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Abstract—This paper develops a data-driven approach to
accurately predict the restoration time of outages under different
scales and factors. To achieve the goal, the proposed method
consists of three stages. First, given the unprecedented amount
of data collected by utilities, a sparse dictionary-based ensemble
spectral clustering (SDESC) method is proposed to decompose
historical outage datasets, which enjoys good computational
efficiency and scalability. Specifically, each outage sample is
represented by a linear combination of a small number of
selected dictionary samples using a density-based method. Then,
the dictionary-based representation is utilized to perform the
spectral analysis to group the data samples with similar features
into the same subsets. In the second stage, a knowledge-transfer-
added restoration time prediction model is trained for each subset
by combining weather information and outage-related features.
The transfer learning technology is introduced to deal with the
underestimation problem caused by data imbalance in different
subsets, thus improving the model performance. Furthermore,
to connect unseen outages with the learned outage subsets, a
t-distributed stochastic neighbor embedding-based strategy is
applied. The proposed method fully builds on and is also tested
on a large real-world outage dataset from a utility provider with a
time span of six consecutive years. The numerical results validate
that our method has high prediction accuracy while showing good
stability against real-world data limitations.

Index Terms—Distribution network, sparse dictionary-based
ensemble spectral clustering, outage restoration time prediction,
transfer learning.

NOMENCLATURE

ANN Artificial neural networks

CI Customers interrupted

CNN Convolutional neural networks

DBI Davies-Bouldin validation index

GBM Gradient boosting machine

LASSO Least absolute shrinkage and selection operator

LM Levenberg-Marquardt

NOAA National Oceanic and Atmospheric Adminis-
tration

RF Random forest

RT Restoration time

SC Spectral clustering

SDESC Sparse dictionary-based ensemble spectral
clustering

SVR Support vector regressions

t-SNE t-distributed stochastic neighbor embedding
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I. INTRODUCTION

Recent Texas blackout has demonstrated the danger and
inconveniences people face during a severe power outage
event. In general, power outages have significant impacts on
production, transportation, communication, and health supply
service, resulting in significant economic losses. When an
outage occurs, utilities need to make a series of decisions
quickly, including detecting and locating the fault, estimating
costs and the number of customers affected, predicting outage
restoration time, planning repair strategies, and dispatching
crews [1]. From the customer’s perspective, the most im-
portant and concerned information is timely and accurate
outage recovery time prediction, which will greatly help them
plan for subsequent arrangements in advance. However, it is
challenging to estimate outage recovery time as power outages
are typically unplanned with limited information. Moreover,
the causes of power outages involve a wide variety of factors,
e.g., bad weather, human behaviors, and equipment failures
[2]-[5]. To improve customer satisfaction, accurate prediction
of outage recovery time is becoming a top priority for utilities.

In recent years, research studies have focused on infer-
ring the quantity and duration of outages by using various
approaches and data sources, which can be broadly clas-
sified into two groups based on prediction targets: Group
I - Prediction of outage duration. The authors in [6] ana-
lyzed the restoration duration of outages using statistical and
quantitative methods with several factors including the time
of outages, consequences, and environmental conditions. In
[7], an accelerated failure time model using severe weather
records was developed to estimate the duration of outages.
In [8], the authors summarized six years’ historical outage
data and proposed a deep neural network to predict repair and
restoration time with respect to severe weather events. In [9],
the authors utilized radar observation data and further proposed
a generalized weather-dependent failure rate model, based on
the Bayesian prediction algorithm, to provide a prediction of
outage duration. Group II - Prediction of outage numbers. In
[10], the authors performed a Poisson regression model to pre-
dict an average number of outages over a period under normal

weather conditions. The authors in [11] estimated distribution
system outage numbers caused by wind and lightning using
an artificial neural network. In [12], a graph neural network is
proposed to predict power outage numbers by utilizing weather
variables. A summary of the literature is shown in Table L.

Even though the previous works demonstrate valuable re-
sults, some research challenges remain outstanding in this
area. First, most studies in group I are generally based on
the assumption that each outage recovery can be treated as
an isolated process. In other words, with respect to multiple
outages that occur in the same systems, the existing methods
estimate the restoration time separately without consideration
of the correlation among multiple coinciding outages. How-
ever, in actual grids, while maintenance crews are repairing
an outage, the repair of another outage occurring in the
neighboring area may be delayed due to crew shortages.
Thus, such an assumption in group I reduces the accuracy
of these prediction models. Second, some studies in group II
trained a global model for the whole historical outage dataset,
which ignores the uncertainty caused by the heterogeneity of
outage events under different scales and factors, thus reducing
prediction performance for unseen outages. Also, given that
real outage reports are scarce, most existing works rely on
weather information to develop their models and assume the
weather conditions across each small area are homogeneous.
Nevertheless, while severe weather is one of the leading causes
of power outages, other factors, such as equipment failures and
human factors, should not be ignored.

To this end, we propose a novel data-driven method to
predict outage restoration time that incorporates a combination
of cluster ensembles and transfer learning techniques. The
flowchart of our proposed method is depicted in Fig. 1.
Compared with existing studies, the contributions of our work
are summarized as follows: 1) To investigate the interaction
of simultaneous outage events during a period, we extract
the statistics from real-world outage reports and calculate
the cumulative number of coinciding outages and affected
customers. The temporal information in the outage dataset,
such as the outage start time, end time, and restoration time,
is utilized to summarize the real-time numbers of outages
and customers affected in a time span. This feature can
be explored to approximate the utility’s stress for repair-
ing the outage. 2) Unlike previous methods that train a
global predictor, the proposed method estimates the restoration
time in a cluster-wise manner to deal with the uncertainty
caused by the heterogeneity of outage events. Specifically, a
sparse dictionary-based ensemble spectral clustering (SDESC)
method is developed to efficiently group the historical outage
events. A prediction model for each data subset is trained to
construct an end-to-end mapping between the outage-related
information and the restoration time by leveraging machine
learning techniques. 3) According to our investigation of real-
world outage datasets, there may be significant gaps between
the amount of data accessible for various patterns and scales
of outages. Therefore, a transfer learning strategy is integrated
with the proposed prediction framework to deal with the class
imbalance problem caused by the data scarcity of specific
outage patterns. 4) The proposed approach leverages not only



TABLE I: LITERATURE REVIEW ON OUTAGE PREDICTION IN DISTRIBUTION SYSTEMS

Poisson regression model Time and weather data

Accelerated failure time model Severe weather records

Poisson regression model Normal weather records

Bayesian prediction algorithm Radar observations data

Historical outage data

Deep neural network .
with severe weather records

[11] Artificial neural network Wind and lighting records

Historical normal and severe

[12] weather records

Graph neural network

high-precision weather information but also exploits outage-
related features collected by our utility partner, which are the
time and location of outages, number of customers interrupted,
cause code, and duration of repair/restoration process. The
proposed prediction methodology has been tested and verified
using real outage data.

The rest of this paper is organized as follows: Section
II introduces the problem definition and describes the avail-
able outage dataset in detail. Section III proposes the sparse
dictionary-based ensemble spectral clustering method. Section
IV presents the transfer learning-added outage restoration
time prediction model. The numerical results are analyzed in
Section V. Section VI concludes the paper.
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Fig. 1: The flowchart of the proposed method.
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II. PROBLEM DEFINITION & OUTAGE DATA DESCRIPTION
A. Problem Definition

When an outage occurs, one of the most common questions
that customers may ask is: How long will it take to restore
the power [6]? If utilities can answer this question at an
early stage, customers can plan ahead and accordingly to
avoid inconvenience caused by power outages. In practice,
outage restoration time is defined as the time from the start

Predict average number of outages over a period

Prediction of historical outages Without developing a prediction
model for future data samples

Estimate duration of historical outages

Data distribution assumption,
uses only weather data as

under normal weather conditions vl i) ko seumes

Provide an estimation of outage numbers

Predict repair and restoration time with respect to

severe weather events

Single global model, each outage

recovery is treated as an isolated
process

Estimate distribution system outages numbers
caused by wind and lighting

Predict upcoming power outages numbers

of the outage to the service fully recovered to the customers
[8]. In actual grids, one common solution is to formulate a
mathematical relationship between the restoration time and
the number of interrupted customers [6], [7], [9]. Such a
solution embodies a set of assumptions, such as the pre-
define statistical models with fixed parameters (e.g., Poisson
distribution). However, the distribution of outage restoration
time may not follow the pre-defined pattern; meanwhile, some
variables and features cannot be considered in the statistical
models due to the curse of dimensionality, which reduces
the accuracy of the prediction. Hence, machine learning-
based methods are receiving increasing attention due to the
unprecedented amount of data collected by utilities. Basically,
a learning-based solution is based solely on using historical
outage data without an assumption of data distributions to
develop a supervised prediction model.

B. Available Outage Dataset

The outage data under study includes over 16,000 records
over a six-year period in New York State. Fig. 2 describes
the structure of the available outage dataset. The original
information on each outage record includes: the start and
end time of the outage accurate to seconds, the number of
customers interrupted, repair and restoration time accurate to
seconds, cause code, location, and distribution network circuit
number. Specifically, the start and end times of the outage
events are reported by fuse cards that record the time at which
an outage starts and ends according to the loss of power.
The cause information is summarized into two types: Cause
key - There are 63 causes, of which 5% of the records are
weather-related, another 14% are animal-related, and the rest
are mainly due to component malfunctions, tree limbs, and
debris. The top two causes of all outage events are tree limbs
near the clearance zone of equipment and squirrels. The top
weather-related causes are precipitation, wind, and lightning
strike. Equipment cause key - The outage caused by equipment
failure. The top equipment-related causes are system failure,
conductor disconnection, and transformer malfunction. These
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Fig. 2: The description of the outage dataset.

two types of cause information are recorded in each outage
and represented by a digital code.

In this work, data preprocessing includes two steps: 1)
Missing and bad data cleaning - Given equipment failures
or human mistakes, missing and bad data in historical out-
age datasets are typically unavoidable and can lead to mis-
classification, which negatively affects the performance of
data-driven methods. Hence, the available dataset is initially
processed to clean missing and bad outage samples. Data
samples with empty entries are removed first. Then, following
the engineering intuition, data samples with logically incor-
rect entries (e.g., the restoration time is greater than the
total outage time) and grossly erroneous values (e.g., the
restoration time is extremely illogically high) are removed.
2) Outage-related features investigation - Leveraging cross-
domain insights from public weather data and the geographic
information of systems, the raw dataset is explored by adding
hourly temperature, precipitation, and wind speed. These data
are collected from the National Oceanic and Atmospheric
Administration (NOAA) [13], [14]. The hourly data from the
NOAA is aligned with each outage sample based on the start
time of each outage. Given that severe weather events play a
crucial role in outage restoration time prediction, the weather
condition of each outage record is also marked as a discrete
code, consisting of normal conditions, snow storm, lightning
strikes, high-speed wind, and flood [1]. Other features we have
added are cumulative number of coinciding outages and the
number of customers affected. Specifically, in this work, the
cumulative number of coinciding outages is the quantity of
outages presented at a certain time period that has not yet
been resolved. This number varies over time while the outages
occur and are restored. When this number remains near zero,
it indicates that the system was in normal condition prior
to outages, or that outages happened infrequently and were
resolved quickly. Conversely, this number can be relatively
high under certain stressed conditions, indicating that numbers
of outages have stacked and affected the restoration time. For
example, on December 10th, 2014, the cumulative number

of coinciding outage events was over 100, and the average
outage restoration time was above 300 minutes. In contrast,
the cumulative number of coinciding outage events is relatively
low on April 15th, 2015, the average outage restoration time
is below 60 minutes. Note that in this work, the number of
outages is actually the number of failures requiring repair. It is
determined by the records of the outage management system.
For example, if two feeders connected to a medium-voltage
substation lose power, it can be counted as two faults or more,
depending on the number of damaged devices.
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Fig. 3: Exemplary of the cumulative number of coinciding
outages.

Fig. 3 demonstrates an example for calculating the cumu-
lative number of coinciding outages. Each dashed line on the
graph is a timestamp that is recorded at the start and end of
each outage. By comparing each two adjacent dashed lines, a
specific time period can be defined to explore the cumulative
number of coinciding outages by counting the number of
outages. Following this process, the cumulative number of
coinciding outages for each period is calculated by sorting
the timestamps by their orders of occurrence:

ti Cti_c‘

t
Coutages =G rl (1)

ti is the cumulative total outages at time ¢;, cli is the

where c;,

cumulative total restorations at time ¢;, and ctoiutages is the
number of simultaneous outages at time ;. The cumulative
number of coinciding outages is used to define the stress of
the system and can provide additional dimension information
for outage grouping, as well as enhance the variability of the
metric. Similar to the above definition and (1), the cumula-
tive number of customers interrupted can be calculated by
replacing the number of coinciding outages with the number
of customers.

III. HISTORICAL OUTAGE DATA DISCOVERY USING
SDESC

Currently, utilities constantly attempt to collect as much
information as possible on power outages. However, the vast
majority of outages in distribution systems are small-scale and



medium-scale; in contrast, large-scale outages are still rare,
thus leading to a data imbalance problem! [15]. In this case,
it could result in overfitting problems when the raw outage
data is used to train a global prediction model.

To address the challenge posed by the real-world imbal-
anced outage dataset, a novel unsupervised method, known as
sparse dictionary-based ensemble spectral clustering (SDESC),
is leveraged to distinguish the hidden outage features and par-
tition the historical dataset into distinct subsets. The proposed
method follows the line of unsupervised research utilizing a
spectral analysis to discover the latent features. Furthermore,
the sparse coding technique is adapted to decrease the com-
plexity of outage event-based adjacency matrix construction
and eigen-decomposition, thus greatly reducing the cost of
practical implementation [16].

A. Feature Selection

The purpose of feature selection is to discover features that
may have a large impact on the recovery time and to remove
features that may have duplicate information about each other
[17]. In this work, we applied two simple but effective methods
to achieve this goal. Specifically, to find valuable features, the
correlation criteria method is a bivariate analysis that measures
the strength of association between outage-related features
and outage restoration time. For this approach, the Pearson
correlation coefficient is utilized which is defined as:

Tpu = cov(f,u)

2)
var(f) x var(u)

where f and u are the input feature vector and output vec-
tor, respectively, cov(-) is the covariance, and var(-) is the
variance. The correlation criteria method is used to determine
which input features are more important for the output pre-
diction based on the Pearson correlation coefficients between
input features and the output.

For the mutual information method, the ranking criteria
examines the dependency measurement between two features.
Let X and Y be random feature variables, # and ¢ are their
realizations. We start with Shannon’s definition of entropy,

defined as:
Z P(j

P(g) is the probability of obtalmng the value gy, (3) represents
the uncertainty (information content) in variable Y. Suppose
we observe a variable X, then the conditional entropy is given

by:
ZZPm j) #log (P(7]7)) (@)

) * log (P(3)) 3)

M(Y|X) =

This equation indicates that by observing a variable X, the
uncertainty in the output Y is reduced. The decrease in
uncertainty is written as:

U(Y,X) = M(Y) — M(Y|X) 5)

IThe data imbalance problem refers to an unequal distribution of classes
in the training dataset. When the dataset is imbalanced, the trained model
typically fails to capture the hidden features of minority groups. Thus,
the performance of a supervised model may suffer from the fact that the
distribution of the target variable is skewed.

where (5) presents the mutual information index between two
variables Y and X. If the mutual information index is zero,
two variables are independent. Otherwise, they are dependent,
implying that one variable can provide useful information
about the other variable.

Based on our outage dataset structure, which contains a
large size of outage features, firstly, the correlation criteria
method is an efficient and feasible algorithm to identify which
features are important concerning the outage restoration time.
In the next step, when the total number of features is reduced,
we use the mutual information method to further determine
if two features have too much overlapping information. After
obtaining the results, we first set up a threshold (i.e., 0.3) of
the Pearson correlation coefficient to identify which features
are important concerning the outage restoration time. The
feature with the Pearson correlation coefficient lower than
the threshold is removed. Then, the mutual information index
is used to determine if any two features have overlapped
information. In this case, if the mutual information index
between two features is higher than a threshold (i.e., 0.9),
the two features are considered to have too much overlapped
information. The feature with the lower Pearson correlation
coefficient is removed.

B. The SDESC Algorithm

Let O = [01,09,...,0.,] € R™ ™ represent the historical
outage dataset, where n is the total number of outage-related
features and m is the total number of outage events, o; € R™*1
represent the outage-related information in the i*” outage event
including n features. And let o;; denote the i*" row and j*"
column entry in O. In actual grids, given the accumulation
of historical outage data over many years, m is a large
real integer. In this situation, to reduce the computational
complexity, the sparse coding technique is adapted to decrease
the complexity of outage event-based adjacency matrix con-
struction and eigen-decomposition. Sparse coding is utilized to
find a sparse representation of O that consists of a dictionary
D € R™*P and a representation R € RP*™ [16], and to make
O =~ D=xR. It’s worth noting that the value of p is substantially
lower than that of m. Therefore, each column of D contains
the features of the outage samples and is called a basis vector.
Each column of R represents the p-dimensional representation
of the raw data inputs with respect to the new basis vectors.
To this end, adopting the sparse coding, a high dimensional
matrix O is factorized to lower-dimensional representation D
and R.

To minimize the approximation error, this process is regu-
lated as an optimization problem using the Frobenius norm :

Ce . _ 2
mlI]%)l%lze [|O — DR||7 (6a)

subject to ||r;||% < € (6b)

where r; denotes the i*” column of the representation matrix
R, € is a parameter representing the maximum value of the
Frobenius norm of the representation matrix R.

The optimization problem (6) is non-convex in D and
R, which is difficult to solve. Unlike most of the existing



approaches that compute dictionary and representation iter-
atively, we first obtain D by finding the dictionaries of O
and then solve (6) by fixing D. Suppose D is fixed, the
optimization problem (6) becomes a regularized least squares
problem, which is convex in R. In addition, R is always
expected to be sparse to provide a better data representation.
However, there are still two challenges for this regularized
least squares problem with sparse requirements: 1) The column
number of R, i.e., the total number of outage events, can
be very large, leading to a large amount of computational
burden. In our case, given that the outage dataset is updated by
the utility every year, the increasing data size will gradually
affect the computation time of the problem; 2) To favor the
sparse R, one common way is to include the L; regularization
in the objective function, which is known to produce sparse
solutions. But for the L, regularization, it is not continuously
differentiable, and the most straightforward gradient-based
methods are difficult to apply [18]. Thus, in our case, we adopt
the Nadaraya-Watson kernel regression approach to handle the
above challenges.

Before determining R, a cluster ensemble framework is
introduced to combine various clustering algorithms [19] to
determine D. Specifically, a density-based spatial clustering
of applications with noise is first utilized to cluster all the
data points, and then use the cluster centers to form D,
which is tabulated as Algorithm 1 [20]. Two user-defined
hyperparameters, a threshold for the minimum number of
neighbors, v, and the radius, &, are utilized to perform a
minimum density level estimation. o; with more than -y
neighbors within ¢ distance are considered to be the centroid.
All neighbors within the ¢ radius of the centroid are considered
to be part of the same group as this centroid. This method is
capable of finding clusters with arbitrary shapes and sizes and
shows robustness and practicality because it does not require
a priori specification on the number of clusters. By selecting
p centroids from the data points as dictionary points, we can
form the dictionary matrix D.

Let d; be the j* column vector of D, r; be the j* row and
i*" column entry of R. A natural assumption is that 74; should
be larger if o, is closer to d;. To emphasize this assumption,
we set the r;; to zero as d; is not among the 7 (# < p) nearest
neighbors of o,. This restriction also satisfies the dimension
condition of the sparse representation matrix R.

Let Dy € R™*" be a sub-matrix of D contains 7 nearest
dictionaries of o;. Let D(; denote the set consisting of all
the column vectors in D;. 7;; can be calculated using the
following equation:

_ Kp(0i,dy)
Zdjleﬂm(i) Ky (oi,dyr)

Tji

dj € D@) (7

with
Kh(Oi, d]) = exp(f||oi — dj||2/2h2)

where Kj(-,-) is a pre-defined Gaussian kernel function with
a bandwidth h.

After applying the sparse coding, the representation matrix
R can be represented as an undirected similarity graph,
G = (V,E) with vertex set V, where each vertex v; in this

set represents a data point r;. [E is a set of edges connecting
different vertices. We assume that the graph G is weighted,
that means each edge between two vertices v; and v carries
a non-negative weight w;;. The weighted adjacency matrix of
the graph G is the matrix W = [w;;], where ¢,j = 1,...,m.
While w;; > 0 indicates the similarity between two selected
vertices. w;; = 0 indicates that two selected vertices v; and
v; are not connected by an edge. To build the entry of the
adjacency matrix W, we have adopted the Gaussian kernel
function written as follows:

—|vi — |2
i = e () -
where « is a scaling parameter that indicates how fast the
weight decreases with the distance between the two vertices
v; and v;. To avoid the error caused by manual parameter
selection, a localized scaling parameter «; is calculated for
each vertex, which allows self-tuning of the point-to-point
distances based on the local distance of the neighbor of v;
[21]:

a; = ||vi — vgl| )

where v is the 3" neighbor of v;. Then, the weight equation
(8) can be reformulated as follows:

o —[lvi = vl
wij = exp { —— =t )
i

By defining a couple of vertices and weight

matrix W, the outage data grouping is converted to a
graph partitioning problem. The graph partitioning process
divides a graph into disjoint sets of vertices by removing the
edges connecting two groups. An optimized graph partitioning
process is achieved when the edges between different sets have
low weights, and the edges within a set have high weights. The
objective function of the graph partitioning is to maximize
both the dissimilarity between the disparate groups and the
total similarity within each group:

(10)

5 (ALA)
@)=, min, 3 d(A;)

i=1

(1)

where 6 is the number of vertices, A; is a subset belonging to
V, s (Ah E) denotes the sum of the weights between vertices
in A; and vertices in A, i.e., the complement of A;. d (A;)
denotes the sum of the weights of vertices in A;. According to
[22], the minimum of S(G) is obtained at the second smallest
eigenvector of the Laplacian matrix. Then, the graph Laplacian
matrix is formulated based on the weight matrix W:

L=T:WI2 (12)

where I is a diagonal matrix which the i*" row and i*” column

element of I is the sum of elements in the i*" row of W.
Therefore, to solve the graph partition problem (minimize
S(G)), according to the Rayleigh-Ritz Theorem, the solution is
acquired by using k£ (2 < k£ < m) smallest eigenvectors of the
Laplacian matrix, which guarantees an approximate value of
the optimal cut [23], [24]. The value of k£ can be determined
by various clustering evaluation metrics, such as the Silhouette
coefficient, Dunn’s index, and Davies-Bouldin validation index



Algorithm 1 Dictionary Selection in SDESC

Initialization: Initialize ¢ < 1, v, &
repeat
[S1]: Select the it column of O.
[S2]: Pick o; and retrieve all direct density-reachable points
in O using &.
[S3]: Based on ~, if o; is a core point, a cluster is formed;
otherwise, assign o; to noise
[S4]: Update ¢ < 7 + 1.
until : =m

Algorithm 2 Sparse Dictionary-based Ensemble Spectral
Clustering

Input: m data points 01, 0s,..., 0, € R**™
cluster number k
Output: k clusters
[S1]: Produce p dictionary points using random selection
following Algorithm 1 to form D.
[S2]: Construct a sparse representation matrix R € RP*"
between data points and dictionary points according
to equation (7).
[S3]: Build weighted adjacency matrix W according to
equation (10).
[S4]: Use k smallest eigenvectors of the Laplacian matrix
from equation (12) to generate a new matrix
N € Rm*k,
[S5]: Each row of N is a data point and apply k-means to
get the clusters.

(DBI). In this work, to set the optimal k, we adopt the DBI,
which purposes to minimize the overlap of different groups
and maximize the conformance within each group. When we
modify the k value to find the smallest eigenvalues of the
Laplacian matrix, the corresponding DBI value is recorded for
each k. The optimal value of k is determined when the DBI is
minimized [25]. When the value of k£ is assigned, a new matrix
N € R™*F is built based on the k smallest eigenvalues of the
L matrix. Based on the properties of the graph Laplacians,
the data point r; is reconstructed using the i*" row of the
matrix N, which enhances the cluster properties of the data
[21]. After the data reconstruction, any clustering methods can
be used to easily obtain the results. In this work, we used the
k-means algorithm to obtain the final solution from the matrix
N. The overall process of the SDESC method is tabulated as
Algorithm 2.

C. Method Comparison

Theoretically, typical pattern extraction of the outage dataset
can be performed using any clustering algorithms, such as
spectral clustering (SC), k-means, self-organizing maps, and
hierarchical clustering. However, considering that the available
dataset is high-dimensional and contains noise and extreme
cases, several factors were prioritized in the selection of the
clustering algorithm, including the curse of dimensionality
and robustness against data noise. Hence, spectral clustering
outperformed other conventional clustering algorithms by its

outstanding data reconstruction and graph partitioning fea-
tures. Specifically, the SC algorithm employs eigenvectors of
graph matrices for data reconstruction. This data reconstruc-
tion process enhances the cluster properties of complex and
unknown distributed datasets, so that clusters can be easily
detected from the reconstructed datasets [21], [22].

However, given the increasing size of the outage dataset
for each year, traditional spectral clustering gradually shows
a critical drawback: extremely high computational burden.
Such a drawback is caused by the fact that spectral clustering
requires the construction of an adjacency matrix and the
computation of the eigen-decomposition of the Laplace matrix.
For large-scale cases, the above two steps can cause an
overwhelming computational burden [26], [27]. Hence, this
suggests an urgent need for a new algorithm to solve this task.

The SDESC algorithm has three unique advantages over
the conventional spectral clustering (SC) method in this task:
1) The enhanced cluster property of the reconstructed dataset
reduces the sensitivity of the clustering process to outliers,
which are unavoidable in real-world applications. 2) The pro-
posed method introduces the dictionary-based weight matrix
of the dataset rather than computing the high-dimensional
profiles of all available outage data directly. Such a strategy
can significantly reduce the complexities of computing the
adjacency matrix and graph Laplacian matrix from O(m?)
and O(m?) to O(pm) and O(p® + p?>m) due to the fact that
the value of p is substantially lower than that of m, which
is beneficial in the big data age. The complexity analysis can
be found in [28]. 3) The graph partitioning problem could
be settled without making any assumptions about the data
distribution. This step enhances the robustness of the clustering
method, thus resulting in better performance for complicated
outage data structures.

IV. OUTAGE RESTORATION TIME PREDICTION

To choose our baseline algorithm to predict the outage
restoration time, several state-of-art methods, such as artifi-
cial neural network (ANN) and convolutional neural network
(CNN), are evaluated and compared based on the dataset we
acquired. CNN is one of the most successful advanced deep
learning algorithms and has been widely utilized in the image
and video fields. The basic idea of CNN is to automatically
extract the important features from the input using convolu-
tional operations. The algorithm should be used preferentially
when the data has spatial characteristics. However, the data
type for this work is sequential and time-serial, and we do not
consider spatial information at this stage. Also, considering
the limited outage-based features recorded by the utilities, it is
not necessary to use CNN as the baseline model in this work
[29]. Moreover, CNN generally requires more training data
than the ANN to obtain a good model. This creates a hindrance
when utilities apply CNN models to predict restoration time in
actual grids, especially for small utilities with limited outage
data. Hence, we believe that ANN is a more suitable baseline
model for this work.

Upon the outage data partitioning results, each outage
subset is first assigned with an artificial neural network to



estimate the outage restoration time. As discussed in Section
I and Section II-B, there may be huge gaps between the
amount of data available for different patterns and scales of
outage events. However, there are always internal relationships
between different outage event patterns. To this end, a transfer-
learning-based method is then employed to transfer the learned
knowledge from one prediction model to enhance the per-
formance of the rest models. To help the reader understand
the proposed model, we first briefly revisit the concept and
properties of ANN, then describe the transfer learning strategy
in detail.

A. Artificial Neural Network

In this work, We adopt the multi-layer feed-forward ANN
structure, in which the sigmoid active function is used in the
hidden layers. We first performed the feature selection proce-
dure to select the important outage-related features. Then, the
outage dataset with selected features is used to train the ANN
to predict the outage restoration time. The loss function is
the total mean squared error between the ANN prediction and
the ground truth, i.e., the real outage restoration time in the
dataset. In this work, the choice of the optimizer is determined
by the highest prediction accuracy on the validation set.

For calibration purposes, stochastic gradient descent, Adam,
Levenberg-Marquardt (LM), and RMSprop have been tested
using the same dataset. The LM method shows the highest
detection accuracy on the validation set. Therefore, the LM
backpropagation method is utilized in this work to update the
weights and threshold parameters [30]. The LM method is
derived from Newton’s method to minimize sum-of-squares
error functions [31]. It can automatically adjust the learning
rate in the direction of the gradient using the Hessian matrix.
Compared to backpropagation methods with a constant learn-
ing rate, the LM method significantly boosts the training speed
[32]. To calibrate the parameters of ANN, the optimal set
of hyper-parameters is determined by the grid search method
[33].

B. Transfer Learning-added Outage Restoration Time Predic-
tion Model

When the training targets are multiple related tasks (i.e.,
restoration time prediction for outages under different scales
and factors), conventional machine learning-based methods
need to train multiple models from scratch, thus requiring a
large and comprehensive dataset. Such a requirement renders
their practical implementation costly. In contrast, transfer
learning-based models greatly reduce the amount of data
required for training by leveraging prior knowledge gained
from previous training tasks [34]. Therefore, in this work,
a transfer learning strategy is adopted to discover domain-
invariant intrinsic outage features and structures under differ-
ent but related domains, which establishes the re-utilization of
data information across domains.

In this work, the source model is defined as a pre-trained
outage restoration time estimation model with the neural
network parameters, while the data samples and their predicted
values are stored in a knowledge matrix. A pre-trained model

is a model that is trained on a large benchmark dataset to
solve a task that is similar to the one that we want to solve
accordingly. The learning task is defined as the upcoming
training assignment of an untrained outage subset, while
the learning matrix is filled with the data samples in the
corresponding subset. To choose the pre-trained source model
in this work, we adopt one of the cluster-wised subsets that we
obtained from Section III-B. In general, to find a fair source
model, it is important to choose a dataset that is relatively
large and contains a variety of data patterns. By observing our
clustered subsets, two subsets have a relatively scarce amount
of data points than the largest subset, it is not sufficient to
train a fair model. Therefore, the largest subset is utilized to
treat as the source model. The rationale behind this is that
it consists of the most frequently occurring event patterns
that provide a baseline to train a good source model. Once
the source model is determined, the knowledge matrix with
predicted values of this subset is first obtained during the
training process. The neural network parameters are reserved
and exploited as the initial parameters for a new learning task.
Specifically, the neural network for the new learning task is
formed by mapping the reserved learning parameters to layers.
The prediction value for the new learning task is then obtained
by training the re-formed model. After obtaining all predicted
values of the new learning task, they are combined with the
original data samples into a complete learning matrix that has
the same structure as the knowledge matrix.

This transfer learning process can be depicted in Fig.
4. In detail, after the source model and learning tasks are
distinguished by an evaluation of the cluster-wised outage
subsets, the transfer learning process gathers the outage-related
features and the output (i.e., actual restoration time) in the
pre-trained model, and stores them as a knowledge matrix.
Similarly, each learning task, which is an untrained model,
generates a learning matrix containing data points with outage
features in the particular subset. After the first training process,
by updating the parameters for the new learning task, the
predicted restoration time can be obtained by training the new
model. When the first prediction task is completed, the learned
model can be utilized in a recursive manner when dealing with
a new learning task [35]. For example, the training tasks for
cluster-wised subsets are signed as task 1, 2, and 3. Task 2 is
learned by exploiting task 1 as a source model, then task 2
can be used as the source model for training task 3.

Compared to the conventional machine learning-based
method, the proposed transfer learning-added outage restora-
tion time prediction method using cluster-wised datasets has
greatly reduced the overfitting risk caused by the data scarcity
of the specific outage prediction patterns and distributions.
This can be confirmed using the numerical results.

C. Unseen Outage Classification

To identify and allocate the corresponding outage pattern
and related prediction model to unseen outage samples, a
t-distributed stochastic neighbor embedding (t-SNE) method
is utilized. Initially, the Euclidean distance is involved in
mapping the high-dimensional data. In the t-SNE algorithm, it
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starts by converting the high-dimensional Euclidean distance
between two data points into conditional probabilities which
represent their similarity. This conditional probability between
two data points o; and o; is represented as P(0,|o0;). It means
that o; would pick o; as its neighbor if neighbors were picked
in proportion to their probability density under a Gaussian
centered at o;. The Euclidean distance is smaller when the
conditional probability is larger. Data with higher similarity
in high-dimensional space is closer to each other after being
embedded in a low-dimensional space [36], [37]. By opti-
mizing the conditional probability between original data and
analog data, the t-SNE can convert high-dimensional outage
data into low-dimensional representations. Mathematically, the
conditional probability between any two outage samples o
and o; in high-dimensional space can be formulated as:

o —o 12
exp( Hoé)\ioJH )

S exp ((llecesl?
k=1,k£i SXP 2N

P(ojlo;) = (13)

i

where x is the number of neighbor points, A; is the vector
variance of the Gaussian function centered on the data o;.
Next, t-SNE utilizes symmetrized probability to alleviate the
crowding problem that is illustrated in [38]. The symmetrical
conditional probability between two data samples o; and o;

is represented as:
— L —0:]l2
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where x is the number of neighbor points, A; is the vector
variance of the Gaussian function centered on the data o;.
The joint probability of o; and o;, within a Gaussian space
is:
P(o;|o;) + P(o;|o;
P(Oi,Oj) — ( l‘ J) ( J| l).
: 2m

15)

In a low-dimensional space, the t distribution is applied with
one degree of freedom. The joint distribution of two simulated
data z; and z; is calculated as follows:
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The Kullback Leibler (KL) divergence is utilized to quantify
the similarity between P(z;,z;) and P(0;,0;):
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The optimal low-dimensional data is obtained by minimizing
the KL divergence using the gradient descent method, which
is denoted as:
dd) m
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When an outage occurs, the high-dimensional data is
first converted into a two-dimensional map using the t-SNE
method. Then, the distances between the edges of each subset
with this point are calculated to quantify the similarity between
the unseen outage and the learned subsets. Based on the
distance values, the most probable class is chosen as the
correct underlying subset for an unseen outage.

V. NUMERICAL RESULTS

This section explores the practical effectiveness of the
proposed outage restoration time prediction method. A real-
world dataset with 16,000 outage samples is utilized in this
case study, which includes six years of data collected by
a utility in New York State. After data preprocessing, the
whole dataset is randomly divided into three parts for training,
testing, and validation by 70%, 15%, and 15% of the total data,
respectively.

A. SDESC Algorithm Performance

Fig. 5 presents the data distribution of the number of
customer interruptions versus outage restoration time. In real-
world scenarios, most people would believe that there should
be a clear relationship between the restoration time and the
number of affected customers. As described in this figure,
the number of customers interrupted has a clear impact on
the restoration time. The rationale behind this is that when
the number of affected customers is high, the utility usually
prioritizes these events. The corresponding outage restoration
time is often at a low level, as shown on the right side of Fig. 5.
In contrast, estimating restoration time for small-scale outages
is more challenging, as they are more likely to be affected by
a variety of factors. This can also be confirmed using real-
world data, as shown in Fig. 5. Therefore, it is necessary
to implement the proposed SDESC method to distinguish the
outage groups that are constrained by various features.

Basically, the SDESC calibration is a trial and error pro-
cess using a specific cluster evaluation metric. In this work,
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the optimal number of subsets, k, is assigned as 4 based
on the minimum DBI value. The grouping results with the
corresponding k value are marked in Fig. 5. Specifically,
each color represents a subset of the outage data, namely
C,, C,, C3, and C,4. Table II demonstrates the statistics in
the grouping results, including the number of data samples
in each subset, the average number of customers interrupted
(i.e., Avg. CI), and the average restoration time in minutes
(i.e., Avg. RT). As shown in table, {C;, Cz, C3,C4} consist
of {2379,5302, 2884, 5872} outage data samples, respectively.
Such results promise the data imbalance problem: subset Cq
and C4 have twice as many data samples as C; and Cg, while
the average recovery time (i.e., 740.5 minutes) and the number
of customers interrupted (i.e., 170) of C; are significantly
higher than for the other subsets. In our view, C; refers
to severe outages with a higher Avg. RT and Avg. CI, but
relatively infrequent. C, and C,4 represent intermediate and
least serious outages, which are twice as frequent as severe
outages. C,4 represents a subset of minor outages, which occur
frequently but can typically be resolved in a timely manner.

B. Data Virtualization in Low-dimensional Representation

In this paper, the main function of t-SNE is used for data
visualization (Fig. 6 and Fig. 7) and to enhance the overall
interpretability of the framework. Observing the distributions
of the cluster-wised data in a low-dimensional map will help
us to visualize and briefly evaluate the performance of the
proposed clustering algorithm. Theoretically, the similarity
between the unseen outage and the learned outage subsets
can be calculated based on specific similarity scores, such as
cosine similarity, to classify unseen outages to the existing
typical patterns. However, considering the satisfactory result
of our clustering process, this task is not a critical challenge
in this work. Therefore, at this stage, we did not investigate
which method or metrics is one of the optimal solutions to
this task. This will be one of the future research directions.

The t-SNE plot for cluster-wised outage data using the
SDESC is shown in Fig. 6. The shortest distances between the
edges of each subset with each unseen outage are calculated
to measure the similarity between the unseen outage and the
learned patterns. Based on the testing dataset (15% of the total

TABLE II: CLUSTERING STATISTICS

Cluster Samples Avg. CI Avg. RT(min)

C, 2379 170 740.5

(67 5302 21 288.4

Cs 2884 16 144.5

Cy 5872 22 82.2
150F
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Fig. 6: t-SNE plot of clustered data using the proposed SDESC
method.

data), the classification error margin can achieve 5% when
assigning outage patterns to unseen outages.

We have conducted a numerical comparison with an ad-
vanced k-means algorithm [39] to show that the proposed
SDESC method can offer a dramatic improvement in outage
data grouping. Fig. 7 shows the t-SNE plot of the result using
the advanced k-means algorithm. By using this state-of-the-
art clustering method, over 70% of the total data has fallen
into a single cluster subset, C;. Such a result increases the
overfitting risk caused by data insufficient in other subsets.
Moreover, it is clear that the data points in different subsets
of Fig. 7 are more difficult to be classified than in Fig. 6.
This indicates that the homogeneity of each subset obtained
from the advanced k-means is much lower than that of each
subset obtained from the proposed method. Therefore, when
an unseen outage occurs, it is highly likely to misclassify, thus
resulting in a decrease in restoration time prediction accuracy.
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Fig. 7: t-SNE plot of clustered data using the advanced k-
means method.
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C. Outage Restoration Time Prediction Performance Analysis

When the outage dataset is separated using the SDESC
method, the ANN with a transfer learning embedded model is
utilized to predict the outage restoration time. By observing
our clustered subset in Table II and Fig. 6, two subsets have
a significantly lower amount of data points than the subset
Cy, it is not sufficient to train a good model. Therefore, we
utilize Cy4 as the source model, this is because C,4 represents
the most commonly occurred event (about 35.7% of the total
data), and this provides the baseline to train a good model.
Then, training predictive models on other data subsets are
considered as learning tasks. Specifically, we train a model
using the training set in Cy, and the validation set in Cy
is used to optimize the model’s hyperparameters. After the
complete training, C; is trained using the pre-trained model
C,. This process is repeated for other subsets by leverag-
ing the previous pre-trained combined model. To evaluate
the prediction performance of the ANN, the mean absolute
percentage error (MAPE) is utilized in this paper. In addition
to MAPE, the percentage of predicted restoration time that
falls within the reasonable range from the actual restoration
time is also calculated to further evaluate the performance
of our method. Fig. 8 describes the comparison between the
actual and predicted restoration time for 25 randomly selected
samples in C,4. After predicting the restoration time of the
test data, the predicted restoration time range is 22.8 minutes,
which is below the 30 minutes threshold. 3% of the predicted
time is more than 60 minutes of the actual repair time, and
only one particular outage showed that the predicted time is
more than 90 minutes of the actual repair time.

The proposed method is utilized to train the prediction
models for C;, C,, and Cj3 using the source model. The
MAPE for C;, Co, and Cj3 is 23%, 24%, and 11.7%,
respectively. The predicted restoration time range for all three
subsets is 48.8 minutes, while subset Cs had an outstanding
prediction range of 21.9 minutes. Fig. 9 demonstrates the
comparison between the actual and predicted restoration time
for 25 randomly selected outages in C;, Co, and C3. Note
that the variance in restoration time for each subset is 1300
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Fig. 9: Comparison result between actual and predicted
restoration time for learning tasks.

seconds, 350 seconds, and 170 seconds. Despite the high
variance of Cj, the prediction model still performs decently.
The prediction accuracy of C; is slightly lower than that of Co
and Cjs. This result is reasonable because higher data variance
usually leads to a higher risk of overfitting and reduces the
accuracy of the prediction model.

D. Sensitivity and Uncertainly Analysis

To demonstrate the sensitivity of the proposed method to the
size of training data, we have tested the average performance
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of the proposed model under various sizes of training dataset
as shown in Fig. 10. As is demonstrated in the figure, the
performances of our model can reach acceptable prediction
accuracy on a training set with around 3,000 data samples.
This is equal to a half year to one year of the data samples,
depending on the varying frequency of outages. After reaching
the knee point on the figure, our method tends to become
stable with increasing numbers of data samples. Based on the
literature reviews in Table I, most of the recently published
works require data sizes beyond this knee point [6]-[8].

In this work, uncertainty analysis is reflected by the imper-
fection of the data by adding noise. Specifically, noise samples
were generated from a normal distribution with zero mean and
1% variance and added to the continuous features to represent
standard measurement deviations. In terms of the categorical
features, 2% of the data were randomly adjusted to represent
error-induced uncertainty.

E. Method Comparison

1) Proposed Model vs. Global Model: We have conducted
a comprehensive comparison between the proposed cluster-
wised model with the previous restoration time prediction
model [8]. Note that the previous model follows a global
training fashion and is developed using all outage records
without clustering. Where possible, we attempted to tune the
parameters for each algorithm to give a fair comparison. The
MAPE improvement compared to the global model for each of
the subsets are 152.57%, 132.76%, and 393.78%, respectively,
as shown in Fig. 11. This result indicates that our SDESC
method can substantially improve the prediction performance
by reducing the uncertainty of the real-world outage data
compared to the global model.

2) Proposed Model vs. Conventional cluster-wise Learning-
based Model: Another numerical comparison has been con-
ducted between the proposed method with the conventional
cluster-wise-based method. This conventional method trained
independent neural networks for each cluster-wised subset.
Such a comparison can further demonstrate that our method
can achieve good prediction performance. Both methods are
evaluated based on the same neural network configurations to

[ECluster-wise Model mIGlobal Model|
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Fig. 11: Restoration time comparison between cluster-wised
model and global model.

ensure a fair comparison. As is demonstrated in Fig. 12, for
the three different outage subsets C;, Cq, and C3, compared
to the conventional cluster-wise-based method, our transfer-
learning-added model has 52.98%, 9.59%, and 27.26% MAPE
improvement, respectively. The results show that the transfer
learning strategy can meet the challenges posed by real-world
unbalanced outage datasets and greatly improve the accuracy
of repair time prediction.
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Fig. 12: Prediction of restoration time with and w/o transfer
learning approach.

3) Proposed Model vs. Previous Related Works: To show
the ability of our proposed method with previous related
works, we have conducted numerical comparisons with three
methods, including a state-of-the-art regression method, sup-
port vector regressions (SVR) [40], and two recently published
models for outage restoration time prediction [41] and [42].
Specifically, in [41], a random forest (RF) based approach is
proposed to predict the outages with related weather variables.
In [42], a gradient boosting machine (GBM) learning model
is utilized to discover the power outage data, including outage
frequency and duration. The comparison results are demon-
strated in Fig. 13.

It can be observed that [42] and our proposed method
can achieve good accuracy with the available outage dataset,
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while [41] and the SVR approaches do not exhibit good
performance. The result between the GBM and our method
is competitive, and our method is slightly better than the
GBM. The difference between those two approaches is that
the proposed method overcomes the overfitting risk caused
by data imbalance and scarcity problems using the cluster-
ing ensemble and the transfer learning strategy. In contrast,
gradient boosting models can overemphasize data with noise
and easily cause overfitting. Meanwhile, our proposed method
provides an efficient processing facility for future unseen data.
The characteristics of the data sample can be rapidly identified
according to the clustering result; this will help the utility
select the corresponding restoration plan for the specific data
pattern, and the restoration time can be estimated using the
trained subset simultaneously.

VI. CONCLUSION

This paper presents a novel data-driven approach to accu-
rately predict outage restoration time using transfer learning
with cluster ensembles. In this paper, six years of real-world
outage dataset from our utility partner is investigated for model
development and validation. The proposed SDESC approach
utilizes the sparse coding technique and cluster ensemble
mechanism to first decompose the large-scale datasets, which
has good computational efficiency and scalability. Based on
the learned outage patterns, the developed transfer-learning-
added model can not only accurately predict the outage
restoration time in each subset, but also addresses two fun-
damental challenges: 1) neglect the uncertainty caused by
the heterogeneity of outage events with different scales and
factors; 2) data imbalance problem in different data subsets.
Based on the available real-world utility data, the results
show that the proposed method has improved performance
compared to existing methods and has overcome large-scale
data challenges.
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