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Abstract—Fast and accurate estimation of sensitivity matrices
is significant for the enhancement of distribution system modeling
and automation. Analytical estimations have mainly focused on
voltage magnitude sensitivity to active/reactive power injections
for unbalanced networks with Wye-connected loads and ne-
glecting DERs’ smart inverter functionality. Hence, this paper
enhances the scope of analytical estimation of sensitivity matrices
for unbalanced networks with 1-ϕ, 2-ϕ, and 3-ϕ Delta/Wye-
connected loads, DERs with smart inverter functionality, and
substation/line step-voltage regulators (SVR). A composite bus
model comprising of DER, Delta- and Wye-connected load is
proposed to represent a generic distribution bus, which can be
simplified to load, PV, or voltage-controlled bus as required. The
proposed matrix-based analytical method consolidates voltage
magnitude and angle sensitivity to active/reactive power injection
and tap-position of all SVRs into a single algorithm. Extensive
case studies on IEEE and EPRI networks show the accuracy and
wide scope of the proposed algorithm compared to the existing
benchmark method.

Index Terms—Distributed energy resources, linear model, re-
newables, step regulators, voltage sensitivity, unbalanced distri-
bution networks.

I. INTRODUCTION

Broadly, sensitivity coefficients are defined by the first-order
partial derivative of any state variables to the input variable. In
particular to the distribution network, sensitivity coefficients
generally refer to the partial derivative of nodes’ voltage
magnitude (E) and angle (θ) to active/reactive nodal power
injections (P/Q) and tap-position (γ) of voltage regulators,
i.e., ∂E

∂P , ∂E
∂Q , ∂E

∂γ , ∂θ
∂P , ∂θ

∂Q , and ∂θ
∂γ . Sensitivities to other

network’s state variables, such as line current and loss, are
computed using voltage magnitude and angle sensitivities
[1]. Estimation of voltage and angle sensitivities are gener-
ally provided as a built-in function in transmission network
simulation tools (such as MATPOWER and DigSILENT)
which typically employ the Jacobian method [2]. In contrast,
currently available distribution network simulation tools, such
as OpenDSS, PandaPower, and DigSILENT, do not have built-
in functions to estimate voltage and its angle sensitivities for
the unbalanced system. It is mainly due to the complexity
of distribution network modeling and solving in the presence
of multi-phased lines, loads, and distributed energy resources
(DERs) and their various configurations (e.g., variants of Delta
and Wye connections).
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Network sensitivities have been popularly used to achieve
closed-loop control of distribution networks for achieving
voltage control [3], optimal economic operation [4], catering
ancillary services [5], and safely re-closing breakers [6]. With
the increasing penetration of renewable DERs and electric
vehicles in distribution systems, online feedback optimization
is regularly used to respond quickly to network changes. Ma-
jorly online feedback optimization is dependent on sensitivities
[6], [7]. Hence, fast and accurate estimation of sensitivities is
of significant importance for the enhancement of distribution
network automation.

The methods to estimate voltage sensitivities can be broadly
classified into two categories, viz., (a) data-driven and (b)
model-based. Data-driven methods are typically neural net-
works trained to predict the sensitivities at various operating
conditions [8]. However, data-driven methods always require
high-quality and large datasets, and they are difficult to reveal
physical laws. Instead, analytical methods are physics-based,
which do not depend on high-quality and large datasets. An-
alytical methods can be further classified into two categories
based on their application to only radial networks [9]–[14] and
to both radial and meshed distribution networks [1], [15]–[18].

The study in [9], [10] proposes a simplified approach to
compute voltage sensitivity coefficients in radial distribution
networks for constant current loads/sources and is further
simplified by neglecting phase differences among buses. How-
ever, network control and operation consider a constant power
model of loads/sources, which limits the application of these
methods. Considering constant power models, the voltage
sensitivity coefficients for radial systems are analytically for-
mulated in [11]–[14]. The estimated sensitivities in [11]–[13]
are exact for the radial lossless networks and are generalized
in [14] considering the line losses.

The analytical methods applicable to both radial or meshed
distribution networks typically employ Z-matrix [1], [16], Y-
matrix [15], [17], or both Y- and Z-matrix [18] to express the
relationship between power injections and node/bus voltages
for sensitivity estimation. Formative work on sensitivity es-
timation of distribution networks is conducted in [1], where
the first-order partial derivatives of bus voltage with respect
to active/reactive power injections are estimated by solving
linear sets of equations pertaining to nodal power injections.
This study is further enhanced in [16] by integrating voltage
sensitivity to the tap-position of a substation transformer in
distribution networks and by demonstrating its applicability
in meshed networks. However, the application of both works
[1], [16] are limited to balanced distribution networks only.
An influential work on voltage sensitivity estimation in un-
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balanced distribution networks is studied in [15] considering
multiple slack and load buses. The work is further generalized
in [17] by considering PV buses too. A Neumann series is
applied in [18] to simplify voltage sensitivity estimation to
active/reactive power injections. The works [15], [17], [18]
only consider Wye-connected loads. However, there are also
Delta-connected loads that could be either 1-ϕ, 2-ϕ, or 3-
ϕ in reality. Furthermore, many utilities (e.g., California and
Arizona) are imposing DER interconnection rules for elevating
the grid’s hosting capacity, requiring DERs to have smart
inverter functionalities such as volt-var control [19]. The volt-
var control will enable a DER to support a grid with reactive
power when the voltage at its point of common coupling
deviates from the nominal value [20]. The potential impact of
DERs’ volt-var control functionalities on voltage sensitivity
is also not considered in [15], [17], [18]. The smart inverter
functionalities directly impact the network voltage and are
popularly used as recommended by IEEE 1547-2018 [20].
Hence at large DER penetration, it is significant to consider
DERs’ smart inverter functionality while estimating the sen-
sitivity matrices. There are multiple 1-ϕ substation/line step-
voltage regulators (SVR) deployed mainly for voltage control,
and the voltage sensitivities to the tap-positon of such SVRs
are not yet studied in the past literature.

Hence, this paper enhances the analytical estimation of
voltage sensitivity matrices in unbalanced distribution net-
works considering DERs’ smart inverter functionalities, multi-
phased Delta/Wye connected loads, and substation/line SVRs.
Furthermore, the proposed matrix-based method consolidates
voltage magnitude and angle sensitivity to active/reactive
power injection and to tap-position of substation/line SVRs
in a single algorithm. The wide applicability of the proposed
algorithm is achieved by modeling each bus as a composite
bus comprising DER, Delta-, and Wye-connected loads. The
composite bus represents the reality of distribution buses, as
there is no definite load and generator bus in the distribution
system. The composite bus can be easily simplified to a
generator (PV bus), load, or voltage-controlled bus as required.
The proposed algorithm is tested in various IEEE networks,
and the performance is evaluated by mean absolute percentage
error and mean computation time. One limitation of the pro-
posed method is the lack of generalization for Delta-connected
DERs. However, Delta-connected DERs can be converted to
Wye-connection to apply this method.

The contributions of the paper are listed as follows:

• Formulate a generalized analytical method for voltage
magnitude and angle sensitivity matrices with respect to
active/reactive power injections and tap-position of SVRs.

• This proposed analytical method extends sensitivity ma-
trices to more realistic and comprehensive distribution
networks, considering not only SVRs but also multi-phase
Delta- and Wye-connected loads.

• This proposed analytical method takes into account
DERs’ smart inverter functionalities, greatly improving
its generalization ability and flexibility.

II. ANALYTICAL DERIVATION OF SENSITIVITY MATRICES

A. Modeling unbalanced distribution network in matrix form

For a general three-phase distribution network, the injected
node currents and node voltages are linked by its admittance
matrix as1:

Ī = Ȳ · Ē. (1)

Here, Ī = [Ī1a , Ī
1
b , Ī

1
c , . . . , Ī

n
a , Ī

n
b , Ī

n
c ]

T , and Ē =
[Ē1

a, Ē
1
b , Ē

1
c , . . . , Ē

n
a , Ē

n
b , Ē

n
c ]

T . Here, the super-scripts
{1, 2, . . . , n} denote the bus, whereas the sub-scripts {a, b, c}
represent nodes/phases associated with the corresponding bus.
The system admittance matrix Ȳ is formed by clustering the
primitive admittance matrix of each network element such as
lines, switches, capacitor banks, transformers, and regulators
(e.g., [21]), and has the structure as follows:

Ȳ =



ȳ11aa ȳ11ab ȳ11ac · · · ȳ1naa ȳ1nab ȳ1nac
ȳ11ba ȳ11bb ȳ11bc · · · ȳ1nba ȳ1nbb ȳ1nbc
ȳ11ca ȳ11cb ȳ11cc · · · ȳ1nca ȳ1ncb ȳ1ncc
...

...
...

. . .
...

...
...

ȳn1aa ȳn1ab ȳn1ac · · · ȳnnaa ȳnnab ȳnnac

ȳn1ba ȳn1bb ȳn1bc · · · ȳnnba ȳnnbb ȳnnbc

ȳn1ca ȳn1cb ȳn1cc · · · ȳnnca ȳnncb ȳnncc


(2)

The distribution network comprises a few three-phase and
single-phase tap-changing transformers (also referred to as
step-voltage regulators) at the substation or along the line,
primarily designed for voltage regulation. As a result, its
Ȳ has to be recomputed whenever the tap is shifted in
those transformers. To avoid the entire recomputation of the
admittance matrix, we formulate it as:

Ȳ = Ȳo + δȲr, (3)

where Ȳo is the admittance matrix when the taps are at the
nominal position and remain constant unless the distribution
network is reconfigured. δȲ

r is an incremental change in
the admittance matrix, which accounts for the change in
admittance due to shifting in the tap-position of regulators.
δȲr is highly sparse than Ȳo, and can be computed based on
location and type of regulator as2:

For all ((i, p), (j, k)) ∈ R
δȲr ((i, p), (j, k)) = δȲ r ((i, p), (j, k)) (4a)

For all ((i, p), (j, k)) /∈ R
δȲr ((i, p), (j, k)) = 0 (4b)

Here, (i, p) and (j, k) represent the ‘from’ and ‘to’ nodes of
a voltage regulator, where i and j are bus indices, and p and
k are phase indices. R is a set containing the ’from’ and ’to’
nodes of all voltage regulators in the distribution network. δȲ r

is an incremental admittance matrix of each voltage regulator
with reference to its admittance matrix at the nominal tap

1In this paper, every phasor, its conjugate and magnitude are denoted with
a bar above (e.g., X̄), below (e.g., X) and without any bars (e.g., X),
respectively. Additionally, normal matrix multiplication is denoted by ·.

2The nodes are represented by a tuple (bus, phase), where bus refers to bus
name or number and phase is either a, b or c.
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Fig. 1. Composite bus model

position. δȲ r for different types of regulator are shown in
Appendix A, B.

The distribution network comprises one or more inter-
connections with the transmission grid, referred to as slack
buses, and their set of nodes are represented by S . Unlike
transmission networks, distribution networks do not have a
distinct generator or load bus, rather both generators (referred
to as DERs) and load co-exist on the same bus. In addition,
the DERs and loads could be either three-phase, two-phase, or
single-phase in nature. Again, the loads could be either Wye or
Delta connected, whereas DERs are generally Wye connected
[22]. Consequently, the nodal current injection on distribution
networks is more heterogeneous than in transmission systems.
Without loss of generality, the distribution network bus in-
jection is modeled by three-phase Delta and Wye-connected
loads, and Wye-connected DER, as shown in Fig. 1. This
composite injection model can be easily simplified to any 1-ϕ
or 2-ϕ or 3-ϕ connection of loads and DERs. Furthermore, the
composite bus can also be simplified to model a generator bus
(or PV bus) or a load bus, or a voltage control bus. The set
of nodes of composite buses is represented by C.

For the sake of generic modeling, all the buses of the
distribution network are considered to be composite buses.
However, the slack buses will be considered later while solving
the network power flow by converting their composite model
to a slack bus. With this proposition, the current injection
vector of the distribution network can be written as:

−ĪL, − ĪL,∆- + ĪG = (Ȳ
o
+ δȲr) · Ē. (5)

Here ĪL, and ĪG are vectors of current injection from Wye-
connected loads and DERs, respectively. Meanwhile, ĪL,∆-
is a vector of current injection from Wye-transformed Delta-
connected loads. Note that (5) holds true only for nodal current
injections. Wye-connected loads are inherently nodal injec-
tions; however, delta-connected loads inject the current across
the phases. Hence, all delta-connected loads are required to
be converted to equivalent wye-connection (̄IL,∆- ) before
equating them in (5). The current injection form of (5) can
be expressed in terms of complex power injection as 3:

−SL, − SL,∆- + SG = E⊙ (Ȳ
o
+ δȲr) · Ē. (6)

Here SL, and SG are complex conjugate of power injec-
tion vector of Wye-connected loads and DERs, respectively.
SL,∆- is a Wye-transformed load vector which is obtained
by transforming the vector of Delta load to Wye connection.

The formulations presented in the following Sections II-A1
- Section II-B1 are all novel contributions of the paper apart
from the fundamental equations.

3The Hadamard product is denoted by ⊙ throughout the paper.
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Fig. 2. (a) 3-ϕ Delta load. (b) Volt-var characteristic of DER inverter.

1) Transforming vector of Delta load to Wye connection

A Delta-connected load (S̄i
L,∆) at bus i can be transformed

to equivalent Wye-connected (S̄i
L,∆- ) load using transforma-

tion from [23]. With reference to Fig. 2(a), the transformation
can be expressed as:S̄i

L,a

S̄i
L,b

S̄i
L,c

=


Ēi
a

Ēi
a−Ēi

b

0 − Ēi
a

Ēi
c−Ēi

a

− Ēi
b

Ēi
a−Ēi

b

Ēi
b

Ēi
b−Ēi

c
0

0 − Ēi
c

Ēi
b−Ēi

c

Ēi
c

Ēi
c−Ēi

a

·
S̄i

L,∆,ab

S̄i
L,∆,bc

S̄i
L,∆,ca

 (7)

In short form: S̄
i
L,∆- = Γ̄i · S̄i

L,∆ (8)

Note that (7) is also applicable for 1-ϕ or 2-ϕ Delta load
by assuming them as 3-ϕ Delta load with 0 demand for
the phases that are absent. A vector of Delta loads S̄L,∆ =

[S̄
1
L,∆, . . . , S̄

n
L,∆]

T is converted to Wye-transformed load vec-
tor S̄L,∆- = [S̄

1
L,∆- , . . . , S̄

n
L,∆- ] as 4:

S̄L,∆- = Γ̄ · S̄L,∆ where, Γ̄ = Diag{Γ̄1, . . . , Γ̄n}. (9)

2) Consideration of smart inverter functionality in DERs

With the increasing adoption of the IEEE 1547-2018 stan-
dards by utilities, the DERs are required to provide voltage
support to the grid by means of smart inverter functionality.
The most commonly adopted functionality in DERs is volt-
var support by which the DERs absorb or generate reactive
power based on the voltage measured at its point of common
coupling. An example of the volt-var characteristic of a smart
inverter is shown in Fig. 2(b), by which the DER inverter
provides dynamic reactive support based on the Q-V droop
(m) when the terminal voltage is between 0.9 to 1.1 p.u.. With
such smart inverter functionality, the imaginary component of
complex power injection (S̄G) in (6) depends on the magnitude
of the terminal voltage.

(i) 1-ϕ DERs: Complex power injection of a single-phase
DER connected to a node (i, p) is expressed as5:

S̄i
1ϕ,p = P i

1ϕ,p + jmi
1ϕ,p(E

i
p − Êi

1ϕ,p) (10)

For generality, the 1-ϕ DER is assumed to exist on every node
of the distribution network. In reality, DERs may not be at all
nodes, however, the absence of a DER can be theoretically
modeled with an inverter with 0 active power injection and 0

4Diag{} denotes a square diagonal matrix with the elements in {} on the
main diagonal.

5Imaginary unit of a complex number is denoted by j throughout the paper.
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volt-var droop. Hence, the vector of complex power injection
of all 1-ϕ inverters is expressed as:

S̄1ϕ = P1ϕ + jΨ · (E− Ê1ϕ) (11)

Here, Ψ = Diag{m1
1ϕ,a,m

1
1ϕ,b,m

1
1ϕ,c, . . . ,m

n
1ϕ,a,m

n
1ϕ,b,

mn
1ϕ,c}. Furthermore, E and Ê are the vector of voltage mag-

nitude and the reference value of voltages of all the nodes, re-
spectively. For example, Ê = [Ê1

a, Ê
1
b , Ê

1
c , . . . , Ê

n
a , Ê

n
b , Ê

n
c ]

T .

(ii) 3-ϕ DERs: For 3-ϕ inverter connected to bus i, the
reactive power injection is computed from the similar volt-
var characteristics utilizing the average voltage of all three
nodes [24]. Hence, the complex power injection of a three-
phase inverter would be:

S̄i
3ϕ = P i

3ϕ + jmi
3ϕ [

1

3
(Ei

a + Ei
b + Ei

c)− Êi
3ϕ] (12)

Consider every bus of the distribution network with a three-
phase DERs with volt-var functionality, the vector of complex
power injection from all the DERs would be

S̄3ϕ = P3ϕ + j(Ω ·E−Λ · Ê3ϕ). (13)

The derivation of (13) is detailed in Appendix C.

Finally, using (9), (11) and (13), the complex power injec-
tion model of the distribution network (6) can be formalized
considering all bus modeled in the form of proposed composite
form as:

− SL, − Γ · SL,∆ + SG = E⊙ (Ȳ
o
+ δȲr) · Ē (14)

where,

SG = P1ϕ +P3ϕ − j((Ψ+Ω) ·E− (Ψ · Ê1ϕ +Λ · Ê3ϕ)).
(15)

B. Derivation of sensitivity matrices

In a distribution network, a node voltage depends on ac-
tive/reactive power injections (Pn

p /Q
n
p ) at any node (n, p) and

tap-position (γs) of voltage regulators. Hence, it is compelling
to estimate the partial derivatives of voltage magnitude with
respect to u ∈ {Pn

p , Q
n
p , γs}, where (n, p) ∈ S∪C and s ∈ R.

To find the general sensitivity equation, we assume a fictitious
source at each node. Fictitious sources (S̄F ) do not exist in the
network in reality (they can be visualized as a source injecting
zero active/reactive power injection). However, they are used
in the transmission system to study the impact on network
voltage for a small change in power injection at a particular
bus [25]. The same concept of the fictitious source is utilized
here and assumed to exist in each node of the distribution
system to facilitate finding the derivative of node voltages
with respect to active/reactive power injections. Hence, (14)
is re-written as:

SF − SL, − Γ · SL,∆ + SG = E⊙ (Ȳ
o
+ δȲr) · Ē. (16)

For constant load models (S̄L, and S̄L,∆), the derivative of
(16) with respect to u can be expressed as:

∂SF

∂u
−Π · ∂E

∂u
− j(Ψ+Ω) · ∂E

∂u
=
∂E

∂u
⊙ (Ȳo+δȲr) · Ē+

E⊙ (Ȳo + δȲr) · ∂Ē
∂u

+E⊙ ∂δȲr

∂u
· Ē (17)

Here,
∂SL,

∂u = 0, ∂
∂u (Γ · S∆) = Π · ∂E

∂u and ∂SG

∂u =
−j(Ψ +Ω) · ∂E

∂u . The former expression is true for constant
load models whereas the proof of the second expression is
shown in Appendix D. It is to be noted that ∂

∂u (Γ·S∆) depends
on derivative of voltage phasors whereas ∂SG

∂u depends on
voltage magnitude. Hence, we express voltage phasor in terms
of magnitude and angle. The voltage vector and its conjugate
can be expressed as Ē = E ⊙ Ā and E = E ⊙ A, where
Ā = [ejθ

1
a , ejθ

1
b , ejθ

1
c , . . . , ejθ

n
a , ejθ

n
b , ejθ

n
c ]T . Their derivatives

with respect to u can be further expanded as:

∂Ē

∂u
=

∂E

∂u
⊙ Ā+ jĒ⊙ ∂θ

∂u
(18a)

∂E

∂u
=

∂E

∂u
⊙A− jE⊙ ∂θ

∂u
(18b)

It is to be noted that ∂Ā
∂u is substituted with ∂Ā

∂u = jĀ⊙ ∂θ
∂u .

On substituting (18) into (17), we get:

F̄ =C̄ · ∂E
∂u

+ jD̄ · ∂θ
∂u

. (19)

where C̄ = C̄1 + C̄2 + C̄3 + C̄4 and D̄ = D̄1 + D̄2 + D̄3

such that:

C̄1 =Diag{A⊙ (Ȳo + δȲr) · Ē} (20)
C̄2 =E⊙ (Ȳo + δȲr) ·Diag{Ā} (21)
C̄3 =−Π ·Diag{A}, C̄4 = −j(Ψ+Ω) (22)
D̄1 =−Diag{E⊙ (Ȳo + δȲr) · Ē} (23)
D̄2 =E⊙ (Ȳo + δȲr) ·Diag{Ē} (24)
D̄3 =Π ·Diag{E} (25)

F̄ =
∂SF

∂u
−E⊙ ∂δȲr

∂u
· Ē (26)

The matrix ∂E
∂u and ∂θ

∂u in (19) are real, and this equation
can be segregated into two by equating real and imaginary
components. Then the resulting equation in augmented matrix
form is expressed as:[

ℜ(C̄) −ℑ(D̄)

ℑ(C̄) ℜ(D̄)

][
∂E
∂u
∂θ
∂u

]
=

[
ℜ(F̄)
ℑ(F̄)

]
(27)

Finally (27) can be solved for computation of voltage sensitiv-
ity with respect to any input variable u. It is worth noting that
matrices C̄ and D̄ are constant matrices for a given operating
condition, whereas only F̄ depends on the input variable u.

1) Voltage sensitivity to tap-position of regulators (u = γ)

The voltage sensitivity of all the nodes to a tap-position of
any regulator can be determined considering u = γ in (19)
and its solution is given by (27). For u = γ, ∂SF

∂γ = 0 and F̄
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in (26) is simplified as:

F̄ =−E⊙ ∂δȲr

∂γ
· Ē (28)

Here F̄ depends on the admittance matrix of regulators in
the distribution network. Ȳ r, δȲ r, and ∂δȲ r

∂γ for few type of
regulators are shown in Appendix A, B. Thereafter, the voltage
sensitivity matrix to a particular regulator can be determined
by solving (27). If there are s regulators, one way of estimating
the voltage sensitivity of the network is by solving a new set
of (27) for each regulator’s tap-position. For each regulator,
the square matrix on the left side of (27) is fixed whereas the
right side matrix has to be computed using (28). Alternatively,
the voltage sensitivity with respect to all the regulators can be
determined at once using the augmenting form of (27), as
shown below.[

ℜ(C̄) −ℑ(D̄)

ℑ(C̄) ℜ(D̄)

][
∂E
∂γ1

. . . ∂E
∂γs

∂θ
∂γ1

. . . ∂θ
∂γs

]
=

[
ℜ(F̄1) . . . ℜ(Fs)

ℑ(F̄1) . . . ℑ(Fs)

]
(29)

2) Voltage sensitivity to active/reactive power injections
(u = Pn

p or Qn
p )

Voltage sensitivity to active power injection (u = Pn
p ) from

a particular node (n, p) is also determined using (27). For u =
Pn
p , F̄ can be computed using (26) and would be F̄ =

∂SF

∂Pn
p

as ∂∆Ȳr

∂Pn
p

= 0. Furthermore, F̄ can be deduced as:

F̄ i
k =

∂Si
Fk

∂Pn
p

=

{
1, if (i, k) = (n, p)

0, otherwise
, ∀(i, k) ∈ C (30)

The voltage sensitivity to active power injection at each node
(n, p) ∈ C can be found by solving (27) using (30) one by
one. It can be noted that for any node injections, the square
matrix on the left side of (27) remains constant. Hene, we
express the voltage sensitivity to active power injection from
all the nodes in C by an augmented form as:

[
ℜ(C̄) −ℑ(D̄)

ℑ(C̄) ℜ(D̄)

][
∂E
∂P 1

a
. . . ∂E

∂Pn
c

∂θ
∂P 1

a
. . . ∂θ

∂Pn
c

]
=

[
1N×N

0N×N

]
, (31)

where 1 and 0 are an identity and zero matrix respectively.
Similarly, the sensitivity matrix to reactive power injection

is expressed as:[
ℜ(C̄) −ℑ(D̄)

ℑ(C̄) ℜ(D̄)

][
∂E
∂Q1

a
. . . ∂E

∂Qn
c

∂θ
∂Q1

a
. . . ∂θ

∂Qn
c

]
=

[
0N×N

−1N×N

]
(32)

3) Consideration of Slack buses

The derivation of network sensitivity matrix in (29),(31),
and (32) considered all the buses to be of composite nature.
All these equations can be expressed in short form as:[

A1 A2

]
·
[
X1

X2

]
=

[
B1

B2

]
(33)

where X1 and X2 represent the voltage and angle sensitivity
matrices, whereas A1, A2, B1 and B2 are constant matrices.
The distribution networks have at least one slack bus and it is
important to consider the slack nodes before solving (33). For

any slack node (i, p), we can infer the following conditions.

∂Ei
p

∂u
= 0 and

∂θip
∂u

= 0 ∀(i, p) ∈ S (34)

To incorporate the nature of slack nodes in (33), we represent
the slack nodes’ (S) indices in E vector by a set I. To
incorporate (34) in (33), we impose the following conditions.

A1(i, k) and A2(i, k) =

{
1, i = k

0, otherwise
∀i, k ∈ I (35)

B1(i, k) and B2(i, k) =0 ∀i ∈ I (36)

4) Consideration of PV bus/node

Unlike transmission networks, PV buses (where the voltage
is held constant to a fixed value) are comparatively rare in
distribution networks. A bus connected with a very large DER
may be operated as a PV bus in the distribution network,
however, the DER would require a large reactive power
capability. Nevertheless, the proposed composite bus can be
modeled as a PV bus by considering the connection of zero
loads and a DER with a very large (theoretically infinite) volt-
var droop.

C. Algorithm description

The algorithm for the proposed method is presented in Al-
gorithm 1. To compute the sensitivity matrices, this algorithm
necessitates network data, including Ȳo, R, the locations of
Delta-connected loads and DERs, and Ē. It is important to
note that these input parameters may undergo changes during
network operations and may also be affected by unforeseen
disconnections of loads or DERs. Consequently, our algorithm
relies on situational awareness techniques, such as topology
identification, outage detection, and state estimation, as dis-
cussed in [26], particularly in online applications where real-
time adaptability is crucial.

However, for offline studies, all the necessary input param-
eters are readily available and can be used without the need
for dynamic updates.

III. NUMERICAL TEST CASES

To validate the proposed algorithm, we will demonstrate the
results with visual and numerical verification. As sensitivities
are basically the first-order partial derivatives of a system state
to any input, we will show that the estimated sensitivities
are tangential to non-linear state v.s. input plots at various
operating points. For example, the voltage sensitivity of node
(i, p) to active power injection at node (j, k), i.e.,

∂Ei
p

∂P j
k

should

be tangent to Ei
p v.s. P j

k curves. Furthermore, we will compare
our results with a perturb-&-observe method for estimating the
errors and benchmark with the existing analytical method [15].

A. Case study 1: IEEE 13 bus distribution network

IEEE 13 bus network is an unbalanced distribution system
with 1-ϕ, 2-ϕ, and 3-ϕ Delta and Wye connected loads as
shown in Fig. 3. It has only one substation transformer which
is connected to a 115 kV transmission line at the source bus,
which is the slack bus of the system, and has three 1-ϕ SVRs
at the substation. To test the proposed algorithm for estimating
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Algorithm 1: Generalized analytical estimation of
sensitivity matrices

Inputs: Network data such as Ȳo, SVR configuration
and location (R), location of Delta-connected loads
and DERs, and node voltage vector (Ē).

Output: Sensitivity matrices
for any time step t: do

• Compute δȲ r if there is change in tap-position in
any SVRs and update Ȳ using (3).

• Transform vector of Delta load to Wye using (9)
and compute Π̄ using (47) and (50).

• Obtain vector of complex power injections from
DERs using (15) by computing Ψ and Ω using
(11), (13), and (46).

• Compute C̄ and D̄ using (20)-(25) and determine
A1, A2 by comparing with (33).

• Impose the condition of slack nodes in A1, A2

using (35)
• For each SVR s, compute the matrix F̄s using
(28) and compute B1, B2 matrices.

• Compute ∂E
∂γ and ∂θ

∂γ by solving (29).
• Compute ∂E

∂P and ∂θ
∂P by solving (31)

• Compute ∂E
∂Q and ∂θ

∂Q by solving (32)
end

Ext. Grid

source bus
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633632

645646
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680
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main 
transformer
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RG 60

Δ
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color index

slack
load
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Fig. 3. Modified IEEE 13 bus system

sensitivities, we created a composite bus at 632 and 680, where
a 1-ϕ DER at node a and a 3-ϕ DER both with volt-var control
are connected, as shown in Fig. 3.

1) Sensitivities to tap-position of regulators:

The proposed algorithm computed voltage and angle sensi-
tivity matrix to tap-position of all three 1-ϕ SVR. However, we
will first focus on sensitivity coefficients for the tap-position
of SVR at phase a for visual verification. To showcase visual
verification, the voltage and angle at all nodes of bus 675
and 634 were recorded by solving distribution system power
flow using OpenDSS at various tap-position of SVR located
at (650,a). The recorded data have been presented in the form
of solid lines for bus 675 and dashed lines for bus 634 in Fig.
4 and Fig. 5. Voltage and angle sensitivity coefficients to tap-
position of SVR were extracted from the respective sensitivity
matrices computed at various tap-position of SVR (e.g., -15,-
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Fig. 4. Plot showing the alignment of computed voltage sensitivities of buses
675 and 634 to tap-position of regulator1, with the corresponding V-tap curve
in the IEEE 13 Bus network.

10, -5, 0, 5, 10, 15). As the sensitivity coefficients are the
slope of voltage and angle to tap-position, a small line with a
corresponding slope at the operating point should be tangential
to the plots obtained by a series of load flow computations
from OpenDSS. Such small lines are shown in pink in Fig. 4
and Fig. 5. These pink lines are visually tangential at every
operating point under study, which supports the estimation
accuracy of the proposed algorithm.

Furthermore, the computed voltage and angle sensitivity
coefficients are compared with the perturb-&-observe method.
The mean absolute error for all the operating points shown
in Fig. 4 and Fig. 5 are below 9.2e-5 and 3.5e-6 for voltage
and angle sensitivity estimation, respectively. From Fig. 4, one
can see that when the tap-position of SVR is increased, it
progressively increases the voltage at node (675,a), which is
intuitive. However, it is not at all intuitive to observe that the
voltage at both nodes (634,a) and (634,b) would increase with
the tap-position of SVR. It is mainly because of the XFM-
1 transformer with Delta-Wye configuration of HV and LV
winding. It can also be noted from Fig. 5 that the tap-changes
of SVR do not impact node angle significantly.

2) Sensitivities to active/reactive power injections:

For visual verification, we will first focus on the voltage
and angle trajectory of buses 675 and 634 to active/reactive
power changes on the node (671,a). These trajectories were
obtained by solving load flow problems in OpenDSS, which
are shown using solid (for bus 675) and dashed lines (for bus
634) in Fig. 6, Fig. 7, Fig.8 and Fig. 9. It can be observed that
the voltage and angle of nodes (675,a) and (634,a) changed
significantly with active/reactive power injection in a node
(671,a). However, other nodes at phase b and c showed slight
changes. These plots show that a three-phased unbalanced
distribution network is not intuitive because the phases are
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Fig. 5. Plot showing the alignment of computed voltage sensitivities of buses
675 and 634 to tap-position of regulator1, with the corresponding θ-tap curve
in the IEEE 13 Bus network.

coupled by the mutual reactance of the lines. The proposed
algorithm estimated the voltage and angle sensitivity matrix to
active/reactive power injections at selected operating points,
where the active/ reactive power injections at (671,a) are -
1000, -750, -500,. . . , 1000 kW/kVar. From the computed
sensitivity matrix, the sensitivity coefficients pertaining to
power injection at (671,a) were located and used to draw a
line having the slope equal to the sensitivity coefficients, and
are shown by pink lines in Fig. 6 - 9. All these lines are
observed to be tangent to the corresponding plots obtained by
a series of load flow calculations.

Alternatively, the computed sensitivity coefficients are com-
pared with the perturb-&-observed method, and the estimation
errors were determined. The mean absolute error was deter-
mined at each operating point and is shown by the brown line
in Fig. 6 - 9. The estimated error is small and less than 1.6e-6
in all the operating points and all the plots.

B. Case study 2: IEEE 123 bus distribution system

IEEE 123 bus distribution system is an unbalanced network
with multiple substations, multiple line/substation regulators,
1-ϕ, 2-ϕ, and 3-ϕ Delta and Wye loads, as shown in Fig. 10. In
contrast to line regulators, the substation regulators are single
3-ϕ type, where the step change in tap-position changes all
the phase voltages. To verify the capabilities of the proposed
algorithm, the system is modified to have a ring configuration
rather than a radial one by closing a switch between buses 151
and 300, as shown in Fig. 10. In addition, six 1-ϕ DERs are
connected at nodes (6,c), (88,a), (109,a), (84,c), (43,b), and
(20,a), while two 3-ϕ DERs at buses 28 and 56. In Fig. 10,
the DER-connected buses are shown by a composite bus for
clarity.

For this case study, the visual verification of computed
sensitivity coefficients is illustrated only for the substation reg-
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of buses 675 and 634 to active power injection at node (671,a), with the
corresponding P-V curve in the IEEE 13 Bus network.

ulator at bus 150. This regulator is the single 3-ϕ type which
was not present in IEEE 13 bus system studied above. Visual
verification for sensitivity to active/reactive power changes
is not presented deliberately because of space constraints.
However, the numerical verification is studied in detail for
all the cases in the subsequent subsection III-D.

The tap changes in 3-ϕ regulator change the voltage on
all phases of the network. Assertively, Fig. 11 depicts the
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changes in voltage at buses 300 and 610 with a change in tap-
position of 3-ϕ regulator located near bus 150. The sensitivity
coefficients were determined by the proposed algorithm for
the operating condition when the tap was at -15, -10,...,
10, 15. The obtained coefficients were used to draw a line
at the corresponding operating point, and these lines are
shown in pink color in the same Fig. 11. All these lines
are seen to be tangent, which provides visual confirmation
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of the accuracy of the proposed algorithm. Furthermore, the
numerical verification of sensitivity coefficients was conducted
by comparing with the perturb-&-observe method, and the
mean absolute errors were less than 8e-5 for all the cases
shown in Fig. 11.

C. Case study 3: EPRI ckt5 MV/LV distribution system

EPRI ckt5 is an unbalanced distribution system comprising
of 981 MV and 1,462 LV nodes [27]. It has a three 1-ϕ
SVR at the substation connecting the distribution system to
HV transmission grid. Although, this test system do not have
any delta loads nor any distributed DERs, we added fifty 3-ϕ
Delta-connected loads (5 kW with 0.93 power factor each) at
MV network and twenty-five 1-ϕ DERs (10kW each) at LV
networks for the sake of verifying the proposed method. The
list of buses and nodes with new Delta-connected loads and
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TABLE I
COMPARISON ON ACCURACY OF THE PROPOSED ALGORITHM WITH ANALYTICAL METHOD

case
studies

sensitivity
matrices

Mean absolute percentage error

IEEE 13 Bus (41 nodes) IEEE 123 Bus (277 nodes) EPRI ckt5 (2,463 nodes)

Proposed
method

Analytical
method

Proposed
method

Analytical
method

Proposed
method

Analytical
method

CS-A

∂V/∂P 0.02% 0.02% 0.04% 0.04% 0.02% 0.02%
∂θ/∂P 0.05% N/A 0.07% N/A 0.04% N/A
∂V/∂Q 0.09% 0.09% 0.10% 0.10% 0.08% 0.08%
∂θ/∂Q 0.01% N/A 0.02% N/A 0.09% N/A
∂V/∂γ 0.01% N/A 0.06% N/A 0.03% N/A
∂θ/∂γ 0.01% N/A 0.05% N/A 0.06% N/A

CS-B

∂V/∂P 0.02% 19.86% 0.11% 14.64% 0.04% 20.4% s
∂θ/∂P 0.04% N/A 0.06% N/A 0.07% N/A
∂V/∂Q 0.03% 84.11% 0.19% 52.91% 0.24% 48.41%
∂θ/∂Q 0.01% N/A 0.05% N/A 0.07% N/A
∂V/∂γ 0.01% N/A 0.48% N/A 0.34% N/A
∂θ/∂γ 0.01% N/A 0.08% N/A 0.07% N/A

CS-C

∂V/∂P 0.02% 21.32% 0.29% 18.23% 0.16% 25.50%
∂θ/∂P 0.04% N/A 0.35% N/A 0.21% N/A
∂V/∂Q 0.08% 59.80% 0.51% 43.29% 0.68% 56.95%
∂θ/∂Q 0.02% N/A 0.18% N/A 0.29 % N/A
∂V/∂γ 0.01% N/A 0.67% N/A 0.25% N/A
∂θ/∂γ 0.01% N/A 0.10% N/A 0.09% N/A

TABLE II
MEAN COMPUTATION TIME EVALUATIONS

Methods
Mean computation time

IEEE 13 Bus
(41 nodes)

IEEE 123 Bus
(277 nodes)

EPRI ckt5
(2,463 nodes)

Analytical* 6.5 ms 57.7ms 5.9 s

Proposed** 16.1 ms 140.8 ms 11.7 s

*computes only ∂V
∂P

, ∂V
∂Q

**computes ∂V
∂P

, ∂θ
∂P

, ∂V
∂Q

, ∂θ
∂Q

, ∂V
∂γ

, ∂θ
∂γ

DERs are tabulated in Appendix E.
For this case study, we have not provided visual verification

of computed sensitivity coefficients as the plots obtained were
similar to the above cases. However, the detailed numerical
verification is studied in the subsequent subsection III-D.

D. Performance comparison and evaluations

The previous subsection illustrated the performance of the
proposed method pertaining to a few coefficients of sensitivity
matrices. This subsection evaluates the estimated sensitivity
matrices by determining their mean absolute percentage er-
ror (MAPE) with reference to sensitivity matrices computed
using the perturb-and-observe method and mean computation
time (MCT). To showcase our contribution, another analytical
method [15] is also evaluated with a MAPE and MCT, and
our performance is compared with it. Several case studies are
studied in two test unbalanced distribution networks, such as
IEEE 13 bus, IEEE 123 bus, and EPRI ckt5. Following are
the details of case studies conducted on these networks.

1) CS-A: All loads are considered to be Wye-connected
and DERs operated at a constant power factor.

2) CS-B: Loads are either Delta- or Wye-connected and
DERs operated at a constant power factor.

3) CS-C: Loads are either Delta- or Wye-connected and
DERs operated with volt-var control.

Table I shows the summary of the comparative study of
the proposed method in terms of MAPE at different test
distribution networks. For CS-A, all the sensitivity matrices
estimated by the proposed method are almost the same as those
estimated by an analytical method, however, the analytical
method was not able to estimate a few sensitivity matrices such
as ∂θ/∂P, ∂θ/∂Q, ∂V/∂γ, and ∂θ/∂γ. In CS-B, where the
Delta-connected loads are present, the analytical method show
degraded performance with the MAPE of 19.86% and 84.11%
for the estimation of ∂V/∂P and ∂V/∂Q in IEEE 13 Bus,
respectively. Similar degraded performances were observed for
the other two test networks, as shown in Table I. Whereas
the proposed method performed equally well for CS-B as
in CS-A. In CS-C, the Delta- and Wye-connected loads are
the same as in CS-B, however, the DERs are operated with
volt-var control. In this case study, the analytical method had
degraded performance in all the three test system. In IEEE
123 Bus system, a MAPE of 18.23% and 43.29% were seen
for estimation of ∂V/∂P and ∂V/∂Q matrices, respectively.
Furthermore, a MAPE of 25.5% and 56.95% was observed in
EPRI ckt5. In contrast, the proposed method was better in the
estimation of the sensitivity matrices albeit a small increment
in MAPE was observed in comparison to CS-A and CS-B. The
proposed estimation method performed consistently better for
all case studies CS-A, CS-B, and CS-C even for a larger test
case, IEEE 123 Bus and EPRI ckt5.

The performance comparison in terms of MCT with the an-
alytical method for three different test networks is highlighted
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in Table II. We conducted 1000 runs of both the proposed
and another analytical algorithm [15] to compute their MCTs.
Table II reports the evaluated MCT on a Windows workstation
with a 2.9 GHz Xeon(R) processor and 16 GB RAM. It can be
noted that the MCT of the proposed method is approximately
twice that of the analytical method. However, it’s worth noting
that our method provides six sensitivity matrices, whereas the
other method only provides two sensitivity matrices.

IV. CONCLUSION

This paper proposed an analytical matrix-based method for
the estimation of voltage magnitude and angle sensitivities to
active/reactive power injections and tap-position of the step
voltage regulator (SVR) in unbalanced distribution networks.
The proposed method is capable of estimating the sensitivity
matrices to the tap-position of all line/substation regulators.
Additionally, it is applicable for an unbalanced network with
both Delta- and Wye-connected loads and with DERs having
smart inverter functionality such as volt-var or power factor
control. The reason behind such generic applicability of the
proposed method is due to the composite bus modeling of
each bus, which can be further deduced or simplified to any
specific case of 1−ϕ, 2−ϕ, or 3−ϕ Delta/Wye loads/DERs
and their combinations.

The proposed method is tested in unbalanced distribution
test networks with various characteristics such as radial topol-
ogy in IEEE 13 bus, ring topology (multiple slack buses) with
line regulators in IEEE 123 bus, and a MV/LV network with
LV dominated circuits in EPRI ckt 5. The accuracy of the
proposed method is evaluated by computing a mean abso-
lute percentage error with reference to the perturb-&-observe
method and by mean computation time. Additionally, the
proposed method is compared with another analytical method
for benchmarking. Compared to the other analytical methods,
the proposed method is more accurate in the presence of Delta-
connected loads and DERs with volt-var control. The mean
error of the proposed method is less than 0.7% for all the case
studies and for all the test distribution networks. Furthermore,
the proposed method takes only twice the amount of time for
computation compared to the other analytical method, even
though it involves the estimation of four additional sensitivity
matrices.

One limitation inherent in the current work is the inability
to integrate Delta-connected DERs within our formulation.
We acknowledge this limitation and are committed to ad-
dressing it in our future research endeavors. It is important
to note that our proposed method relies on specific input
parameters, namely, an admittance matrix and the precise
locations of DERs. Consequently, to adapt to any network
reconfiguration or occurrences such as the loss of DERs,
our method will necessitate inputs from situational awareness
techniques. These techniques will play a vital role in providing
the required information to apply our formulation effectively
and adaptively.

APPENDIX

In all the matrices listed below, ȳT is short circuit
impedance, t1/t2 is the tap ratio, γ is a tap number, and ∆K

yTE E

EE

t tI I I I

Fig. 12. Two port model of SVR.

is the step voltage change of the regulator.

A. Ȳ r, ¯δY r, and ∂ ¯δY r

∂γ for 1-ϕ SVR

We consider the generic model of SVR that corroborates
with OpenDSS, which comprises of tap setting at both ’from’
and ’to’ sides, as shown in Fig. 12. The admittance matrix of
SVR is expressed as:

Ȳ r =

[
ȳT

t21
− ȳT

t1t2

− ȳT

t1t2

ȳT

t22

]
(37)

1) 1-ϕ SVR with tap setting at ’from’ side

To model an SVR with tap provision at the ’from’ side, we
set t1 = 1+ γ∆K and t2 = 1. With this we can obtain its Ȳ r

from (37) and its ¯δY r, and ∂ ¯δY r

∂γ are expressed as:

δȲ r = ȳT

[
1
t21

− 1 1− 1
t1

1− 1
t1

0

]
,
∂δȲ r

∂γ
= ȳT∆K

[
− 2

t31

1
t21

1
t21

0

]
(38)

2) 1-ϕ SVR with tap setting at ’to’ side

Here, we set t1 = 1 and t2 = 1 + γ∆k, to obtain its ¯δY r,
and ∂ ¯δY r

∂γ as:

δȲ r = ȳT

[
0 1− 1

t2
1− 1

t2
1
t22

− 1

]
,
∂δȲ r

∂γ
= ȳT∆K

[
0 1

t22
1
t22

− 2
t32

]
(39)

B. Ȳ r, ¯δY r, and ∂ ¯δY r

∂γ for Wye-Wye 3-ϕ SVR

Again, we consider the generic model of 3-ϕ SVR that
corroborates with OpenDSS, which comprises of tap setting
at both ’from’ and ’to’ sides. The key difference between
three 1-ϕ and 3-ϕ SVR is that individual phase voltage
could be controlled in the former one whereas all phases are
affected when the tap-position is changed in the latter one.
The admittance matrix of Wye-Wye connected 3-ϕ SVR is
expressed as:

Ȳ r=



ȳT

t21
0 0 − ȳT

t1t2
0 0

0 ȳT

t21
0 0 0 − ȳT

t1t2
0

0 0 ȳT

t21
0 0 − ȳT

t1t2

− ȳT

t1t2
0 0 ȳT

t22
0 0

0 − ȳT

t1t2
0 0 ȳT

t22
0

0 0 − ȳT

t1t2
0 0 ȳT

t22


(40)

¯δY r and ∂ ¯δY r

∂γ for Wye-Wye 3-ϕ SVR can be obtained from
(40), following the steps shown for 1-ϕ SVR in Appendix A.
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
∂S̄i

∆,a

∂u
∂S̄i

∆,b

∂u
∂S̄i

∆,c

∂u

 = −


− S̄i

abĒ
i
b

(Ēi
a−Ēi

b
)2

− S̄i
caĒ

i
c

(Ēi
c−Ēi

a)
2

S̄i
abĒ

i
a

(Ēi
a−Ēi

b
)2

S̄i
caĒ

i
a

(Ēi
c−Ēi

a)
2

S̄i
abĒ

i
b

(Ēi
a−Ēi

b
)2

− S̄i
abĒ

i
a

(Ēi
a−Ēi

b
)2

− S̄i
bcĒ

i
c

(Ēi
b
−Ēi

c)
2

S̄i
bcĒ

i
b

(Ēi
b
−Ēi

c)
2

S̄i
caĒ

i
c

(Ēi
c−Ēi

a)
2

S̄i
bcĒ

i
c

(Ēi
b
−Ēi

c)
2 − S̄i

bcĒ
i
b

(Ēi
b
−Ēi

c)
2 − S̄i

caĒ
i
a

(Ēi
c−Ēi

a)
2

 ·


∂Ēi

a
∂u
∂Ēi

b
∂u
∂Ēi

c
∂u

 (47)

C. Complex power injection from 3-ϕ DERs

The complex power injection of 3-ϕ inverter with volt-var
functionality would be:

S̄i
3ϕ = P i

3ϕ + jmi
3ϕ [

1

3
(Ei

a + Ei
b + Ei

c)− Êi
3ϕ)] (41)

Here, S̄i
3ϕ is a total power that is divided uniformly among

three phases by the inverter controllers [24]. Hence, active and
reactive power injection at each phase of bus i would be:

[
P i
3ϕ,a, P

i
3ϕ,b, P

i
3ϕ,c

]T
=

1

3

[
P i
3ϕ, P

i
3ϕ, P

i
3ϕ

]T
(42)

Qi
3ϕ,a

Qi
3ϕ,b

Qi
3ϕ,c

 =


mi

3ϕ

3 ( 13 (E
i
a + Ei

b + Ei
c)− Êi

3ϕ)
mi

3ϕ

3 ( 13 (E
i
a + Ei

b + Ei
c)− Êi

3ϕ)
mi

3ϕ

3 ( 13 (E
i
a + Ei

b + Ei
c)− Êi

3ϕ)

 (43)

=


mi

3ϕ

9

mi
3ϕ

9

mi
3ϕ

9
mi

3ϕ

9

mi
3ϕ

9

mi
3ϕ

9
mi

3ϕ

9

mi
3ϕ

9

mi
3ϕ

9

·
Ei

a

Ei
b

Ei
c

−


mi
3ϕ

3 0 0

0
mi

3ϕ

3 0

0 0
mi

3ϕ

3

·
Êi

3ϕ

Êi
3ϕ

Êi
3ϕ


(44)

= Ωi ·Ei − Λi · Êi
3ϕ (45)

Hence, the vector of complex power injection from three-phase
DERs at each bus would be:

S̄3ϕ = P3ϕ + j(Ω ·E−Λ · Ê3ϕ). (46)

where Ω = Diag{Ω1, . . . ,Ωn} and Λ = Diag{Λ1, . . . ,Λn}

D. Sensitivity of Wye-transformed Delta-connected loads

When constant power Delta-connected load at bus i is
transformed to Wye, the resulting Wye-connected loads (S̄i

∆- )
become voltage dependent as shown by (7). The sensitivity of
S̄
i
∆- with respect to any input variable u is determine by

differentiating (7), and on after rearranging, we get (47)(refer
to next page). In short, (47) can be expressed as:

∂S̄
i
∆-

∂u
= Π̄i · ∂Ē

i

∂u
. (48)

Utilizing (48), the sensitivity of the vector of Wye-transformed
Delta loads can be expressed as:

∂S̄∆-

∂u
= Π̄ · ∂Ē

∂u
. (49)

where,

S̄∆- = [S̄
1
∆- , . . . , S̄

n
∆- ]T and Π̄ = Diag{Π̄1, . . . , Π̄n}.

(50)

TABLE III
LOCATION OF ADDED LOADS AND DERS

Buses or Nodes

3-ϕ
Delta
loads

8163, 8164, 829, 834, 44582, 8160, 6584, 8113, 8124,
14880, 63707, 63657, 63658, 69478, 69477, 8184,
39595, 39582, 796, 791, 58441, 58446, 846, 98795,
56777, 56778, 44586, 62239, 46394, 46393, 14879,
62265, 62262, 58430, 58429, 105409, 52524, 8111,
1023346, 28199, 28196, 62264, 99420, 14828, 841,
8083, 782, 783, 63714, 63711

1-ϕ
DERs

(X 62251 3, c), (X 62232 2, c), (X 63633 1,b 2),
(X 63677 1, a), (X 837 3, b), (X 28237 2, c),
(X 62262 1, b), (X 28287 1, a), (X 1144266 1,
b), (X 8183 2, a) , (X 56756 2, b), (X 28227 2,
c), (X 56751 1, a), (X 63673 1,c), (X 8125 4, c),
(X 62265 1, b), (X 8095 2,c), (X 39753 1, b),
(X 14993 1, b), (X 8099 2, c), (X 46385 2, b),
(X 46385 3, b), (X 39758 2.b), (X 6594 3, b),
(X 94730 1, b)

E. Details on modified EPRI ckt5

We modified the EPRI ckt5 by adding 3-ϕ Delta-connected
loads and 1-ϕ DERs at the locations listed on Table III. The
names of buses and nodes are adopted from official realase of
EPRI ckt5 [27].
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