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Abstract—This paper investigates the use of phasor mea-
surement unit (PMU) data with deep learning techniques to
construct real-time event identification models for transmission
networks. Increasing penetration of distributed energy resources
represents a great opportunity to achieve decarbonization, as well
as challenges in systematic situational awareness. When high-
resolution PMU data and sufficient manually recorded event
labels are available, the power event identification problem is
defined as a statistical classification problem that can be solved
by numerous cutting-edge classifiers. However, in real grids,
collecting tremendous high-quality event labels is quite expensive.
Utilities frequently have a large number of event records without
in-depth details (i.e., unlabeled events). To bridge this gap, we
propose a novel semi-supervised learning-based method to im-
prove the performance of event classifiers trained with a limited
number of labeled events by exploiting the information from
massive unlabeled events. In other words, compared to existing
data-driven methods, our method requires only a small portion
of labeled data to achieve a similar level of accuracy. Meanwhile,
this work discusses and addresses the performance degradation
caused by class distribution mismatch between the training set
and the real applications. Specifically, this method utilizes pseudo-
labeling technique to investigate the value of unlabeled events
and incrementally expands the training dataset. Moreover, a safe
learning mechanism is developed to mitigate the impacts of class
distribution mismatch and prevent performance degradation.
Based on the proposed safe learning mechanism, our model
does not directly use all unlabeled events during model training,
but selectively uses them through a comprehensive evaluation
procedure. Numerical studies on a sizable PMU dataset have
been used to validate the performance of the proposed method.

Index Terms—Event identification, phasor measurement unit,
safe learning, semi-supervised model, unlabeled event.

NOMENCLATURE

CNN Convolutional neural network
FP False positive

FN False negative

MCC Matthews correlation coefficient
PMU Phasor measurement unit

TP True positive

TN True negative

d Length of analysis window

Dy New labeled data in each iteration
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Rectified linear function
Encoder network

K" Kernel filter of the m-th feature map of the [-th
layer

k Number of unlabeled events

L(") Softmax cross-entropy loss

m Number of labeled events

n Size of events

N, Labeled event set

N, Unlabeled event set

Nt Number of events marked in the ¢ iteration

P Size of feature maps in the [-th layer

S Shared feature extractor

S1,59,S53 Three event classifiers

U Classification noise rate

Ut Upper bound of the classification error rate

w Number of repeated estimations in each itera-
tion

w(-) Weight function

T; PMU measurement for event ¢

Yi Label for event

Z Samples from the standard normal distribution

w Frequency with which a classifier differs from

other classifiers

5y Parameter of weight function

Q) Regularization term

ea Gaussian noise

0 Parameter of classifier

ur Learning rate for 6

My Learning rate for

T Search space in convolution layer

€ Hypothesis worst-case classification error rate

I. INTRODUCTION

With the modernization of power systems, system operators
are expected to meet the growing demands of their customers
while maintaining the reliability of the power supply. Re-
cently, the increasing penetration of phasor measurement units
(PMUs) ! provides a unique opportunity to improve situational
awareness of the system [1]. Typically, PMUs are installed into
selected substations and interfaced to the grid via instrument
transformers to measure frequency, rate of frequency change,

! According to statistical data provided by the North American SynchroPha-
sor Initiative, over 1,900 PMUs have been installed in the U.S., which is a
nine-fold growth from 2009.



voltage, and current phasors based on the united Coordinated
Universal Time reference. PMUs are more accurate and faster
(i.e., 30-60 samples per cycle) than supervisory control and
data acquisition systems with low sampling rates (i.e., 2-4
samples per cycle) [2]. Inspired by these benefits of PMUs,
researchers have dedicated great efforts on data-driven meth-
ods for real-time system monitoring and protection using
PMU data [3]. Compared to conventional model-based event
identification methods, data-based approach has the unique
advantage of operating independently of the system.

Depending on whether the model requires a large number of
recorded event labels, two categories of existing data-driven
event classification methods are summarized. Studies in the
first category follow a supervised learning fashion to associate
PMU measurements with recorded event labels [4]-[14]. In
[4], a discrete wavelet transform-based deep neural network
model was proposed to reduce false disturbance detection
and validate true events. In [5], a three-stage framework
was proposed for training robust event classifiers to address
the data quality issues of PMU measurements. In [6], two
well-established supervised learning methods (i.e., k-nearest
neighbor and support vector machine (SVM)) were trained
and tested on the basis of thousands of simulated events
created by GE’s PSLF software. In [7], a three-layer deep
neural network-based method was designed to identify power
system events using data from 187 PMUs and 1,000 real-world
events. In [8], an empirical wavelet transform-based random
forest method was proposed to assess power system events.
The model was trained and tested based on PSS/E simulation.
In [9], a one-versus-many extreme learning machine model
was developed to perform event diagnosis by combining 3,495
simulated events and 81 real-world events collected from four
PMUs located in Western Electricity Coordination Council.
[10] introduced a dictionary of row subspaces of different
event types and identified an event by comparing the subspace
of the obtained PMU data with the dictionary. In [11], an event
characterization algorithm was proposed to calculate spectral
kurtosis and used it as the input to SVM for event identifi-
cation. In [12], a threshold-based OR rule was presented to
identify events using rank signatures of PMU measurements.
In [13], a deep learning-based event classification model was
designed to introduce robustness against bad data issues in
online applications. In [14], a symbolic aggregation approxi-
mation technique was used to compress and convert PMU data
features. Ensemble learning and SVM algorithms were utilized
to perform event classification. These efforts have generally
shown good results. However, the main concern with category
I models is that good performance depends on the availability
of sizable labeled events (e.g., thousands of simulated events).
As demonstrated concretely in [15], limited training samples
usually reduce the accuracy and generalization of supervised
event classification models. In reality, even for stable grids
with long-term operations and few events, the number of event
labels is limited.

Utilities often have records of events without in-depth
details. Of the 2,226 recorded events observed by Public
Service Company of New Mexico over four years, only 97
events were registered in the event logs [16]. Considering that

category I methods typically struggle to perform adequately
with few labeled events, researchers are exploring a variety
of unsupervised and transfer learning strategies to perform
event detection and identification [17]-[23]. In [17], a het-
erogeneous joint domain adaptation method with a transfer
learning strategy was proposed to transfer knowledge from a
data-rich source grid to the data-limited target grid to boost
the machine learning performance in the target grid. In [18], a
statistics-based framework was proposed to detect events using
PMU data. In [19], a two-stage framework was proposed to
achieve real-time event detection, physically meaningful event
type distinction, and localization using principal component
analysis and hierarchical clustering technique. In [20], a trans-
fer learning-based mechanism was proposed to address the
issue of event detection from a remarkably small number of
labeled events. In [21], three existing clustering algorithms
(i.e., partitioning, hierarchical, and density-based methods)
were evaluated to group disturbance files. In [22], a novel
characteristic ellipsoid method was proposed to identify types
and locations of transient events. In [23], a kernelized tensor
decomposition and classification framework was proposed to
incorporate rich unlabeled data. While existing unsupervised
and transfer learning-based event identification works provide
valuable results, several questions remain open. For example,
unsupervised learning-based methods cannot provide the phys-
ical meaning of event types. The results of these methods
are usually broadly defined categories and thus can only
provide limited help for real-time system monitoring. A natural
way to deal with this question is to associate and define
each category using data from labeled events and domain
knowledge. However, this solution relies on an important
assumption that labeled events and unlabeled event types are
identical. In other words, the utilities need to observe and
register all possible event types. In practice, it is difficult to
maintain such an assumption. Unlabeled events often hide
a variety of new event types, which is also mentioned by
previous work [6]. In this paper, this situation is referred
to as the class distribution mismatch problem (as shown in
Fig. 1), which greatly increases the difficulty of data-driven
event classification tasks. Last but not least, the results of
unsupervised techniques tend to have low accuracy due to the
lack of labeling information.

To address these problems, this paper proposes a novel
data-driven model to identify power event types in a semi-
supervised learning manner. Compared to supervised learning-
based models, the proposed model is better suited for real-
world tasks because collecting tremendous high-quality event
labels is quite expensive. To achieve this, our method leverages
an output smearing strategy to build three different classifiers
and initially trains them using labeled events in parallel.
Considering the high model complexity due to the high
dimensionality of PMU measurements, convolutional neural
networks (CNNs) are used as the underlying classifier in this
work. The unique benefit of utilizing three event identifiers is
that it provides a workaround for marking unlabeled events.
Specifically, if any two of classifiers have a consistent estimate
for an unlabeled event, then this estimate is confident and can
be added to the training set. The three event identifiers are
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Fig. 1. Description of the event identification problem under the class
mismatch problem.

retrained using the updated training set in order to consistently
benefit from the abundance of unlabeled events. Considering
that unseen event types do not exist in the initial training
set, it is impossible for three classifiers to give meaningful
estimates for these types. Therefore, the training process of
each model is projected as a bi-level optimization problem to
avoid pseudo-labeling of events under unseen types as much
as possible, which is defined as a safe learning mechanism. A
weighted empirical risk minimization model is to be obtained
in the inner-layer optimization. Additionally, the goal of the
outer-layer optimization is to minimize classification loss on a
given training set. An online approximation method is applied
to solve this bi-level optimization. By combining these novel
modules, a better generalization ability can be achieved. The
main contributions of this paper can be summarized as follows:

o The proposed framework can improve the performance of
event classifiers trained with a limited number of labeled
events. The proposed method is able to achieve similar
accuracy as supervised learning methods using all labeled
data, but using only 25% of the labeled data.

o The proposed framework not only exploits the value of
unlabeled events, but also provides a basis for signifi-
cantly reducing the impact of the class distribution mis-
match problem to enhance event classifier performance.

« The proposed safe learning strategy prevents features of
unseen events from becoming entangled with features of
observed events, thus avoiding performance degradation
of the model on known event types. Such a mechanism
can help the proposed model to perform no worse than
its supervised counterpart in extreme cases.

o The proposed model was developed and tested based on
two years of data from hundreds of PMUs and approxi-
mately 4,800 event records from Western Interconnection.
In our experiments, we constantly assume that a portion
of the event records are unknown to simulate different
real situations. All results are derived by comparing
predictions and ground truths.
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Fig. 2. As the class distribution mismatch ratio between the labeled and
unlabeled data rises, the performance of traditional semi-supervised learning
approaches drastically declines. When the mismatch exceeds a certain range,
the performance of the traditional semi-supervised learning method is even
worse than that of the supervised learning method (top). Such a performance
degradation hinders the motivation to use semi-supervised learning techniques
in the vast majority of real applications. In contrast, the performance of the
proposed method similarly declines as the class distribution mismatch between
labeled and unlabeled data increases, but it never performs worse than the
performance of the supervised learning method (bottom).

The rest of this paper is structured as follows. The prelim-
inaries of the proposed framework are shown in Section II,
including the data description and problem formulation. Sec-
tion III introduces the semi-supervised learning-based event
identification. Section IV presents the safe learning process.
Case studies are demonstrated in Section V. Research conclu-
sions are provided in Section VI.

II. PRELIMINARIES
A. Data Description and Pre-Processing

The available 2-year PMU measurements were initially
collected by regional system operators and utilities in the
Texas, Western, and Eastern Interconnections of the U.S. and
then formatted by Pacific Northwest National Laboratory. Each
PMU monitors the system frequency, voltage, and current
phasors, as well as the rate at which the frequency changes.
The majority of PMU data segments are archived at 30 frames
per second and the rest at 60 frames per second. In addition to
20 TB of PMU streaming data, this dataset has the particular
advantage of containing enough real event labels (i.e., 6,767
events from utilities), which creates a solid foundation for
designing an effective event classification model. Note that
complete detection criteria for all types of events and historical
protection records are not provided in this work due to the
safeguarding of sensitive information, making them unavail-
able for classification model development.

The data pre-processing is done prior to model develop-
ment to assure the quality of the training data, preventing
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Fig. 3. Overall framework of the proposed safe learning-based event identification model.

inaccurate event detection brought on by data quality issues.
This procedure is empirical and follows the guidance of
our industrial partners. Briefly, the first phase in data pre-
processing is to use PMU status flag information to identify
data with data quality issues. According to IEEE C37.118.2-
2011 standard, when the decimal status flag value is 0, PMU
measurements can be used to accurately describe the system
status. Instead, PMU is in a malfunction state. In addition,
based on engineering intuition, we designed several threshold-
based methods to identify data quality issues that are not
detected by the PMU itself, such as out-of-range issues. In the
second phase, when consecutive missing or bad data happens,
the data is removed from our study. The justification for this
is that it is challenging to offer precise data imputation for
these consecutive bad data, which is also out-of-scope of this
work. Linear interpolation is then used to fill in and repair
the remaining missing or bad data. After data processing, the
latent data features are extracted using Markov transition field
techniques. By calculating Markov transition probabilities and
converting that data into graphs, Markov transition fields can
preserve all time-domain information. More details can be
found in our previous works [13], [24]. Note that the system
topology, PMU locations, and historical event locations are not
available. Hence, this work cannot be extended to identify the
location of events. We leave it for future work. Once they are
available, more comprehensive results will be provided.

B. Problem Formulation

In terms of notation, let x; denote its ¢-th entry in a column
vector x. Given a matrix X, let X, (i,7) denote its entry at i-
th row and j-th column and [X]; denotes its i-th row. The
estimation is indicated by the superscript (o) and the optimum
is shown by the superscript (e)*.

Consider a set of PMU data N; = {(z1, Y1) s (T, Ym) }»
the data-driven event identification problem can be formulated
as an n type classification problem [7], where x; € R4¥! is the

measurement data of PMU with d-length analysis window?,
y; € {1,...,n} is the label recorded in the disturbance files
after using a label encoding technique, m is the total number
of recorded events, and n is the number of event types. In
order to achieve satisfactory event identification accuracy, a
large amount of labeled events are necessary’. However, in
power systems, such a condition is difficult to meet because
obtaining labeled events is costly in terms of human and
financial resources. As mentioned in previous work [6], most
of the events recorded by PMUs are unknown. Therefore, the
event identification problem needs to be refined to an n+1 type
classification problem, where N; = {(21,91), ., (Tm, Ym)}
and k unlabeled events N, = {Zm41,...,Tmyik}. Here,
yi € {1,...,n + 1}, where (n+ 1) represents an unspecified
type recorded in event logs. For the (n + 1)*" type, a natural
assumption is that the (n + 1) type is a mixture of known
event types. This is one of the common assumptions used in
previous works [17], [19], [20], [22]. Under this assumption,
the lack of labeled event data can be overcome by finding
associations between known event types and the (n + 1)
type using state-of-the-art unsupervised techniques. However,
this assumption is not practical in many cases. In reality, the
number of unlabeled data is much larger than the number of
labeled data (i.e., k& >> 0). This results in the (n + 1)**
type often consisting of two parts: the events belonging to
the known types but not identified by utilities and all other
types of events that are not seen in the event logs. Hence,
unrecorded events and recorded events do not share the same
distribution, which is known as class distribution mismatch,
as shown in Fig. 1. Note that our model is built based on
this actual situation rather than on the previous assumption.

2In this work, a 2-second analysis window is utilized to intercept PMU
measurements based on event logs. This 2-second analysis window consists
of 0.5 pre-event data and 1.5 post-event data. The value of d is determined
based on previous studies [13], [24]. Note that the selection of d is a trade-
off between event information and the curse of dimensionality. Also, as the
input dimension increases, the computation complexity of the data-driven
event identification model grows significantly, which can impact the real-time
application of models.

3The amount of data required for machine learning depends on many
factors, including the complexity of the problem and the complexity of the
learning algorithm. Based on the high sampling rate of PMUs, the amount of
data required to realistically train and test a classifier is enormous.



When the different unknown events that are classified in the
(n + 1)** type have markedly different underlying physics,
they may have highly distinct characteristics and cannot be
categorized in any of the known types. Face with this situation,
since conventional semi-supervised models have never seen
the types of these events, it is impossible for the model to
provide correct estimation for unlabeled set and derive any
useful information from them. Moreover, the characteristics
of the unknown events are entangled with the characteristics
of the observed events, which significantly impairs the trained
model’s ability to judge events of known types (also known
as performance degradation). This is the reason why most
semi-supervised learning algorithms no longer work well, and
may even be worse than a simple supervised learning model
(i.e., support vector machine, logistic regression, and random
forest) [25]. It should be noted that supervised models do not
suffer from this problem, as they only focus on those labeled
events. Such shortcomings limit the application of deep semi-
supervised models in power event classification problems.

To develop a practical event identification model, we pro-
pose a safe tri-net-based method that only requires limited
labeled events without any class distribution assumptions.
Briefly, our work uses the idea of pseudo labeling to discover
the value of unlabeled events* to improve the performance of
the event identifiers when training with limited event logs [26].
However, unlike previous models, our method can handle class
distribution mismatch by incorporating a bi-level optimization
in the backpropagation process. By designing a weight func-
tion, the proposed method uses unlabeled data selectively. In
each iteration, the model searches for the optimal model pa-
rameters based on weighted empirical risk minimization. The
weight function parameters are then improved to continuously
track the supervised performance once the obtained model
parameters are evaluated on labeled events. The trained event
identifier will therefore not perform worse than a supervised
learning-based event identification model when utilizing our
method, even if event logs do not cover all event types. We will
demonstrate in the following section that the event identifier
learned using the proposed approach is always better than the
model developed using simply labeled data.

C. Proposed Event Identification Framework

The objective of this work is to design a framework to
improve the performance of event classifiers in a safe manner.
Given the prevalence of unlabeled data in all grids, the data
resources required to train the proposed event classification
model consist of unlabeled data and a limited amount of
labeled data. Different stages of the proposed framework are
demonstrated in Fig. 3.

o Stage I - Tri-net Classifier Initialization: A tri-net-

based framework is developed to perform event identi-
fication in a semi-supervised learning manner. As shown

4Pseudo labeling is a commonly-used method to perform semi-supervised
learning tasks. The basic idea of this method is to seek the generation of
pseudo labels for unlabeled samples to guide the learning process in an
alternating manner. Specifically, the initial model is trained using the limited
labeled data. Then, the trained model is utilized to generate pseudo labels for
the unlabeled samples. Based on the updated training dataset, the model is
retrained.

in Fig. 3, the proposed framework consists of a shared
feature extractor (S¢) and three safe event identification
modules (S1, S», and S3) with different structures. The
three event classifiers build the mapping relationship be-
tween shared features and event types. An output smear-
ing strategy is used to construct three diverse training
sets, thus augmenting diversity between three classifiers
(detailed in Section III).

o Stage II - Safe Learning-based Parameter Optimiza-
tion: A safe learning mechanism is proposed to update
model parameters for each classifier. Such a mechanism
can prevent performance degradation due to the class
distribution mismatch problem. The basic idea is to
weaken unlabeled data with unseen classes by adding a
weight function and tracking supervised loss by designing
a bi-level optimization (detailed in Section IV).

o Stage III - Pseudo-Label Dropout: To further deal
with the low-confidence pseudo labels, a dropout strat-
egy is applied during the training process. Basically,
this strategy exploits the disagreements among the three
classifiers. With three classifiers, if any two of them have
a consistent estimate for an unlabeled event, then this
estimate is confident and can be added to the training
set, as shown in Fig. 3. Such an augmented training set
is utilized to refine the three classifiers until the end of
the training process (detailed in Section IV).

III. SEMI-SUPERVISED LEARNING-BASED EVENT
IDENTIFICATION

This section outlines the proposed safe tri-net-based ap-
proach. We quickly review the concepts and characteristics
of conventional semi-supervised learning techniques before
describing our method in depth to help the reader comprehend
the proposed model.

Semi-supervised learning is a learning paradigm linked with
developing models using all available data, including labeled
and unlabeled data, and is conceptually positioned between
supervised and unsupervised learning. Compared to supervised
learning approaches, Semi-supervised learning techniques are
better suited for real-world tasks where unlabeled data are
easily accessible whereas labeled cases need more resources
and time to collect. The goal of the semi-supervised learning
model is to use all available data to generate a predictive
function that is more accurate than the one obtained using
only labeled data. When dealing with classification problems,
leveraging unlabeled data with a semi-supervised method can
provide us with additional information about the shape of
the decision boundary among different classes. According to
previous studies, semi-supervised learning methods can be
broadly divided into two categories: transductive learning and
inductive learning [27]. Basically, transductive learning aims
to apply the trained models to the unlabeled data observed at
training time; in this case, it does not generalize to unobserved
data. In contrast, the goal of inductive learning is to learn a
model capable of generalizing to unobserved data at test time.
This categorization applies to the proposed approach.

One of the major challenges of the semi-supervised event
identification method is how to produce additional training
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data by labeling instances of the unlabeled set. Inspired by
the tri-training methodology [26], the proposed model utilizes
three different classifiers to handle the challenge of identifying
unlabeled events. It should be noted that the initial classifiers
should be diverse. When all classifiers are the same, they will
all produce the same estimate for each unlabeled event, which
will impede the model training. In this work, to construct
three diverse modules, an output smearing strategy is applied
[28]. By adding random noise to true labels, this strategy can
construct diverse training sets, which can be formulated as
follows:

Ui = yi + f(zi x 03) (D

where, z; is sampled independently from the standard nor-
mal distribution, o; is the standard deviation, and f(-) is
represented by the rectified linear function. With the output
smearing strategy, three diverse training sets can be obtained
from the initial labeled set. Then, the objective function of our
method is to minimize the sum of the three identifiers’ losses,
which is defined as follows:

min > {L(S1(S(x:).4))

+ L(Sa(S (i), 92)) + L(S5(S (), )}

where, L(-) denotes the standard softmax cross-entropy loss in
this work (i.e., a softmax activation plus a Cross-Entropy loss).
The shared module S is designed by using one convolutional
and max-pooling layers. The parameters of the Sy are updated
by learning all gradients from S7, Ss, and S3. The structure
of classifiers Sq, So, and S3 are derived from state-of-the-
art convolutional neural network architecture [29]. To get
more diversity among the three classifiers, different structures
(i.e., different network depths and convolution parameters)
were used for the three classifiers. In order to assist readers
unfamiliar with deep learning, we outline each typical layer
below:

2)

Weight Function w

{y}: Event Label Set

Convolutional Layer: Convolutional layers typically run
an operation (*) on the input and pass the result to the
following layer. In this work, after feature reconstruc-
tion, all event signals are considered as two-dimensional
graphs, making the convolutional layer mathematically
formulated as follows:

Py P,
(@ x K[ g) = D D afoa(i=mi, i —7) K7 (i,)

7;=0 Tj =0
3)

where, K" is the kernel filter of the m-th feature map
of the [-th layer, P, refers to the size of feature maps
in the [-th layer, and 7; and 7; are the search paces in
the horizontal and vertical directions, respectively. As
a result, the convolutional layer performs an element-
wise multiplication in a sliding-window manner. It will
summarize the results into a single output and transform
a feature matrix into a different feature matrix, whose
dimensionality of the new matrix is determined by the
dimensionality of the original matrix and the dimension-
ality of the kernel filter.

Activation Layer: To compensate for the limitations of
linear modeling in the convolutional layer, the results of
the convolutional layer are given to a nonlinear function
(e.g., sigmoid, tanh, softmax, ReLU, leaky ReLU, etc.).
The activation layer is the name given to this nonlinear
function. In this study, all layers but the fully linked
layer are activated using Leaky-ReLU, while the fully
connected layer is activated using soft-max.
Max-pooling Layer: The feature maps are aggregated
using a maximum pooling layer following activation
function and batch normalization. Max pooling is essen-
tially a pooling procedure that chooses the largest element
from the feature map region that the filter covers. In other
words, a feature map comprising the standout features
from the prior feature map will be the output following



the maximum pooling layer. In this paper, a 2 X 2 max-
pooling is used.

In contrast to conventional semi-supervised models that
require explicitly measuring confidence in pseudo-labeling
(i.e., self-training), our method provides a natural and efficient
mechanism for evaluating pseudo labels of unlabeled events.
As demonstrated in Fig. 3, for any identifier, an unlabeled
event can be labeled when two other identifiers agree on the
label of this event. For example, x; can be added to the
training set for S if S7 and S concur on the label of the
event. Following this strategy, each classifier is retrained using
the augmented training set in each iteration. Note that the
structure of the classifiers should be different. Otherwise, the
unlabeled events identified by the other two classifiers will
be the same as those labeled by the other two classifiers for
either of the classifiers. Obviously, even if our method uses
two classifiers to increase the confidence of pseudo labels,
incorrect pseudo-labeling is inevitable. These incorrect pseudo
labels would degrade the performance of the classifiers during
the training process. Therefore, we will show that the increase
in the classification error can be offset if the amount of newly
labeled data can adhere to certain requirements:

S1 and S, classified instances with pseudo-labels are added
to the training set of S3 as examples to prove our conclusion
above. First, let Nt and N*~! refer to the number of data
that are labeled for Ss3 in the t¢-th and ¢ — 1-th iteration,
respectively. Let uy, and U§, g, denote the classification
noise rate of the original training set /N; and the upper bound
of the classification error rate caused by .S, and S, at the t—1-
th iteration. According to the finding of [30], the inverse of
the square of the error at the ¢-th iteration (i.e., ﬁ) can be
formulated as:

(un, [Ni| + U, 5, IN?[)
|Nl @] Nt‘

1
oy = MU Nt|(1 -2

Basically, if €¢ < €=, it implies that S3 can be improved
through using newly labeled data (i.e., D;) from S; and Ss:
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When Ul g, and U . € [0,0.5), (5) always holds if [N'*| >
IN'=* and U§, g IN""*| > UL, g, |N*[. In sum, S5 can be
improved when the following constraint is satisfied:
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This constraint cannot hold when |N!| is far bigger than
|Nt=1|, which is possible. When this occurs, a subsampling
method is applied for N* randomly remove a portion of the
data to maintain (6). It is combined with the proposed structure
to specify the conditions under which unlabeled data may be
labeled for a classifier.

IV. SAFE EVENT IDENTIFICATION MODEL
A. Model Formulation

Considering that class distribution mismatch occurs in ac-
tual grids, it is not reasonable to estimate pseudo labels
to unlabeled data under unseen classes because the training
model never learns the features of this class. Such a prob-
lem leads to severe performance degradation when applying
conventional semi-supervised learning techniques in power
event identification. To solve this question, a safe learning
mechanism is proposed based on the structure mentioned in
the previous section. Specifically, the proposed mechanism
designs a weight function to use unlabeled data selectively
and continuously tracks the performance of the supervised
learning model to prevent performance degradation. To achieve
this, each event classifier (i.e., S1, Sa, and S3) is destined
as a bi-level optimization problem, where one optimization
problem is nested inside another issue. Fig. 4 describes this
process. The basic idea is to use as many beneficial unlabeled
events as possible and keep track of supervised loss to prevent
performance degradation. To achieve this, first, our method
minimizes a weighted empirical risk® by integrating a weight
function with a regularization strategy for the unlabeled events.
The objective function can be formulated as follows:

m m+k
6= moinZL(S(a:i; 0),y;) + Z w(zi; 7))z 0) (1)
i=1 i=m+1

where, 0 is denoted as the model trained with the weight
function parameterized by ~, and €(:) refers to the regu-
larization term. In this work, we have applied a consistency
regularization strategy to formulate Q(-) [31]:

Qz;0) = [|h(z + 63 0) — h(z;0)|[3 ®)

where, h(-) is a standard encoder network that maps input data
to a lower dimensional space and ¢ refers to Gaussian noise.
The aim of the regularization term is to train a model that is
invariant to various data augmentations, which provides the
basis for using unlabeled data to augment prediction function
[32]%. Using the weight function, unlabeled events can be
utilized selectively, thus reducing the impact of the distribution
mismatch problem. Then, the proposed model evaluates 6 on
m labeled events and optimizes the weight function parameter
v to avoid severe performance degradation. This optimization
can be formulated as follows:

y= ngn;L(S(xi;G),yi) ©)

In summary, the first optimization of the proposed safe event
identification (7) is to seek the optimal model parameters 6

SEmpirical risk minimization is a principle in statistical learning theory,
which is commonly used to give theoretical bounds on their performance.
The basic idea is to measure model performance on a known set of training
data rather than an unknown true data distribution.

SMathematically, using pseudo-labeled data to augment the training set first
requires adherence to the notion: if an actual perturbation is applied to an
unlabeled data, the prediction should not change significantly. The underlying
rationale behind this is that data points with different labels should be low
density separation based on cluster assumption.



using the entire dataset. For convenience, let A(f,~) denotes
as (7). Next, the learned model parameter 0 is evaluated
in the labeled dataset and the weight function parameters -y
are optimized, as shown in (9), to achieve a better reliable
performance, which is represented by B(#). Consequently, the
following bi-level optimization problem can be expressed as
the objective of the proposed safe event identification model:

i L(S(z::0), y; 10

m;n; (S(xi:6), i) (10)
R m m+k

s.t. QZHEHZL(S(JH;@),%)+ Z w(zi; )z 0)
=1 i=m-+1

(11)

The unique benefit of the proposed safe learning mechanism
is to introduce safeness in terms of empirical error. In other
words, by optimizing -, the proposed method does not perform
worse than its supervised counterpart.

B. Model Training

Since there is no closed-form expression for this bi-level
optimization problem, it necessitates two nested loops of
optimization to obtain the optimal +*’. As a result, the
computational complexity of the training process increases
significantly as the size of the training data increases. To
address this issue, the parameter optimization in the proposed
model follows an alternating manner. Such a strategy can
significantly reduce the computation burden. Mathematically,
given a weight function w with parameters ~y;, the update of
0:+1 can be obtained by the following equation:

0141 =0; —1noVoA(Or, Vi)

where, 7y is the learning rate for classifier network. Then,
following (11), v¢+1 can be formulated as:

12)

Yir1 =Vt — Ny Vo B(0r11) (13)

Follow the chain rule, the gradient of B(6;11) can be reformu-
lated as Vo B(0:) — 19V Vg A(0:,v:). To efficiently calculate
this, an automatic differentiation strategy is applied [33].
Basically, for each iteration, the local descent directions of the
training data are first examined on the training loss surface.
Then, they are recalculated based on their similarity to the
descent directions of the supervised loss surface. This strategy
requires two full forward and backward passes of the network
on training loss and supervised loss for parameter update,
respectively. The first forward and backward pass is used
to calculate the loss using A(6;,v;) and obtain Vg A(0s,y:).
Then, model parameter 6;,; can be updated using (12). The
weight function is then subjected to the second forward and
backward pass in order to calculate the loss using B(6:1)
and V., B(6;+1). After that, v,41 can be updated using (13).
Finally, the last forward and backward pass is performed to
minimize the reweighted objective to finish one iteration. Note
that this process can be easily implemented using popular deep
learning frameworks such as TensorFlow [34]. See Algorithm
1 and [33] for more details.

"For each ~, we need to compute the optimal 6. The computational
complexity is O(n?). Thus, each single loop can be very expensive.

Algorithm 1 Safe Event Classifier Training using Automatic
Differentiation
Require: : Labeled data N; = {(x1,41), ..., (Tm, Ym)}; unla-
beled data N,, = {41, ..y Ttk 15 initial model param-
eter fy; initial weight function parameter ~y; learning rate
for model parameter 7); learning rate for weight function
parameter 7).,; iteration number 7'.
for t =0,....,T —1 do
Select sample batch from N; — {z;,y;}.
Select sample batch from N,, — {z,}.
Compute generalization loss and weighted empirical
loss using (7) — A0y, ).
5: Calculate the gradient of model parameter —
VoA(Or, V).
6: Update model parameter using 7 and (12) — 6;41.
Recompute generalization loss using (9).
: Calculate the gradient of weight function parameter
— V'YB (9,5_;,_1).
9: Update weight function parameter using 7, and auto-
matic differentiation strategy — yiy1.
10: end for

B2

C. Pseudo Label Dropout

During the training process, based on the estimated results
of three safe event identifiers, a part of unlabeled events will
be labeled and added into the training dataset. In this work, a
dropout strategy is applied in pseudo labeling to exclude those
pseudo-labels with low confidence and ensure the stability
of the training set during the training process. Specifically,
each classifier is used to estimate the label of x; for W times
throughout each iteration and record the frequency w at which
the outcome differs from the rest of the classifiers. When
w < %, this pseudo label is recognized as a stable label
and can be utilized for model retraining. As the value of W
gets larger, it takes longer to estimate the pseudo labels in
each iteration, thus greatly increasing computational burden.
In other words, the selection of W is a trade-off between
the stability of the pseudo labels and computational burden.
In this work, different values of W are tested based on the
performance of the validation set. The appropriate value of W
is obtained when the accuracy of the validation set no longer
increases significantly. Here, the value of W is assigned as 12.

V. NUMERICAL RESULT

This section investigates the performance of our framework
utilizing PMU data and related event logs from Western
Interconnection. The full dataset consists of 4,800 data points
taken under normal behaviors as well as 4,800 recorded
events, such as line outages, frequency events, and transformer
outages. To simulate a situation when the utility only captured
a few occurrences, the event labels are kept for 25% of the
records after data pre-processing. The remaining 75% of the
event labels were regarded as being unidentified. This process
is completely random. Considering that this dataset is an
imbalanced dataset (i.e., more than 75% of the events are line
outages), we randomly select 25% of the data samples for
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Fig. 5. Results of the proposed model’s testing using 20% labeled events.

each type of event as labeled data for the purpose of model
training and testing, instead of randomly selecting 25% of
the data points in the entire dataset. Note that a similar data
partitioning strategy is also applied to control the size of the
labeled dataset in sensitivity experiments. The available dataset
is then evenly divided into k equal folds, taking into account
the PMU measurements and associated event labels. In this
work, the value of k is selected as 5. Based on these partitioned
folds, the proposed model is trained and tested in k iterations.
In each iteration, one fold is left for testing and the model is
trained on the remaining k£ — 1 folds. With this strategy, it is
possible to evaluate the performance of the suggested model
using all of the available data as unseen data.

A. Effectiveness of the Proposed Method

The accuracy achieved from each iteration is averaged to
assess the model performance using the k-fold cross validation
strategy. The accuracy is calculated as follows:

(TP +TN)
(TP +FP+FN +TN)

Where, FP stands for the false positive (e.g., event type is
inferred as frequency event while its true state is normal).
TN is the true negative (e.g., system state is inferred to be
normal while its true state is normal). FN for the false negative
(i.e., system state is inferred to be normal while its actual
type is frequency event). TP refers to the true positive (e.g.,
event type is inferred to be a frequency event while its actual
type is also frequency event). In Fig. 5, testing results for
the three safe event classifiers and the suggested tri-network
technique are shown. It can be seen that the single safe
classifier has an accuracy range of 84 to 85% and the final
testing accuracy of the tri-net method converges to about 85%.
This result indicates that the proposed triple net framework is
reliable and all classifiers converge to similar accuracy regions.
Additionally, Fig. 6 displays the actual and estimated labels
for 15 example events. As can be observed, the proposed
method successfully categorizes the various event categories.
It is noteworthy that these results are obtained with only 25%
of the labeled events.

Accuracy = (14)

B. Sensitivity Analysis

To demonstrate how sensitive the proposed framework is to
the number of labeled events, the average accuracy with varied
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Fig. 6. Comparison of estimated event type and actual event type using the

proposed method.
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Fig. 7. Results of the sensitivity analysis using the proposed method.
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quantities of labeled events is assessed and determined. As a
result of the loss of event information, the event classifier’s
performance is expected to degrade as the volume of labeled
data diminishes. In this case study, we gradually increase
the number of labeled events from 5% to 30% (i.e., a total
of 6 cases). The results are presented in Fig. 7. For each
case, testing accuracy is calculated for S;, S5, S3 and tri-
network, respectively. As can be seen in the figure, as the
percentage of labeled data rises from 5% to 30%, the model’s
accuracy is gradually improved. When the 30% of labeled
events are available, the accuracy of the proposed method
is close to 90%. Meanwhile, it is clear that the accuracy of
the three modules is different, which proves the effectiveness
of our model diversity strategy. By combining these three
modules, a better generalization capability can be achieved.
Compared to the previous study using the same dataset [13],
the proposed method requires only a much smaller labeled
dataset to achieve similar accuracy. Thus, the high-value use
case of our algorithm is when the utility has only a very
small number of labeled events (e.g., 5% of the total recorded
events), the proposed method can still achieve 75% accuracy
and provide meaningful help.

As an imbalanced classification task, it is crucial to show
that the proposed method can correctly categorize each event
type. Therefore, for each event type, several statistical metrics,
including recall, precision, F} score, and Matthews correlation
coefficient (MCC) are utilized to further evaluate the perfor-
mance of our method with different amounts of labeled data



TABLE I
STATISTICAL ANALYSIS OF EVENT IDENTIFICATION

% of Labeled Data Recall Precision F MCC
5% 0.71 0.65 0.67 0.6
10% 0.76 0.66 0.69 0.64
15% 0.81 0.75 0.76 0.73
20% 0.83 0.79 0.81 0.77
25% 0.85 0.8 0.82 0.78
30% 0.86 0.83 0.84 0.81

[35]. Specifically, recall is thought of as the percentage of
relevant events that are correctly identified. Its dual metric,
precision, is defined as the fraction of identified events that are
relevant. F score can be considered as the harmonic average
of the precision and recall:

(8% + 1) * Prec x Recall
(B2 % Prec + Recall)

where, 3 is the precision weight which is set at 1 in this
paper. F} score ranges in [0, 1], where the maximum is reached
when FN = FP = 0. Fy score is not defined based on
confusion matrix since it is independent from 7'N. Meanwhile,
it is not symmetric for type swapping. In comparison, MCC
is a contingency matrix method of calculating the Pearson
productmoment correlation coefficient in terms of the entries
of confusion matrix:

Py = (15)

MOC — TPxTN —FPxFN

/(TP + FP)(TP + FN)(TN + FP)(TN + F6N)

(16)

MCC ranges in [—1,1], where 1 shows a perfect event

identification, O corresponds to the random identification, and

—1 indicates total disagreement between estimated labels and

actual labels. The average values of these indexes are presented

in Table. I. It is clear that the values of all metrics are at the

same level. This result shows that the proposed method is

able to handle the imbalance of the dataset and obtain stable
estimation results for different kinds of events.

C. Performance of the Proposed Method with Class Mismatch
Problem

To demonstrate the performance of the proposed method
with the class mismatch problem, we assume a special case
where the utility never records a certain event type, but this
event type appears in large numbers in unlabeled events.
Specifically, all events belonging to the line outage are first
excluded from the labeled dataset and then added to the
unlabeled events proportionally. Only the remaining types
of events (i.e., normal operation data, XFMR outages, and
frequency events) are used for initial model training. As
training proceeds, our model is expected to avoid pseudo-
labeling hidden line outage events and adding them to the
training set, thus preventing performance degradation. Here,
we gradually increase the degree of labeled and unlabeled
class mismatch degree from 0% to 60% to test the effective-
ness of our algorithm, respectively. Note that the degree of
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labeled/unlabeled class mismatch is obtained by the ratio of
the number of line outage events (i.e., unknown events) to the
number of other kinds of events (i.e., known events) among
the unlabeled events. This degree can be equivalently viewed
as the exploration value of unlabeled events. In the extreme
case, when this degree is 100%, it means that no unlabeled
events should be exploited in model training. The results are
presented in Fig. 8. As shown in the figure, it can be found that
the accuracy of the algorithm slightly decreases as the degree
of class mismatch increases. When unknown events accounted
for half of the unlabeled events, the accuracy of our algorithm
dropped by roughly 3% (from 89% to 86%). However, in
this extreme case, our algorithm still performs better than
the supervised learning-based event identification method (i.e.,
82%) [13]. These findings corroborate the premise of this
study, according to which the performance of the proposed
framework diminishes with increasing class distribution mis-
match between labeled and unlabeled data but never performs
worse than that of the supervised learning method.

D. Method Comparison

Considering that most existing works on event identification
rely on unsupervised techniques (i.e., clustering algorithms) to
connect unlabeled data and labeled data, We have conducted
numerical comparisons with two clustering algorithms (i.e.,
hierarchical clustering and spectral clustering) previously used
for event identification tasks [21] [36] [37]. Moreover, two
state-of-the-art semi-supervised classification algorithms, PI
model and mean teacher, are included in our comparison



experiments to observe whether our models can perform better
than previous semi-supervised learning models in the presence
of high class mismatch degree [38] [39]. To ensure a fair com-
parison with unsupervised learning methods, the total number
of event types in the set of unlabeled events is unknowable.
In other words, the number of clusters is not available. Hence,
in the experiments, the Davies-Bouldin validation index is
applied to calibrate the unsupervised learning method to find
the number of clusters [40]. The identification accuracy is
calculated based on the misclassification between the true
labels and the clustered labels. Like the last case, all methods
are tested with varying class mismatch degrees. The compar-
ison results are demonstrated in Fig. 9. It can be observed
that the three semi-supervised learning methods generally
outperform unsupervised learning methods, especially in the
cases of low mismatch degree. The reason behind this is that
the unsupervised learning methods do not use any labeling
information, but only the data itself. This makes their results
generally poor under the event classification task. Meanwhile,
in some tests, we cannot obtain the correct number of clusters
in a calibrated manner, which further reduces the accuracy.
Among the semi-supervised learning methods, the proposed
method performs better than the two state-of-the-art methods,
especially when the mismatch degree is high. In some extreme
cases (e.g., mismatch degree is 60%), the proposed algorithm
still performs better than supervised learning-based methods,
but other semi-supervised methods show performance degra-
dation. Note that unsupervised learning models do not suffer
from the class mismatch problem, as they do not care about
label information.

E. Computational Complexity Analysis

To demonstrate the practical complexity of the proposed
algorithm, we conducted the case study on a typical personal
computer. Based on our multiple experiments, when the event
labels are retained for 25% of the records, the training compu-
tation of the proposed model time ranges from 1.7 hours to 1.9
hours. It should be noted that the training time also changes
slightly with the volume of labeled data due to the pseudo-
labeling process. The proposed method’s average test time,
based on 1,440 test samples, is roughly 0.8 ms. As a result,
in a real grid, our method may deliver estimates in around 0.1
seconds after the PMU measurements arrive at the phase data
concentrator after accounting for the communication delay.
This is still much faster than the vast majority of heuristic-
based methods.

VI. CONCLUSION

In this paper, we design a novel data-driven method to
accurately identify events using a limited number of labeled
events and a rich set of unlabeled events. Our approach is
built on a semi-supervised learning framework with three event
identifiers. By designing a weight function, each classifier
can selectively explore unlabeled events to provide additional
information about the shape of the decision boundary among
different event types. The proposed method can address two
main challenges in power system event identification: 1) poor

generalization of deep learning models caused by the limited
number of labeled events. 2) class distribution mismatch
problem between labeled events and unlabeled events caused
by event data scarcity. The proposed solution has been suc-
cessfully tested on an actual Western Interconnection dataset.
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