑗 is the electrode particle radius.  



4 
 

The rate of electrochemical reaction governing the intercalation and deintercalation of lithium ions 

at the interface between the solid electrode and the electrolyte solution can be characterized using 

Butler-Volmer kinetics20. 

 𝐽𝐿𝑖 = 𝑘𝑗𝑐𝑠,𝑗,𝑚𝑎𝑥𝑐𝑒
0.5 [1 −

𝑐𝑠,𝑗,𝑠𝑢𝑟𝑓(𝑡)

𝑐𝑠,𝑗,𝑚𝑎𝑥
]

0.5
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𝑐𝑠,𝑗,𝑚𝑎𝑥
)

0.5

× {𝑒𝑥𝑝 (
0.5𝐹

𝑅𝑇
𝜂𝑗(𝑡)) − 𝑒𝑥𝑝 (

−0.5𝐹

𝑅𝑇
𝜂𝑗(𝑡))}   

             Eq. (3) 

The parameter 𝑘𝑗 denotes the reaction rate constant, 𝑐𝑒 represents the electrolyte concentration, 𝑅 

stands for the universal gas constant, 𝑇 signifies the temperature, and 𝐹 is Faraday’s constant. The 

function 𝑐𝑠,𝑗,𝑠𝑢𝑟𝑓(𝑡) is expressed as a function of the particle's surface concentration 𝑐𝑠,𝑗,𝑠𝑢𝑟𝑓(𝑡) =

𝑐𝑠,𝑗(𝑅𝑗, 𝑡). 

The surface overpotential, 𝜂𝑗 is expressed as 𝜂𝑗 = Φ1,𝑗 − Φ2,𝑗 − 𝑈𝑗, where Φ1,𝑗 is the solid-phase 

potential, Φ2,𝑗 is solution-phase potential, and 𝑈𝑗 is the Open Circuit Potential (OCP). The OCP, 

in general, is a function of the SOC and temperature. The SOC is expressed as the normalized 

surface concentration, 
𝑐𝑠,𝑗,𝑠𝑢𝑟𝑓(𝑡)

𝑐𝑗,𝑚𝑎𝑥
. Using reverse hyperbolic function20, the potential difference is 

obtained from the reaction rate expression, 𝐽𝐿𝑖 as  

                  𝜂𝑗(𝑡) =
2𝑅𝑇

𝐹
𝐼𝑛 (𝑚𝑗(𝑡) + √𝑚𝑗(𝑡) + 𝑚𝑗

2(𝑡) + 1)       Eq. (4) 

where 𝑚𝑗(𝑡) =
𝐽𝐿𝑖

2𝑘𝑗𝑐𝑗,𝑚𝑎𝑥𝑐𝑒
0.5[1−
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𝑐𝑗,𝑚𝑎𝑥
]

0.5

(
𝑐𝑠,𝑗,𝑠𝑢𝑟𝑓 (𝑡)
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)

0.5.  

The overall battery terminal voltage is then obtained from the solid-phase potential difference  

between both ends of the cell20. 

𝑉𝑐𝑒𝑙𝑙 = Φ1,𝑝(𝑡)|𝑥=𝐿 − Φ1,𝑛(𝑡)|𝑥=0     Eq. (5) 

    = (𝜂𝑝 + Φ2,𝑝(𝑡)|𝑥=𝐿 + 𝑈𝑝) − (𝜂𝑛 + Φ2,𝑛(𝑡)|𝑥=0 + 𝑈𝑛) 

= 𝑈𝑝 (
𝑐𝑠,𝑝,𝑠𝑢𝑟𝑓(𝑡)

𝑐𝑝,𝑚𝑎𝑥
) − 𝑈𝑛 (

𝑐𝑠,𝑛,𝑠𝑢𝑟𝑓(𝑡)

𝑐𝑛,𝑚𝑎𝑥
)

+
2𝑅𝑇

𝐹
(𝐼𝑛 (𝑚𝑝(𝑡) + √𝑚𝑝

2(𝑡) + 1) − 𝐼𝑛 (𝑚𝑛(𝑡) + √𝑚𝑛
2(𝑡) + 1))

+ Φ2,𝑝(𝑡)|𝑥=𝐿 − Φ2,𝑛(𝑡)|𝑥=0 

The last term in the voltage expression above ( Φ2,𝑝(𝑡)|𝑥=𝐿 − Φ2,𝑛(𝑡)|𝑥=0 ) represents the 

electrolyte potential difference. In the conventional SP models, the neglect of potential gradients 

within the electrolyte is a common simplification. In these models, the addition of a resistance 

term to Butler-Volmer kinetics serves the purpose of modeling interface resistance exclusively, 

without consideration for potential distribution within the electrolyte. The internal resistance is 

typically approximated as an ohmic voltage drop, 𝑖𝑎𝑝𝑝𝑅𝑐𝑒𝑙𝑙, where 𝑖𝑎𝑝𝑝 denotes the applied current 
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density. The value of resistance, 𝑅𝑐𝑒𝑙𝑙, is influenced by various intricate mass and charge transfer 

phenomena. The 𝑅𝑐𝑒𝑙𝑙 value is subject to various intricate mass and charge transfer phenomena. 

Guo et al.20 proposed an estimation of this resistance based on empirical considerations tied to 

both the ambient temperature and the current at the battery terminals. In a separate study21, 𝑅𝑐𝑒𝑙𝑙 

was posited to be dependent upon electrode ionic conductivities and electrode thicknesses. This 

assumption underscores a significant limitation of the traditional SP model, as it hinders the ability 

of model to accurately depict battery dynamics, particularly under high C-rate conditions. 

 
FIG. 2 (a) Root Mean Square Error (RMSE) of polynomial regression models (orders 3 to 6) and XGBoost 

model. The XGBoost model exhibits the lowest RMSE, indicating improved predictive performance. (b) 

Predicted ΔΦ2 values by the XGBoost model and the 5th order polynomial regression model compared to 

actual values, showing close alignment with the XGBoost model providing the most accurate predictions. 

The main objective of a data-driven methodology is to provide real-time estimations of electrolyte 

potential within LIBs. Utilizing XGBoost, a ML technique leveraging gradient boosted decision 

trees, aims to accelerate training procedures, and improve predictive accuracy. The decision to 

integrate XGBoost into the SP model for electrolyte potential prediction is motivated by its distinct 

advantages, notably its swift training capabilities and improved accuracy as documented in 

previous studies22-23. Nevertheless, polynomial regression model and XGBoost regression model 

were compared in terms of predictive accuracy. Polynomial regression was tested with orders 3 to 

6, showing decreasing RMSE from 0.0291 for order 3 to 0.00836 for order 5, but a slight increase 

to 0.00902 for order 6, indicating overfitting at higher orders. The XGBoost model, with a 

maximum depth of 5 and a learning rate of 0.7, achieved an RMSE of 0.00176, outperforming the 

best polynomial model (Fig. 2a). Hyperparameter tuning through grid search and 5-fold cross-

validation, along with early stopping, validated the XGBoost model’s effectiveness. This model 

was selected for further analysis in this study. The training of the ML model is carried out using 

dataset obtained from a parametric study based on a comprehensive electrochemical P2D model7, 

24. Prior to the parametric study, a sensitivity analysis study was conducted to identify key battery 

parameters influencing electrolyte dynamics, revealing electrolyte conductivity (k), SOC, and C-

Rate as pivotal for ML model training. The subsequent parametric investigation involved a 

diversity of current rates (C-Rate) values: 0.05C, 0.1C, 0.5, 1C, 2C and 5C and adjusting 

electrolyte conductivity at 80%, 100%, and 120% of its nominal value, with electrolyte potential 

difference (ΔΦ2) designated as the dependent variable. Several discharge cycles were run to obtain 

b a 
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the dataset. Machine learning training utilized 80% of the dataset, with the remaining 20% reserved 

as a test set. Figure 2 presents a comparison between electrolyte potential predictions generated by 

the trained machine learning model and those from the P2D model, demonstrating a negligible 

RMSE of 0.00176. This underscores the exceptional predictive performance of the XGBoost 

model. 
 
 

Table I. Comparison of computational times for P2D, SP, and proposed models at 1C Discharge Rate. 

Models Computation time (s) 
P2D 43.0 
SP 2.0 
Proposed model 2.0 

 

Table II. Values of parameters used in the simulations. 

Parameter Value Description 
𝐿𝑛  100E-6 Thickness of the negative electrode (m) 7 
𝐿𝑠  52E-6 Thickness of the separator (m) 7 
𝐿𝑝  183E-6 Thickness of the positive electrode (m) 7 
𝐷𝑒  7.5E10-11 Diffusion coefficient in electrolyte (𝑚2/𝑠) 7 
𝐹  96487 Faraday’s constant (𝐶/𝑚𝑜𝑙 ) 7 
𝑖𝑎𝑝𝑝  17.5 ×C-rate C-rate times 1 C discharge current density (A m−2) 7 
𝐷𝑛  3.9E-14 Solid-phase Li diffusivity, negative electrode (𝑚2/𝑠) 7 
𝐷𝑝  1.0E-13 Solid-phase Li diffusivity, positive electrode (𝑚2/𝑠) 7 
𝑇  298.15 Ambient temperature (K)  
𝐶𝑚𝑎𝑥,𝑝𝑜𝑠  22860 Positive maximum concentration (𝑚𝑜𝑙/𝑚3) 7 
𝐶𝑚𝑎𝑥,𝑛𝑒𝑔  26390 Negative maximum concentration (𝑚𝑜𝑙/𝑚3) 7 
𝑟𝑝  8.0E-6 Particle radius, positive electrode (m) 7 
𝑟𝑛  12.5E-6 Particle radius, negative electrode (m) 7 
𝑘𝑗  2.0E-6 Reaction rate constant (𝑚2.5𝑚𝑜𝑙−0.5𝑠−1)7 

 
To assess the efficacy of the proposed model, we adopted the LiMn2O4-LiC6 battery chemistry 

utilized by Doyle et al.7 Using COMSOL Multiphysics version 6.1, we simulated three models: 

the P2D model referred to as ‘P2D’, a conventional SP model referred to as ‘SPM’, and our 

proposed machine learning enhanced SP model, referred to as ‘XGBoost model’. Each model 

employed a consistent sampling period of 1 second and a discharge cycle with a stopping condition 

set at 2.8V to facilitate comparison of computational efficiency. Battery modeling parameters are 

listed in table II. Table I presents the execution times recorded for each model in the COMSOL 

program. Notably, the computational times for the SP model (2.0 s) and the proposed model (2.0 

s) were identical, contrasting with the P2D model’s computational time (43.0 seconds). To assess 

the model’s performance under dynamic loading conditions, simulation of the Dynamic Stress Test 

(DST) was conducted. This test, designed by the United States Advanced Battery Consortium for 

evaluating EV and HEV batteries,25-26 features current profiles with high C-Rate values reaching 
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up to 6C. Our model was trained up to 5C, necessitating extrapolation for higher C-Rate values. 

Figure 3 shows the voltage profiles for DST loading, comparing the results with those obtained 

from conventional SP and P2D models. Notably, our model demonstrates a notably accurate 

prediction even at extrapolated current values, outperforming the SP model. This accuracy 

demonstrates that our model generalizes effectively beyond its training data, delivering reliable 

predictions even at higher current rates. At 6C, the conventional SP model encounters difficulties 

due to its inability to accurately capture steep gradients in electrolyte potential, increased ionic 

resistance, and localized potential drops within the electrodes. These limitations lead to reduced 

accuracy at high C-rates. In contrast, our model, which is trained to handle conditions up to nearly 

6C, addresses these challenges. By incorporating considerations for electrolyte potential variations 

and ionic resistance, our model provides improved generalization and prediction accuracy under 

high current rates.  

 
FIG. 3 Evaluation of voltage profiles (3a) and percentage errors (3b) for the SP model and the proposed 

XGBoost model, compared to the P2D model under dynamic stress test (DST) loading. The P2D model is 

shown in black, the SP model in red, and the proposed XGBoost model in green. Error plots are colored red 

for the SP model and blue for the XGBoost model. 

In this section, we conducted simulations across three models, spanning cell voltage from 4.2 to 

2.8 V for 0.2C, 1C, and 5C C-Rate values. We then compared outcomes from both conventional 

and proposed SP models with those from the P2D model as illustrated in Fig. 4. Notably, Figures 

4a and 4b exhibited good agreement between the conventional and proposed SP models and P2D 

model results, with a percentage error below 0.3%. However, at higher C-rates, the proposed SP 

model results (RMSE of 0.00178 for 1C and 0.0122 for 5C) closely aligned with the P2D model 

compared to the conventional SP model results (RMSE of 0.00239 for 1C and 0.0175 for 5C), as 

shown in Figs. 4c to 4f. This discrepancy at higher C-rates is attributed to the increasing error in 

the electrolyte potential difference with rising C-rates, as discussed previously. During the DST, 

modern batteries, particularly for HEVs, may operate at current loads up to and exceeding 5C. The 

5C rate case (Figs. 4e and 4f) demonstrated a significant increase in error rate for the conventional 

SP model compared to the proposed SP model. In summary, results from the proposed SP model 

aligned well with those from the P2D model. 

a b 
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FIG. 4 Comparison of voltage responses and percentage errors for the P2D, SP, and proposed XGBoost 

models during discharge cycles at 0.2C (a and b), 1C (c and d), and 5C (e and f). The percentage error is 

consistently higher for the SP model compared to the proposed XGBoost model, indicating greater accuracy 

of the XGBoost model across all current rates. 

 

(a) (b) 

(c) (d) 

(e) (f) 
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Analysis of the electrolyte potential difference in the cell was conducted and plotted in Fig. 5(a,b). 

The conventional SPM model exhibited a static electrolyte potential indicated by a horizontal line 

in the plot, highlighting the absence of electrolyte dynamics in the model. In contrast, the proposed 

model demonstrated changing electrolyte potential values around those obtained from the higher-

order P2D model, indicating improved fidelity to real-world conditions. The error plot further 

revealed an initial percentage error in the SPM model exceeding 80%, underscoring the 

enhancements introduced by the proposed model. At the onset of discharging, an initial drop in 

electrolyte potential occurs due to the ohmic drop, which is a result of the increased demand for 

ions to migrate from the anode to the cathode. This ohmic drop arises from the internal resistance 

within the battery. Following this initial decrease, the potential typically stabilizes as the battery 

continues to deliver current to the load. The SP model does not capture this ohmic drop and the 

associated dynamic response, whereas the proposed model effectively addresses these factors.  

 
FIG. 5 Analysis of electrolyte potential and voltage profiles. (a) Comparison of electrolyte potential in the 

P2D model (black curve), the proposed model, and the SP model (horizontal line). (b) Error analysis for 

the SP model and proposed model, with larger errors observed in the SP model. (c) Discharge voltage 

profiles for electrode thicknesses of 80% and 120% of nominal value over time. (d) Percentage error for 

a b 

c d 
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the SP model and proposed model relative to the P2D model, showing divergence of the SP model towards 

the end of discharge for both electrode thicknesses. 

Electrode thickness variations were implemented to assess the sensitivity of the developed model. 

Both anode and cathode thicknesses were adjusted to 80% and 120% of nominal values during 

discharge at a 1C current load. Reducing electrode thickness correspondingly decreased cell 

capacity, accelerating voltage discharge due to reduced active material volume. Conversely, 

increasing electrode thickness extended voltage discharge times across all models, including the 

developed machine learning-enhanced model (Fig. 5(c,d)). Figure 5(c) depicts the voltage 

discharge profiles under varied electrode thicknesses. Despite these variations, the developed 

model maintained predictive accuracy comparable to the P2D model. The error plot (Fig. 5(d)) 

indicates that deviations from the P2D model were minimized in the developed model. However, 

the largest discrepancies were observed with thinner electrodes. This trend can be attributed to the 

reduced volume of active material in thinner electrodes, which accelerates charge depletion and 

amplifies the effects of modeling assumptions, such as the lumped ohmic drop term in the SP 

model. Generally, the SP model shows a higher percentage error toward the end of the discharge 

profile. This discrepancy arises from the pronounced electrolyte potential gradient that develops 

as the concentration gradient increases. As the battery discharges, ions are consumed in 

electrochemical reactions, which decreases the ion concentration near the electrode surfaces. This 

reduction creates a larger concentration difference between the depleted regions and the bulk 

electrolyte, resulting in a steeper electrolyte potential gradient towards the end of the discharge 

cycle. The SP model does not capture this behavior, whereas the proposed model effectively 

accounts for it. 

In conclusion, this study introduces a data-driven approach using XGBoost to estimate electrolyte 

potential in LIBs through the single particle (SP) model. Integrating XGBoost improves both 

predictive accuracy and computational efficiency compared to traditional Physics-based P2D 

models. Training on a dataset derived from a comprehensive parametric study based on the P2D 

model achieved a minimal RMSE of 0.00176 for estimating electrolyte potential dynamics. This 

demonstrates the model’s performance across discharge rates up to 5C and varying electrolyte 

conductivities. Simulation results using COMSOL Multiphysics confirm the effectiveness of the 

XGBoost-enhanced SP model under different discharge rates and dynamic loading conditions, 

including the DST. Compared to the conventional SP model, the XGBoost-enhanced approach 

consistently shows improved performance with lower errors, particularly at high C-rates. Analysis 

of electrolyte potential dynamics reveals clear improvements with the XGBoost-enhanced SP 

model, capturing similar to those observed in higher-fidelity P2D models. This advancement 

signifies closer alignment with real-world electrolyte behaviors. In summary, integrating XGBoost 

into the SP model framework represents a significant step forward in battery modeling. This 

approach not only enhances predictive capabilities but also offers insights critical for optimizing 

LIB design and performance in applications such as electric vehicles and grid-scale energy storage 

systems. 
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