

1 **Using geovisualizations to educate the public about environmental health**
2 **hazards: What works and why**

3 Authors:

4 Catherine E. Slavik¹ PhD, MPH [ORCID: 0000-0002-3077-239X]

5 Carolyn Fish² PhD [ORCID: 0000-0002-2366-5035]

6 Ellen Peters^{1,3} PhD [ORCID: 0000-0003-0702-6169]

7 ¹*Center for Science Communication Research, University of Oregon, Eugene, OR, USA*

8 ²*Department of Geography, University of Oregon, Eugene, OR, USA*

9 ³*Department of Psychology, University of Oregon, Eugene, OR, USA*

10 Corresponding Author Details:

11 Catherine E. Slavik, cslavik@uoregon.edu

12 School of Journalism and Communication, University of Oregon

13 1715 Franklin Boulevard, Eugene, OR, 97403, USA

14 Abstract

15 *Purpose of review:* Informing the public about environmental risks to health is crucial for raising awareness around hazards, and promoting actions that minimize exposures. Geographic visualizations—geovisualizations—have become an increasingly common way to disseminate web-based information about environmental hazards, displaying spatial variations in exposures and health outcomes using a map. Unfortunately, ineffective geovisualizations can result in inaccurate inferences about a hazard, leading to misguided actions or policies. In this narrative review, we discuss key considerations for the use of geovisualizations to promote environmental health literacy.

16 *Recent findings:* Many conventional geovisualizations used for hazard education and risk communication fail to consider how people process visual information. Design choices that prompt viewers to think and feel, leveraging processes such as individual attention, memory, and emotion, could promote improved comprehension and decision making around environmental health risks using geovisualizations. Based on the studies reviewed, we recommend six strategies for designing effective, evidence-based geovisualizations, synthesizing evidence from the cognitive sciences, cartography, and environmental health. These strategies include: Displaying only key data, tailoring and testing geovisualizations with the desired audience, using salient cues, leveraging emotion, aiding pattern recognition, and limiting visual distractions.

17 *Summary:* Geovisualizations offer a promising avenue for advancing public awareness and fostering proactive measures in addressing complex environmental health challenges. This review highlights how incorporating evidence-based design principles into geovisualizations could promote environmental health literacy. More experimental research evaluating geovisualizations, using interdisciplinary approaches, is needed.

18 Keywords: environmental health; geovisualization; maps; hazard education; risk communication; exposure mitigation

19 Statements and declarations: The authors declare that they have no conflict of interests.

44 Introduction

45 The extent to which populations, globally, are exposed to environmental hazards is immense and
46 can be difficult to grasp; some 13 million people die each year as a result of environmental risks
47 such as air pollution and radiation [1]. Yet, public awareness surrounding the health impacts of
48 many environmental hazards—and strategies to mitigate them—remains low [2]. Enhancing
49 environmental health literacy is viewed as a critical first step towards encouraging individuals to
50 shift behaviors and empowering communities to protect themselves from harmful environmental
51 risks [3]. Thus, reducing the environmental burden of disease necessitates public education on
52 environmental health risks, emphasizing who is at risk and when and where exposures occur.

53 Visuals are a powerful tool for learning. They attract attention, are processed more quickly than
54 text alone, and are easier to recall [4,5]. This may explain why geographic visualizations, or
55 geovisualizations, have become a popular tool for environmental health risk communication. They
56 typically consist of static web-based thematic maps, interactive online dashboards containing
57 spatial data, or some combination of the two [6]. Geovisualizations are designed to enable
58 individuals to perform tasks like identifying specific locations on the map, retrieving information
59 about the level of risk there, and gauging the distance between oneself and the risks displayed
60 [7]. Hence, unlike other visuals (e.g., graphs), geovisualizations offer viewers a tangible
61 representation of the world and leverage people's ability to connect information to particular
62 places [8]. Visualizing data on the distribution of environmental exposures using maps is also
63 thought to help viewers interpret information about environmental hazards and apply it towards
64 risk-informed decision making, thereby promoting environmental health literacy [9]. Yet, many
65 geovisualizations are never evaluated to determine whether they achieve these goals [10,11].
66 When testing with users has occurred, it has been found that many geovisualizations developed
67 for public education about disease risk factors are too complicated for the average person to use
68 and interpret, especially without assistance [12–15].

69 Misunderstanding geovisualizations can have major consequences. It can lead to the dismissal
70 of serious risks from hazards like earthquakes—resulting in large losses to life—when maps don't
71 adequately communicate risk probabilities to community members [16]. On the other hand, it can
72 lead to risk overestimations if maps lead viewers to infer that the mere presence of a hazard (e.g.,
73 historical industrial contamination) will cause a disease [17]. This is a common concern in cancer
74 epidemiology where incidence maps depicting cancer disparities across regions have the
75 potential to mislead individuals into falsely attributing cancer causation solely to environmental
76 factors in one area, without considering other influential risks [18]. Most recently, some COVID-
77 19 geovisualizations have faced criticism due to poor design choices that impacted viewers'
78 interpretation of disease risks and did little to improve knowledge about COVID-19 [19,20]. These
79 examples underscore the importance of designing geovisualizations that enable people to make
80 accurate and informed judgments of health risks, enhancing individual decision-making
81 processes.

82 The design of effective geovisualizations requires considering how individuals will process the
83 information presented. Some individuals with lower numeracy or graph literacy may lack the
84 technical skills to easily extract information from a map and form accurate risk judgments [21–
85 23]. In fact, some people appear to rely more on personal experiences or feelings to help them
86 interpret maps [24,25]. This type of information processing based on heuristics (e.g., the *affect*
87 *heuristic*), which has been studied extensively in psychology and cognitive science, has been
88 found to impact risk comprehension and decision making by influencing people's emotional

89 reactions and perceptions of risk [26–28]. Some recent works in the geographic information
90 sciences, particularly in cartography, have also called attention to the need to explore how
91 emotion and other cognitive mechanisms may be used to process information from
92 geovisualizations [29–31].

93 Unfortunately, insights from the cognitive sciences and cartography concerning how people
94 process visual information are rarely integrated into the environmental health education and risk
95 communication domains to produce evidence-based geovisualizations. Indeed, prior reviews on
96 the use of geovisualizations in public health have largely focused on characterizing the types of
97 maps used and synthesizing strategies for communicating risk information [9,32–34], without
98 much (if any) consideration to how the careful design of geovisualizations can aid comprehension
99 of environmental health risks and promote risk-informed decision making. This presents a
100 problem because—in the absence of knowledge from these disciplines—we risk developing
101 geovisualizations that neither meet the public’s informational needs nor reflect how people learn
102 about (and make sense of) their environment. We also risk incorporating ineffective design
103 choices into geovisualizations that end up misleading the public, resulting in incorrect
104 interpretations of information and poor decision making.

105 The objectives of this narrative review are to: (1) examine key factors influencing the effectiveness
106 of geovisualizations by synthesizing theoretical and applied research from the cognitive sciences,
107 cartography, and environmental health and (2) provide evidence-based recommendations to
108 improve web-based geovisualization design for environmental health education. This review is
109 broadly divided into four sections. First, we begin by reviewing how people process visual
110 information, drawing initially from the cognitive sciences literature, and then from research in
111 cartography on geographic information processing. Second, we synthesize three overarching
112 design strategies for geovisualizations informed by these two disciplines and examine how they
113 have been applied and tested in research from the environmental health domain. Third, we
114 present six recommendations for designing effective geovisualizations that promote
115 environmental health literacy. Finally, we discuss future research directions within this
116 interdisciplinary body of work.

117

118 How Visual Information is Processed

119 **Insights From Cognitive Science**

120 Processing visual information primarily involves two mechanisms, bottom-up and top-down
121 processing. In bottom-up processing, characteristics of the visual stimulus influence how
122 information is perceived and encoded by the viewer [35]. In essence, an individual’s attention
123 selects the most salient objects in a visual display and, as they engage their visual perception
124 system, they construct an image and form a mental model of the objects [36]. In contrast, top-
125 down mechanisms leverage people’s existing knowledge and memories to guide interpretations
126 of a visual display [37]. Bottom-up mechanisms appear to play an important role in a person’s
127 initial quick scan for the most salient visual cues displayed, with top-down mechanisms taking
128 over to guide attention towards more targeted or task-relevant objects [38]. Top-down and bottom-
129 up information processing can sometimes prompt effortful thinking (i.e., cognitive information
130 processing), and/or rapid heuristic responses based on feelings (e.g., the *affect heuristic*) [39].

131 *Cognitive Information Processing*

132 As an individual's attention zeroes in on a given object through the initial bottom-up mechanisms,
133 four basic visual perceptual factors are thought to efficiently help us discern what objects are
134 being displayed [40]. The first factor—perceptual units—help people interpret which object stands
135 out the most due to perceived changes in visual characteristics (e.g., color, shading, patterns).
136 Second, Gestalt Laws help people recognize and organize objects by grouping similar or proximal
137 ones together. Third, varied representations of magnitude (e.g., object size) help people tell
138 different objects apart from one another. Lastly, coordinate systems, which are especially relevant
139 in the context of geo-visualizations, are used to differentiate objects that vary along several
140 dimensions (e.g., over time and space). People's attention to these four visual perceptual factors
141 influences what information is perceived, encoded, stored, and subsequently used to make
142 decisions or guide future behavior.

143 In addition to the characteristics of the visual stimulus, people use their own mental schema in a
144 top-down manner to process the information. As people scan the information, they are thought to
145 carry out a mental matching process to identify visual elements that match those already stored
146 in their long-term memory [40]. Visualizations displaying data in familiar ways can kickstart this
147 matching process and help free up mental capacity for other cognitive tasks, such as interpreting
148 displayed risk information or using information to make decisions [41]. This matching process,
149 also known as 'cognitive fit', leads to more effective and efficient problem-solving that helps
150 viewers make more correct inferences about the visualization [42]. By contrast, when a mismatch
151 appears—for example, if the information is presented in a nonintuitive manner—working memory
152 must be used instead to temporarily store information from the visual until a judgment is made
153 about how that information should be analyzed [43].

154 Individual skills also influence people's cognitive information processing by impacting how effortful
155 it will be. For example, people who are more numerate are more likely to draw correct conclusions
156 from visualizations that present numerical information [41]. When people don't have to use as
157 much mental effort to decipher data, they appear to comprehend it more quickly and accurately
158 [44]. Fortunately, visualizations can reduce these discrepancies between individuals with high
159 and low numeracy if certain design strategies are employed. For example, including textual
160 information alongside numeric information through the use of labels and captions has helped
161 those with limited numerical skills accurately interpret visual information containing numbers [27].
162 Thus, people employ powerful cognitive mechanisms, like attention and memory, to process
163 information in a visual.

164 *Information Processing Using Feelings*

165 People also rely on their feelings to process visual information. When looking at a given visual,
166 sensory signals are perceived and can trigger positive or negative feelings in response to some
167 of the visual elements [35]. People use an 'affect heuristic', a type of mental shortcut, when they
168 rely on their feelings to quickly make judgments about objects in a visual, rather than by engaging
169 in a more thoughtful and effortful evaluation of the visual information [45]. Visualizations can
170 provoke strong feelings depending on their presentation, subject matter, and other cues (e.g.,
171 colors, aesthetics, messaging) [46–48]. For example, evocative visual imagery of wildfire smoke
172 can prompt negative fear-related emotions, which can be effective at promoting health-protective
173 actions (e.g., using an air purifier) to cope with the perceived threat [49]. Visualizations containing
174 positive emotional cues also can support individuals' healthy decision-making. For example, using
175 labels like 'excellent' to highlight regions with good air quality on a map could be useful to an
176 individual trying to decide where to plan a safe outdoor activity. Thus, emotional cues can serve

177 as meaningful information used to inform a judgment about something like an environmental risk
178 (i.e., 'affect-as-information' theory) [50].

179 An individual's prior feelings towards certain objects or events can also significantly influence
180 what information their attention zeroes in on and which elements of a visual they encode in their
181 memory. For example, a person with negative feelings towards wind turbines may spend more
182 time examining the risks, and less time on the benefits, when given an infographic about
183 renewable wind energy. This kind of information processing relies on a person's prior feelings and
184 experiences to guide interpretation (i.e., 'affect-as-spotlight' theory), further highlighting the
185 importance of emotion in shaping learning and decision making using visuals [50].

186 **Insights From Cartography**

187 Unlike standard visuals, geovisualizations contain geographic and spatial data (e.g., coordinates,
188 distance, direction) requiring processing of information that is both visual and spatial. Thus,
189 compared to other types of visual information, viewers perform more complex tasks involving
190 spatial reasoning and problem-solving when processing information from a geovisualization [51].
191 Cartographers have thought about how different types of map visuals require different design
192 considerations depending on the audience's level of content expertise, map literacy, and the goals
193 of the map. For example, DiBiase [52] demonstrated that experts like scientists may use
194 visualizations to explore data and generate research hypotheses, whereas lay people or public
195 audiences likely use visualizations as a source of information. The former type of map user may
196 desire more opportunities to interact with the visualization to dig deeper and explore complex
197 variables so that the map serves as a tool to stimulate 'visual thinking'; the latter likely desires a
198 much simpler 'visual communication' tool that presents the data in a clear and easy-to-understand
199 manner. MacEachren expanded on this idea with his 'cartography cube' [53] concept, showing
200 that public audiences tend to benefit more from maps that i) communicate visual information in a
201 simple way, ii) are less interactive (i.e., more static), and iii) focus on what is *known* about the
202 information (rather than highlighting *unknowns*). Nonetheless, research from cartography is
203 consistent with the cognitive sciences literature regarding use of both top-down and bottom-up
204 mechanisms to aid processing of geographic information.

205 *Cognitive Information Processing Using Geovisualizations*

206 From a bottom-up perspective, people scan information in a geovisualization by encoding the
207 most salient cues perceived, as they would with other visual displays, and then mentally transform
208 any spatial objects displayed to help make sense of their values, relations, and orientations [54].
209 Because viewers' gaze and attention are naturally attracted to the most perceptually salient items,
210 they especially notice map features that don't require effort to be read and understood [55]. Salient
211 map items may include points, lines, and zones, which can be varied by size, color, shape, or
212 other properties [40,56,57] to make them stand out in a map display [58]. In fact, many
213 geovisualizations are developed with a visual hierarchy, making the most task-relevant items the
214 most salient features. This hierarchy guides viewers' attention towards perceiving the most
215 pertinent information first, then towards less relevant items during subsequent scans of the visual.
216 In doing so, viewers tend to fixate more on the salient and task-relevant features and spend more
217 time analyzing them [56]. In contrast, placing visual emphasis on less task-relevant information in
218 a geovisualization can divert attention and bias judgments of the data displayed, leading to
219 misinterpretation of important information [59,60].

220 From a top-down perspective, individuals' short-term and long-term memory are key mechanisms
221 influencing the processing of information in a geovisualization. As individuals focus on areas of a
222 map, they use their working memory to encode visual elements like roads, landmarks, and colors
223 of shapes, into a mental representation of the overall geographic area. To infer relationships
224 between different elements (e.g., the distance between two points on a map), people also use
225 their working memory to compare features and make spatial judgments [61]. Thus, maps with
226 fewer visual elements are likely to be less cognitively-taxing, freeing up working memory to
227 complete other tasks using the geovisualization. An example of a common task includes
228 searching for a personally-relevant location (i.e., one's home), which is a highly goal-directed
229 navigation task engaging top-down processes [37]. In fact, searching for familiar locations in a
230 geovisualization drives a pattern recognition process (similar to 'cognitive fit' discussed above)
231 that enables viewers to quickly match the elements displayed to those stored in their long-term
232 memories [62].

233 Accurate processing of information from geovisualizations also depends on people's internal
234 spatial visualization skills, including an individual's ability to mentally represent and transform
235 visuospatial information from a display [63,64]. Spatial knowledge can be acquired both directly
236 through navigating environments and indirectly through studying maps [65]. For example, training
237 novice map users on how to read a map, or providing an interpretive guide highlighting key
238 information has been found to aid comprehension of geovisualizations [56,66]. However, even
239 individuals who are familiar with and experienced in reading maps can face challenges correctly
240 interpreting information from poor geovisualizations, underscoring the importance of choosing the
241 right visual designs [67,68].

242 *Processing Geovisualizations Using Feelings*

243 Geovisualizations containing visual elements that prompt positive and/or negative feelings also
244 can support effective and efficient information processing using heuristics. Various cues have
245 been identified by cartographers—for example, vivid map colors, realism, photos, and narrative
246 information—as visual elements that can prompt emotional responses and relay important
247 information to viewers [61,69,70]. Emotional cues can serve as sources of information to help a
248 viewer quickly construct a mental model of the geovisualization and appear to play an important
249 role in decision making [71].

250 People also rely on emotional cues like colors with extreme contrast (e.g., red, black) to help focus
251 their attention towards key visual elements in a geovisualization [72]. Sequential color schemes,
252 which employ a gradient of a single color hue going from light to dark, can be used to highlight
253 areas with the highest (i.e., darkest) values of the variable displayed [73]. This process helps
254 viewers encode specific visual elements in their memory, improving information recall and driving
255 further information-seeking [74,75]. Furthermore, geovisualizations presenting information
256 relevant to the viewer's own neighborhood can prompt feelings of place attachment and make the
257 information displayed feel more engaging and personally relevant [76,77]. This may be explained
258 by the role that emotional cues can play in motivating behaviors [50]; in this case, feelings
259 motivate viewers to engage more intensely with local information they consider interesting and
260 stimulating.

261

262 Geovisualization Design Strategies and Applications to Environmental Health

263 Research from the cognitive sciences and cartography both point towards geovisualizations
264 helping to harness individuals' powerful visual systems to process information. The literature
265 suggests that geovisualizations that engage both top-down and bottom-up information processing
266 by leveraging key psychological processes like attention, memory, and emotion, could be used to
267 support people's understanding of environmental hazards and promote risk-informed decision
268 making. Fortunately, design strategies supporting these psychological processes have already
269 been evaluated and tested for their effectiveness—using experimental and qualitative methods—
270 to educate the public about a variety of environmental hazards and exposures. Here, we
271 synthesize the results from these studies, outlining three types of design strategies, and examine
272 their practical application in environmental health research. These strategies are summarized in
273 **Fig 1.**

274

275
276 **Fig 1.** Strategies informed by evidence from cognitive science and cartography that can be applied to
277 environmental health geovisualizations.

278

279 **Strategies Guiding Attention**

280 The application of design strategies that help direct viewers' attention towards salient areas on a
281 map can improve understanding of the risks of encountering an environmental hazard in a location
282 [78]. Geovisualizations employing sequential color schemes, which rely on lighter and darker
283 shades of a color hue to communicate changes in the data displayed, have been found to help
284 viewers identify hazardous zones; they are also easier to interpret than multihued color schemes
285 [23,79,80]. In fact, using dark colors on light backgrounds to maximize contrast seems to initiate
286 faster decision making, suggesting they can be used to help viewers quickly focus on the most
287 task-relevant information [81,82].

288 Other strategies involving bottom-up information processing can be used to help guide viewers'
289 attention towards key areas of a map such as employing various shapes or symbols. These types
290 of visual cues have been especially helpful for people with color vision deficiency [83]. However,
291 care should be taken to ensure selected shapes are discriminable and self-explanatory, and don't
292 distract viewers from other key information displayed [84–86].

293 **Strategies Supporting Memory**

294 Design choices that limit distractions will also reduce the mental effort required to interpret the
295 information displayed, thereby benefiting short-term memory. For example, interactive controls in
296 geovisualizations that allow viewers to turn on or off certain visual elements can be used to
297 remove unnecessary information that requires more working memory to process [83]. For viewers
298 with limited map literacy or content knowledge, demonstrations or instructions showing how to
299 navigate the geovisualization can refresh people's memory about how to use maps and improve
300 their understanding of the environmental risks displayed [87–89].

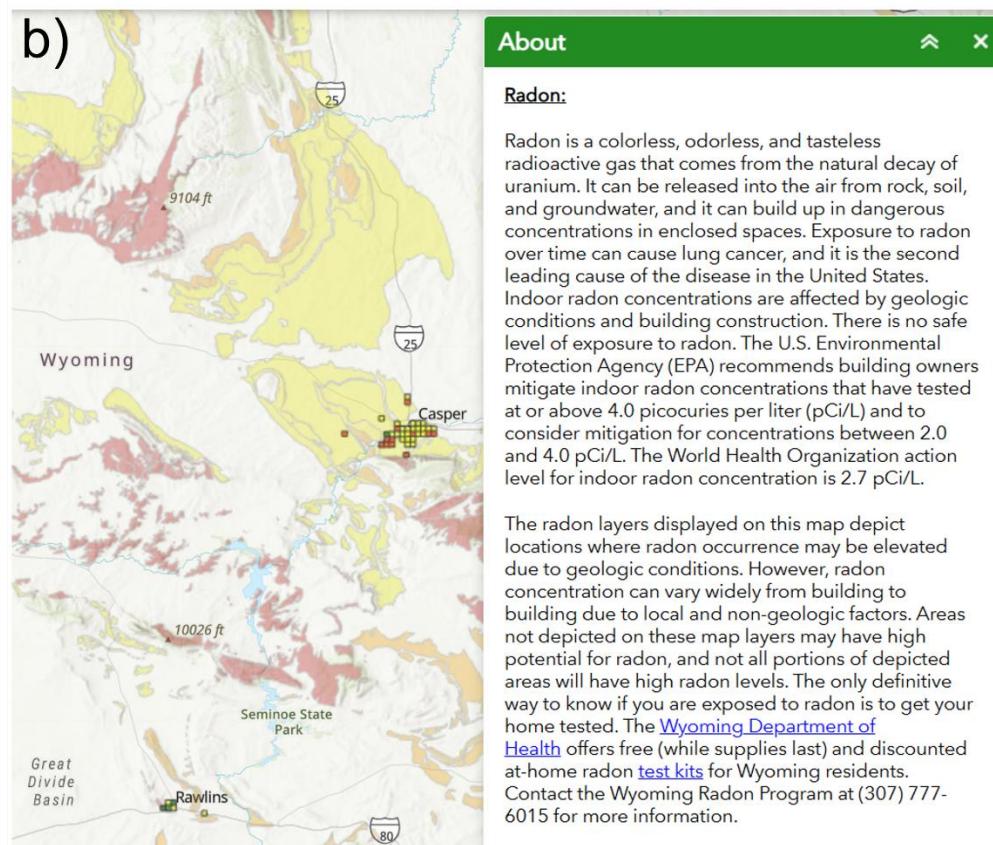
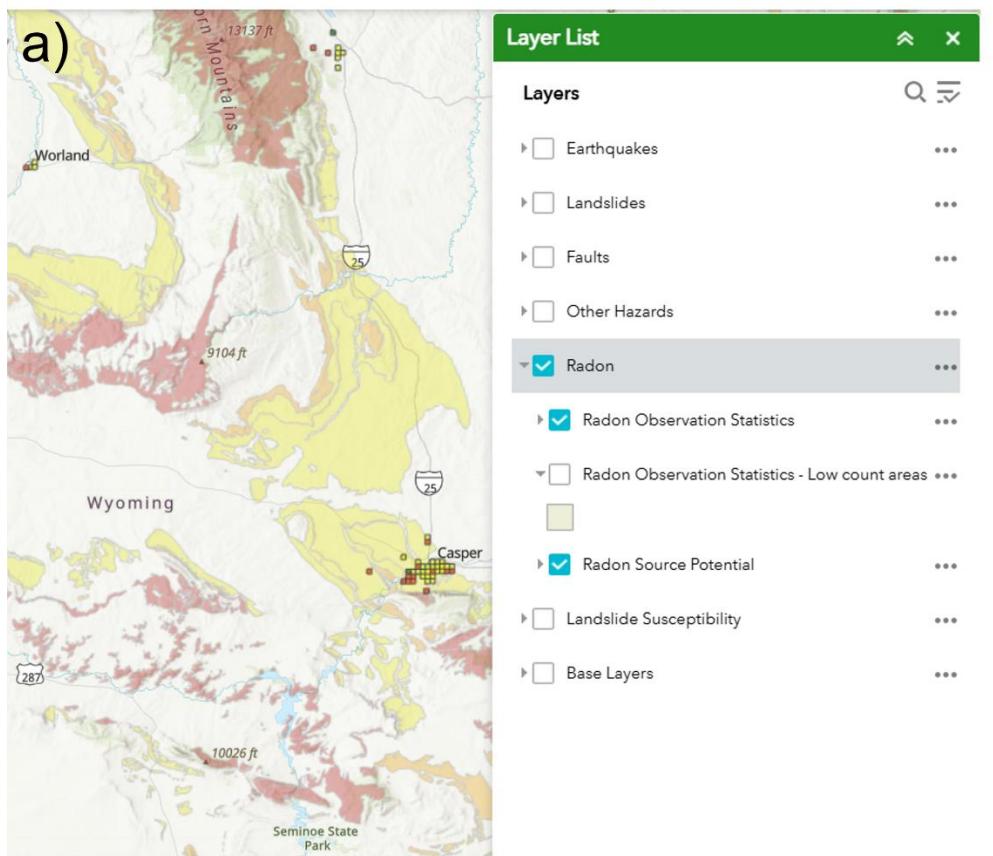
301 Furthermore, strategies allowing viewers to efficiently apply their pre-existing knowledge and/or
302 long-term memories in a top-down manner can help people recognize important visual features
303 or patterns in the data. Hence, geovisualizations employing logical visual conventions tend to be
304 easier for viewers to extract information efficiently and effectively. For instance, while cartograms
305 are often viewed favorably by map readers, these types of geovisualizations are less intuitive
306 because they distort the shapes of well-known geographic areas such as countries or states.
307 Thus, they may fail to cue memory retrieval that would typically aid viewers to engage in analogical
308 reasoning [90,91]. Alternatively, photographs incorporated into geovisualizations have been
309 found to help viewers identify particular map locations, which may otherwise take longer to
310 recognize [92].

311 Strategies supporting memory retrieval also appear to enhance viewers' understanding of
312 environmental risks and their risk-informed decision making. For example, using intuitive colors
313 (e.g., orange for fire) to depict features in the geovisualization—that match how people view or
314 perceive those objects in real-life—allows for a more efficient process of information retrieval and
315 interpretation [30,93,94]. Also, since people are generally interested in localizing their own homes
316 in maps, including recognizable landmarks and the names of familiar places can lead viewers to
317 engage more deeply with the geovisualization [86,94,95]. Interestingly, viewers' proximity to a
318 particular environmental hazard does not always lead to increased perceptions of risk. For some
319 hazards like climate change, individuals appear to rely more on their prior beliefs about the
320 hazard—compared to their geographic proximity to the hazard—when forming risk attitudes
321 [96,97].

322 **Strategies to Evoke Emotions**

323 Several geovisualization design strategies can be employed to evoke emotional responses.
324 These include visual elements such as colors, shapes, evocative imagery, as well as textual
325 elements such as narrative information or emotional appeals. Importantly, geovisualizations that
326 prompt feelings—especially negative emotions like worry—can be used to inform people's
327 perceptions of risks and influence their adoption of protective behaviors to avoid threats to health
328 [87,98,99]. For example, geovisualizations that use specific colors like red appear to increase
329 individuals' risk perceptions (among individuals without color vision deficiency) because they are
330 generally understood to signal danger [80,87]. Cooler colors like blue, on the other hand, may
331 signal lower risk to many viewers [100].

332 Geovisualizations that increase perceptions of risk through visual stimuli like photos, may also
333 promote the adoption of protective behaviors that reduce exposure to environmental hazards
334 [24,71]. For example, geovisualizations containing evocative imagery of the impacts of floods on
335 communities have been found to increase viewers' intentions to take actions that promote
336 community adaptation to flooding [101]. Additionally, the inclusion of information about safe areas
337 or protective measures that can reduce the threat of harm from an environmental hazard is crucial
338 for guiding viewers' decision making regarding possible risk-mitigating actions [95,102–104].

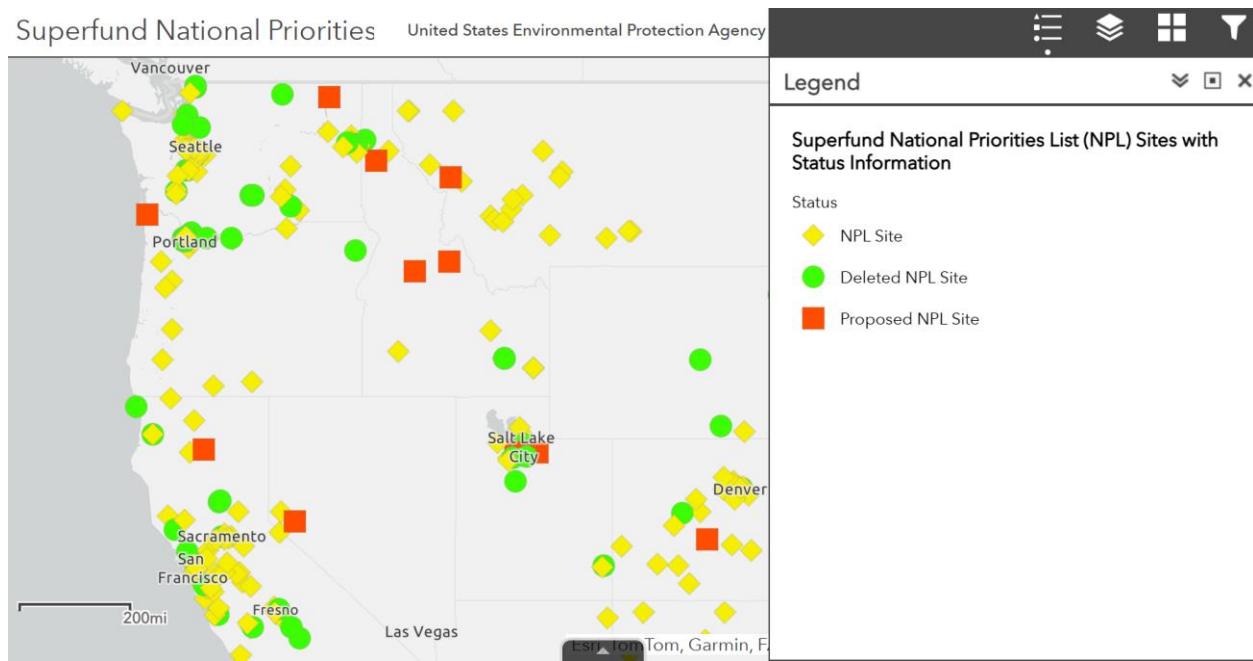


339

340 Recommendations for Designing Geovisualizations for Environmental Health Literacy

341 Based on evidence drawn across the three disciplines—cognitive science, cartography, and
342 environmental health—we detail six recommendations for designing effective geovisualizations
343 to promote environmental health literacy. These recommendations could be adopted by a variety
344 of stakeholders engaged in environmental health education or risk communication, including
345 researchers, policy advisors, and/or public health officials, to enhance the public's understanding
346 of environmental hazards and facilitate risk-informed decision making.

347 **1. Display Key Data Supporting the Communication Goal**

348 Identify a communication goal for the geovisualization and display only pertinent data to support
349 that goal. People understand visual information best when they can focus on features that are the
350 most task-relevant and reduce their cognitive load [60]. For geovisualizations where comparisons
351 of multiple variables are important, allow viewers to switch variables on or off, allowing them to
352 focus on smaller amounts of information at a time [13,86,105] (See **Fig 2a** for an example). Lastly,
353 include messaging on actions people can take to mitigate environmental risks and reduce
354 personal exposures [102] (See **Fig 2b** for an example); in the absence of guidance, people may
355 not know how or have the confidence to protect themselves and take no action, or they may take
356 precautions that are ineffective [103].


Fig 2a) Example geovisualization allowing viewers to select variables of interest to display and **b)** providing information about how to mitigate radon exposure. Maps display background levels of radon in the State of Wyoming and the percentage of radon test results in an area that exceeded 4 picocuries per liter. **Source:** Wyoming State Geological Survey [106].

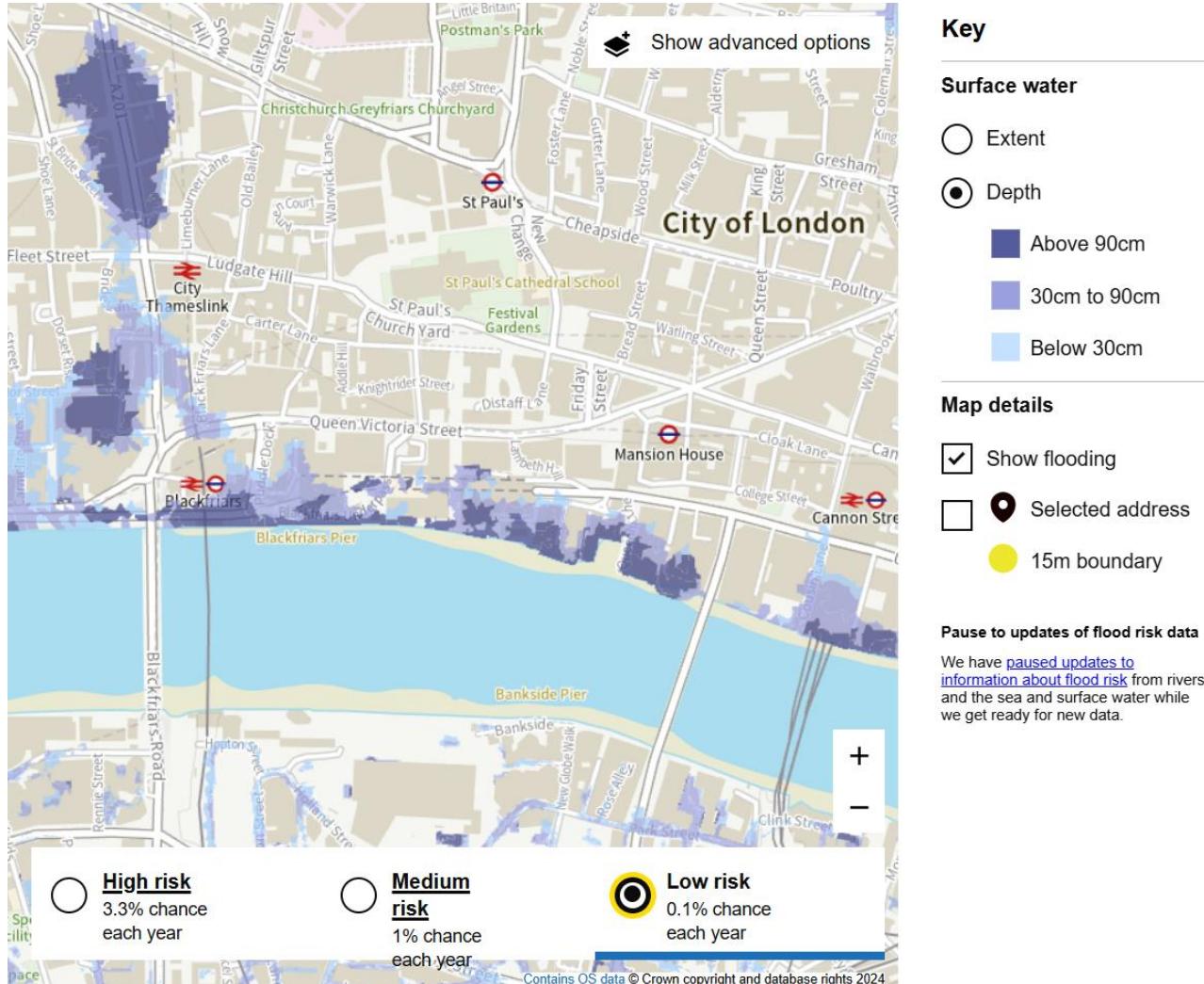
2. Tailor and Test Geovisualizations for Target Audience

As with any health risk communication tool, geovisualization design choices should be tailored for those who will use it. Consider whether the audience is likely to be familiar or unfamiliar with the spatial data being displayed. Explainers and interpretive guides displayed alongside geovisualizations can support novice map users [107], but may be redundant for more expert audiences [66]. Even among viewers with high numeracy and high content knowledge, abilities to extract meaning from visual information displays can vary [27,67]. Also, different information may benefit expert versus non-expert audiences more. For instance, expert audiences may benefit from the inclusion of uncertainty information in a map, whereas novice map users likely do not. It is also worth noting that user-preferred visualizations are not necessarily those that are best understood [108,109]. As a result, testing geovisualizations with the intended audience and conducting evaluations that go beyond assessing usability is important and can help us better understand the impacts of geovisualizations on human behavior and health outcomes [110]. Finally, designers of geovisualizations should not assume that complex visual information displays will always outperform simpler communication formats [108]. If demonstrating spatial variations of risk is not a key communication goal, using data presentation formats that are more familiar and user-friendly (e.g., tables, infographics) may be more beneficial.

3. Use Salient Cues to Guide Visual Perception

The human brain is programmed to use vision to think, and we often rely on our perception of visual elements to get the gist of information contained in a visualization without much mental effort. Salient cues—visual features that stand out—can greatly aid viewers’ ability to target their attention towards key information in a geovisualization. Use variations in color lightness, shapes, textures, and other elements of salience to draw viewers to the most pertinent information they should focus on [40,56] (See **Fig 3** for example). Labels and other attention guides (e.g., arrows, borders) can also help highlight areas of the visualization that are most important for decision making [21,98]. Consider potential social, cultural, historical interpretations of visual features. For example, some colors may have different meanings in different cultures and may not be appropriate to use for a given audience [69]. Individuals’ abilities to perceive different colors also may vary. Thus, opting for color palettes that function for viewers with various color vision deficiencies will allow your geovisualization to be accessible to a broader audience [83,111].

Fig 3. An example of a map using variations in shapes and colors as salient cues. This map uses the cues to display the location of hazardous waste sites in the US that have been prioritized for investigation and clean-up based on their status. **Source:** United States Environmental Protection Agency [112].


4. Leverage the Power of Emotion

Emotional appeals have long been integrated into environmental and health messaging for their ability to impact risk perceptions, foster behavior change, improve information recall, and make statistics feel more personal. Emotional cues using evocative photographs, vivid narratives, or stories can be integrated into geovisualizations (e.g., ArcGIS StoryMaps) to promote action-taking [24,29,101]. Colors can also be applied to promote, amplify, or attenuate emotional responses. For example, the color red is generally understood to signify fear and danger [83]. Avoid the use of colors that are incongruent with the data's theme [47]; cheery colors will likely not be the most appropriate for a geovisualization summarizing mortality data.

5. Aid Pattern Recognition

Geovisualizations are more easily interpreted and more quickly understood when people are familiar with how to extract key information from them. Use consistent features (e.g., symbols) and intuitive memory retrieval cues (e.g., coloring water bodies blue) to help viewers complete a more rapid process of sensemaking to interpret the information displayed without overloading memory [47,90,94] (See **Fig 4** for an example). Simpler geovisualizations that reveal patterns without requiring complex mental transformations (i.e., the cartography cube concept) are more likely to lead to faster and more accurate judgments of risks [53,59]. Ease of use should be prioritized as a design feature to retain individuals' engagement and attention; the addition of complex features that are not intuitive may lead viewers to lose interest and navigate away. Present data logically, in a manner that follows common visual conventions [42], and use self-explanatory colors and shapes to reduce the need for viewers to divert attention towards a map

legend [86]. This will help viewers efficiently match the visual elements contained in the visualization to any similar elements stored in their memory.

Fig 4. An example of a map using intuitive visual conventions (i.e., blue hues) to depict areas at risk of flooding. This geovisualization allows viewers to check their long-term flood risk from various sources (e.g., surface water) across England. **Source:** Ordnance Survey, United Kingdom Environment Agency [113].

6. Limit Visual Distractions

People learn best without visual distractions dividing their attention. Despite people's curiosity and interest in dynamic maps that employ animations, these types of designs split viewers' attention across various moving objects and impact their abilities to detect changes to an object in a display [65,114]. In fact, animated visualizations do not appear to help people comprehend information better than static visuals, even among different types of learners [115]. Still, animations may have advantages when it comes to showing data variations over time and space [93,116]. In these instances, simple animations that give viewers control over playback speed and the option to pause or rewind should be used to support viewers' understanding of the information. Similarly, geovisualizations employing hyper-realistic imagery (e.g., pictures of simulated hazard

impacts) do not appear to improve information interpretation or decision making relative to less realistic displays [116,117]. In fact, incorporating images that look ‘fake’ in geovisualizations may invite skepticism and distrust in the information displayed [31,70]. Too much data displayed in a geovisualization can also be distracting (see Recommendation 1).

Future research

Looking towards the future of environmental health and geovisualization, there remains a pressing need for more experimental studies to rigorously test various map presentation formats and the types of information they convey. Many evaluations of geovisualizations that are undertaken by health agencies and researchers rely on users’ subjective design preferences or perceived usability to measure success. Yet, as noted above, preferred visualizations may not optimize the accuracy of risk judgments [109,117,118], thus highlighting the importance of applying experimental methods to assess the effectiveness of different geovisualizations.

Use of experimental methods also will allow us to better understand how different presentation styles influence comprehension, decision making, and ultimately, behavior. For example, further research examining which emotional cues are most effective at influencing perceptions of environmental risks could provide more insights into how these cues should be leveraged to motivate the adoption of risk-mitigating actions using geovisualizations. Since responses to risks may vary considerably between different populations, and for different types of risks, context is important to study [31].

Still, far too many visual aids used in environmental risk communication are designed without much attention towards the target audience and often lack consideration for users and their distinct information needs [119]. Furthermore, as the world becomes increasingly digitized, many geovisualization tools developed by governments and academic researchers have transitioned to purely web-based platforms, which can pose significant barriers to individuals with limited access to reliable internet connections or devices [3]. Going forward, more attention also must be given to selecting geovisualization design strategies that cater to individuals with visual impairments so that they can be accessible to a broad range of individuals with diverse visual abilities. One example is to add alternative text to geovisualizations for screen readers, ensuring that visually impaired users can interpret and understand the spatial data presented online. Geovisualization designers may find that adopting principles of Universal Design—a design approach centered around creating products or spaces that are accessible for (and usable by) anyone—could lead to the development of visualizations that benefit everyone regardless of ability or skill [120].

Indeed, the scope of geovisualization research should be broadened to include experimental testing with more diverse populations, including people from various cultural backgrounds, ages, and education levels. By incorporating a more diverse range of study participants, researchers can gain insights into how geovisualization tools can be tailored to meet the needs of a wider demographic, ultimately fostering greater inclusivity and effectiveness in communicating environmental health information. Failing to do so may lead geovisualization designers to inadvertently perpetuate certain biases or stereotypes (e.g., relying on traditional gendered color schemes) [121]. One possible way to promote inclusivity is through the implementation of more participatory research models that would encourage co-creation of environmental health geovisualizations with the target end users [122,123]. Co-creation allows for local knowledge, experiences, and information needs to shape the design process [124], which can result in a

geovisualization tool that better reflects community realities and offers more meaningful opportunities to engage with local environmental health issues [125,126]. Another avenue for carrying out participatory mapping initiatives has been through the integration of environmental exposure data measured by citizen scientists into geovisualization tools [127,128]. Immersive technologies employing three-dimensional maps and extended reality (e.g., virtual reality) may also be effective for engaging people in environmental health issues [129,130] and enhancing awareness around environmental hazards [131,132].

Conclusions

Exposure to environmental hazards places a significant health burden on societies globally. Unfortunately, public awareness is lacking about many environmental health risks, impeding the uptake of protective actions and policies that would reduce the burden of environmental disease. Geovisualizations have emerged as promising digital tools for environmental health education and risk communication. However, the effectiveness of these tools at promoting risk comprehension and behavior change often goes untested. This evaluation gap hinders both the public's and policymakers' abilities to make risk-informed decisions regarding the management of environmental hazards and the protection of public health.

Drawing from insights in the cognitive sciences and cartography, this narrative review examined factors influencing individuals' information processing and how they could be leveraged to build evidence-based geovisualizations. We also reviewed recent studies evaluating three overarching design strategies in environmental health contexts to gain insights into their practical effectiveness. After synthesizing the evidence across these three disciplines, we presented six recommendations for designing effective geovisualizations that promote individuals' understanding of environmental hazards and aid risk-informed decision making.

The six recommendations (summarized in **Fig. 5**) emphasize the importance of considering cognitive processes such as individual attention and memory, as well as emotion, in geovisualization design for public education. They also underscore the need for more audience-tailored approaches in environmental health education. Going forward, experimental testing of geovisualizations prior to their implementation in public health settings could provide further valuable insights into their effectiveness and usability. The recommendations outlined here are anticipated to require periodic reassessment and adaptation, as technological advancements in data visualizations continue to evolve. Nonetheless, they serve as a foundational framework for enhancing the utility and effectiveness of geovisualizations to promote environmental health literacy.

Conflict of Interest

Catherine Slavik, Carolyn Fish, and Ellen Peters declare that they have no conflict of interest.

Funding

This work was supported in part by the Banting Postdoctoral Fellowships program of Canada and the US National Science Foundation (SES-2017651 and BCS-2436970).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Recommendations for designing effective geovisualizations in environmental health

- 1** **Display key data**
Display only key data supporting the communication goal of the geovisualization. Provide guidance on actions that can reduce exposures to environmental risks.
- 2** **Tailor and test**
Tailor the geovisualization to the intended audience, considering their level of expertise. Conduct testing to evaluate whether the communication goal has been achieved.
- 3** **Use salient cues**
Use variations in colors, lines, shapes, etc., to draw attention towards risk variations. Labels, arrows, and other attention guides can help highlight key information to the reader.
- 4** **Leverage emotion**
Emotional cues such as evocative stories, photographs, and some color palettes can influence risk perceptions and promote adoption of risk-mitigating actions.
- 5** **Aid pattern recognition**
Present data logically, consistently, and according to common visual conventions to reduce the need for readers to divide their attention between the map and its legend.
- 6** **Limit visual distractions**
Skip complex visual elements such as animations that split attention across multiple moving objects. Simpler visualizations reduce mental effort and are easier to understand.

Fig 5. Recommendations for designing effective geovisualizations to help educate the public about environmental health hazards, informed by research from the cognitive sciences, cartography, and environmental health.

References

1. Prüss-Ustün A, Wolf J, Corvalán C, Neville T, Bos R, Neira M. Diseases due to unhealthy environments: an updated estimate of the global burden of disease attributable to environmental determinants of health. *J Public Health Oxf Engl.* 2017;39:464–75.
2. Ratnapradipa D, Middleton WK, Wodika AB, Brown SL, Preihs K. What Does the Public Know About Environmental Health? A Qualitative Approach to Refining an Environmental Health Awareness Instrument. *J Environ Health.* 2015;77:22–9.
3. Ramírez AS, Ramondt S, Van Bogart K, Perez-Zuniga R. Public Awareness of Air Pollution and Health Threats: Challenges and Opportunities for Communication Strategies To Improve Environmental Health Literacy. *J Health Commun.* 2019;24:75–83.
4. Houts PS, Doak CC, Doak LG, Loscalzo MJ. The role of pictures in improving health communication: A review of research on attention, comprehension, recall, and adherence. *Patient Educ Couns.* 2006;61:173–90.
5. Bucher H-J, Schumacher P. The relevance of attention for selecting news content. An eye-tracking study on attention patterns in the reception of print and online media. *2006;31:347–68.*
6. Chishtie J, Bielska IA, Barrera A, Marchand J-S, Imran M, Tirmizi SFA, et al. Interactive Visualization Applications in Population Health and Health Services Research: Systematic Scoping Review. *J Med Internet Res.* 2022;24:e27534.
7. Hogräfer M, Heitzler M, Schulz H-J. The State of the Art in Map-Like Visualization. *Comput Graph Forum.* 2020;39:647–74.
8. Propen AD. Cartographic representation and the construction of lived worlds: Understanding cartographic practice as embodied knowledge. *Rethink Maps.* Routledge; 2009.
9. Stieb DM, Huang A, Hocking R, Crouse DL, Osornio-Vargas AR, Villeneuve PJ. Using maps to communicate environmental exposures and health risks: Review and best-practice recommendations. *Environ Res.* 2019;176:108518.
10. Çöltekin A, Bleisch S, Andrienko G, Dykes J. Persistent challenges in geovisualization – a community perspective. *Int J Cartogr.* 2017;3:115–39.
11. Lindell MK. Improving Hazard Map Comprehension for Protective Action Decision Making. *Front Comput Sci.* 2020;2:1–14.
12. Sopan A, Noh AS-I, Karol S, Rosenfeld P, Lee G, Shneiderman B. Community Health Map: A geospatial and multivariate data visualization tool for public health datasets. *Gov Inf Q.* 2012;29:223–34.
13. Zakkar M, Sedig K. Interactive visualization of public health indicators to support policymaking: An exploratory study. *Online J Public Health Inform.* 2017;9:e190.
14. Cinnamon J, Rinner C, Cusimano MD, Marshall S, Bekele T, Hernandez T, et al. Evaluating web-based static, animated and interactive maps for injury prevention. *Geospatial Health.* 2009;4:3–16.

15. Jones JM, Henry K, Wood N, Ng P, Jamieson M. HERA: A dynamic web application for visualizing community exposure to flood hazards based on storm and sea level rise scenarios. *Comput Geosci*. 2017;109:124–33.
16. Stein S, Geller RJ, Liu M. Why earthquake hazard maps often fail and what to do about it. *Tectonophysics*. 2012;562–563:1–25.
17. Dory G, Qiu Z, Qiu CM, Fu MR, Ryan CE. A phenomenological understanding of residents' emotional distress of living in an environmental justice community. *Int J Qual Stud Health Well-Being*. 2017;12:1269450.
18. Parrott R, Hopfer S, Ghetian C, Lengerich E. Mapping as a Visual Health Communication Tool: Promises and Dilemmas. *Health Commun*. 2007;22:13–24.
19. Rezk AA, Hendawy M. Informative cartographic communication: a framework to evaluate the effects of map types on users' interpretation of COVID-19 geovisualizations. *Cartogr Geogr Inf Sci*. 2023;0:1–18.
20. Thorpe A, Scherer AM, Han PKJ, Burpo N, Shaffer V, Scherer L, et al. Exposure to Common Geographic COVID-19 Prevalence Maps and Public Knowledge, Risk Perceptions, and Behavioral Intentions. *JAMA Netw Open*. 2021;4:e2033538–e2033538.
21. Franconeri SL, Padilla LM, Shah P, Zacks JM, Hullman J. The Science of Visual Data Communication: What Works. *Psychol Sci Public Interest*. 2021;22:110–61.
22. Eberhard K. The effects of visualization on judgment and decision-making: a systematic literature review. *Manag Rev Q*. 2023;73:167–214.
23. Marti M, Stauffacher M, Wiemer S. Difficulties in explaining complex issues with maps: evaluating seismic hazard communication – the Swiss case. *Nat Hazards Earth Syst Sci*. 2019;19:2677–700.
24. Rickard LN, Schuldt JP, Eosco GM, Scherer CW, Daziano RA. The Proof is in the Picture: The Influence of Imagery and Experience in Perceptions of Hurricane Messaging. *Weather Clim Soc*. 2017;9:471–85.
25. Fabrikant SI, Christophe S, Papastefanou G, Lanini-Maggi S. Emotional response to map design aesthetics. Columbus, Ohio: s.n.; 2012 [cited 2022 Nov 28]. Available from: <https://www.zora.uzh.ch/id/eprint/71701>
26. Cameron LD, Chan CKY. Designing Health Communications: Harnessing the Power of Affect, Imagery, and Self-Regulation. *Soc Personal Psychol Compass*. 2008;2:262–82.
27. Garcia-Retamero R, Cokely ET. Designing visual aids that promote risk literacy: A systematic review of health research and evidence-based design heuristics. *Hum Factors J Hum Factors Ergon Soc*. 2017;59:582–627.
28. Slovic P, Peters E, Finucane ML, MacGregor DG. Affect, risk, and decision making. *Health Psychol*. 2005;24:S35–40.
29. Fish C. Elements of Vivid Cartography. *Cartogr J*. 2021;58:150–66.

30. Anderson C, Robinson A. Affective Congruence in Visualization Design: Influences on Reading Categorical Maps. *IEEE Trans Vis Comput Graph*. 2022;28:2867–78.

31. Stempel P, Becker A. Visualizations Out of Context: Addressing Pitfalls of Real-Time Realistic Hazard Visualizations. *ISPRS Int J Geo-Inf*. 2019;8:318.

32. Bell BS, Hoskins RE, Pickle L, Wartenberg D. Current practices in spatial analysis of cancer data: mapping health statistics to inform policymakers and the public. *Int J Health Geogr*. 2006;5:1–14.

33. Nykiforuk CIJ, Flaman LM. Geographic Information Systems (GIS) for Health Promotion and Public Health: A Review. *Health Promot Pract*. 2011;12:63–73.

34. Lahr J, Kooistra L. Environmental risk mapping of pollutants: State of the art and communication aspects. *Sci Total Environ*. 2010;408:3899–907.

35. Barry AM. Perception Theory. *Handb Vis Commun*. Routledge; 2004.

36. Wagemans J, Feldman J, Gepshtein S, Kimchi R, Pomerantz JR, van der Helm PA, et al. A century of Gestalt psychology in visual perception: II. Conceptual and theoretical foundations. *Psychol Bull*. 2012;138:1218–52.

37. Chen X, Zelinsky GJ. Real-world visual search is dominated by top-down guidance. *Vision Res*. 2006;46:4118–33.

38. Connor CE, Egeth HE, Yantis S. Visual Attention: Bottom-Up Versus Top-Down. *Curr Biol*. 2004;14:R850–2.

39. Krishna A. Visual Perception: An Overview. United Kingdom: Taylor & Francis Group; 2009.

40. Pinker S. A theory of graph comprehension. *Artif Intell Future Test*. Hillsdale, NJ, US: Lawrence Erlbaum Associates, Inc; 1990. p. 73–126.

41. Reani M, Peek N, Jay C. How different visualizations affect human reasoning about uncertainty: An analysis of visual behaviour. *Comput Hum Behav*. 2019;92:55–64.

42. Patterson RE, Blaha LM, Grinstein GG, Liggett KK, Kaveney DE, Sheldon KC, et al. A human cognition framework for information visualization. *Comput Graph*. 2014;42:42–58.

43. Krueger LE. Familiarity effects in visual information processing. *Psychol Bull*. 1975;82:949–74.

44. Kopp T, Riekert M, Utz S. When cognitive fit outweighs cognitive load: Redundant data labels in charts increase accuracy and speed of information extraction. *Comput Hum Behav*. 2018;86:367–76.

45. Slovic P, Finucane ML, Peters E, MacGregor DG. Risk as Analysis and Risk as Feelings: Some Thoughts about Affect, Reason, Risk, and Rationality. *Risk Anal*. 2004;24:311–22.

46. Kennedy H, Hill RL. The Feeling of Numbers: Emotions in Everyday Engagements with Data and Their Visualisation. *Sociology*. 2018;52:830–48.

47. Adaval R, Saluja G, Jiang Y. Seeing and thinking in pictures: A review of visual information processing. *Consum Psychol Rev.* 2019;2:50–69.

48. Plass JL, Heidig S, Hayward EO, Homer BD, Um E. Emotional design in multimedia learning: Effects of shape and color on affect and learning. *Learn Instr.* 2014;29:128–40.

49. Peters E, Boyd P, Cameron LD, Contractor N, Diefenbach MA, Fleszar-Pavlovic S, et al. Evidence-based recommendations for communicating the impacts of climate change on health. *Transl Behav Med.* 2022;12:543–53.

50. Peters E, Lipkus I, Diefenbach MA. The Functions of Affect in Health Communications and in the Construction of Health Preferences. *J Commun.* 2006;56:S140–62.

51. Hegarty M, Canham MS, Fabrikant SI. Thinking about the weather: How display salience and knowledge affect performance in a graphic inference task. *J Exp Psychol Learn Mem Cogn.* 2010;36:37–53.

52. DiBiase D. Visualization in the earth sciences. *Earth Miner Sci.* 1990;59:13–8.

53. Maceachren AM. Chapter 1 - Visualization in Modern Cartography: Setting the Agenda. In: Maceachren AM, Taylor DRF, editors. *Mod Cartogr Ser.* Academic Press; 1994. p. 1–12.

54. Tversky B. Visuospatial Reasoning. *Camb Handb Think Reason.* New York, NY, US: Cambridge University Press; 2005. p. 209–40.

55. Morita T. Reflections on the Works of Jacques Bertin: From Sign Theory to Cartographic Discourse. *Cartogr J.* 2011;48:86–91.

56. Fabrikant SI, Hespanha SR, Hegarty M. Cognitively Inspired and Perceptually Salient Graphic Displays for Efficient Spatial Inference Making. *Ann Assoc Am Geogr.* 2010;100:13–29.

57. Bertin J. *Semiology of graphics.* University of Wisconsin press; 1983.

58. Limpisathian P. Evaluating Visual Contrast and Hierarchy Relations of Cartographic Features Across Multi-Scale Map Displays [Internet]. The Pennsylvania State University; 2017. Available from: <https://etda.libraries.psu.edu/catalog/14410pwl5119>

59. Padilla LM, Ruginski IT, Creem-Regehr SH. Effects of ensemble and summary displays on interpretations of geospatial uncertainty data. *Cogn Res Princ Implic.* 2017;2:40.

60. Canham M, Hegarty M. Effects of knowledge and display design on comprehension of complex graphics. *Learn Instr.* 2010;20:155–66.

61. Montello DR, Fabrikant SI, Davies C. Cognitive perspectives on cartography and other geographic information visualizations. *Handb Behav Cogn Geogr.* 2018;177–96.

62. Maceachren AM, Ganter JH. A pattern identification approach to cartographic visualization. *Cartogr Int J Geogr Inf Geovisualization.* 1990;27:64–81.

63. Hegarty M. Diagrams in the Mind and in the World: Relations between Internal and External Visualizations. In: Blackwell AF, Marriott K, Shimojima A, editors. *Diagrammatic Represent Inference.* Berlin, Heidelberg: Springer; 2004. p. 1–13.

64. Falschlunger L, Treiblmaier H, Lehner O, Grabmann E. Cognitive Differences and Their Impact on Information Perception: An Empirical Study Combining Survey and Eye Tracking Data. In: Davis FD, Riedl R, vom Brocke J, Léger P-M, Randolph AB, editors. *Inf Syst Neurosci*. Cham: Springer International Publishing; 2015. p. 137–44.

65. Lloyd R. Chapter 6 Cognitive Processes and Cartographic Maps. In: Gärling T, Golledge RG, editors. *Adv Psychol*. North-Holland; 1993. p. 141–69.

66. Koenig A, Samarasundera E, Cheng T. Interactive map communication: Pilot study of the visual perceptions and preferences of public health practitioners. *Public Health*. 2011;125:554–60.

67. Hegarty M, Smallman HS, Stull AT. Choosing and using geospatial displays: effects of design on performance and metacognition. *J Exp Psychol Appl*. 2012;18:1–17.

68. Christen M, Brugger P, Fabrikant SI. Susceptibility of domain experts to color manipulation indicate a need for design principles in data visualization. *PLOS ONE*. 2021;16:e0246479.

69. Lor M. Color-encoding visualizations as a tool to assist a nonliterate population in completing health survey responses. *Inform Health Soc CARE*. 2020;45:31–42.

70. Richards DP, Jacobson EE. How Real Is Too Real? User-Testing the Effects of Realism as a Risk Communication Strategy in Sea Level Rise Visualizations. *Tech Commun Q*. 2022;31:190–206.

71. Dransch D, Rotzoll H, Poser K. The contribution of maps to the challenges of risk communication to the public. *Int J Digit Earth*. 2010;3:292–311.

72. Muehlenhaus I. The design and composition of persuasive maps. *Cartogr Geogr Inf Sci*. 2013;40:401–14.

73. Brewer CA. Color Use Guidelines for Mapping and Visualization. In: MacEachren AM, Taylor DR, editors. *Vis Mod Cartogr*. Tarrytown, NY: Elsevier; 1994. p. 123–48.

74. Muehlenhaus I. If Looks Could Kill: The Impact of Different Rhetorical Styles on Persuasive Geocommunication. *Cartogr J*. 2012;49:361–75.

75. Fagerlin A, Valley TS, Scherer AM, Knaus M, Das E, Zikmund-Fisher BJ. Communicating infectious disease prevalence through graphics: Results from an international survey. *Vaccine*. 2017;35:4041–7.

76. Kostelnick C. The Re-Emergence of Emotional Appeals in Interactive Data Visualization. *Tech Commun*. 2016;63:116–35.

77. Lan X, Wu Y, Cao N. Affective Visualization Design: Leveraging the Emotional Impact of Data. *IEEE Trans Vis Comput Graph*. 2024;30:1–11.

78. Garlandini S, Fabrikant SI. Evaluating the Effectiveness and Efficiency of Visual Variables for Geographic Information Visualization. *Spat Inf Theory*. Berlin, Heidelberg: Springer Berlin Heidelberg; 2009. p. 195–211.

79. Severtson DJ, Myers JD. The Influence of Uncertain Map Features on Risk Beliefs and Perceived Ambiguity for Maps of Modeled Cancer Risk from Air Pollution: Influence of Map Features on Beliefs and Ambiguity. *Risk Anal.* 2013;33:818–37.

80. Warden AC, Witt JK, Szafir DA. Visualizing temperature trends: Higher sensitivity to trend direction with single-hue palettes. *J Exp Psychol Appl.* 2022;28:717–45.

81. Sibrel SC, Rathore R, Lessard L, Schloss KB. The relation between color and spatial structure for interpreting colormap data visualizations. *J Vis.* 2020;20:7.

82. Cheong L, Kinkeldey C, Burfurd I, Bleisch S, Duckham M. Evaluating the impact of visualization of risk upon emergency route-planning. *Int J Geogr Inf Sci.* 2020;34:1022–50.

83. Engeset RV, Pfuhl G, Orten C, Hendrikx J, Hetland A. Colours and maps for communicating natural hazards to users with and without colour vision deficiency. *Int J Disaster Risk Reduct.* 2022;76:103034.

84. Klettner S. Affective Communication of Map Symbols: A Semantic Differential Analysis. *ISPRS Int J GEO-Inf.* 2020;9.

85. Klettner S. Why Shape MattersOn the Inherent Qualities of Geometric Shapes for Cartographic Representations. *ISPRS Int J GEO-Inf.* 2019;8.

86. Cao Y, Boruff BJ, McNeill IM. Is a picture worth a thousand words? Evaluating the effectiveness of maps for delivering wildfire warning information. *Int J Disaster Risk Reduct.* 2016;19:179–96.

87. Ash KD, Schumann RL, Bowser GC. Tornado Warning Trade-Offs: Evaluating Choices for Visually Communicating Risk. *Weather Clim Soc.* 2014;6:104–18.

88. Lan Y, Tang W, Dye S, Delmelle E. A web-based spatial decision support system for monitoring the risk of water contamination in private wells. *Ann GIS.* 2020;26:293–309.

89. Boone AP, Gunalp P, Hegarty M. Explicit versus actionable knowledge: The influence of explaining graphical conventions on interpretation of hurricane forecast visualizations. *J Exp Psychol Appl.* 2018;24:275–95.

90. Patterson RE. Cognitive engineering, cognitive augmentation, and information display. *J Soc Inf Disp.* 2012;20:208–13.

91. MacEachren AM. Chapter 4: How maps are understood. *Maps Work Represent Vis Des.* Guilford Press; 2004. p. 150–212.

92. Haynes K, Barclay J, Pidgeon N. Volcanic hazard communication using maps: an evaluation of their effectiveness. *Bull Volcanol.* 2007;70:123–38.

93. Zhu J, Zhang J, Zhu Q, Li W, Wu J, Guo Y. A knowledge-guided visualization framework of disaster scenes for helping the public cognize risk information. *Int J Geogr Inf Sci.* 2024;38:626–53.

94. Strathie A, Netto G, Walker G h., Pender G. How presentation format affects the interpretation of probabilistic flood risk information. *J Flood Risk Manag.* 2017;10:87–96.

95. Wong C, Wu H-C, Cleary EG, Patton AP, Xie A, Grinstein G, et al. Visualizing Air Pollution: Communication of Environmental Health Information in a Chinese Immigrant Community. *J Health Commun.* 2019;24:339–58.

96. Herring J, VanDyke MS, Cummins RG, Melton F. Communicating Local Climate Risks Online Through an Interactive Data Visualization. *Environ Commun.* 2017;11:90–105.

97. Retchless DP. Understanding Local Sea Level Rise Risk Perceptions and the Power of Maps to Change Them: The Effects of Distance and Doubt. *Environ Behav.* 2018;50:483–511.

98. Severtson DJ, Vatovec C. The Theory-Based Influence of Map Features on Risk Beliefs: Self-Reports of What Is Seen and Understood for Maps Depicting an Environmental Health Hazard. *J Health Commun.* 2012;17:836–56.

99. Preston A, Ma K-L. Communicating Uncertainty and Risk in Air Quality Maps. *IEEE Trans Vis Comput Graph.* 2023;29:3746–57.

100. Klockow-McClain KE, McPherson RA, Thomas RP. Cartographic Design for Improved Decision Making: Trade-Offs in Uncertainty Visualization for Tornado Threats. *Ann Am Assoc Geogr.* 2020;110:314–33.

101. Lieske DJ, Wade T, Roness LA. Climate change awareness and strategies for communicating the risk of coastal flooding: A Canadian Maritime case example. *Estuar Coast Shelf Sci.* 2014;140:83–94.

102. Heggli A, Hatchett B, Tolby Z, Lambrecht K, Collins M, Olman L, et al. Visual Communication of Probabilistic Information to Enhance Decision Support. *Bull Am Meteorol Soc.* 2023;104:E1533–51.

103. Jon I, Huang S, Lindell MK. Perceptions and Expected Immediate Reactions to Severe Storm Displays. *Risk Anal.* 2019;39:274–90.

104. Thompson Clive MA, Lindsay JM, Leonard GS, Lutteroth C, Bostrom A, Corballis P. Volcanic hazard map visualisation affects cognition and crisis decision-making. *Int J Disaster Risk Reduct.* 2021;55:102102.

105. Fabrikant SI, Skupin A. Chapter 35 - Cognitively Plausible Information Visualization. In: Dykes J, MacEachren AM, Kraak M-J, editors. *Explor Geovisualization.* Oxford: Elsevier; 2005. p. 667–90.

106. Wyoming State Geological Survey. Wyoming Geologic Hazards Map [Internet]. [cited 2024 May 20]. Available from: https://portal.wsgs.wyo.gov/arcgis/apps/webappviewer/index.html?id=52526188fee5489fa1db6c13a903b26a&extent=-13053376.3672%2C4809381.9985%2C10705230.8583%2C5884392.3643%2C102100&showLayers=Earthquakes_1312_1%3BLandslides_9386_0%3BLandslides_9386_1%3BFaults_1822_0%3BOtherHazards_332_0%3BOtherHazards_332_1%3BRadon_5253%3BRadon_5253_0%3BRadon_5253_1%3BRadon_5253_2%3BLsSusceptibility_3250_0%3BBaseLayersWSGS_4208_1%3BBaseLayersWSGS_4208_2%3B

BaseLayersWSGS_4208_4%3BBaseLayersWSGS_4208_5%3BBaseLayersWSGS_4208_13%3BBaseLayersWSGS_4208_14%3BBaseLayersWSGS_4208_16%3BBaseLayersWSGS_4208_20%3BBaseLayersWSGS_4208_27%3BBaseLayersWSGS_4208_32

107. Lindsay JM, Charlton D, Clive MAT, Bertin D, Ogburn S, Wright H, et al. The diversity of volcanic hazard maps around the world: insights from map makers. *J Appl Volcanol.* 2023;12:8.
108. Ancker JS, Senathirajah Y, Kukafka R, Starren JB. Design features of graphs in health risk communication: A systematic review. *J Am Med Inform Assoc.* 2006;13:608–18.
109. Lorenz S, Dessai S, Forster PM, Paavola J. Tailoring the visual communication of climate projections for local adaptation practitioners in Germany and the UK. *Philos Trans R Soc Math Phys Eng Sci.* 2015;373:20140457.
110. Wu DTY, Chen AT, Manning JD, Levy-Fix G, Backonja U, Borland D, et al. Evaluating visual analytics for health informatics applications: a systematic review from the American Medical Informatics Association Visual Analytics Working Group Task Force on Evaluation. *J Am Med Inform Assoc.* 2019;26:314–23.
111. Crameri F, Shephard GE, Heron PJ. The misuse of colour in science communication. *Nat Commun.* 2020;11:5444.
112. US EPA O. Search for Superfund Sites Where You Live [Internet]. 2023 [cited 2024 May 20]. Available from: <https://www.epa.gov/superfund/search-superfund-sites-where-you-live>
113. Ordnance Survey. Flood map for planning [Internet]. 2021 [cited 2024 May 20]. Available from: <https://flood-map-for-planning.service.gov.uk>
114. Harrower M. The Cognitive Limits of Animated Maps. *Cartogr Int J Geogr Inf Geovisualization.* 2007;42:349–57.
115. Hegarty M, Kriz S. Effects of knowledge and spatial ability on learning from animation. *Learn Animat Res Implic Des.* New York, NY, US: Cambridge University Press; 2008. p. 3–29.
116. Hegarty M. The Cognitive Science of Visual-Spatial Displays: Implications for Design. *Top Cogn Sci.* 2011;3:446–74.
117. Wilkening J, Fabrikant SI. How Do Decision Time and Realism Affect Map-Based Decision Making? In: Egenhofer M, Giudice N, Moratz R, Worboys M, editors. *Spat Inf Theory.* Berlin, Heidelberg: Springer; 2011. p. 1–19.
118. Cheong L, Bleisch S, Kealy A, Tolhurst K, Wilkening T, Duckham M. Evaluating the impact of visualization of wildfire hazard upon decision-making under uncertainty. *Int J Geogr Inf Sci.* 2016;30:1377–404.
119. Lazard A, Atkinson L. Putting environmental infographics center stage: The role of visuals at the elaboration likelihood model's critical point of persuasion. *Sci Commun.* 2015;37:6–33.
120. Lobben A, Brittell ME, Perdue NA. Inclusive Cartographic Design: Overcoming Ocular-Centric Cartographies. In: Robbi Sluter C, Madureira Cruz CB, Leal de Menezes PM, editors. *Cartogr - Maps Connect World 27th Int Cartogr Conf 2015 - ICC2015* [Internet]. Cham: Springer

International Publishing; 2015 [cited 2024 Aug 6]. p. 89–98. Available from: https://doi.org/10.1007/978-3-319-17738-0_7

121. Cabric F, Bjarnadóttir MV, Ling M, Rafnsdóttir GL, Isenberg P. Eleven Years of Gender Data Visualization: A Step Towards More Inclusive Gender Representation. *IEEE Trans Vis Comput Graph.* 2024;30:316–26.
122. English PB, Richardson MJ, Garzón-Galvis C. From Crowdsourcing to Extreme Citizen Science: Participatory Research for Environmental Health. *Annu Rev Public Health.* 2018;39:335–50.
123. Cochrane L, Corbett J. Participatory Mapping. In: Servaes J, editor. *Handb Commun Dev Soc Change [Internet].* Singapore: Springer; 2020. p. 705–13. Available from: https://doi.org/10.1007/978-981-15-2014-3_6
124. Reid G, Sieber RE. Learning from critiques of GIS for assessing the geoweb and indigenous knowledges. *GeoJournal.* 2022;87:875–93.
125. Huang G, London JK. Mapping in and out of “messes”: An adaptive, participatory, and transdisciplinary approach to assessing cumulative environmental justice impacts. *Landsc Urban Plan.* 2016;154:57–67.
126. Wilson SM, Murray RT, Jiang C, Dalemarre L, Burwell-Naney K, Fraser-Rahim H. Environmental Justice Radar: A Tool for Community-Based Mapping to Increase Environmental Awareness and Participatory Decision Making. *Prog Community Health Partnersh Res Educ Action.* 2015;9:439–46.
127. Kanjo E. NoiseSPY: A Real-Time Mobile Phone Platform for Urban Noise Monitoring and Mapping. *Mob Netw Appl.* 2010;15:562–74.
128. Martell M, Perko T, Tomkiv Y, Long S, Dowdall A, Kenens J. Evaluation of citizen science contributions to radon research. *J Environ Radioact.* 2021;237:106685.
129. Kostelnick JC, McDermott D, Rowley RJ, Bunnyfield N. A Cartographic Framework for Visualizing Risk. *Cartogr Int J Geogr Inf Geovisualization.* 2013;48:200–24.
130. Macchione F, Costabile P, Costanzo C, De Santis R. Moving to 3-D flood hazard maps for enhancing risk communication. *Environ Model Softw.* 2019;111:510–22.
131. Simpson M, Padilla L, Keller K, Klippel A. Immersive storm surge flooding: Scale and risk perception in virtual reality. *J Environ Psychol.* 2022;101764.
132. Pochwatko G, Świdrak J, Kopeć W, Jędrzejewski Z, Feledyn A, Vogt M, et al. Multisensory Representation of Air Pollution in Virtual Reality: Lessons from Visual Representation. In: Biele C, Kacprzyk J, Kopeć W, Owsiński JW, Romanowski A, Sikorski M, editors. *Digit Interact Mach Intell.* Cham: Springer International Publishing; 2022. p. 239–47.