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Charles University

Prague, Czech Republic

William Kuszmaul
Carnegie Mellon University

Pittsburg, PA, USA

Michael Saks
Rutgers University

Piscataway, NJ, USA

Abstract—The list-labeling problem captures the basic task of
storing a dynamically changing set of up to n elements in sorted
order in an array of size m = (1+Θ(1))n. The goal is to support
insertions and deletions while moving around elements within the
array as little as possible.

Until recently, the best known upper bound stood at O(log2 n)
amortized cost. This bound, which was first established in
1981, was finally improved two years ago, when a randomized
O(log3/2 n) expected-cost algorithm was discovered. The best
randomized lower bound for this problem remains Ω(log n), and
closing this gap is considered to be a major open problem in
data structures.

In this paper, we present the See-Saw Algorithm, a randomized
list-labeling solution that achieves a nearly optimal bound of
O(log n polyloglog n) amortized expected cost. This bound is
achieved despite at least three lower bounds showing that this
type of result is impossible for large classes of solutions.

Index Terms—Data structures, probabilistic algorithms, com-
binatorial algorithms

I. INTRODUCTION

In this paper, we revisit one of the most basic problems
in data structures: maintaining a sorted array, as elements are
inserted and deleted over time [39]. Suppose we are given an
array of size m = (1 + Θ(1))n, and a sequence of insertions
and deletions, where up to n elements can be present at a
time. As the set of elements changes over time, we must keep
the elements in sorted order within the array. Sometimes, to
support an insertion, we may need to move around elements
that are already in the array. The cost of an insertion or deletion
is the number of elements that we move, and the goal is to
achieve as small a cost as possible.1

Since it was introduced in 1981 [39], this problem has
been rediscovered in many different contexts [3], [36], [56],
[63], and has gone by many different names (e.g., a sparse-
array priority queue [39], the file-maintenance problem [16],
[63]–[66], the dynamic sorting problem [43], etc). In recent
decades, it has become most popularly known as the list-
labeling problem [10], [23], [27], [30], [57].

In the decades since it was introduced, the list-labeling
problem has amassed a large literature on algorithms [7], [9],

1One might prefer to simply analyze time complexity rather than cost. It
turns out that, for the algorithms in this paper, these two metrics will be
asymptotically equivalent.

[10], [12], [16], [17], [19], [36], [38]–[40], [64]–[66], lower
bounds [10], [23], [24], [27], [28], [30], [57], [67], applications
to both theory and practice [8], [9], [12]–[14], [16], [17], [22],
[26], [44], [46], [55], [60]–[66], other parameter regimes for
m and n [4], [6], [20], [24], [67], and open problems [35],
[57]. We focus here on some of the major milestones and defer
a more in-depth discussion of related work to Section VIII.

Past upper and lower bounds. The list-labeling problem
was introduced in 1981 by Itai, Kohheim, and Rodeh [39],
who gave a simple deterministic solution with amortized cost
O(log2 n). Despite a great deal of interest [9], [12], [16], [17],
[19], [36], [38]–[40], [64]–[66], this bound would remain the
state of the art for four decades.

Starting in the early 1990s, much of the theoretical progress
was on lower bounds. The first breakthrough came from Dietz
and Zhang [27], [30], who showed Θ(log2 n) to be optimal
for any smooth algorithm, that is, any algorithm that spreads
elements out evenly whenever it rebuilds some subarray. Later
work by Bulánek, Koucký, and Saks [23] established an
even more compelling claim—that the Θ(log2 n) bound is
optimal for any deterministic algorithm. At this point it seemed
likely that Θ(log2 n) should be optimal across all algorithms,
including randomized ones, but the best lower bound known
for randomized solutions, also due to Bulánek, Koucký, and
Saks [24], remained Ω(log n).

Recent work by Bender et al. [10] showed that there is,
in fact, a surprising separation between deterministic and
randomized solutions. They construct a list-labeling algorithm
with O(log3/2 n) expected cost per operation. Their algorithm
satisfies a notion of history independence, in which the set
of array-slot positions occupied at any given moment reveals
nothing about the input sequence except for the current number
of elements. This history independence property ends up being
crucial to the algorithm design and analysis [10],2 but the
property also comes with a limitation: Bender et al. show
that any algorithm satisfying this type of history independence
must incur amortized expected cost Ω(log3/2 n) [10].

2Roughly speaking, the authors use history independence as a mechanism
to avoid the possibility of a clever input sequence somehow “degrading” the
state of the data structure over time.



It remained an open question whether there might exist a
list-labeling algorithm that achieves o(log3/2 n) cost, or even
O(log n) cost. Such an algorithm would necessarily need to
be non-smooth, randomized, and history dependent—and it
would need to employ these properties in algorithmically novel
ways.

This paper: nearly optimal list labeling. In this paper,
we present a list-labeling algorithm that achieves amortized
expected cost Õ(log n) per operation. This matches the known
Ω(log n) lower bound [24] up to a poly log log n factor. We
refer to our list-labeling algorithm as the See-Saw Algorithm.

Perhaps the most surprising aspect of the See-Saw Algo-
rithm is how it employs history dependence. The algorithm
breaks the array into a recursive tree, and attempts (with the
help of randomization) to predict which parts of the tree it
thinks more insertions will go to. It then gives more slots to
the subproblems that it thinks are more likely to get more
insertions.

The idea that such predictions could be helpful would be
very natural if we were to assume that our input were either
stochastic [18], [19] or came with some sort of prediction
oracle [47]. What is remarkable about the See-Saw Algorithm
is that the predictions it makes, and the ways in which it uses
them, end up leading to near-optimal behavior on all possible
input sequences. In fact, to the best of our knowledge, the See-
Saw Algorithm is the first example of a dynamic data structure
using adaptivity to improve the best worst-case (amortized
expected) bound on cost for a problem.3

Of course, randomization is also important. If the See-Saw
Algorithm were deterministic, then the input sequence could
easily trick it into making bad decisions. Thus, it is not just
the fact that the algorithm makes predictions based on the
past, but also the way in which those predictions interact with
the randomness of the algorithm that together make the result
possible.4

Our result puts the complexity of maintaining a sorted
array almost on par with the complexities of other classical
sorting problems [2], [21], [48]. Whether or not the See-Saw
Algorithm has a practical real-world counterpart remains to
be seen. Such a result could have extensive applications [44],
[46], [55], [60]–[62] to systems that use list labeling as a
locality-friendly alternative to binary search trees.

A remark on other parameter regimes. In addition to the
setting where m = (1 + Θ(1))n, list labeling has also been
studied in other parameter regimes, both where m = (1+ δ)n
for some δ = o(1) (our results naturally extend to this regime

3Indeed, one can formalize this claim—it has remained an open question
whether there exists any data structural problem for which history dependence
is necessary to achieve optimal edit-cost bounds [50]. Our paper does not
quite resolve this problem for the following technical reason: the lower bound
for history-independent list labeling [10] applies only to a weaker notion of
history independence than the one in [50].

4Interestingly, despite the importance of randomness in our algorithm, the
actual amount of randomness is relatively small. In fact, one can straight-
forwardly implement the algorithm using O((log log n) logn) random bits,
where O(log logn) random bits are used to generate the randomness used
within each level of the recursion tree.

with cost Õ(δ−1 log n)), and where m ≫ n. An interesting
feature of the m≫ n regime is that, when m = n1+Θ(1), the
optimal cost becomes Θ(log n), even for randomized solutions
[24]. Thus, a surprising interpretation of our result is that there
is almost no complexity gap between the setting where m =
(1+Θ(1))n and the setting where m = poly(n). In both cases,
the optimal amortized expected complexity is Θ̃(log n).

Implications to other algorithmic problems. We remark
that there are several algorithmic problems whose best known
solutions rely directly on list labeling, and for which list-
labeling improvements immediately imply stronger results.

One significant application is to cache-oblivious B-trees
[12]–[14], [17], [22], where our list-labeling algorithm
can be used to reduce the best known I/O complexity
from O(logB N + (log3/2 N)/B) [10] to O(logB N) +
Õ((logN)/B), which, in turn, reduces to the optimal bound of
O(logB N) so long as B = (log log n)c for some sufficiently
large c = Θ(1).5

Another application is to the variation of list labeling in
which n = m elements are inserted [4], [10], [20], [67]
without deletion, that is, an array is filled all the way from
empty to full. Here, our results imply an overall amortized
expected bound of Õ(log2 n) cost per insertion (see Corollary
4), improving over the previous state-of-the-art of Õ(log5/2 n)
[10].

Paper outline. The rest of the paper proceeds as follows. We
begin in Sections II and III with preliminaries and statements
of our main results. We present the See-Saw Algorithm in
Section IV. We then present the analysis of the algorithm,
modulo two central technical claims, in Section V—these
technical claims are proven in Sections VI and VII. Section
VIII gives a detailed review of related work and Section IX
provides concluding remarks and discusses open problems.
Finally, Appendix A gives reductions for our main theorem,
and Appendix B gives pseudocode for the See-Saw Algorithm.

II. PRELIMINARIES

Defining the list-labeling problem. In the list-labeling prob-
lem, there are two parameters, the array size m, and the
maximum number of elements n. We will be most interested
in the setting where m = (1+Θ(1))n, but to be fully general,
we will also allow m = (1 + δ)n for δ = o(1).

We are given an (online) sequence of insertions and dele-
tions, where at any given moment there are up to n elements
present. The elements are assumed to have a total order, and
our job is to keep the current set of elements in sorted order
within the size-m array. As insertions and deletions occur, we
may choose (or need) to move elements around within the
array. The cost of an insertion or deletion is defined to be the
number of elements that get moved.

5Cache-oblivious B-trees make use of so-called packed-memory arrays [11],
[12], [17], which are list-labeling solutions with the additional property that
the array never contains more than O(1) free slots between consecutive
elements. As discussed in Section IV, our results can be extended to also
offer this additional property.



When discussing randomized solutions, one assumes that
the input sequence is generated by an oblivious adversary. In
other words, the input sequence is independent of the random
bits used by the list-labeling algorithm.

Conventions. To simplify discussion throughout the paper,
we will generally ignore rounding issues. Quantities that are
fractional but should be integral can be rounded to the closest
integer without affecting the overall analysis by more than a
negligible error.

We will always be interested in bounding amortized ex-
pected cost. A bound of C on this quantity means that, for all
i, the expected total cost of the first i operations is O(iC).

III. MAIN RESULTS

Formally, the main result of this paper is that:

Theorem 1. For δ ∈ (0, 1), and m = (1 + δ)n, there
is a solution to the list-labeling problem on an array of
size m, and with up to n elements present at a time, that
supports amortized expected cost O(δ−1(log n)(log log n)3)
per insertion and deletion.

Corollary 2. If m = (1 + Θ(1))n, then there is a solution
to the list-labeling problem with amortized expected cost
O((log n)(log log n)3) per operation.

In Appendix A, we present a series of standard w.l.o.g. re-
ductions that together reduce the task of proving Theorem 1
to the task of proving the following equivalent but simpler-to-
discuss result:

Theorem 3. Let m be sufficiently large, and n = m/2. The
See-Saw Algorithm is a list-labeling algorithm that, starting
with m/4 elements, can support m/4 insertions with amor-
tized expected cost O((log n)(log log n)3).

Note that, compared to Theorem 1, Theorem 3 is able to
assume an insertion-only workload, a relationship of m = 2n,
and a starting-state of m/4 = n/2 elements. The rest of the
paper will be spent proving Theorem 3.

Finally, we remark that, in Appendix A, we also arrive at
the following corollary:

Corollary 4. There is a list-labeling algorithm that inserts n
items into an initially empty array of size n with amortized
expected cost O((log2 n)(log log n)3).

IV. THE SEE-SAW ALGORITHM

In this section, we present the See-Saw Algorithm, which
we subsequently prove achieves Õ(log n) amortized expected
cost per insertion on an array A of size m. We also present
detailed pseudocode for the algorithm in Appendix B.

As discussed in Section III, we will consider, without loss
of generality, that we have an insertion-only workload, that
the initial number of elements is m/4, and that we are
handling m/4 total insertions. The algorithm will make use
of parameters α = Cα(log log n)

2 and β = Cβ(log log n)
2,

where Cα and Cβ are positive constants selected so that Cα,
Cβ , and Cα/Cβ are all sufficiently large.

Defining a subproblem tree. At any given moment, we
will break the array into a recursive subproblem tree. Each
subproblem π in the tree is associated with a subarray Aπ

whose size is denoted by mπ = |Aπ|. For the subproblem π
at the root of the tree, Aπ is the entire array. Each non-leaf
node π has left and right children, L(π) and R(π) respectively,
such that Aπ = AL(π) ⊕ AR(π) (the concatenation of AL(π)

and AR(π)). In contrast with the classical O(log2 n) algorithm
(and, indeed, all previous algorithms that we are aware of), the
structure of the subproblem tree used by the See-Saw Algo-
rithm will be non-uniform, meaning that sibling subproblems
L(π) and R(π) will not necessarily satisfy mL(π) = mR(π).

As we shall see, the structure of the tree will evolve over
time, with subproblems getting terminated and then replaced
by new ones. When a subproblem π is first created, we will
use S0π to refer to the set of elements stored in Aπ when π is
created.

Because subproblems are created and destroyed over time,
the children L(π) and R(π) of a given subproblem π may get
replaced many times during π’s own lifetime. Thus one should
think of L(π) and R(π) as time-dependent variables, referring
to π’s current left and right children at any given moment.

How an insertion decides its root-to-leaf path. Given an
insertion x that goes to a subproblem π, the protocol for
determining which child L(π) or R(π) the insertion x goes
to can be described as follows: if L(π) contains at least one
element, and if maxy∈L(π) y > x, then x is placed in L(π);
otherwise, it goes to R(π). 6 This rule determines the root-to-
leaf path that a given insertion takes.

Implementing leaves. When a subproblem is created, there
are two conditions under which it is declared to be a leaf:
subproblems π whose initial density |S0π|/mπ is greater than
3/4 are expensive leaves; and subproblems π whose subarray
satisfies mπ ≤ 2

√
logn are tiny leaves.

In both cases, leaf subproblems π are implemented using the
classical algorithm of Itai, Konheim and Rodeh [39], whose
cost per operation is O(log2 mπ). For tiny leaves, this results
in O(log n) amortized cost per operation. For expensive leaves,
this could result in as much as O(log2 m) = O(log2 n)
cost per operation. One of the major tasks in analyzing the
algorithm will be to bound the total cost incurred in expensive
leaves over all operations.

Initializing a subtree. When a subproblem π is first initial-
ized, it is always initialized to be balanced. This means: (1)
that the elements in π are evenly distributed across Aπ; and
(2) that, within each level of the subtree rooted at π, all of the
subproblems within that level have arrays that are the same
sizes as each other.

Thus we define the CreateSubtree(A′,S ′) procedure as
follows. The procedure takes as input a subarray A′ and a set
S ′ of elements, and it produces a tree of balanced subproblems,

6Assuming we start with m/4 elements in the array, it will turn out that
the left children are never empty—we will not need to formally prove this
fact, however, as it does not end up being necessary for our analysis.



where the root of the tree π satisfies Aπ = A′ and S0π = S ′.
This can be accomplished by first spreading the elements S ′
evenly across the array A, and then creating a subproblem
π satisfying Aπ = A. If π is a leaf, then this is the entire
procedure. Otherwise, if π is not a leaf, then we create children
for π with sub-arrays of size mπ/2; and if those are not
leaves, we create grandchildren for π with subarrays of size
mπ/4, and so on. Pseudocode for CreateSubtree (and all
other components of the See-Saw Algorithm) is presented in
Appendix B.

Implementing non-leaf subproblems. Now consider a non-
leaf subproblem π and let Iπ denote the sequence of insertions
that π receives.

The first thing that π does is select a rebuild window size
wπ—this window size is selected from a carefully constructed
probability distribution that we will describe later on. The
subproblem π then treats the insertion sequence Iπ as being
broken into equal-sized rebuild windows Iπ,1, Iπ,2, . . ., where
each rebuild window Iπ,i consists of up to wπ insertions.
(Only the final rebuild window may be smaller.)

Whenever one rebuild window Iπ,i ends and another Iπ,i+1

begins, π performs a rebuild. The rebuild terminates all of π’s
descendant subproblems, spends O(mπ) cost on rearranging
the elements within Aπ , and then creates new descendant
subproblems for π.

To describe this rebuild process, let us refer to π’s children
before the rebuild as L(π), R(π) and to π’s new children
after the rebuild as L(π), R(π). The most interesting step
in the rebuild is to select the sizes mL(π) and mR(π) for
AL(π) and AR(π)—we will describe this step later in the
section. After selecting the size mL(π), the new subproblem
L(π), along with its descendants, are created by calling
CreateSubtree(AL(π),S0L(π)), where S0L(π) is the same
set of elements that were stored in L(π) prior to the rebuild.
Similarly, R(π) and its descendants are created by calling
CreateSubtree(AR(π),S0R(π)), where S0R(π) is the set of
elements that was stored in R(π) prior to the rebuild.

It is worth emphasizing that the rebuild changes the sizes of
the subarrays used to implement each of π’s children, but does
not change the sets of elements stored within the two children.
Furthermore, although π’s new child subtrees are initialized
to be balanced, the subtree rooted at π need not be balanced:
mL(π) need not be equal to mR(π), nor does |S0L(π)| need to
equal |S0R(π)|. The cost of such a rebuild is O(mπ).

It remains to specify how to choose wπ (the rebuild-window
size), and how to choose mL(π) and mR(π) during each
rebuild. For this second point, rather than setting mL(π) =
mR(π) = mπ/2, π will (sometimes) try to predict which of
L(π) or R(π) will need more free slots in the future, and
will potentially give a different number of slots to each of
them. Successfully predicting which subproblem will get more
insertions is key to our algorithm and is described more fully
below.

A key component: selecting window sizes. We now describe

how π selects its rebuild-window size wπ . This turns out to be
the only place in the algorithm where randomization is used.
We start by generating a random variable Kπ , taking values in
[0, kmax] where kmax = 2 log log n and where pk = Pr[Kπ =
k] is given by:

pk = 2−(k+1)

(
1 +

k

kmax

)
for k ∈ [1, kmax]

p0 = 1−
kmax∑
k=1

pk ≤ 1/2.

Having drawn Kπ from this distribution, we then set

wπ =
mπ

α2Kπ
,

where α = Θ((log log n)2) is the parameter defined at the
beginning of the section. As we shall see, the specific details
of this probability distribution will end up being central to the
analysis of the algorithm.

A key component: selecting array skews. Next we describe
how π selects the sizes of the subarrays mL(π) and mR(π)

to be used by its children L(π) and R(π) within a given
rebuild window. Here, critically, π adapts to the history of
how insertions in past rebuild windows behaved.

The rebuilds of π will behave differently at the beginning
of odd-numbered windows than even-numbered ones. At the
beginning of odd-numbered rebuild windows, π will not make
any attempt to adapt; it will simply set mL(π) = mR(π) =
mπ/2. (This, incidentally, is why π need not do any rebuilding
at the beginning of the first rebuild window.) To adapt at the
beginning of an even-numbered rebuild window j, π will count
the total number of insertions that went right minus the total
number that went left during rebuild window (j−1)—call this
quantity the insertion skew Dπ,j−1. Then, at the beginning of
rebuild window j, π will set rebuild-window j’s array skew

Qπ,j = mπ ·
Dπ,j−1

βwπ
,

where β = Θ((log log n)2) is the parameter defined at the
beginning of the section. Finally, using this array skew, π sets
mL(π) = mπ/2−Qπ,j and mR(π) = mπ/2 +Qπ,j .

In other words, π uses odd-numbered rebuild windows for
learning, and then uses even-numbered rebuild windows for
making use of what it has learned. Within the even-numbered
rebuild windows, π is essentially trying to predict which
subproblem will get more insertions, and then giving that
subproblem more slots.

In the same way that the window-size selection is the only
place the in the algorithm that makes use of randomization,
the selection of array skews is the only place that adapts to
the historical behavior of the input. Of course, if the See-Saw
Algorithm were deterministic, it would be easy to construct
an insertion sequence that would defeat this type of adaptivity.
Thus, it is not just the fact that the See-Saw Algorithm tries
to make predictions based on the past, but also the way in
which this interacts with the (randomly chosen) window-size



wπ , that together make the algorithm work. The analysis of
how adaptivity and randomization work together to minimize
expensive leaves will require a number of deep technical ideas,
and will constitute the main technical contribution of the paper.

One final source of cost: subproblem resets. So far, we have
encountered one way in which a subproblem π’s life can end,
namely, that one of its ancestors begins a new rebuild window.
There will also be another way in which π’s life can end: If
π receives a total of mπ/α = Θ(mπ/(log log n)

2) insertions,
then π will be reset.7 This threshold mπ/α for the maximum
number of insertions that π can handle before being reset is
referred to as its quota. What it means for a subproblem π to
be reset is that it (and its descendants) are terminated, and that
a new balanced subproblem tree is created in π’s place using
the same subarray and the same set of elements as π did. The
new subtree is created using the CreateSubtree protocol.

One should think of resets as, in some sense, being a tech-
nical detail. They are just there to ensure that each subproblem
has a bounded number of insertions. The real engine of the
algorithm, however, is in the implementation of rebuilds.

A remark on non-smoothness, randomness, and history
dependence. As discussed in the introduction, there are three
properties that past work has already shown to be necessary
if one is to achieve o(log1.5 n) overall amortized expected
cost. These properties are non-smoothness [28], [30], random-
ness [23], and history dependence [10]. It is therefore worth
remarking on their roles in the See-Saw Algorithm.

The randomness in the algorithm is used to select the
rebuild window size wπ for each subproblem. We will see
that, although the input sequence can attack the algorithm
for one specific choice of wπ , there is no way for it to
systematically attack wπ across the entire distribution from
which it is selected.

The fact that our algorithm is non-history-independent, and
the fact that the rebuilds it performs are non-smooth, are both
due to the same step in the algorithm: the step where, at the
beginning of each even-numbered rebuild window j, π selects
the array skew Qπ,j adaptively based on what occurred during
the previous rebuild window. This adaptivity is fundamentally
history dependent, and then the rebuild that it performs on Aπ

is fundamentally non-smooth (since, for a given rebuild, there
is only one possible value for the array skew that would result
in the rebuild being smooth).

A remark on how to think about the range of values
for array skews. It is worth taking a moment to understand
intuitively the range of possible values for the array skew
Qπ,j . Since the insertion skew Dπ,j−1 satisfies |Dπ,j−1| ≤
wπ , the array skew will always satisfy |Qπ,j | ≤ mπ/β =
O(mπ/(log log n)

2). So, perhaps surprisingly, there is a sense
in which the array skew is always a low-order term compared
to the size of the array mπ . On the other hand, the window

7We remark that, in our pseudocode in Appendix B, the parent of π is
responsible for implementing resets (with the exception of the case where π
is the root, which is handled separately).

size wπ is also at most mπ/α = O(mπ/(log log n)
2), so

one should think of the maximum possible window size wπ

as being comparable to the maximum possible array skew
Qπ,j (and, in fact, the former quantity is the smaller because
α > β).

A remark on packed-memory arrays. Many data-structural
applications of list-labeling require the additional property that
there are at most O(1) free slots between any two consecutive
elements in the array. A list-labeling solution with this property
is typically referred to as a packed-memory array [11], [12],
[17]. We remark that the See-Saw Algorithm can be turned
into a packed-memory array with the following modification:
Whenever the initial density of a non-leaf subproblem π is
less than, say, 0.25, we automatically set all of the array skews
Qπ,1, Qπ,2, . . . to 0. This turns out to not interfere with the
analysis of the See-Saw Algorithm in any way, since as we
shall see, the analysis only cares about the array skews in
cases where the initial density is at least 0.5 (Lemma 10). On
the other hand, with this modification in place, no subproblem
π is ever given fewer than (0.25− o(1))mπ elements, which
implies that we have a packed-memory array.

V. ALGORITHM ANALYSIS

In this section, we prove Theorem 3, which, as discussed
in Section III, implies the main result of the paper, Theorem
1. We begin by restating Theorem 3 below.

Theorem 3. Let m be sufficiently large, and n = m/2. The
See-Saw Algorithm is a list-labeling algorithm that, starting
with m/4 elements, can support m/4 insertions with amor-
tized expected cost O((log n)(log log n)3).

The proof of Theorem 3 occupies this section and the next
two. In this section we prove the theorem assuming two results,
Lemma 10 and Claim 14. These are proved in the following
two sections.

In the algorithm description, at any point in time there is
a binary tree of subproblems. It is important to keep in mind
that the tree is dynamic; subproblems are terminated and new
ones are created in their place. As a convention, we will refer
to the subproblems that, over time, serve as the roots of the
tree as the global subproblems.

Throughout the section, we will make use of the following
notation for discussing a subproblem π, some of which were
also defined in Section IV:

• mπ = |Aπ|, the size of π’s subarray.
• sπ = |S0π|, where S0π is the set of elements in π at the

beginning of its lifetime.
• Iπ is the full sequence of inserts that arrive to subproblem

π during its lifetime.
• Iπ,j ⊆ Iπ is the subsequence of inserts that arrive to π

during its j-th rebuild window.
• Qπ,j is the value of the array skew used for π’s j-th

rebuild window.
• Dπ(v) where v ∈ Iπ is equal to 1 if π sends v right and
−1 if π sends v left.



• Dπ(J), where J ⊆ Iπ is equal to
∑

v∈J Dπ(v), which
is the number of elements of J that π sent right minus
the number that were sent left.

• Dπ = Dπ(Iπ) is the total number of inserts to π that
went right minus the number that went left.

• Dπ,j = Dπ(Iπ,j).
• σπ = |Iπ| is the total number of elements that are inserted

into π during its lifetime (not including the sπ elements
initially present). Note that, by design, σπ ≤ mπ/α.

• Fπ = 1− σπ+sπ
mπ

is the density of free slots in Aπ at the
end of π.

• F 0
π = 1 − sπ

mπ
is the density of free slots in Aπ at the

beginning of π.
• Kπ is the value of the random integer that determines the

rebuild window size wπ = mπ/(α2
Kπ ).

• tπ is the total number of rebuild windows that π starts
over its lifetime.

We will often drop the subscript π, e.g., on Aπ,S0π, Iπ,j and
Qπ,j , when the subproblem is clear from context. However,
when we write m, we always mean the full array size.

We organize the set of all subproblems that exist throughout
the algorithm into a nonbinary tree called the history tree. For
a given subproblem π, its children will be all left and right
subproblems that it ever creates. (The root of the tree is a
fictitious root subproblem, and the children of the root are
the global subproblems.) A subproblem π will have at least
tπ different left subproblems and tπ right subproblems, since
it starts a new left and right subproblem at the beginning of
each rebuild window. (Recall that tπ is the total number of
rebuild windows of π.) A subproblem may have more than
one left or right child subproblem per rebuild window because
a child subproblem may reach its quota, which causes it to
reset, causing it to get replaced by a new subproblem. The
leaves of the history tree are the expensive-leaf and tiny-leaf
subproblems.

Note that, for a given subproblem π in the history tree, the
number of children π has is not fixed in advance but depends
both on the random choices of window sizes by π and its
ancestors, and also on the specific insertion sequence (the set
of which subproblems get terminated because they reach their
quotas may depend on the specific insertion sequence).

A. The Basics: Proving Correctness, and Bounding the Costs
of Rebuilds, Resets, and Tiny Leaves

We start with some basic observations:

Proposition 5. For any subproblem π:

1) If π is non-global, then mπ ∈ [0.49mρ, 0.51mρ], where
ρ is the parent of π.

2) The total number of items sπ + σπ that π must store in
its subarray is at most 0.8mπ .

Proof. For the first part, if π is inside the j-th rebuild window
of ρ then the size of π’s array is 1

2mρ ± |Qρ,j | and |Qρ,j | ≤
|Dρ,j−1|mρ

wρβ
≤ mρ/β ≤ 0.01mρ (since β ≥ 100).

For the second part, the assertion is true for any global
subproblem since the total number of elements in the array
never exceeds mπ/2. For a non-global subproblem π with
parent ρ, it must be that ρ is not an expensive leaf (since
expensive leaves don’t initiate subproblems), so sρ ≤ 0.75mρ.
Assume without loss of generality that π is a left subproblem
of ρ. Recall that, when ρ is created, it gives half of the elements
in S0ρ to its left child, and that whenever ρ rebuilds its children,
it does not move any elements between them (it just changes
the sizes of their arrays); thus, the number of elements from
S0ρ that π contains is just |S0ρ |/2 = sρ/2. So the number of
elements sπ + σπ in π at the end of π’s lifetime is at most

sρ/2 + σρ ≤ 0.38mρ +mρ/α ≤ 0.39mρ.

By the first part of the proposition, we have mρ ≤ mπ/0.49,
so our bound on sπ + σπ is at most

0.39(mπ/0.49) ≤ 0.8mπ.

As a corollary, we can establish the correctness of the See-
Saw Algorithm.

Corollary 6. The See-Saw Algorithm is a valid list-labeling
algorithm.

Proof. In the algorithm, each successive insert is passed down
the current subproblem tree to a leaf subproblem which inserts
the item into its subarray using the classical algorithm. The
classical algorithm at leaf subproblem π will fail to carry out
an insertion only if the total number of items assigned to π
exceeds mπ , but the final part of Proposition 5 ensures that this
does not happen. The only other times that items are moved
in the array are when a non-leaf problem does a rebuild of
one or both of its subproblems. Such a rebuild will fail only
if for a created subproblem ρ the number of items sρ initially
assigned to ρ exceeds mρ, which again is impossible by the
last part of Proposition 5.

The above guarantees that after each insertion, all items
inserted so far are placed in the array. It remains to verify that
the ordering of the items in the array is consistent with the
intrinsic ordering on items. At any point in the execution, if π
is an active leaf subproblem then the items in the subarray of
π are in order by the correctness of the classical algorithm. If
two items are assigned to different leaves π and ρ with π to
the left of ρ (under the usual left-to-right ordering of leaves)
then it is easy to see from the definition of the algorithm that
the subarray of π is entirely to the left of the subarray of ρ
and the items assigned to π are all less than the items assigned
to ρ, so the two items will be in correct order.

It remains to bound the cost of the algorithm. Define the
level of a subproblem to be its depth in the history tree,
where global subproblems are said to have level 1. The first
part of Proposition 5 implies that the maximum level of any
subproblem is at most 1.5 logm ≤ 2 log n.

The cost incurred by the data structure can be broken into
four groups: (1) The cost of rebuilds, which occur every time



that a non-leaf subproblem π finishes a rebuild window and
begins a new one; (2) the cost of resets, which which occur
whenever a subproblem reaches its quota for the total number
of insertions it can process; (3) the cost of tiny subproblems;
and (4) the cost of expensive leaf subproblems.

We can bound the first three of these with the following
lemma:

Lemma 7. The total expected amortized cost (across all
subproblems) from rebuilds, resets, and tiny subproblems is
O((log n)(log log n)3) per insertion.

Proof. First we bound the cost of all resets. A reset is done
when a subproblem π has reached its quota of mπ/α inser-
tions, and the cost of the reset is mπ . We can bound the sum
of these reset costs by charging α to each insertion that went
through π. Overall, each insertion travels through O(log n)
total subproblems, and therefore gets charged O(α log n) =
O((log n)(log log n)2). Thus the amortized expected cost of
resets is O((log n)(log log n)2).

Next we bound the cost of rebuilds. The number of rebuilds
that a subproblem π performs is tπ − 1 = ⌊(σπ − 1)/wπ⌋
where again tπ is its number of rebuild windows, σπ is the
total number of elements inserted into π during its lifetime,
and wπ is the rebuild window size. (Remember that, crucially,
a subproblem does not perform a rebuild at the beginning of its
first window, as the elements in Aπ are already evenly spread
out at that point in time, which is the state that π initially
wants.) Recall that wπ = mπ/(α2

K) where K = Kπ . If
K = 0 then wπ = mπ/α which is precisely π’s quota, so the
number of rebuilds is ⌊(σπ−1)/wπ⌋ ≤ ⌊(mπ/α−1)/wπ⌋ = 0.
For K ≥ 1 the number of rebuilds performed by π is at most
σπ/(mπ/(α2

K)) = 2Kασπ

mπ
and each rebuild has cost mπ , so

the total cost is at most 2Kασπ .
Recalling that, for k ∈ [1, kmax], we have Pr[K = k] =

pk = 2−(k+1)(1 + k/kmax) ≤ 2−k, we can take the expected
value over all choices for K to bound the expected total cost
of π’s rebuilds by

kmax∑
k=1

pk2
kασπ ≤

kmax∑
k=1

2−k2kασπ = kmaxασπ

= O((log log n)3σπ),

where the last equality follows since kmax = O(log log n) and
α = O((log log n)2).

Since the insertion sets for the subproblems at any fixed
level of recursion are disjoint, the total expected cost of
rebuilds at each level is O(n(log log n)3). Summing over
the O(log n) levels yields an amortized expected cost of
O((log n)(log log n)3) per operation.

Finally, because tiny subproblems have size at most
2O(

√
logn), they incur amortized expected cost at most

O(log2(2O(
√
logn))) = O(log n) per insertion.

B. Bounding the Costs of Expensive Leaves

It remains to bound the cost of expensive leaves. These
leaves may incur amortized cost as large as O(log2 n) per

insertion. So we want to show that the expected number of
insertions that reach expensive leaves is O(n/ log n). This is
indeed true, and the proof occupies most of the rest of the
paper.

Each insertion follows a unique root-to-leaf path in the
history tree. We now define some notation for how to think
about this path for a specific insertion v:

• d(v) is the number of subproblems in v’s path.
• π1(v), . . . , πd(v)(v) is the path of subproblems that v

follows.
• F 0

j (v) = F 0
πj(v)

.
• Fj(v) = Fπj(v).
• For π = πj(v), j < d(v), define δπ(v) = Fj+1(v) −

Fj(v), so that Fj(v)− F1(v) =
∑j−1

i=1 δπi(v)(v).

All of the above are random variables that depend on both
the sequence of insertions that has occurred prior to v and the
random choices of the algorithm, i.e., the parameters Kρ for
all subproblems ρ.

By definition, the leaf subproblem πd(v)(v) is an expensive
leaf if and only if F 0

d(v)(v) ≤ 1/4 which implies Fd(v)(v) ≤
1/4. On the other hand, since π1(v) is a global subproblem
and the total number of elements ever present is at most
m/2, Fπ1(v) ≥ 1/2. Thus, we obtain the following necessary
condition for v to reach an expensive leaf:

d(v)−1∑
i=1

δπi(v)(v) ≤ −1/4. (1)

For a non-leaf subproblem π and insertion v ∈ Iπ,i (recall
that Iπ,i denotes the insertions in the i-th rebuild window of
π), define:

∆π(v) =


Dπ − 2(1− Fπ)Qi

mπ − 2Qi
if v is sent left by π

−Dπ + 2(1− Fπ)Qi

mπ + 2Qi
if v is sent right by π.

This definition comes out of the following lemma, which
shows that ∆π(v) lower bounds δπ(v).

Lemma 8. Let π be a non-leaf subproblem and let v ∈ Iπ .
Then,

δπ(v) ≥ ∆π(v).

Proof. Suppose v occurs during the j-th rebuild window of π.
Let ρ be the child subproblem of π (active during Iπ,j) that v
is assigned to. We will assume that ρ is a left subproblem of
π; the other case follows by a symmetric argument with the
appropriate changes of sign.

By definition, mρ = mπ/2 − Qπ,j . At the beginning of
the first rebuild window of π, the left child of π starts with
sπ/2 items, where sπ is the number of items initially stored in
Aπ , and these items will be assigned to every left subproblem
created in subsequent windows of π. The total number of



inserts received by π that go left is (|Iπ| − Dπ)/2, so the
total number of elements ever stored in ρ is at most

sπ/2 + (|Iπ| −Dπ)/2,

which implies that the total number of free slots in Aρ is
always at least

mρ − sπ/2− (|Iπ| −Dπ)/2

= mπ/2−Qπ,j − sπ/2− (|Iπ| −Dπ)/2

= (mπ − sπ − |Iπ|)/2 +Dπ/2−Qπ,j

≥ Fπmπ/2 +Dπ/2−Qπ,j .

The free-slot density in ρ at the end of its lifetime therefore
satisfies

Fρ ≥ Fπmπ/2 +Dπ/2−Qπ,j

mρ

=
Fπ(mπ/2−Qπ,j) +Dπ/2− (1− Fπ)Qπ,j

mπ/2−Qπ,j

= Fπ +
Dπ/2− (1− Fπ)Qπ,j

mπ/2−Qπ,j

= Fπ +
Dπ − 2(1− Fπ)Qπ,j

mπ − 2Qπ,j
= Fπ +∆π(v).

Before continuing, it is worth remarking on two features of
∆π(v), for v ∈ Iπ,i, that make it nice to work with (and that,
at least in part, shape its definition).

The first property is that, if Dπ and Qi were both zero
(which would, happen, for example, if the insertions in π
alternated evenly between π’s left and right children), then
∆π(v) would also be zero. This means that one should think of
∆π(v) as having a “default” value of zero, which is why later
on (in Lemma 10), when we want to bound Var(∆π(v)), we
will be able to get away with bounding E[(∆π(v))

2] instead.8

The second property is that ∆π(v) is the same for all
v in a given rebuild window Iπ,i. In fact, if π = πj(v)
for some j, then all u ∈ Iπ agree on the values of
∆π1(u)(u), . . . ,∆πj−1(u)(u). This property will be critical for
our analysis (in Lemma 13), and later on, of how the sequence
∆π1(v)(v),∆π2(v)(v), . . . behaves. This property is also the
reason why all of the quantities used to define ∆π(v) (i.e.,
Dπ(v), Fj(v), Qπ,i) are based only on the window Iπ,i that
contains v, rather than on anything more specific about the
insertion v.

For an insert v, define ∆1(v), . . . ,∆d(v)−1(v) by ∆i(v) =
∆πi(v)(v) for i < d(v). Combining Lemma 8 with (1), we get
a new necessary condition for v to reach an expensive leaf:

d(v)−1∑
i=1

∆i(v) ≤ −1/4.

8Note that, no matter what, we have Var(∆π(v)) ≤ E[(∆π(v))2], so one
can always use the latter as an upper bound for the former. What is important
here, is that the latter quantity is actually a good upper bound for the former.

We will bound the fraction of v’s that arrive at an expensive
leaf by showing that at most an expected O(1/ log n) fraction
of insertions v satisfy the above condition. To analyze this
fraction, we adopt a probabilistic point of view with regard to
the insertions themselves. In particular, rather than analyzing
the probability that any specific insertion reaches an expensive
leaf, we will select a uniformly random insertion v from the
entire insertion sequence (this randomness is for the sake of
analysis, only, and is not coming from the randomness in
the algorithm), and we will analyze the probability that this
randomly selected insertion reaches an expensive leaf. Thus,
the underlying probability space will be over both randomly
chosen v and the randomness of the algorithm.

To analyze a random insertion v, our main task will be
to analyze the (random) sequence ∆1(v),∆2(v), . . .. We first
make the observation (Proposition 9) that each ∆i(v) is
bounded in absolute value by 3

β . The more significant result
is then Lemma 10, which says that under fairly general
conditions on a subproblem π, the variance of ∆π(v), for
a uniformly random v ∈ Iπ , is (deterministically) bounded
above by a small (sub-constant) multiple of its expectation (up
to a negligible additive term). Once we have these properties,
we will argue that they force ∆1(v),∆2(v), . . . to evolve
according to a well-behaved process, which we will then
analyze using (mostly) standard results from the theory of
random walks.

Proposition 9. For any non-leaf subproblem π and any v ∈
Iπ , we have |∆π(v)| ≤ 3

β .

Proof. Let Ii be the rebuild window of Iπ such that v ∈ Ii.
Note that the array skew Qi satisfies |Qi| ≤ mπ · |Dπ,i−1|

βwπ
≤

mπ/β. Using this, we can conclude that

|∆π(v)| ≤
|Dπ|+ 2|Qi|
mπ − 2|Qi|

≤ (1 + 3/β) ·
(
|Dπ|+ 2|Qi|

mπ

)
≤ (1 + 3/β) ·

(
|Dπ|
mπ

)
+ (1 + 3/β) · 2/β

≤ (1 + 3/β)/α+ (1 + 3/β) · 2/β
(since |Dπ| ≤ |Iπ| ≤ mπ/α)

≤ 3/β,

where the final inequality uses that β = ω(1) and α > 100β.

We now come to the main technical lemma, which we will
prove in Section VI.

Lemma 10. (The See-Saw Lemma) Let π be a non-leaf
subproblem with insertion set Iπ , and suppose that F 0

π , the
free-slot density of π when it starts, satisfies F 0

π ≤ 0.5. Then,
for a uniformly random v ∈ Iπ ,

E[∆π(v)
2] ≤ 100kmax

β
E[∆π(v)] + 2−kmax ,



where the expectations are taken over both the random choice
of v and the algorithm’s random choice of wπ .

Lemma 10 is the part of the analysis that captures the
role of adaptivity in our algorithm. If the algorithm were
not adaptive (i.e., always set Qi = 0), then ∆π(v) would
simply be Dπ/mπ . The insertion sequence would then be
able to force ∆π(v)

2 = (Dπ/mπ)
2 (and, more importantly,

Var(∆π(v))) to be large by sending more insertions to one
child of π than to the other. (This would also cause E[∆π(v)]
to be slightly negative, which would also be bad for us.) The
key insight in Lemma 10 is that we cannot hope to prevent
∆π(v)

2 from being large—but we can hope to use adaptivity
in order to create a “see-saw” relationship between E[∆π(v)

2]
and E[∆π(v)]. In particular, if the insertion sequence chooses
to send far more insertions to one child than the other, then
this creates an opportunity for us to employ adaptivity, which
we can then use to put more free slots on the side that receives
more insertions, which allows for us to create a positive
expected value for E[∆(v)]. This, in turn, is a good thing,
since ∆(v) being positive means that, on average, insertions
experience a free-slot density increase when traveling from
π to π’s child. Thus, we create a situation where, no matter
what, we win: either E[∆(v)] is large (which is good), or
Var(∆π(v)) is small (which is also good!).

Thus, the “magic” of the See-Saw Algorithm will be in how
it uses adaptivity to guarantee the See-Saw Lemma. A priori,
the adaptive behavior of the algorithm (i.e, the way in which
it selects Qπ,i based on the insertion behavior in the previous
rebuild window) would seem to be quite difficult to analyze.
Intuitively, the algorithm is attempting to observe when there
are “trends” in the insertion-sequence’s behavior. However,
if we are not careful, the insertion sequence may be able to
trick us into observing a “trend” in one rebuild window, even
though the next rebuild window will behave in the opposite
way. The main contribution of Section VI, where we prove
Lemma 10, is that if the window size wπ and the array skews
Qπ,1, Qπ,2, . . . are selected in just the right way (as in the See-
Saw Algorithm), then it is possible to perform a telescoping
argument that holds for any input. The argument shows that,
even if the insertion sequence causes the algorithm to perform
badly for some choices of wπ , this creates “opportunities” for
the algorithm to perform better on other choices of wπ , so that
on average the algorithm always does well.

Since Lemma 10 only considers subproblems π satisfying
F 0
π ≤ 0.5, it will be useful to define a modified version of

∆π , where for any non-leaf subproblem π, we have:

∆̂π(v) =

{
∆π(v) if F 0

π ≤ 0.5

0 otherwise.

Trivially, we then have:

Corollary 11. For any non-leaf subproblem π, and for a
uniformly random v ∈ Iπ , we have

E[∆̂π(v)
2] ≤ 100kmax

β
E[∆̂π(v)] + 2−kmax .

We define ∆̂1(v), ∆̂2(v), . . . by ∆̂i(v) = ∆̂πi(v)(v). Earlier
we gave a necessary condition for reaching an expensive leaf,
based on summations of {∆i(v)}. We now give a similar
condition based on the sequence {∆̂i(v)}:

Proposition 12. For any insert v, if the path of v ends at an
expensive leaf, then there is an interval [a, b] ⊆ [1, d(v) − 1]
such that

∆̂a(v) + · · ·+ ∆̂b(v) ≤ −0.23.

Proof. Suppose that the leaf πd(v)(v) is an expensive leaf.
So F 0

d(v)(v) ≤ 1/4, which implies Fd(v)(v) ≤ 1/4. Let b =

d(v)−1 and let ℓ be the largest index such that F 0
ℓ (v) ≥ 1/2;

this is well-defined because π1(v) is global and so F 0
1 (v) ≥

1/2. Since α ≥ 100, and since πℓ(v) gets at most mπℓ(v)/α
insertions, we have Fℓ(v) ≥ F 0

ℓ (v) − 0.01 ≥ 0.49. By the
definition of ℓ, ∆̂i(v) = ∆i(v) for all i ∈ [ℓ + 1, b]. Letting
a = ℓ+1, and letting δi(v) denote δπi(v), we have by Lemma
8 that

b∑
i=a

∆̂i(v) = −∆ℓ(v) +
b∑

i=ℓ

∆i(v)

≤ −∆ℓ(v) +
b∑

i=ℓ

δi(v)

= −∆ℓ(v) + Fb+1(v)− Fℓ(v)

≤ −∆ℓ(v) + 1/4− 0.49.

Finally, by Proposition 9, this is at most 3/β + 1/4− 0.49 ≤
0.01 + 1/4− 0.49, since β ≥ 300.

We will now show how to bound the probability that a
random insertion v (out of the entire input stream) encounters
an expensive leaf.

Lemma 13. Consider a uniformly random insertion v out
the entire insertion stream. The probability that v reaches an
expensive leaf is O(1/ log n).

Proof. Since v is a random variable, the sequences
π1(v), π2(v), . . . and ∆̂1(v), ∆̂2(v), . . . are also random vari-
ables. When discussing our randomly chosen v, we will use
∆̂j as a shorthand for ∆̂j(v). For convenience of notation, we
let ∆̂j = 0 if j ≥ d(v).

By Proposition 12, it suffices to upper bound the probability
that there is a pair a ≤ b satisfying ∆̂a+· · ·+∆̂b ≤ −.23. The
maximum depth of the history tree is 2 log n so there are at
most 4 log2 n pairs with a ≤ b < 2 log n. So it suffices to fix
a ≤ b < 2 log n and show that Pr[

∑b
i=a ∆̂i(v) ≤ −0.23] =

O(1/ log3 n).
In Section VII we will use standard concentration bounds

for random processes to show:

Claim 14. Let kmax = 2 log log n, and let β =
Cβ(log log n)

2 for some sufficiently large positive constant
Cβ . Let X1, X2, . . . , Xr be random variables with r ≤ 2 log n
such that for i ∈ [1, r]:

1) |Xi| ≤ 3/β;



2) E[X2
i | X1, . . . , Xi−1] ≤ 100kmax

β E[Xi |
X1, . . . , Xi−1] + 2−kmax .

Then, Pr[
∑

i Xi < −0.2] ≤ O
(
1/ log3 n

)
.

Although we will defer the proof of Claim 14 to Section
VII, it may be worth taking a moment to explain the intuition
behind the claim. For this, it is helpful to substitute Xi with
X ′

i := Xi · log log n. Under this substitution (and with a
bit of algebra) one can reduce the the hypotheses of the
claim to (1) |X ′

i| ≤ O(1/ log log n) ≤ 1, and (2) E[X ′
i
2 |

X ′
1, . . . , X

′
i−1] ≤ O(1) ·E[X ′

i | X ′
1, . . . , X

′
i−1]+Õ(1/ log2 n);

and the conclusion of the claim becomes that, with probability
1 − 1/ log3 n, we have

∑
i X

′
i ≥ −O(log log n). In other

words, the essence of the claim is simply that, if a random
walk has steps of size at most, say 1, and if each step has mean
at least a constant factor larger than its variance (modulo some
small additive error), then the random walk will not be able to
become substantially negative with any substantial probability.

We would like to apply Claim 14 to X1, X2, . . . =
∆̂a, ∆̂a+1, . . . , ∆̂b. Proposition 9 implies that each ∆̂i satisfies
the first hypothesis of the claim, and the second hypothesis
almost follows from Corollary 11. The only issue is that
Corollary 11 tells us how to think about ∆̂π(v) for a random
v out of those in Iπ , but what we actually want to reason
about is ∆̂i(v) | ∆̂a(v), . . . , ∆̂i−1(v) for a random v out of all
insertions. Fortunately, these two probability distributions end
up (by design) being closely related to one another, allowing
us to establish the following variation of Corollary 11:

Corollary 15. For each i ∈ [1, 2 log n],

E[∆̂2
i | ∆̂1, . . . , ∆̂i−1]

≤ 100kmax

β
E[∆̂i | ∆̂1, . . . , ∆̂i−1] + 2−kmax .

Proof. Because, in this proof, we will use πi as a formal
random variable, it is helpful to think of each πi as formally
being given by the triple (Aπi

,S0πi
, Iπi

).
Recall that our probability space consists of the selection

of the parameters wπ during the algorithm (which, along with
the insertion sequence, fully determine the history tree) and
the selection of a uniformly random v that determines the
path π1, π2, . . . , πj down the tree. We will need an alternative
incremental description of the probability space. Keep in mind
that the full sequence of insertions is fixed. First note that
the global subproblems are completely determined by the
insertion sequence (i.e., there is no randomness) and the
insertion sets for these subproblems partition the full set of
insertions. Select π1 from among the global subproblems with
probability proportional to the size of its set of insertions. Next
select the parameter w1 = wπ1 according to the algorithm
specification. The parameter w1 determines the windows and
the set of subproblems of π1, and the insertion sets for
these subproblems partition the insertion set of π1. Next we
select π2 from among these subproblems with probability
proportional to the size of its insert set. We continue in this
way selecting π1, w1, π2, w2, . . . until we arrive either at a tiny

leaf or expensive leaf. This process gives the same distribution
over paths π1, π2, . . . , as the distribution that first runs the
algorithm to determine the full history tree and then selects a
random insert and follows its path.

Now let us consider the random variable ∆̂i |
π1, w1, . . . , πi, for a given i ∈ [1, 2 log n]. So that this is well
defined for all i, we can artificially define πj(v) and wj(v) to
be null, for j > d(v) and j ≥ d(v), respectively. If πi is a leaf
(or null), then ∆̂i | π1, w1, . . . , πi is defined to be identically
zero, so we have trivially that

E[∆̂2
i | π1, w1, . . . , πi]

≤ 100kmax

β
E[∆̂i | π1, w1, . . . , πi] + 2−kmax .

The interesting case is what happens if πi is a non-leaf
subproblem.

For any given set of outcomes for π1, w1, . . . , πi, where πi

is a non-leaf subproblem, the probabilistic rule for selecting
wi and πi+1 (which together determine ∆̂i) is completely
determined by πi. Therefore, if we fix any set of outcomes
for π1, w1, . . . , πi, and if we use ∆̂π to denote the random
variable ∆̂π(u) for a uniformly random u ∈ Iπ , then we have

E[∆̂i | π1, w1, . . . , πi] = E[∆̂i | πi] = E[∆̂πi ],

E[∆̂2
i | π1, w1, . . . , πi] = E[∆̂2

i | πi] = E[∆̂2
πi
].

Now we can combine this with Corollary 11 to obtain

E[∆̂2
i | π1, w1, . . . , πi]

≤ 100kmax

β
E[∆̂i | π1, w1, . . . , πi] + 2−kmax .

Since, earlier in the proof, we also established this identity for
the case where πi is a leaf (or null), we can conclude that the
identity holds for all options of π1, w1, . . . , πi.

Finally note that π1, w1, . . . , πi determines ∆̂1, . . . , ∆̂i−1.
Therefore for any fixing d1, . . . , di−1 of ∆̂1, . . . , ∆̂i−1, we can
average the previous inequality with respect to the conditional
distribution on π1, w1, . . . , πi given ∆̂1 = d1, . . . , ∆̂i−1 =
di−1 and this gives exactly the desired result.

An immediate consequence of Corollary 15 is that, for
any interval [a, b], and for i ∈ [a, b], we have E[∆̂2

i |
∆̂a, . . . , ∆̂i−1] ≤ 100kmax

β E[∆̂i | ∆̂a, . . . , ∆̂i−1]+2−kmax . We
also have by Proposition 9 that |∆̂i| ≤ 3/β, so we can apply
Claim 14, using X1, X2, . . . = ∆̂a, ∆̂a+1, . . . , ∆̂b to complete
the proof that Pr[∆̂a + · · · + ∆̂b ≤ −0.23] = O(1/ log3 n),
which, in turn, completes the proof of the lemma.

Given Lemma 13, we can complete the proof of Theorem
3 as follows.

Theorem 3. Let m be sufficiently large, and n = m/2. The
See-Saw Algorithm is a list-labeling algorithm that, starting
with m/4 elements, can support m/4 insertions with amor-
tized expected cost O((log n)(log log n)3).



Proof. Lemma 7 bounds the amortized expected costs of
rebuilds, resets, and tiny leaves by

O((log n)(log log n)3).

Lemma 13 bounds the probability of an insertion encounter-
ing an expensive leaf by O(1/ log n). If an insertion does
encounter an expensive leaf, it incurs O(log2 n) amortized
expected cost within the leaf. Thus, the amortized expected
cost per insertion from expensive leaves is O(log n).

It remains to prove Lemma 10 and Claim 14. These are
given in Sections VI and VII.

VI. PROOF OF THE SEE-SAW LEMMA

In this section, we prove Lemma 10, restated below:

Lemma 10. (The See-Saw Lemma) Let π be a non-leaf
subproblem with insertion set Iπ , and suppose that F 0

π , the
free-slot density of π when it starts, satisfies F 0

π ≤ 0.5. Then,
for a uniformly random v ∈ Iπ ,

E[∆π(v)
2] ≤ 100kmax

β
E[∆π(v)] + 2−kmax ,

where the expectations are taken over both the random choice
of v and the algorithm’s random choice of wπ .

Let us also recall the definition of ∆π(v). For a subproblem
π and insertion v ∈ Iπ,j (recall that Iπ,j denotes the insertions
in the j-th rebuild window of π):

∆π(v) =


Dπ − 2(1− Fπ)Qj

mπ − 2Qj
if v is sent left by π

−Dπ + 2(1− Fπ)Qj

mπ + 2Qj
if v is sent right by π.

Since π is the only subproblem that will be mentioned in this
proof, we’ll often omit the subscript π.

To prove the lemma, we will prove a lower bound on
E[∆(v)] and an upper bound on E[∆(v)2] and then compare
them. These expectations would be easier to deal with if we
could change the denominator in ∆(v) to mπ . In particular,
the expressions for insertions v that go left vs right would
then be negatives of each other. Recalling that D(v) is +1 if
v goes right and −1 if v goes left, define

Λ(v) = Λπ(v) = D(v)
−Dπ + 2(1− Fπ)Qj

mπ
.

We will use Λ(v) to estimate ∆(v). Define the error function

ε(v) = ∆(v)− Λ(v).

The following claim will inform how we think about ε(v):

Claim 16. If v ∈ Iπ,j for some j, then we have

ε(v) =


2Qj

mπ − 2Qj
Λ(v) if v is sent left by π

−2Qj

mπ + 2Qj
Λ(v) if v is sent right by π,

and that

|ε(v)| ≤ 8|Qj |
3mπ

|Λ(v)| ≤ |Λ(v)|/3.

Proof. We have ∆(v)
Λ(v) = mπ

mπ+D(v)·2Qj
, which implies

∆(v)− Λ(v)

Λ(v)
=

mπ − (mπ +D(v) · 2Qj)

mπ +D(v) · 2Qj

=
−D(v) · 2Qj

mπ +D(v) · 2Qj
.

To prove the second part of the claim, observe that |Qj | =
|Dj−1|mπ

βwj
≤ mπ

β ≤
mπ

8 , and so:

|ε(v)| ≤ 2|Qj |
3
4mπ

|Λ(v)| = 8|Qj |
3mπ

|Λ(v)| ≤ |Λ(v)|/3.

We can bound E[∆(v)] and E[∆(v)2] as a function of Λ(v)
and ε(v) as follows:

Proposition 17. For a subproblem π,

E[∆(v)] ≥ E[Λ(v)]− E[|ε(v)|]
E[∆(v)2] ≤ 2 · E[Λ(v)2],

where expectations are with respect to the randomness of the
algorithm and v chosen uniformly from Iπ .

Proof. The first inequality is immediate from the definition
of ε(v) and the triangle inequality. For the second, using the
bound |ε(v)| ≤ |Λ(v)|/3 from Claim 16, we have:

E[∆(v)2] = E[(Λ(v) + ε(v))2]

≤ E[(|Λ(v)|+ |Λ(v)|/3)2]

≤ 16

9
E[Λ(v)2].

In what follows, we will compute a lower bound on E[Λ(v)]
and upper bounds on E[Λ(v)2] and E[|ε(v)|]. We will then be
able to use Proposition 17 to complete the proof of Lemma
10.

Recall that, for the subproblem π, the algorithm chooses its
rebuild window size wπ based on the random variable Kπ ∈
[0, kmax]. It will often be helpful to condition on Kπ = k for
some k. Thus we use the following notation to refer to the
values that variables take when Kπ = k:

• wk is the window size mπ/(α2
k).

• tk is the number of rebuild windows.
• The partition of Iπ into windows is denoted
Ik1 , Ik2 , . . . , Iktk .
(We have tk ≤ 2k, since mπ

α ≥ |Iπ| =
∑

j |Ikj | >
(tk − 1)wk ≥ (tk − 1)mπ

α2k
.)

• Dk
j is an abbreviation for D(Ikj ).

• Qk
j is the value used by the algorithm for Qj . It is

mπD
k
j−1

βwk if j is even, and is 0 if j is odd.



Observe that the rebuild windows for Kπ = k + 1 are
obtained by splitting each rebuild window for Kπ = k into
two parts Ikj = Ik+1

2j−1 ∪ I
k+1
2j . The two sets Ik+1

2j−1 and Ik+1
2j

will both be of size wk+1, unless j = tk, in which case the
sizes may be less than wk+1 or even 0; indeed the rebuild
window Ik+1

2tk
may not even exist, in which case we treat it

as empty.
The following two sums play a key role in the computation

of E[Λ(v)] and E[Λ(v)2].

Sk =
∑
j≤tk

(Dk
j )

2.

Rk =
∑

even j≤tk

Dk
j−1D

k
j .

In the case that there is only one window (e.g. k = 0), we
have Sk = (Dπ)

2 and Rk = 0.
The following upper bound on Sk will be helpful later on in

the proof, in particular, when we wish to bound Skmax . Recall,
σπ = |Iπ|.

Proposition 18. For any k ∈ [1, kmax],

Sk ≤ mπσπ

α2k
.

Proof. We have that

Sk =

tk∑
j=1

(Dk
j )

2 ≤
tk∑
j=1

|Ikj |2 ≤
tk∑
j=1

|Ikj |
mπ

α2k
=

σπmπ

α2k
.

We now turn to our bounds on E[Λ(v)], E[(Λ(v))2], and
E[|ε(v)|].

Lemma 19. For any subproblem π, we have:

E[Λ(v)] =
α(1− Fπ)

mπσπβ

kmax∑
k=1

(
1 +

k

kmax

)
Rk − S0

σπmπ

E[(Λ(v))2] ≤ 8α

mπσπβ2

kmax∑
k=0

Sk

E[|ε(v)|] ≤ 8α

mπσπβ2

kmax∑
k=0

Sk,

where the expectations are taken with respect to random v ∈
Iπ and the choice of Kπ .

The proof of this lemma follows from straightforward
calculations:

Proof. To bound E[Λ(v)], we first analyze E[Λ(v)] condi-
tioned on Kπ = k. We write Λk(v) (resp. εk(v)) for Λ(v)
(resp. ε(v)) conditioned on Kπ = k. After this conditioning,
the only remaining randomness is the uniform random choice
of v ∈ Iπ . For each window Ikj , and for all v ∈ Ikj , we have

by definition that Λk(v) = Dπ(v)
2(1−Fπ)Q

k
j−Dπ

mπ
, so:∑

v∈Ik
j

Λk(v) = Dk
j

2(1− Fπ)Q
k
j −Dπ

mπ
.

Therefore, for v selected uniformly at random from Iπ , we
have

E[Λk(v)] =
1

σπ

tk∑
j=1

Dk
j

2(1− Fπ)Q
k
j −Dπ

mπ

=
2(1− Fπ)

σπmπ

tk∑
j=1

Dk
jQ

k
j −

(Dπ)
2

σπmπ

(since
∑tk

j=1 D
k
j = Dπ)

=
2(1− Fπ)

σπmπ

∑
even j≤tk

mπ

βwk
π

Dk
j−1D

k
j −

(Dπ)
2

σπmπ

(by definition of Qk
j )

=
(1− Fπ)2

k+1α

σπmπβ
Rk − S0

σπmπ
.

(since |wk| = mπ

α2k
and S0 = (Dπ)

2)

Now averaging over the options for k, each of which occurs
with probability pk = 2−(k+1) · (1 + k/kmax),

E[Λ(v)] =
kmax∑
k=0

pk(1− Fπ)2
k+1α

σπmπβ
Rk −

(∑
k

pk

)
· S0

σπmπ

=

kmax∑
k=1

pk(1− Fπ)2
k+1α

σπmπβ
Rk − S0

σπmπ

(since R0 = 0 and
∑

pk = 1)

=
α(1− Fπ)

σπmπβ

kmax∑
k=1

(
1 +

k

kmax

)
Rk − S0

σπmπ
,

as claimed.
Next, we analyze E[(Λ(v))2]. As above we start by analyz-

ing the conditional expectation E[(Λk(v))2]. For each window
Ikj , and for each v ∈ Ikj we have:

(Λk(v))2 =
(2(1− Fπ)Q

k
j −Dπ)

2

(mπ)2

≤ 2
(2(1− Fπ)Q

k
j )

2 + (Dπ)
2

(mπ)2

(by the inequality (a+ b)2 ≤ 2a2 + 2b2)

≤
8(Qk

j )
2 + 2(Dπ)

2

(mπ)2
, (2)

where the final step uses Fπ ∈ [0, 1]. Therefore,

∑
v∈Ik

j

(Λk(v))2 ≤ |Ikj |
8(Qk

j )
2 + 2(Dπ)

2

(mπ)2
.



It follows that, for a uniformly random v ∈ Iπ , we have

E[(Λk(v))2] =
1

σπ

tk∑
j=1

|Ikj |
8(Qk

j )
2 + 2(Dπ)

2

(mπ)2

=
8

σπ(mπ)2

tk∑
j=1

|Ikj |(Qk
j )

2 +
2(Dπ)

2

σπ(mπ)2

tk∑
j=1

|Ikj |

=
8

σπ(mπ)2

∑
even j≤tk

|Ikj |
(Dk

j−1)
2(mπ)

2

(wk)2β2
+

2(Dπ)
2

(mπ)2

(by defn of Qk
j and

∑
|Ikj | = σπ)

≤ 8

σπβ2wk

∑
even j≤tk

(Dk
j−1)

2 +
2(Dπ)

2

(mπ)2

(since |Ikj | ≤ wk)

≤ 8α2k

mπσπβ2
Sk +

2(Dπ)
2

(mπ)2
(since wk = mπ

α2k
)

≤ 8α

mπσπβ2

(
2kSk +

1

4
(Dπ)

2

)
.

(since α ≥ β and thus mπ ≥ σπα ≥ σπβ
2/α)

Averaging over k we get,

E[(Λ(v))2] ≤ 8α

σπmπβ2

(
kmax∑
k=0

pk2
kSk +

kmax∑
k=0

pk
(Dπ)

2

4

)

≤ 8α

σπmπβ2

(
kmax∑
k=1

Sk +
S0

2
+

(Dπ)
2

4

)
(since pk ≤ 2−k, p0 ≤ 1/2 and Sk ≥ 0)

≤ 8α

mπσπβ2

kmax∑
k=0

Sk. (since S0 = (Dπ)
2)

Finally, we analyze E[|ε(v)|]. For each window Ikj , and for
each v ∈ Ikj , we have by Claim 16 that

|εk(v)| ≤
8|Qk

j |
3mπ

|Λk(v)| =
8|Qk

j | · |2(1− Fπ)Q
k
j −Dπ|

3(mπ)2

≤ 8
2(Qk

j )
2 + |Qk

j ||Dπ|
3(mπ)2

(since Fπ ∈ [0, 1])

≤ 8
5
2 (Q

k
j )

2 + 1
2 (Dπ)

2

3(mπ)2

(by the inequality ab ≤ (a2 + b2)/2)

≤
8(Qk

j )
2 + 2(Dπ)

2

(mπ)2
,

which is, quite fortuitously (and partly by design), the same
as the upper bound on (Λk(v))2 shown in (2). Therefore, the
exact same computation as for E[(Λk(v))2] yields the claimed
bound.

We now come to the critical part of the proof. We have
lower bounds on E[Λ(v)] in terms of the sums Rk and upper
bounds on E[(Λ(v))2] and E[|ε(v)|] in terms of the sums Sk.

In order to complete the proof we need to relate the quantities
Rk to the quantities Sk. This connection is provided by the
following simple but crucial identity:

Proposition 20. For any h < ℓ,

Sh − Sℓ = 2
ℓ∑

k=h+1

Rk.

Proof. First we compute Sk−Sk+1. For each rebuild window
Ikj = Ik+1

2j−1 ∪ I
k+1
2j , since Dk

j = Dk+1
2j−1 +Dk+1

2j , we have

(Dk
j )

2 = (Dk+1
2j−1)

2 + (Dk+1
2j )2 + 2Dk+1

2j−1D
k+1
2j .

Summing both sides over j yields Sk = Sk+1 + 2Rk+1,
so Sk − Sk+1 = 2Rk+1. The desired equality follows by
summing this equality for k from h to ℓ− 1.

We note that this lemma is the reason that, in the specifica-
tion of the algorithm, Qk

j is defined to be 0 for odd j. Had we
applied the definition for even j also to odd j, then in the lower
bound of E[∆], instead of Rk =

∑
even j D

k
j−1D

k
j we would

have to use Rk =
∑

j D
k
j−1D

k
j , where the sum is over all j,

not just even j. This change to the definition of Rk would,
in turn, cause the telescoping argument in Proposition 20 to
fail, and we would no longer be able to relate the bound on
E[Λ(v)] to the bounds on E[(Λ(v))2] and E[|ε(v)|].

We now manipulate the bound on E[∆(v)] to finish the
proof of the lemma. A key step is given by:

kmax∑
k=1

kRk =

kmax∑
k=1

kmax∑
h=k

Rh =

kmax−1∑
k=0

Sk − Skmax

2

=
1

2

kmax−1∑
k=0

Sk − kmax

2
Skmax ,

where the second equality uses Proposition 20. As we will see
below, this identity is the reason why pk was defined to be
2−(k+1) · (1 + k/kmax) rather than, say, 2−k.



We now lower bound E[Λ(v)] by

E[Λ(v)] =
α(1− Fπ)

σπmπβ

kmax∑
k=1

(
1 +

k

kmax

)
Rk − S0

σπmπ

(Prop. 18)

=
α(1− Fπ)

σπmπβ

(
kmax∑
k=1

Rk +
1

kmax

kmax∑
k=1

kRk

)
− S0

σπmπ

=
α(1− Fπ)

σπmπβ

(
S0 − Skmax

2
+

1

2kmax

kmax−1∑
k=0

Sk

− Skmax

2

)
− S0

σπmπ
(Prop. 20 and (Prop. 18))

=
α(1− Fπ)

σπmπβ

(
S0 − Skmax

2
+

1

2kmax

kmax∑
k=0

Sk

−Skmax

2kmax
− Skmax

2

)
− S0

σπmπ

≥α(1− Fπ)

σπmπβ

(
S0

2
+

1

2kmax

kmax∑
k=0

Sk

− 3

2
Skmax

)
− S0

σπmπ

≥ α

2σπmπβ

(
S0

2
+

1

2kmax

kmax∑
k=0

Sk

)

− 3α

2σπmπβ
Skmax − S0

σπmπ

(since Fπ ∈ [0, 1/2], Sk ≥ 0)

≥ α

2σπmπβ

(
S0

2
+

1

2kmax

kmax∑
k=0

Sk

)

− 3α

2σπmπβ
Skmax − αS0

8βσπmπ
(since α ≥ 8β)

≥ α

2σπmπβ

(
1

2kmax

kmax∑
k=0

Sk

)
− 3α

2σπmπβ
Skmax

(since S0 ≥ 0)

≥ α

2σπmπβ

(
1

2kmax

kmax∑
k=0

Sk

)
− 3

2β
2−kmax

(Prop. 18)

≥ α

4σπmπβkmax

kmax∑
k=0

Sk − 2−kmax .

We are now ready to complete the proof of Lemma 10. We

have

E[∆(v)] ≥ E[Λ(v)]− E[|ε(v)|] (Prop. 17)

≥ α

4σπmπβkmax

kmax∑
k=0

Sk − 2−kmax − 8α

mπσπβ2

kmax∑
k=0

Sk

(by (Prop. 17) and Lemma 19)

=

(
β

32kmax
− 1

)
8α

mπσπβ2

kmax∑
k=0

Sk − 2−kmax

≥
(

β

32kmax
− 1

)
E[Λ(v)2]− 2−kmax (Lemma 19)

≥
(

β

32kmax
− 1

)
E[∆(v)2]/2− 2−kmax (Prop. 17)

≥
(

β

100kmax

)
E[∆(v)2]− 2−kmax ,

(since β ≥ 1000kmax)

which completes the proof of Lemma 10.

VII. PROOF OF CLAIM 14

In this section, we prove Claim 14, restated below:

Claim 14. Let kmax = 2 log log n, and let β =
Cβ(log log n)

2 for some sufficiently large positive constant
Cβ . Let X1, X2, . . . , Xr be random variables with r ≤ 2 log n
such that for i ∈ [1, r]:

1) |Xi| ≤ 3/β;
2) E[X2

i | X1, . . . , Xi−1] ≤ 100kmax

β E[Xi |
X1, . . . , Xi−1] + 2−kmax .

Then, Pr[
∑

i Xi < −0.2] ≤ O
(
1/ log3 n

)
.

As notation, for a sequence Z = Z1, . . . , Zs of random
variables, define µ1(Z), . . . , µs(Z) and V1(Z), . . . , Vs(Z) by:

µj(Z) = E[Zj | Z1, . . . , Zj−1]

Vj(Z) = Var[Zj | Z1, . . . , Zj−1].

Also define µ(Z) =
∑

µj(Z), V (Z) =
∑

j Vj(Z) and
Σ(Z) =

∑
j Zj . Note that µj(Z) and Vj(Z) are random

variables that are determined by the values of Z1, . . . , Zj−1.
We will prove:

Lemma 21. Let Z = Z1, Z2, . . . , Zs be random variables
and suppose that A, B, and C are positive real numbers with
4A ≤ B ≤ 1 such that, with probability 1, we have for all
j ∈ [1, s] that:

1) |Zj | ≤ A;
2) Vj(Z) ≤ Bµj(Z) + C.

Then for q ≥ max(2sC/B, 16B), Pr[Σ(Z) < −q] ≤
3e−q/16B .

Supposing n is sufficiently large, Claim 14 follows from
the lemma with q = 0.2, s = r ≤ 2 log n, A = 3

β , B =

100kmax/β and C = 2−kmax = 1
log2 n

. The hypothesis 4A ≤
B ≤ 1 is satisfied since β = Ω((log log n)2) and kmax =
2 log log n, and the hypothesis q ≥ max(2sC/B, 16B) is
satisfied since 2sC/B = O((log log n)/ log n) and 16B =



O(1/ log log n) so both are smaller than q = 0.2. The
resulting probability upper bound is 3e−.2β/1600kmax =
3e−Cβ log log n/16000 ≤ 3(log n)−Cβ/16000 and taking Cβ large
enough this is less than 1/ log3 n, as required.

Recall that a martingale difference sequence is a sequence
Y = Y1, Y2, . . . , Ys of random variables such that we have
E[|Yi|] < ∞ for all i and for any outcomes of Y1, . . . , Yj−1,
µj(Y ) = E[Yj | Y1, . . . , Yj−1] = 0; this is equivalent to the
condition that the sequence with terms Xj =

∑j
i=1 Yi is a

martingale. Lemma 21 will be deduced from the following
theorem of Freedman:

Theorem 22 (Proposition 2.1 of [34]). Let s ∈ N and let
Y = Y1, . . . , Ys be a martingale difference sequence. Suppose
D and v are positive real numbers such that, with probability
1:

1) |Yj | ≤ D for all j;
2)
∑

j Vj(Y ) ≤ v.

Then, for ℓ > 0, Pr[Σ(Y ) > ℓ] ≤ e−ℓ2/2(v+Dℓ).

A natural approach to proving Lemma 21 is to define the
martingale difference sequence X by Xj = µj(Z)−Zj . This
would imply Vj(X) = Vj(Z) for all j, and it would then
suffice to upper bound Pr[Σ(Z) < −q] = Pr[Σ(X) > µ(Z)+
q], which we might hope to do with Theorem 22. However, the
theorem cannot be applied directly because the upper bound on
Vj(X) of Bµj(Z)+sC implied by Hypothesis (2) of Lemma
21 is itself a random variable, and the quantity µ(Z) + q to
which Σ(X) is compared in the conclusion is also a random
variable, while Theorem 22 requires both to be fixed quantities.
To get around this we first prove:

Proposition 23. With Z satisfying the hypotheses of
Lemma 21, let ρ2 > ρ1 be fixed real numbers. For q ∈
(−ρ1, 2ρ2 − ρ1 − 2sC

B ],

Pr[Σ(Z) < −q and µ(Z) ∈ [ρ1, ρ2]] ≤ e−(ρ1+q)2/(4Bρ2).

Proof. Assume that Z satisfies the hypotheses of Lemma 21
and q ∈ (−ρ1, 2ρ2 − ρ1 − 2sC

B ]. We define sequences Z ′ and
X ′ which are modified versions of Z and X . We’ll be able to
apply Theorem 22 to X ′. Let Cj(Z) denote the event:

j∑
i=1

Vi(Z) ≤ Bρ2 + sC,

and define Z ′
1, . . . , Z

′
s to be given by:

Z ′
j =

{
Zj if Cj(Z) holds,
0 otherwise.

Claim 24. Z ′ has the following properties:
1) If Cj(Z) holds then Z ′

1, . . . , Z
′
j = Z1, . . . , Zj and

V1(Z
′), . . . , Vj(Z

′) = V1(Z), . . . , Vj(Z).
2) V (Z ′) ≤ ρ2B + sC.
3) If µ(Z) ≤ ρ2 then Cj(Z) holds for all j ∈ [1, s] and

Z ′ = Z.

Proof. For the first claim, note that if Cj(Z) holds, then
conditioned on Z1, . . . , Zj−1, Z ′

j and Zj are equal as random
variables and consequently Vj(Z

′) = Vj(Z). Also, if Cj(Z)
holds then Ci(Z) holds for all i ≤ j, since Vi(Z) ≥ 0 for
all i. Therefore if Cj(Z) holds Z ′

1, . . . , Z
′
j = Z1, . . . , Zj and

V1(Z
′), . . . , Vj(Z

′) = V1(Z), . . . , Vj(Z).
For the second claim, let h be the least index for which

Ch(Z) fails, setting h = s + 1 if Cj(Z) holds for all
j ≤ s. Then Ci(Z) fails for i ≥ h, and so conditioned on
Z1, . . . , Zh−1, for i ≥ h, Zi is identically 0, and so Vi(Z) = 0.
Therefore by part 1 of the claim:

V (Z ′) ≤
∑
i≤s

Vi(Z
′) =

∑
i≤h−1

Vi(Z
′)

=
∑

i≤h−1

Vi(Z) ≤ ρ2B + sC,

since Ch−1(Z) holds.
For the third claim, if µ(Z) ≤ ρ2 then by Hypothesis (2) of

Lemma 21,
∑

i≤s Vi(Z) ≤
∑s

i=1(Bµi(Z) + C) = Bµ(Z) +
sC ≤ Bρ2+sC and so condition Cs(Z) holds, which implies
by the first part of the claim that C1(Z), . . . , Cs(Z) all hold
and that Z ′ = Z.

Now define the martingale difference sequence X ′ by X ′
j =

µj(Z
′)− Z ′

j . Then:

Pr[Σ(Z) < −q and µ(Z) ∈ [ρ1, ρ2]]

≤Pr[Σ(Z ′) < −q and µ(Z ′) ∈ [ρ1, ρ2]]
(Part 3 of Claim 24)

=Pr[Σ(X ′) > µ(Z ′) + q and µ(Z ′) ∈ [ρ1, ρ2]]

≤Pr[Σ(X ′) > ρ1 + q].

We claim that the hypotheses of Theorem 22 are satisfied
with Y = X ′, D = 2A, and v = Bρ2 + sC. For the
first hypothesis of Theorem 22, |Zj | ≤ A which implies
|µj(Z)| ≤ A and so |Xj | ≤ |µj(Z)| + |Zj | ≤ 2A. For the
second hypothesis, we have

Vj(X
′) = E[(µj(X

′)−X ′
j)

2 | X ′
1, . . . , X

′
j−1]

= E[(µj(Z
′)− Z ′

j)
2 | X ′

1, . . . , X
′
j−1]

= E[(µj(Z
′)− Z ′

j)
2 | Z ′

1, . . . , Z
′
j−1]

= Vj(Z
′) ≤ Bρ2 + sC, (Part 2 of Claim 24)

where the 3rd equality holds because the sequences
Z ′
1, . . . , Z

′
j−1 and X ′

1, . . . , X
′
j−1 determine each other.

Since ℓ = ρ1+ q > 0 (by the hypothesis on q in the current
proposition), we can apply Theorem 22 to get:

Pr
[
Σ(Z) < −q and µ(Z) ∈ [ρ1, ρ2]

]
≤ Pr

[
Σ(X ′) > ρ1 + q

]
≤ exp

(
− (ρ1 + q)2

2(Bρ2 + sC + 2A(q + ρ1))

)
(Theorem 22)

≤ exp

(
− (ρ1 + q)2

2B(ρ2 + sC/B + (q + ρ1)/2)

)
(since 4A ≤ B)

≤ exp

(
− (ρ1 + q)2

4Bρ2

)
, (since q ≤ 2ρ2 − ρ1 − 2sC/B)



as required.

We can now finish the proof of Lemma 21.

Proof of Lemma 21. Hypothesis 2 of the lemma implies
V (Z) ≤ Bµ(Z) + sC and therefore µ(Z) ≥ −sC/B, since
variance is nonnegative. Cover the interval [−sC/B,∞] by
[−sC/B, q]∪

⋃
i≥1[2

i−1q, 2iq]. For each of these intervals we
want to apply Proposition 23 with [ρ1, ρ2] set to that interval.
For ρ1 = −sC/B and ρ2 = q, the hypothesis q > −ρ1
holds because, by assumption, q ≥ 2sC/B > sC/B; and the
hypothesis q ≤ 2ρ2 − ρ1 − 2sC/B = 2q + sC/B − 2sC/B
holds because 2sC/B ≤ q by assumption. For the interval
[ρ1, ρ2] = [2i−1q, 2iq], the hypotheses of Proposition 23 hold
because q > 0 > −ρ1 and because 2ρ2 − ρ1 − 2sC/B ≥
2ρ2−ρ1−q = (2i+1−2i−1−1)q ≥ q. So, applying Proposition
23 to each interval, we can conclude that:

Pr[Σ(Z) < −q] ≤ Pr
[
Σ(Z) < −q and µ(Z) ∈ [−sC/B, q]

]
+
∑
i≥1

Pr
[
Σ(Z) < −q and µ(Z) ∈ [q2i−1, q2i]

]
≤ exp

(
− (q − sC/B)2

4Bq

)
+
∑
i≥1

exp

(
− (q2i−1 + q)2

4 · 2iqB

)
(Prop. 23)

≤ exp

(
− (q − sC/B)2

4Bq

)
+
∑
i≥1

exp

(
− (q2i−1)2

4 · 2iqB

)
≤ exp

(
− (q/2)2

4Bq

)
+
∑
i≥1

exp

(
− 2iq

16B

)
(q ≥ 2sC/B)

≤ exp
(
− q

16B

)
+
∑
j≥1

exp

(
− jq

16B

)
≤ exp

(
− q

16B

)
+
∑
j≥1

exp
(
− q

16B
− (j − 1)

)
(q > 16B)

≤ exp
(
− q

16B

)
+ exp

(
− q

16B

)∑
j≥0

e−j

≤ 3 exp
(
− q

16B

)
. (q > 16B)

VIII. RELATED WORK

In this section, we give a detailed discussion of related
work on the list-labeling problem. To distinguish the different
regimes in which one can study the problem, we will refer to
m = (1+Θ(1))n as the linear regime, to m = (1+o(1))n as
the dense regime, to m = n1+Θ(1) as the polynomial regime,
and to m = nω(1) as the super-polynomial regime. Although
list labeling was originally formulated in the linear regime
[39], the other regimes end up also being useful in many
settings.

Independent Formulations. There have been many indepen-
dent formulations of list labeling under a variety of different
names. The problem encapsulates several other scenarios be-
yond the maintenance of elements from an ordered universe

in a sorted array. Instead of elements coming from an ordered
universe, one can think of elements coming from an unordered
universe whose rank is determined relative to the elements in
the current set at the moment of their insertion. This was the
original formulation of Itai, Konheim, and Rodeh [39] who
devised a sparse table scheme to implement priority queues.
Willard [63] independently studied the file-maintenance prob-
lem for maintaining order in a file as records are inserted
and deleted. Even more abstractly, one does not have to think
of an array but of a linked list of items that are assigned
labels from {1, . . . ,m}, and the natural order of the labels
should correspond to the relative order of the items. This
view becomes relevant when m is large relative to n (the
polynomial and super-polynomial regimes), and it was taken
by Dietz [26], Tsakalidis [59], and Dietz and Sleator [29],
and Bender et al. [9] who (in some cases implicitly) applied
both the polynomial and exponential regimes to the so-called
order-maintenance problem, which studies the abstract data-
structural problem of maintaining ordered items in a linked
list. A problem similar to list labeling (in the polynomial
regime) was studied in the context of balanced binary search
trees by Andersson [3] and Andersson and Lai [4], as well as
by Galperin and Rivest [36] under the name scapegoat trees.
Raman [56] formulated the problem in the linear regime in the
context of building locality preserving dictionaries. Hofri and
Konheim [37] studied a sparse table structure that supports
search, insert and deletion by keys in the linear and dense
regimes. Devanny, Fineman, Goodrich, and Kopelowitz [25]
studied the online house numbering problem, a version of list
labeling where the goal is to minimize the maximum number
of times that any one element gets moved (i.e., has its label
changed).

Upper bounds. The most studied setting of the list-labeling
problem is the linear regime, in which m = (1 + Θ(1))n.
Itai, Konheim, and Rodeh [39], showed an upper bound
of O(log2 n) amortized cost per operation. This was later
deamortized to O(log2 n) worst-case cost per operation by
Willard [64]–[66]. Simplified algorithms for these upper
bounds were provided by Katriel [40], and Itai and Ka-
triel [38] for the amortized bound and Bender, Cole, Demaine,
Farach-Colton, and Zito [9] and Bender, Fineman, Gilbert,
Kopelowitz, and Montes [16] for the worst-case bound. The
upper bound of O(log2 n) stood unimproved for four decades
until Bender, Conway, Farach-Colton, Komlós, Kuszmaul, and
Wein [10] showed an amortized O(log3/2 n) expected cost
algorithm. The same paper also proved an upper bound of
O(log3/2 n/(log1/2 τ)) for the sparse regime where m = τn
for τ ≤ no(1). The algorithm by Bender et al. [10] is history
independent, and builds on techniques developed by an earlier
O(log2 n) expected-cost history-independent solution due to
Bender, Berry, Johnson, Kroeger, McCauley, Phillips, Simon,
Singh, and Zage [7].

In the polynomial regime, where m = n1+Θ(1), upper
bounds of O(log n) have been shown [3], [36], [42]. In the
superpolynomial regime, where m = nω(1), Babka, Bulánek,



Čunát, Koucký, and Saks [6] gave an algorithm with amortized
O(log n/ log logm) cost when m = Ω(2log

k n), which implies
a constant amortized cost algorithm in the pseudo-exponential
regime where m = 2n

Ω(1)

.
For the regime where m = n, Andersson and Lai [4],

Zhang [67], and Bird and Sadnicki [20] showed an O(n log3 n)
upper bound for filling an array from empty to full (i.e.,
an insertion-only workload). This bound was subsequently
improved to O(n log2.5 n) by Bender et al. [15], and then to
Õ(log2 n) in the current paper (Corollary 4).

Finally, several papers (in the linear regime) have also stud-
ied forms of beyond-worst-case analysis. Bender and Hu [19]
provided an adaptive solution, which has O(log n) amortized
expected cost on certain common classes of instances while
maintaining O(log2 n) amortized worst-case cost. McCauley,
Moseley, Niaparast, and Singh [47] study a setting in which
one has access to a (possibly erroneous) prediction oracle, and
give a solution that is parameterized by the oracle’s error.

Lower bounds. In the linear regime, Dietz and Zhang [30]
proved a lower bound of Ω(log2 n) for smooth algorithms,
which are restricted to rearrangements that spread a set of
elements evenly across some subarray. Bulánek, Koucký,
and Saks [23] later showed an Ω(log2 n) lower bound for
deterministic algorithms. Bender, Conway, Farach-Colton,
Komlós, Kuszmaul, and Wein [10] showed a lower bound
of Ω(log3/2 n) for history-independent algorithms, where the
notion of history independence that they used is that the
set of slots occupied, at any given moment, should reveal
nothing about the input sequence beyond the current number
of elements.

In the polynomial regime, Dietz and Zhang [30] proved
a lower bound of Ω(log n) for smooth algorithms. Dietz,
Seiferas, and Zhang [28], and a later simplification by Babka,
Bulánek, Čunát, Koucký, and Saks [5], extended this to a
lower bound of Ω(log n) for general deterministic algorithms.
Finally, Bulánek, Koucký, and Saks [24] proved an Ω(log n)
lower bound for general (including randomized) algorithms.
This is also by extension the best known lower bound for
randomized algorithms in the linear regime.

In other regimes, Bulánek, Koucký, and Saks [23] showed
a deterministic lower bound of Ω(n log3 n) for n inser-
tions into an initially empty array of size m = n +
n1−ε. In the superpolynomial regime, Babka, Bulánek, Čunát,
Koucký, and Saks [6] gave a deterministic lower bound of
Ω
(

logn
log logm−log log n

)
for m between n1+C and 2n, which

reduces to a bound of Ω(log n) for m = n1+C .

Other Theory Applications. In addition to the applications
discussed above, list labeling has found many algorithmic
applications in areas such as cache-oblivious data structures
and computational geometry. Many of these applications use
packed-memory arrays, which are list-labeling solutions in
the linear (and dense) regimes with the added requirement
that there are never more than O(1) free slots in a row
between consecutive elements. Various works show bounds of

O(δ−1 log2 n) for this version of the problem [11], [12], [17].
Improvements to list labeling in both [10] and in this paper
imply analogous improvements for packed-memory arrays
(with our result bringing the bound down to Õ(δ−1 log n)).
These improvements, in turn, imply immediate improvements
to the bounds in many of the applications below.

Packed-memory arrays have found extensive applications
to the design of efficient cache-oblivious data structures.
Bender, Demaine, and Farach-Colton [12] used the packed-
memory array to construct a cache-oblivious B-tree. Simpli-
fied algorithms for cache-oblivious B-trees were provided by
Brodal, Fagerberg, and Jacob [22] and Bender, Duan, Iacono,
and Wu [13]. Bender, Fineman, Gilbert, and Kuszmaul [17]
presented concurrent cache-oblivious B-trees and Bender,
Farach-Colton, and Kuszmaul [14] presented cache-oblivious
string B-trees. All of these data structures use packed memory
arrays. In each case, the list-labeling improvements in the
current paper improve the range of parameters for which the
above constructions are optimal, so that the restriction on the
block-size B goes from B ≥ Ω̃(log

√
log n) (using the list-

labeling solution from [10]) to B ≥ poly log log n.

List labeling has also found applications in data struc-
tures for computational geometry problems. Nekrich used
the technique to design data structures for orthogonal range
reporting [51], [52] (these use the polynomial regime), the
stabbing-max problem [54] (this uses the linear regime), and
a related problem of searching a dynamic catalog on a tree [53]
(this uses the linear regime). Similarly, Mortensen [49] used
the technique (in the linear regime) for the orthogonal range
and dynamic line segment intersection reporting problems.

Additionally, Fagerberg, Hammer, and Meyer [33] use list
labeling (implicitly, and in the linear regime) for a rebalancing
scheme that maintains optimal height in a balanced B-tree.
And Kopelowitz [42] uses a generalization of the list-labeling
problem (in the polynomial regime) to design an efficient
algorithm for constructing suffix trees in an online fashion.

On the lower-bound side, Emek and Korman [32] show
how to make use of lower bounds for list labeling to derive
lower bounds for the distributed controller problem, which is
a resource allocation problem in the distributed setting [1].

Practical Applications. Additionally, many practical appli-
cations make use of packed-memory arrays. Durand, Raf-
fin and Faure [31] use a packed-memory array in particle
movement simulations to maintain sorted order for efficient
searches. Khayyat, Lucia, Singh, Ouzzani, Papotti, Quiané-
Ruiz, Tang and Kalnis [41] handle dynamic database updates
in inequality join algorithms using packed-memory arrays.
Toss, Pahins, Raffin and Comba [58] constructed a packed-
memory quadtree, which supports large streaming spatiotem-
poral datasets. De Leo and Boncz [45] implement a rewired
memory array, which improves the practical performance of
packed-memory arrays. Parallel packed-memory arrays have
been implemented in several works [44], [46], [55], [60]–[62]
to store dynamic graphs with fast updates and range queries.



IX. CONCLUSION AND OPEN QUESTIONS

We conclude the paper by discussing some of the central
remaining open questions.

The biggest open question is whether it is possible to
achieve an expected cost bound of O(log n), or whether one
necessarily needs to incur extra poly log log n factors. This
appears to be a quite difficult question, but it is also an
important one, as the answer may well determine the practical
impact of the list labeling in the future. If an O(log n) solution
turns out to be possible, then it is likely that list labeling (and,
specifically, packed memory arrays) could serve as practical
and more cache-friendly alternatives to binary search trees in
many settings.

Another important open question has to do with high-
probability guarantees. It is not yet known whether one can
construct a randomized list-labeling algorithm that achieves
o(log2 n) cost per operation, not just in expectation, but
also with high probability (i.e., probability 1 − 1/ poly(n)).
This question is especially important for applications that are
latency sensitive.

Finally, our results suggest that it is time to revisit a
classic open problem due to Naor and Teague [50]: Does
there exist a problem for which weakly history-independent
algorithms are provably worse (in terms of write cost) than
their non-history-independent alternatives? Our results suggest
that list labeling is likely such a problem. The main challenge
here is in constructing a lower bound: Can one prove that
weakly-history-independent list-labeling solutions must incur
Ω(log3/2 n) expected cost? The lower bound from [10] offers
a natural starting point: they prove that, if the probability
distribution governing the data structure’s state is always fully
determined by the the array size and the current number
of elements, then the lower bound of Ω(log3/2 n) holds. In
contrast, a lower bound for all weakly-history-independent
solutions would need to make a weaker assumption: that the
probability distribution governing the data structure’s state is
always fully determined by the the array size and the current
set of elements. This distinction renders many of the arguments
in the known lower bound inoperable, and it appears that a
stronger lower bound would require significant additional ideas
beyond the techniques in [10].
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Michael E. Saks. On online labeling with large label set. SIAM J.
Discret. Math., 33(3):1175–1193, 2019.

[7] Michael A. Bender, Jon Berry, Rob Johnson, Thomas M. Kroeger,
Samuel McCauley, Cynthia A. Phillips, Bertrand Simon, Shikha Singh,
and David Zage. Anti-persistence on persistent storage: History-
independent sparse tables and dictionaries. In Proc. 35th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-
tems (PODS), pages 289–302, June 2016.

[8] Michael A. Bender, Richard Cole, Erik D. Demaine, and Martin Farach-
Colton. Scanning and traversing: Maintaining data for traversals in a
memory hierarchy. In Proc. 10th European Symposium on Algorithms
(ESA), volume 2461 of Lecture Notes in Computer Science, pages 139–
151, 2002.

[9] Michael A Bender, Richard Cole, Erik D Demaine, Martin Farach-
Colton, and Jack Zito. Two simplified algorithms for maintaining order
in a list. In Proc. 10th European Symposium on Algorithms (ESA), pages
152–164. Springer, 2002.

[10] Michael A. Bender, Alex Conway, Martin Farach-Colton, Hanna
Komlós, William Kuszmaul, and Nicole Wein. Online list labeling:
Breaking the log2n barrier. In 63rd IEEE Annual Symposium on
Foundations of Computer Science, FOCS, pages 980–990. IEEE, 2022.

[11] Michael A. Bender, Erik D. Demaine, and Martin Farach-Colton. Cache-
oblivious B-trees. In Proc. 41st Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 399–409. IEEE Computer Society,
2000.

[12] Michael A. Bender, Erik D. Demaine, and Martin Farach-Colton. Cache-
oblivious B-trees. SIAM Journal on Computing, 35(2):341–358, 2005.

[13] Michael A. Bender, Ziyang Duan, John Iacono, and Jing Wu. A locality-
preserving cache-oblivious dynamic dictionary. Journal of Algorithms,
3(2):115–136, 2004.

[14] Michael A. Bender, Martin Farach-Colton, and Bradley C. Kuszmaul.
Cache-oblivious string B-trees. In Proc. 25th ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems (PODS), pages
233–242. ACM, 2006.

[15] Michael A Bender, Martı́n Farach-Colton, John Kuszmaul, William
Kuszmaul, and Mingmou Liu. On the optimal time/space tradeoff for
hash tables. In Proceedings of the 54th Annual ACM SIGACT Symposium
on Theory of Computing, pages 1284–1297, 2022.



[16] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, Tsvi Kopelowitz,
and Pablo Montes. File maintenance: When in doubt, change the layout!
In Proc. 28th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1503–1522, January 2017.

[17] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Bradley C.
Kuszmaul. Concurrent cache-oblivious B-trees. In Proc. 17th Annual
Symposium on Parallelism in Algorithms and Architectures (SPAA),
pages 228–237, 2005.

[18] Michael A. Bender and Haodong Hu. An adaptive packed-memory
array. In Proc. 25th ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems (PODS), pages 20–29, 2006.

[19] Michael A. Bender and Haodong Hu. An adaptive packed-memory array.
ACM Trans. Database Syst., 32(4):26:1–26:43, November 2007.

[20] Richard S. Bird and Stefan Sadnicki. Minimal on-line labelling. Inf.
Process. Lett., 101(1):41–45, 2007.

[21] Gerth Stølting Brodal. A survey on priority queues. In Space-Efficient
Data Structures, Streams, and Algorithms: Papers in Honor of J. Ian
Munro on the Occasion of His 66th Birthday, pages 150–163. Springer,
2013.

[22] Gerth Stølting Brodal, Rolf Fagerberg, and Riko Jacob. Cache oblivious
search trees via binary trees of small height. In Proc. 13th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 39–48, 2002.
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APPENDIX A
REDUCING THEOREM 1 TO 3

To reduce Theorem 1 to Theorem 3, we will make a series
of (standard) simplifications that are each without loss of
generality.

Ignoring deletions. We may assume without loss of gener-
ality that the sequence of operations includes only insertions.

Proposition 25. Any list-labeling solution that can start with
(up to) (1 − 3γ)m elements and support γm insertions
with amortized expected cost O(t(m, γ)), can be modified to
handle an arbitrary sequence of insertions/deletions, with up
to n = (1−δ)m elements present at a time, and with amortized
expected cost O(t(m, δ/3) + 1/δ) per operation.

Proof. Set γ = δ/3. We can collect operations into batches of
size γm. As a batch forms, we “pretend” that the elements in
the batch have not yet been deleted (i.e., we replace the deleted
elements with tombstones, which we think of as elements).

Once a batch is fully formed, we rebuild the entire data
structure from scratch, so that the deleted elements are
cleared out. This rebuild increases the amortized expected
cost by O(1/δ) per operation. During each batch, we are
supporting an insertion-only workload that starts with (up
to) (1 − δ)m = (1 − 3γ)m elements and performs up to
δn/3 = γm insertions. The amortized expected cost per batch
is therefore O(t(m, γ) + 1/δ)

Reducing to n = m/2. Our new task is to support a sequence
of insertions that starts with up to (1 − 3δ)n elements, and
performs up to δn insertions.

The following lemma reduces this problem to the problem
of performing n = m/2 insertions in an initially empty size-m
array.

Lemma 26. Let there be a list labeling algorithm A′ that for
every n′ ≥ 1, it can insert n′ items into an initially empty
array of size m′ = 2n′ for amortized expected cost t(n′),
where t(n′) ≥ 1 is a non-decreasing function. Then for every
fixed δ ∈ (0, 1/2] there is a list labeling algorithm A that
for every m ≥ 1 can insert ⌈δm/3⌉ items into an array of
size m that already contains ⌊(1− δ)m⌋ items, and where the
amortized expected cost is at most cost O(t(m)/δ + 1/δ).

As the proof of Lemma 26 requires some care, we defer it
to the end of the section.

Starting with m/4 elements. So far, we have reduced
Theorem 1 to the setting in which we wish to perform
n = m/2 insertions in an initially-empty array of size m.
However, we can break these insertions into batches, where
we fill the array from from 1/2i full to 1/2i−1 full, for
some i, and we can implement each batch on an array of
size m/2i−2 ≤ m. Thus, if we focus just on the task of
implementing a batch, our final problem is: perform m/4
insertions in an array that initially contains m/4 elements.
This is precisely the problem considered by Theorem 3, which
completes the reduction from Theorem 1.

Proving Lemma 26. We now prove Lemma 26.

Proof. For δ < 12/m the claim is trivial so we assume that
δ ≥ 12/m. Our algorithm A with a real array of size m will
simulate algorithm A′ on a virtual array of size m′ = 2n′,
where n′ = 2⌊δm/3⌋. Algorithm A′ will get to insert n′ items
into its virtual array. The first n′/2 items that will A′ get are
selected from the initial items that are in the real array of A.
The next n′/2 items will be the items that A should insert
into its real array (except for the very last one depending on
rounding). The state of the real array during the latter n′/2
insertions will reflect the state of the virtual array.

A will classify each of its items as either visible or invisible.
All items that will be inserted into the virtual array will be
visible, all the other items will be invisible. In particular, all the
items newly inserted into the real array will be visible. Initially,
A selects from the real array n′/2 items as the visible items
and declares the remaining items as invisible. The algorithm
selects as visible each initial item of rank 1 + ⌈3/δ⌉i, for
i = 0, 1, . . . , together with additional items of the smallest
rank so to have exactly n′/2 visible items. (As the number of
initial items is at least ⌊m/2⌋ ≥ n′/2, there are enough items
to chose from.)

Algorithm A will maintain the following two invariants: (1)
No free slot in the real array can be immediately to the left
of an invisible item, and (2) If we remove the invisible items
together with their slots from the real array we get a copy of
the current state of the virtual array. Since the left-most item
in A will be always visible, invariant (1) means that invisible
items form blocks of invisible items that follow immediately
a visible item. After each block of invisible items there might
be free slots followed by a visible item. Because we initially
select each item of rank 1+⌈3/δ⌉i, for i = 0, 1, . . . , as visible
and newly inserted items will be also visible, each block of
invisible items will always be of size at most ⌈3/δ⌉ − 1.

To start the simulation, A inserts the initial set of visible
items into the virtual array using A′. Then it will rearrange the
real array to satisfy the two invariants. This will move at most
m items in the real array. Then we process new insertions into
A.

For each newly inserted item b, A proceeds as follows. It
passes b to A′ as a new insertion. In response to the insertion
request, A′ might rearrange its items in the virtual array to
prepare an appropriate free slot for b. Then A′ inserts b into
the free slot. Before A′ inserts b into the free slot, A rearranges



its real array to satisfy invariant (2) (and also invariant (1))
as items in the virtual array might have moved. Notice, the
position of a particular visible item in the real array is given
by the number of visible items to its left, together with the
number of empty slots to its left, and the number of invisible
items to its left. Similarly, the position of the same visible item
in the virtual array is given by the number of visible items to
its left together with the number of empty slots to its left. This
implies that if an item in the virtual array retains its position
during the rearrangement by A′, it should retain its position
also in the real array during the rearrangement by A. Also the
block of invisible items following such an item will stay in
place.

Thus A will have to move at most ⌈3/δ⌉-times many items
as A′ did in the virtual array in order to re-establish the
invariants. (It has to move the same number of visible items
and each is followed by a block of at most ⌈3/δ⌉−1 invisible
items.)

After the rearrangement of the real array, A will proceed to
insert the item b. Let a be the closest visible item before b in
the virtual array. Let b be put into i-th empty slot following
a in the virtual array. Let there be ℓ invisible items following
a in the real array. Let ℓ′ of those invisible items be smaller
than b. Algorithm A will move the last ℓ− ℓ′ invisible items
following immediately after a in the real array i positions to
the right. Then A inserts b into (ℓ′+ i)-th position after a, that
is in the free slot immediately to the left of the moved invisible
items. This will re-establish the correspondence between the
virtual and real array. The cost of the additional moves is at
most ⌈3/δ⌉.

The total number of moves done by A′ during its n′ inser-
tions is n′ · t(n′). (Although only half of the inserted items are
new.) Hence, the total number of moves done by A during n′/2
new insertions is bounded by m+⌈3/δ⌉·n′·t(n′)+⌈3/δ⌉·n′/2.
Since ⌈3/δ⌉ · ⌊δm/3⌋ ≤ δm

3 ·
3+δ
δ ≤ 2m, the total cost can be

bounded by 4mt(m) + 3m.
We can accommodate an additional insert into A for the

cost of at most m, hence inserting at least δm/3 items for the
amortized expected cost 3(4mt(m) + 4m)/δm = 12(t(m) +
1)/δ as needed.

Finally, it is worth pointing out one corollary of the lemma,
which is the following claim about filling an array from empty
to full:

Corollary 27. If there is a list labeling algorithm A′ that
for every n′ ≥ 1 can insert n′ items into an initially empty
array of size m′ = 2n′ for amortized expected cost t(n′),
where t(n′) ≥ 1 is a non-decreasing function then there is
a list labeling algorithm A that can insert n items into an
initially empty array of size n with amortized expected cost
O(t(n) log n) per insertion.

Proof. First, apply the algorithm A′ to insert ⌊n/2⌋ items into
the array for the total cost at most n · t(n). Then proceed in
phases. Each phase i = 1, . . . , starts with ei ≥ 1 remaining
empty slots. It applies algorithm A from Lemma 26 for εi =

ei/n to insert next ⌈ei/3⌉ items. The algorithm stops once n
items are inserted. The cost of each phase i ≥ 1 is at most
⌈ ei3 ⌉·12(t(n)+1)/δ = ⌈ ei3 ⌉·

n
ei
·12(t(n)+1) ≤ 12n(t(n)+1).

Since ei+1 ≤ 2ei/3, there are at most log3/2 n phases. Thus
the total cost to fill in the array is bounded by O(n·t(n) log n).
The lemma follows.

Thus, one immediate consequence of Theorem 3 is:

Corollary 4. There is a list-labeling algorithm that inserts n
items into an initially empty array of size n with amortized
expected cost O((log2 n)(log log n)3).

APPENDIX B
PSEUDOCODE FOR THE SEE-SAW ALGORITHM

In this section, we give pseudocode for the See-Saw Al-
gorithm. We assume parameters α = Cα(log log n)

2 and
β = Cβ(log log n)

2, where Cα and Cβ are positive constants
selected so that Cα, Cβ , and Cα/Cβ are all sufficiently large.

Variables to be used in pseudocode. Before presenting
the algorithm pseudocode, we list the relevant variables for
subproblem π. We emphasize that many of these variables are
dynamically changing over time, i.e., are updated dynamically
within the pseudocode.

• L(π) and R(π) are the left and right child of π,
respectively.

• Aπ is an array such that Aπ = AL(π) ⊕ AR(π) (the
concatenation of the arrays).

• Qπ is the array skew, such that |AL(π)| = |Aπ|/2−Qπ

and |AR(π)| = |Aπ|/2 +Qπ .
• The pivot τπ partitions the insertions that go to the left

and right children of π. Upon creation of a subproblem,
τπ will be set to be the largest element stored in the
subarray of its left child. 9 This element will remain the
pivot until π ends or is reset.

• The rebuild window size wπ is the number of insertions
permitted between rebuilds.

• σπ is the number of insertions that have occurred during
the current rebuild window.

• υπ is the number of insertions that have occurred during
the lifetime of π.

• δπ is the number of insertions that occurred during the
current window that are greater than the pivot minus those
that are less than the pivot. This is called the insertion
skew of the window.

• µπ is a counter specifying which window we are in,
starting with window 1.

Pseudocode. Below, we give pseudocode for both insertions
and the subroutines used within an insertion. We assume that
the subproblem tree is initialized (at the beginning of time,
with m/4 initial elements) by a call to CREATESUBTREE.

9It turns out that L(π) is guaranteed to have at least one element, so τπ is
guaranteed to exist. Since we are not going to prove this explicitly, one can
think of there as being an extra edge case (that will never occur) in which, if
L(π) has no elements, then insertions to π always go to R(π).



CREATESUBTREE(A′,S ′)
1: Move the items in S ′ so that they are uniformly spread

out in array A′

2: return ALLOCATEBALANCEDSUBPROBLEMS(A′)
3: ▷ Builds tree of subproblems on A′

ALLOCATEBALANCEDSUBPROBLEMS(A′):
1: Create a new subproblem π
2: Aπ ← A′

3: if density(π) > 0.75 or |Aπ| ≤ 2
√
logn then

4: Declare π to be a leaf
5: return π
6: wπ ← PICKWINDOWLENGTH(π)
7: σπ ← 0 ; δπ ← 0 ; µπ ← 0; υπ ← 0
8: L← the left half of Aπ , R← the right half of Aπ

9: τπ ← the largest element in L
10: L(π)← ALLOCATEBALANCEDSUBPROBLEMS(AL(π))
11: R(π)← ALLOCATEBALANCEDSUBPROBLEMS(AR(π))
12: return π

INSERT(x, π):
1: if π is a leaf then
2: Insert x into π using the classical algorithm
3: return
4: if x ≤ τπ then
5: INSERT(x, L(π))
6: δπ ← δπ − 1
7: if υL(π) ≥ |AL(π)|/α then
8: L(π)← CREATESUBTREE(AL(π), SET(L(π))
9: ▷ Reset L(π)

10: else
11: INSERT(x,R(π))
12: δπ ← δπ + 1
13: if υR(π) ≥ |AR(π)|/α then
14: R(π)← CREATESUBTREE(AR(π), SET(R(π))
15: ▷ Reset R(π)

16: σπ ← σπ + 1
17: υπ ← υπ + 1
18: if σπ = wπ then ▷ End of rebuild window
19: SKEWREBUILD(π)
20: µπ ← µπ + 1; σπ ← 0; δπ ← 0

21: if π = root and σπ = m/α then
22: root ← CREATESUBTREE(A, SET(root))
23: ▷ Reset the root

SKEWREBUILD(π):
1: Qπ ← PICKARRAYSKEW(π)
2: SL ←SET(L(π))
3: SR ←SET(R(π)) ▷ Keep the items stored in the left and

right children the same
4: L ← the array consisting of the first |Aπ| − Qπ slots in
Aπ

5: R ← the array consisting of the remaining |Aπ| + Qπ

slots in Aπ

6: L(π)← CREATESUBTREE(L, SL)
7: R(π)←CREATESUBTREE(R, SR)

PICKARRAYSKEW(π):
1: if µπ is odd then
2: return 0
3: else
4: return |Aπ| · δπ

βwπ

PICKWINDOWLENGTH(π):
1: kmax ← 2 log log n
2: For k ∈ [1, kmax], pk ← 2−(k+1)(1 + k/kmax)
3: p0 ← 1−

∑kmax

k=1 pi
4: Draw Kπ so that Pr[Kπ = k] = pk
5: return |Aπ|/(α2Kπ )

SET(π):
1: return {y | y is stored in Aπ}
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