Increasing the accuracy of single-molecule data analysis using tMAVEN
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Abstract

Time-dependent single-molecule experiments contain rich kinetic information about the functional
dynamics of biomolecules. A key step in extracting this information is the application of kinetic models,
such as hidden Markov models (HMMs), which characterize the molecular mechanism governing the
experimental system. Unfortunately, researchers rarely know the physico-chemical details of this
molecular mechanism a priori, which raises questions about how to select the most appropriate kinetic
model for a given single-molecule dataset and what consequences arise if the wrong model is chosen.
To address these questions, we have developed and used time-series Modeling, Analysis, and
Visualization ENvironment (tMAVEN), a comprehensive, open-source, and extensible software
platform. tMAVEN can perform each step of the single-molecule analysis pipeline, from pre-
processing to kinetic modeling to plotting, and has been designed to enable the analysis of a single-
molecule dataset with multiple types of kinetic models. Using tMAVEN, we have systematically

investigated mismatches between kinetic models and molecular mechanisms by analyzing simulated
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examples of prototypical single-molecule datasets exhibiting common experimental complications,
such as molecular heterogeneity, with a series of different types of HMMs. Our results show that no
single kinetic modeling strategy is mathematically appropriate for all experimental contexts. Indeed,
HMMs only correctly capture the underlying molecular mechanism in the simplest of cases. As such,
researchers must modify HMMs using physico-chemical principles to avoid the risk of missing the
significant biological and biophysical insights into molecular heterogeneity that their experiments
provide. By enabling the facile, side-by-side application of multiple types of kinetic models to individual
single-molecule datasets, tMAVEN allows researchers to carefully tailor their modeling approach to
match the complexity of the underlying biomolecular dynamics and increase the accuracy of their

single-molecule data analyses.

Statement of Significance

The power of time-dependent single-molecule biophysical experiments lies in their ability to uncover
the molecular mechanisms governing experimental systems by computationally applying kinetic
models to the data. While many software solutions have been developed to estimate the optimal
parameters of such models, the results reported here show that the models themselves are often
inherently mismatched with the molecular mechanisms they are being used to analyze. To investigate
these mismatches and demonstrate how to best model the kinetics of a molecular mechanism, we
have used time-series Modeling, Analysis, and Visualization ENvironment (tMAVEN), an open-source
software platform we have developed that, among other features, enables the analysis of single-
molecule datasets using different kinetic models within a single, extensible, and customizable

pipeline.

Introduction
Single-molecule kinetics experiments have revolutionized our understanding of the dynamics of
biomolecules and, consequently, the mechanisms of biomolecular function (1, 2). These techniques

provide a uniquely detailed view of molecular mechanisms relative to more traditional ‘bulk’
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techniques where mechanistic details, such as transient intermediates or rare events, are easily
masked by macroscopic ensemble averaging. Furthermore, by observing the motions of an individual
molecule through time, single-molecule kinetics experiments bypass the difficulties of biochemically
synchronizing a stochastic biomolecular process with asynchronous dynamics (3). Altogether, the
advantages conferred by single-molecule techniques have expanded both the set of biological
systems whose kinetics can be investigated and the complexity of biomolecular dynamics that may
be experimentally probed.

Despite the advantages of single-molecule techniques, the challenges of extracting
mechanistic information from the associated experimental data (4) have limited their widespread
application. Fortunately, many analysis approaches have been developed over the last few decades
to address this problem (4, 5). In particular, hidden Markov models (HMMs) (6) have emerged as a
popular method to describe the latent dynamics of a biological system by analyzing the time-
dependent readout of a chosen experimental single-molecule signal (e.g., fluorescence intensity,
spatial position, end-to-end distance, electric current, etc.) (7-21). In this context, HMMs are used to
mathematically describe the transitions between relatively stable signal values (i.e., signal states) that
are often observed in single-molecule experiments, thereby directly extracting the underlying kinetics
of the molecular system from the experimental data.

A major consideration when analyzing single-molecule data with models like HMMs is the
completeness of the kinetic information present in a signal vs. time trajectory. Each trajectory reports
on the dynamic behavior of an individual molecule, thus the amount of molecular information that can
be extracted from any one trajectory is limited (4)—particularly for techniques that rely on
fluorescence, wherein the photophysical processes of the fluorophores severely restrict the length of
the trajectory (22). In such cases, researchers often use their knowledge of the underlying physico-
chemical properties of the biomolecular system to invoke the ergodic hypothesis (23) and model data
from multiple trajectories in aggregate (e.g., as in Refs. (24—27)). Thus, instead of modeling the kinetic
behavior of an individual molecule, these analyses infer the behavior of a mesoscopic, homogenous
ensemble consisting of hundreds to thousands of molecules that are assumed to be identical.

In reality, however, experimental ensembles of molecules are never identical and always
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Figure 1. Molecular mechanisms and their corresponding single-molecule signal vs. time trajectories.
(top) Schematic of the molecular mechanism, (middle) the corresponding conformational free-energy
landscape, and (bottom) single-molecule trajectories that capture changes in signal for Reaction Coordinate 1
for (a) homogeneous, (b) statically heterogeneous, and (c) dynamically heterogeneous biomolecular systems.
Simulated random walkers on the conformational free-energy landscape, starting at circles and ending at
arrows, show hypothetical individual molecules undergoing transitions that correspond to the grey areas of the
single-molecule trajectories. For the heterogeneous cases, blue and red correspond respectively to slow and
fast transitioning subpopulations (for static) and phases (for dynamic), which are differentiated along Reaction
Coordinate 2. A discontinuity (hatched line) is shown in the landscape for (b) to signify the lack of allowed
transition along Reaction Coordinate 2 in this case.

exhibit some amount of heterogeneity (28—-31). These heterogeneities may be intrinsic to the nature
of the biomolecule, such as the presence of several subpopulations of molecules within the
experimental ensemble, or the presence of multiple molecular processes occurring over a range of
timescales (Fig. 1). In other cases, heterogeneities may be artifacts of the specific experimental

technique employed (e.g., interactions of the biomolecule with a surface in surface-tethered single-



Verma, A.R., et al.

a) 2N,

L (t=0) ',-'

Transitions

\
J/ \\/ Emissions

1.25
1.00
0.75 4
0.50
0.25
0.00
-0.25

Signal

b) 10
0.8 1
0.6 1

0.4 4

Normalized ACF

0.2 q

0.0 q

mr T T
0 10° 10’ 10?
Lag Time

Figure 2. Schematic diagram of a kinetic model. (a) A schematic diagram of a two-state HMM showing
the separation between the transition DoFs comprised of the initial probabilities and the transition
probabilities, and the emission DoFs comprised of the emission probability distributions. (b) The
normalized ACF corresponding to the HMM in (a) expresses all the dynamics of the kinetic model from
both the transitions and the emissions in a single analytical form.

molecule experimental modalities), which must still be accounted for to avoid obscuring the underlying
mechanistic details. Regardless of the source, such heterogeneities reduce the apparent complexity
of the biomolecular system under investigation by collapsing distinct kinetic processes into the same
signal state. This creates a mismatch between the ‘true’ underlying molecular mechanism reported
by the experiment (Fig. 1) and the kinetic model that a researcher might choose for analysis based
on the observed signal (Fig. 2) (i.e., a model-mechanism mismatch). Furthermore, while prior
knowledge of the type or amount of heterogeneity present in an experimental dataset may guide the
choice of kinetic model, such knowledge is not always readily available. Faced with a novel single-
molecule dataset and a range of different kinetic models, the choice of which kinetic model to use is

non-trivial and researchers are likely to incorrectly select a mismatched model. While we naturally
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expect the application of a mismatched model to affect the accuracy of the subsequent single-
molecule analysis, the exact effects of such mismatches on the inferred mechanistic details are
unknown.

In this work, we investigate the effects of model-mechanism mismatches using a range of
simulated datasets representative of commonly encountered types of heterogeneity in single-
molecule experiments (Fig. S1 and Supplementary Information). To perform this analysis, we used a
comprehensive, open-source, and extensible analysis platform we have developed, called time-series
Modeling, Analysis, and Visualization ENvironment (tMAVEN). tMAVEN is a software platform that, in
addition to enabling the pre-processing of single-molecule time-series data, facilitates the
interchangeable application of multiple, distinct kinetic models to the same single-molecule dataset.
Beyond the above features, tMAVEN has also been designed to generate reproducible, publication-
quality visualizations of experimental data and various modeling outcomes—all within a single
computational pipeline.

Utilizing the broad range of modeling approaches implemented in tMAVEN, we show that only
by exactly matching the number of free parameters (i.e., the complexity) of the underlying molecular
mechanism does a kinetic model accurately infer the often-heterogeneous biomolecular dynamics
under investigation. As such, no kinetic modeling strategy is universally appropriate across all
experimental contexts. Moreover, this requirement of mechanism matching is separate from, and
more fundamental than, questions about the performance of specific algorithmic or software
implementations of a model (32), or the strategies used to optimize the parameters of such a model
(e.g., maximum likelihood estimation, Bayesian inference, neural networks, etc.) (4). In the absence
of a universal kinetic model, our study of where and how kinetic models fail in capturing the dynamics
of heterogeneous, mesoscopic ensembles of single molecules can aid researchers in determining the
optimal approach to quantifying the molecular details of their biomolecular system. Taken together
with the capabilities that tMAVEN provides for applying multiple types of kinetic models to individual
single-molecule datasets, our investigation facilitates the highly context-dependent kinetic modeling
that is required for accurate single-molecule data analysis and, consequently, maximum extraction of

biochemical and biophysical insight from single-molecule experiments.
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Theory

Molecular mechanisms can be mapped onto a conformational free-energy landscape.

The molecular mechanism through which a biomolecule undergoes a structural rearrangement and/or
binding and dissociation process may be explained using the theoretical framework of a
conformational free-energy landscape (33). A conformational free-energy landscape is a low-
dimensional projection of the conformational space of a biomolecule onto the relevant reaction
coordinates that characterize the specific process of interest, where each point represents the free
energy of a specific set of biomolecular conformations. Thus, mapping a biomolecular system onto its
corresponding conformational free-energy landscape provides a representation of the molecular
mechanism underlying the dynamics of the system. Note that since most single-molecule techniques
probe conformational changes, we have restricted our usage to conformational free-energy
landscapes, but our discussion generalizes to other types of free-energy landscapes (e.g., chemical
free-energy landscapes that represent chemical transformations).

In this work, we have considered a hypothetical biomolecule that exists in two conformational
states (‘open’ and ‘closed’) with transitions between these states that are governed by first-order
kinetics (Fig. 1a). On the corresponding conformational free-energy landscape, the open and closed
conformations are represented by two minima or ‘wells.” The open and closed wells are separated by
a region of higher free energy that serves as a barrier to the transition between these two
conformational states along the relevant reaction coordinate (i.e., the transition state). The height of
this barrier (i.e., the difference in free energy between the minima of the well and the maxima of the
transition state) is a single independent parameter that controls the rate of transitions between the
open and closed states (34). For our hypothetical biomolecule, the heights of the barriers for the
open—closed and closed—open reactions comprise two independent parameters, representing two
degrees of freedom (DoFs), that together define the molecular mechanism involved in the
open=closed equilibrium. It is worth noting that these two DoFs may be parameterized in different,
but equivalent, manners (e.g., two barrier heights, the height of one barrier and the free-energy

difference between the states, two rate constants, the equilibrium constant and the relaxation lifetime,
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etc.), but that two independent parameters are always required to describe this particular equilibrium.
Together, these two independent parameters comprise the ‘mechanistic’ DoFs for our two-state
system.

A final consideration in the mapping of a molecular mechanism onto a conformational free-
energy landscape is how these conformational states are observed in a particular single-molecule
experiment. In the ideal case above, we have represented these conformational states as smooth
minima on the conformational free-energy landscape that each generate a distinct signal. Real
biomolecules, however, exist in a hierarchy of conformational states (i.e., wells within wells) and
consequently traverse ‘rugged’ conformational free energy landscapes (33, 35, 36). Depending upon
the experimental time resolution used to probe the dynamics within this hierarchy, transitions between
wells with relatively low barriers will occur so many times during one measurement that they will
effectively average into a single state and not be observed in the experiment. In this manner,
experimental details effectively determine the level of mechanistic detail that can be inferred from
time-dependent, single-molecule data. Thus, the experimental distinguishability of the underlying
molecular mechanism (i.e., the number of wells that can be separately observed in the experiment),
as scaled by the experimental specifics of the measurement (see below), generates additional

‘observational’ DoFs for the experimental molecular mechanism.

Hidden Markov models approximate the kinetic behavior of a single molecule.

Having described how a molecular mechanism can be mapped onto a conformational free-energy
landscape, we now discuss the process of inferring the details of such mechanisms from single-
molecule signal vs. time trajectories. This inference requires that we approximate the time-dependent
changes of the observed signal using some kinetic model, such as an HMM. HMMs are probabilistic
models that describe a dynamic phenomenon that cannot be directly observed and is thus ‘hidden’ in
the data (6). For our purposes, the hidden processes are the conformational dynamics of the
biomolecules that are indirectly reported on by single-molecule signal vs. time trajectories. In an HMM,
every data point in the signal vs. time trajectory corresponds to a particular ‘hidden’ state (e.g., a

conformational state). However, the identities of these hidden states are unknown as the noisy signal
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is simply a proxy for the hidden states. For each of the possible hidden states, the HMM uses an
‘emission’ probability distribution to describe how that hidden state, as dictated by the experiment
(see above), should appear in the noisy, observed signal (Figs. 2a and S2). The signal vs. time
trajectory can then be approximated as a time-dependent sequence of hidden states (i.e., a Markov
chain). In a Markov chain, transitions between the states, or between the same state (i.e., self-
transitions), are stochastic and occur at random times. An HMM describes the probabilities of each of
these transitions between the hidden states by assuming that the ‘transition probabilities’ are time-
independent and depend only on the identities of the initial and final states (i.e., they represent a
Markovian process exhibiting first-order kinetics (37)). These transition probabilities correspond to,
and may be directly converted to, the respective transition rate constants for these processes (38).
Thus, the general approach of an HMM aligns well with our above understanding of molecular
mechanisms. Indeed, by separating transition and emission parameters, HMMs provide a framework
wherein both the dynamics of the biomolecule (i.e., the mechanistic DoFs) and the experimental
process by which these dynamics are observed (i.e., the observational DoFs) may be independently
modeled and mapped onto one another.

To explore this equivalence between molecular mechanisms and HMMs further, we consider
the hypothetical biomolecule described above that transitions between an open and closed
conformation. In a single-molecule experiment, this system will yield a signal for each state (e.g., 0
for open and 1 for closed) and the resulting signal vs. time trajectory generated by such a molecule
(Fig. 1a) may be described by an HMM (38, 39) (Fig. 2). Specifically, the emission probability
distributions, which are often Gaussian distributions with mean u and standard deviation o, describe
how the conformational states of the biomolecule manifest in the observed, experimental signal.
Similarly, the rates of transition between the two conformations are described using transition
probabilities between the two states, Py; and P;,, where P;; is the transition probability from state i to
state j between adjacent measurements in the signal vs. time trajectory.

HMMs have more parameters than the ones described above (Fig. 2a), but no more are

required to describe this molecular system at equilibrium. The remaining parameters may be derived
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from constraints based on our prior knowledge of the experiment, and are thus not independent
parameters. For our two-state example, the molecule can either remain in its current state (i.e.,
undergo a self-transition) or transition to the other state. These two options comprise an exhaustive
set of mutually exclusive events. Thus, the probabilities of self-transition, Py, and P,, are
Pyy =1— Py, , and
P1; =1— Py
Similarly, for a system at chemical equilibrium, the probability that the molecule occupies either hidden

state at the start of the experiment, 7, and m;, should be the steady-state probabilities

P10

, and
Po1+P1o

T[O:

— _Poa
Py1+P1o

Therefore, while an HMM with two hidden states uses six parameters (i.e., the four P;; and two ;) to
model the observed dynamics, there are only two independent parameters if the system is at
equilibrium (i.e., Py; and P;,); we call these the ‘transition’ DoFs. In general, an HMM with K hidden
states will have K(K — 1) transition DoFs (see Supplementary Information). Thus, a two-state HMM
has two transition DoFs, which correctly matches the two mechanistic DoFs required to describe the
conformational free energy landscape of our hypothetical two-state molecule (Fig. 1a).

We can similarly quantify the DoFs associated with the signal emitted from each hidden state
in an HMM (i.e., the ‘emission’ DoFs). While the emission DoFs scale with the number of hidden
states, K, the exact number depends on the distribution chosen to represent the hidden states; ideally,
this distribution correctly encapsulates the experimental details of signal measurement (e.g., noise
introduced by a detector). The number of emission DoFs in a K-state HMM is, thus, mK, where the
proportionality factor, m, captures the dependence on the details of measurement. For single-
molecule data analysis, the most standard emission distribution for a hidden state is a univariate (one-
dimensional) Gaussian distribution. In this case, each hidden state is characterized by two emission
DoFs (m = 2): one for the state mean, u, and one for the state standard deviation, . In this work, we
use univariate Gaussian distributions for the emissions of our hypothetical two-state biomolecule;

emissions originating from the open state are modeled by a Gaussian distribution with parameters p,

10
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and g,, and those from the closed state with y; and o; (Fig. 2a). Thus, our two-state HMM has four
total emission DoFs, which correctly matches the four observational DoFs required to describe a
typical detector-based measurement of two experimentally distinguishable states (Fig. 1a). However,
emissions can be modeled by other sorts of distributions (40). Indeed, previous work on single-
molecule fluorescence resonance energy transfer (smFRET) data analysis saw more accurate results
by using a multivariate (two-dimensional) Gaussian emissions model for the fluorescence intensities

of the donor and acceptor fluorophores (I, and I,, respectively) vs. a univariate Gaussian emission

Ia

model for the normalized FRET efficiency (Errer = —;
DT A

), because of the flexibility provided by the

additional emission DoFs.

In our example above, we have discussed using a two-state HMM with four emission DoFs
and two transition DoFs to model a two-state molecular mechanism. However, one can always employ
more complex kinetic models with more emission and transition DoFs to explain the dynamics of a
biomolecule (Figs. S2 and S3, and Supplementary Information). In the ideal scenario, the transition
DoFs of the HMM used to analyze a single-molecule experiment should match the corresponding
mechanistic DoFs of the molecular mechanism under investigation, while the emission DoFs should
match the observational DoFs of the experiment. As described in the next section, however,
experimental complications frequently result in mismatches between the transition DoFs and

mechanistic DoFs and/or between the emission DoFs and observational DoFs.

Heterogeneity in a single-molecule ensemble reduces the apparent observational DoFs.

In the previous section, we discussed how the transition and emission DoFs of an HMM may exactly
match those of the mechanism underlying the dynamics of an individual molecule. However, this is
only true in ideal cases in which each conformational state of the molecule gives rise to a unique,
distinguishable signal state. In many experimental scenarios, this is not the case. In particular,
heterogeneity within a biomolecular system can significantly complicate this process of kinetic
modeling. Molecular heterogeneity is a well-documented phenomenon that affects biomolecular

dynamics (33) in ways that are observable using many types of single-molecule techniques (31, 39).

11
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While there exist many possible sources of heterogeneity, arising either from relevant changes to the
biomolecular mechanism itself or due to experimental modalities such as surface tethering, we define
this phenomenon explicitly as any experimental circumstances which cause a change in the free-
energy barrier(s) between conformational states and, therefore, in the rates of transitions between
them. While this is a somewhat restrictive definition, it covers a large number of situations that are
observed in single-molecule studies (28-30) and allows us to quantitatively describe the effects of
heterogeneity on the mechanistic and observational DoFs used to describe a biomolecular system.
Specifically, we will use this definition to discuss two types of heterogeneity in the section below.

We first consider the scenario where changes to the free-energy barriers are time-
independent—a condition referred to as ‘static heterogeneity.” For our hypothetical biomolecule
undergoing open=closed transitions, this type of heterogeneity could occur if a fraction of the
biomolecules has undergone an effectively irreversible chemical change, such as a post-
transcriptional or post-translational modification, or even some form of chemical damage. As a result
of this change, the affected biomolecules may still undergo open=closed transitions, but they do so
at a different rate than the unaffected molecules. In this case, the entire collection of molecules probed
in the experiment (i.e., the experimental ensemble) consists of two subpopulations that undergo the
same structural rearrangement, but at different rates—one slow and one fast (Fig. 1b). The
conformational free-energy landscape of the molecules in this experimental ensemble can be
understood as having split into two regions, each with their corresponding open- and closed-state
wells, that are separated by a nearly infinitely high free-energy barrier across which transitions are
not allowed on the experimental timescale. Thus, both of these subpopulations are separate two-well
systems that are each characterized by two mechanistic DoFs (see above). Since the two
subpopulations do not exchange, one additional mechanistic DoF is required to describe the fraction
of each of the two subpopulations that comprise the ensemble. To match this mechanism, the
corresponding kinetic model therefore requires five transition DoFs.

An additional complication arises when we consider that the chemical change causing the
molecular heterogeneity might only alter the dynamics and not be drastic enough to alter the signal

for each state in the two subpopulations. An HMM which fully captures this four-state system should,
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in the case of univariate Gaussian emissions (with m = 2), have eight total emission parameters—
the four state means (ug, 13, ug, ,u{) and the four corresponding state standard deviations (a5, o7, 0({,
alf) where the superscript stands for slow- or fast-transitioning molecules. However, due to the lack
of differences between the signals for the states of the two subpopulations, i.e., between uj and ug,

and 3 and ,uf (and g5 and o{, and o7 and alf), the number of apparent hidden states is reduced from
four to two. The static heterogeneity in this case, therefore, leads to a mismatch between the apparent
number of observational DoFs based on the observed signal states in the experimental dataset (four
DoFs) and the expected number of observational DoFs based on the number of states in the
underlying mechanism (eight DoFs) (Fig. 1b).

A similar outcome is also seen in the case of ‘dynamic heterogeneity,” where the changes in
the free-energy barriers are time-dependent. Our hypothetical open=closed biomolecular system
could exhibit dynamic heterogeneity if the process that creates the slow and fast subpopulations is a
reversible change, such as a slow orthogonal conformational rearrangement or the binding of a
secondary factor that allosterically modulates the open=closed transitions. Such dynamic
heterogeneity can cause molecules of the experimental ensemble to transition between a slow and
fast phase of the open=closed rearrangements (Fig. 1c). The corresponding conformational free-
energy landscape has four wells distributed along two reaction coordinates—one for the open=closed
transitions and the other for the orthogonal slow=fast phase transitions. For our hypothetical
biomolecule, we have chosen that the free-energy barriers separating the slow and fast phases are
higher than those separating the open and closed conformations in each phase. This causes the
transition rates between the slow and fast phases to be smaller than those between the open and
closed conformations and creates a hierarchical separation of timescale between the two molecular
processes (20, 33, 35). The dynamics of each of the two phases are described by two mechanistic
DoFs (see above). Unlike the case of static heterogeneity, however, two additional mechanistic DoFs
are used to describe the transitions between the two phases. To match this mechanism, the
appropriate kinetic model, therefore, requires six transition DoFs.

A commonly occurring complication for the case of dynamic heterogeneity is that many single-

13
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molecule experiments are designed to produce signal changes along only one of the reaction
coordinates. As a result, orthogonal processes described by the other reaction coordinate(s) may not
lead to a change in the observed signal. Just as we described for static heterogeneity, the expected
number of emission DoFs for an HMM with univariate Gaussian emissions (with m = 2) that describes
this four-well system should be eight. However, if the transition between the slow and fast phases is
not directly observable in the signal vs. time trajectories, just like the case for static heterogeneity, the
apparent number of hidden states in the experimental dataset is reduced to two. This, therefore,
causes a mismatch between the apparent number of observational DoFs based on the observed
signal states in the experimental dataset (four DoFs) and the expected number of observational DoFs
based on the number of states in the underlying mechanism (eight DoFs) (Fig. 1c).

Static and dynamic heterogeneities both cause discrepancies between the apparent number
of observational DoFs based on the observed signal states and the mechanistically expected number
of observational DoFs for a single-molecule signal vs. time dataset. These discrepancies obscure the
underlying molecular mechanism and interfere with the process of kinetic modeling. For instance, in
our examples of heterogeneity given above, a two-state HMM would match the apparent number of
observational DoFs in the dataset, but would not have enough transition DoFs to match the molecular
mechanism in the case of either static or dynamic heterogeneity. To be explicit, a two-state HMM has
two transition DoFs, but the statically and dynamically heterogenous four-state systems that appear
as two-state systems have five and six mechanistic DoFs, respectively. One approach to tackling such
discrepancies is to select a model which has the correct number of transition DoFs (i.e., a four-state
model in this case) and constrain the emission DoFs to match the apparent observational DoFs of the
dataset. Hierarchical HMMs, which can be thought of as trees of HMMs (Fig. S3a), are a class of such
models that have been used to analyze a diverse set of phenomena, including English language,
cursive handwriting and musical pitch structure (41-43). Recently, in the field of single-molecule
biophysics, they have successfully been employed to tackle the analysis of smFRET data containing
dynamic heterogeneity (20). For hierarchical HMMs, the applied constraints reduce the emission
DoFs in the kinetic model relative to a standard HMM with the same number of hidden states (see

Supplementary Information) (44). Additionally, other physico-chemical constraints such as detailed
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balance can be applied to standard HMMs to address similar issues (45).

Autocorrelation functions represent the dynamics of kinetic models
In this work, we investigate how different types of HMMs perform when faced with simulated single-
molecule datasets where the states of the underlying molecular mechanisms have been obscured by
different types of heterogeneity. The most straightforward manner in which this could be achieved is
through direct comparisons between the distributions of HMM parameters inferred from simulated
datasets and the simulated ‘true’ parameter values. Yet, for some of the HMMs that we investigated,
the inferred kinetic model (for example, Fig. S2) was fundamentally different from the model used to
generate the simulated dataset (Fig. S1). In these cases, a direct comparison between the model and
‘true’ parameters is not possible. As such, we sought to use a method capable of visualizing the
dynamics specified by a kinetic model in a single analytical form to enable direct comparisons.
Autocorrelation functions (ACFs) have long been used to capture the dynamics of a system in
a model-agnostic manner (46). An ACF provides a formal mathematical description of a time-
dependent signal (e.g., a single-molecule signal vs. time trajectory, or a kinetic model) by analyzing
the fluctuations between all pairs of points within the signal that are separated by a particular time
difference (i.e., a lag time, t). By performing this analysis as a function of the lag time, an ACF reports
on the complete kinetic behavior of a signal. Fortunately, the ACF of an HMM can be calculated
directly from the parameters of the HMM (see Supplementary Information), and so all of the
information contained within an HMM can be represented in a single mathematical form—the ACF
(Fig. 2b). Thus, we were able to represent the dynamics of the mismatched kinetic models that we
investigated below by using their ACFs, which allowed us to compare the performance of kinetic
models regardless of how the models were parametrized. While ACF-based analyses have been
previously used for single-molecule experimental data (47), in this work, we have employed them
primarily as a visualization and comparative tool to evaluate how well disparate kinetic models can
capture the entire range of dynamic information contained within a single-molecule experimental

dataset.
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Results and Discussion
Development of an analysis platform that facilitates the application of multiple kinetic models.
The analysis of single-molecule kinetics experiments requires several computationally challenging
steps, of which, kinetic modeling usually represents the penultimate or ultimate step. Before any
kinetic modeling may be performed, however, the raw data must be pre-processed and curated to
eliminate spurious signal vs. time trajectories and generate a dataset that represents the ‘true’
mesoscopic ensemble (48-50). Subsequently, the data, the applied models, and the dynamics
underlying the data and quantified by the models are visualized and evaluated. At present, there exist
multiple computational pipelines that are capable of independently pre-processing, modeling, and
visualizing single-molecule datasets (32, 51). These pipelines mostly implement their own, usually
HMM-based, kinetic models. However, because these implementations have been developed
independently, at different times, and by different research groups, they are not necessarily
interoperable. This is also true for implementations of kinetic models that serve as independent
platforms and are not part of specific pipelines. Even if they can be used interchangeably, switching
between pipelines and platforms still serves as a barrier, since the outputs, in terms of the resulting
model parameters and visualizations, are not always comparable. To generally facilitate the analysis
of all single-molecule experiments and to specifically enable our investigation of the abilities of
different HMMs to accurately infer the kinetics of ensembles exhibiting various types of heterogeneity,
we have developed tMAVEN. As a flexible, open-source platform written in Python, tMAVEN can be
employed for the processing, modeling, analysis, and visualization of single-molecule time-series data
from a variety of experimental techniques and contexts.

tMAVEN offers capabilities for pre-processing and curating raw experimental data, in addition
to generating multiple plots to visualize both the experimental data and the applied models. In this
work, however, we focus on its ability to apply multiple kinetic models interchangeably from a single
platform. While we have utilized several of the HMMs included in tMAVEN for our investigations here
(12, 44), the architecture of tMAVEN is capable of handling any type of kinetic model which explains
the dynamics of a mesoscopic ensemble of biomolecules as discrete transitions between relatively

long-lived biomolecular ‘states.” For instance, non-HMM-based kinetic models, such as thresholding
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and Gaussian mixture model-based clustering, are currently implemented as kinetic models in
tMAVEN. In fact, because tMAVEN is an open-source and extensible platform, any analysis strategy
that is congruent with this broad definition of a ‘kinetic model' and that may be implemented or
wrapped in Python code can be integrated into tMAVEN (see Supplementary Information). Crucially,
we have standardized the outputs of the kinetic modeling functions in tMAVEN to yield a common set
of parameters that describe the dataset as an ensemble of molecules (Fig. S4). Among other things,
this standardization enables the presentation of any kinetic model with a common set of visualizations
(e.g., population-weighted emissions distributions overlaid on a histogram of the data). Generally,
these standardization requirements are just for the purpose of visualization or subsequent analysis
steps (e.g., dwell-time distribution analyses), and they do not interfere with the inference or
implementation of a kinetic model itself.

In this work, the standardization of kinetic model outputs in tMAVEN has also allowed us to
easily collect the results of our kinetic modeling a variety of simulated datasets using different types
of HMMs, and then to calculate distributions of the resulting kinetic model parameters (see
Supplementary Information). Subsequently, comparing these parameter distributions and the inferred
ACFs to the true parameter values and corresponding true ACFs enabled us to not only investigate
the abilities of different types of HMMs to infer the underlying kinetics present in various
heterogeneous ensembles, but also to highlight the regimes in which certain HMMs failed to

accurately capture the kinetics of a particular ensemble.

Global analysis allows accurate estimation of long-timescale dynamics from ensembles of short
trajectories.

We first evaluated the practice of combining signal vs. time trajectories into a single model (e.g., as
in Refs. (24-27)) by investigating the analysis of simulated datasets of homogenous biomolecules
(Fig. S1 and Supplementary Information). The simulated datasets were mesoscopic ensembles (i.e.,
composed of 100-1000s of identical molecules) that exhibited Markovian dynamics and had
experimentally optimal signal-to-noise ratios and kinetic rates. Altogether, these properties represent

the most ideal situation that one could expect to encounter when using an HMM to extract
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biomolecular dynamics from a single-molecule experimental dataset. Using these datasets, we
compared two common methods by which an ensemble-level HMM is inferred which we call the
‘composite HMM’ and the ‘global HMM’ methods. In the composite HMM approach, an HMM is
separately inferred for each individual signal vs. time trajectory, and the results from these individual
HMMs are then composited together to generate an ensemble-level kinetic model (see
Supplementary Information for details). In the global HMM approach, all individual trajectories are
assumed to describe molecules undergoing dynamics corresponding to the same free-energy
landscape and are thus independent and identically distributed according to the same underlying
HMM (see Supplementary Information for details).

Surprisingly, we find that the composite HMM approach yields a result that is non-trivially
different from the global HMM approach (Fig. 3a). The composite HMM appears to overestimate the
transition probabilities for the mesoscopic ensemble, leading to faster decays in the mean inferred
ACF when compared to the true ACF. This deviation is absent for the corresponding results from the
global HMM analysis. While somewhat surprising, this result recapitulates the findings of previous
investigations where a composite model was seen to be less accurate than a similar global model
(40). We find that this overestimation of the transition probabilities is strongly correlated with the length
of the trajectories comprising the single-molecule dataset (Fig. 3b and Fig. 4a). Interestingly, we also
find that the overestimation is independent of the number of trajectories present in the dataset, with
datasets containing fewer trajectories showing the same amount of deviation as datasets containing
more trajectories (Fig. 3b and Fig. 4b). In both the composite and global approaches, the precision of
the estimation depends on the amount of data, both in terms of lengths and number of trajectories.
However, the accuracy of the global approach was notably independent of either length or number of
trajectories (Fig. 3b and Fig. 4).

This deviation in the accuracy of the composite HMM may be rationalized when we consider
the effect of the length of the trajectories on the observed dynamics. In the case of HMM-based kinetic
models, transition probability estimates are based on the apparent number of transitions that are
observed between the states (see Theory and Supplementary Information). For very short trajectories,

the sampling error in the number of observed transitions (both self-transitions and transitions to the
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Figure 3. Comparisons of ACFs for homogeneous ensembles. (a) (top) The true ACF for the homogenous
dataset (solid black) along with the mean of the ACFs (dashed blue) calculated using HMMs inferred from 10
ensembles using composite HMMs (left) and global HMMs (right), along with (bottom) the corresponding mean
(dashed blue) of the residuals of the inferred ACFs to the true ACF. The blue area denotes the region one
standard deviation away from the mean. The grey dashed line corresponds to zero. (b) The true (black) and
model (blue) ACFs, along with the means of the residuals (blue), inferred using composite (left) and global
(right) HMMs for homogeneous datasets of signal vs. time trajectories of varying lengths (top) and varying
numbers (bottom). The blue area denotes the region one standard deviation away from the mean. The grey
dashed line corresponds to zero.

other state) render our estimate of the underlying transition probabilities inaccurate for the composite
HMMSs. This is similar to the dwell-time distribution analysis scenario where ‘faster’ events (i.e., events
with shorter dwell times) are over-represented in comparison to ‘slower’ events (i.e., events with
longer dwell times) in short trajectories, which results in an over-estimation of the corresponding
transition rates. We note here that the deviations are all over-estimations due to the regime of
transition probabilities and trajectory lengths used for the simulated datasets. While those values
correspond to commonly observed situations in single-molecule experiments, they also happen to fall

in the regime where transitions between states are oversampled relative to self-transitions between
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Figure 4. The effects of the lengths and number of trajectories in a mesoscopic ensemble on kinetic
modeling. The transition probabilities from the ‘0’ state to the ‘1’ observed states inferred using (left) composite
HMMs and (right) global HMMs from homogenous datasets with (a) varying lengths of trajectories and (b)
varying numbers of trajectories. The dashed line represents the true transition probability for the dataset. The
transition probabilities from the ‘1’ state to the ‘0’ state follow the same trend (data not shown).

the same state. Thus, this situation demonstrates a fundamental limitation to the amount of kinetic
information present in a single trajectory.

To understand why this overestimation is not seen in the case of the global HMM, we analyzed
the differences in the DoFs of these kinetic models. Both the composite and global HMMs have six
total DoFs (two transition DoFs and four emission DoFs). However, for the composite HMM, individual
HMMs are inferred for each trajectory before being composited into a single model. During this first
inference step, the composite HMM uses 6N total DoFs, where N corresponds to the number of
trajectories. In this step, there may or may not be sufficient information to accurately infer all 6N DoFs,
especially when the individual signal vs. time trajectories are short. Regardless of how accurately they
have been inferred, these 6N DoFs are reduced to six total DoFs in the subsequent compositing step
and one should expect that any inaccuracies in the individual HMMs are propagated into the
composited kinetic model. On the other hand, the global HMM consists of just six total DoFs

throughout, and thus simultaneously integrates information from the entire ensemble to infer the
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corresponding kinetic model. While a short individual trajectory may not appear to be in the correct
steady state, a global HMM accesses the steady state represented within the entire ensemble of
molecules, and thus can accurately infer the underlying kinetics.

These results suggest that increasing the number of signal vs. time trajectories in a dataset is
only advantageous if a global HMM approach is employed to simultaneously incorporate information
from multiple trajectories into the analysis. Furthermore, these results also suggest that the correct
K-state global model can accurately infer the kinetics of the underlying molecular mechanism even
from datasets composed of very short trajectories (Fig. 4). This ability comes from the fact that the
constraints used in the global HMM (i.e., all 6N DoFs are the same six DoFs) are applied throughout
the entire inference process, unlike the composite HMM, in which the constraints are applied in a
secondary step following the initial inference of the kinetic models. Interestingly, these constraints are
equivalent to assuming that the ensemble under investigation is ergodic (i.e., all states of the
underlying conformational free-energy landscape are accessible in the experimental timescale) (Fig.
1a). Thus, multiple short trajectories can be analyzed together, as though they were all generated
from the long-timescale behavior of a single molecule. Such ergodic constraints, while key to the
process of kinetic modeling, arise solely from our prior understanding of the molecular mechanism
under investigation. The use of ergodicity as a constraint demonstrates how mechanism-informed
modeling can improve the accuracy with which the kinetics present in a single-molecule dataset may

be inferred.

Constraints on emission distributions are required to accurately characterize static heterogeneity.

Having evaluated the abilities of HMM-based modeling strategies to accurately estimate the kinetics
of a homogeneous mesoscopic ensemble, we next sought to evaluate the performances of these
methods in the presence of varying amounts of static heterogeneity (Fig. 1b). For this purpose, we
simulated datasets where each signal vs. time trajectory had the same signal characteristics, but a
subpopulation of trajectories had ‘fast’ open=closed transitions and the remaining had ‘slow’
open=closed transitions (Fig. S1). In this case, each trajectory is individually Markovian, because the

transition probability depends only on the hidden state of the molecule (i.e., open or closed). However,
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Figure 5. The effects of static heterogeneity on kinetic modeling. (leff) Kernel density estimated
distributions of the transition probabilities for the observed ‘open’ and ‘closed’ states inferred from the individual
trajectory-level HMMs for each molecule in mesoscopic ensembles with varying amounts of static heterogeneity.
Dashed red and blue lines denote the transition probabilities from each state for the subpopulation of fast- and
slow-transitioning molecules respectively. (middle) The ensemble-level transition probabilities for the observed
states inferred using global HMMs as a function of the average transition probability of the observed states
(calculated using the proportions of fast- and slow-transitioning molecules). The dashed grey line denotes
identity. (right) The two transition probabilities for each observed state as inferred using a hierarchical HMM as
a function of the average transition probability of the observed states calculated using the proportions of fast
and slow subpopulations.

since there are two subpopulations of molecules and thus two variants of each hidden state (i.e., slow
or fast), the transition probability is not globally constant; it does not depend solely on the hidden
state, rather it also depends on the subpopulation that the molecule belongs to. Furthermore, as is
clear from the conformational free-energy landscape (Fig. 1b), all of the states in this mechanism are
not accessible due to the presence of the near-infinite barrier separating the two subpopulations (see
Theory). Therefore, the ensemble taken as a whole violates both Markovian and ergodic assumptions.

The effects of violating these assumptions can be clearly seen when we use a two-state HMM
to analyze the dynamics of these simulated, statically heterogeneous ensembles. Since each
individual trajectory within the ensemble is Markovian and has two distinct signal states, a two-state
HMM (with four emission DoFs and two transition DoFs) is perfectly parameterized to exactly model
each trajectory. Indeed, the individual trajectory-level HMMs that feed into the composite HMM do
accurately capture the dynamics of both the slow- and fast-transitioning single molecules (Fig. 5). We

further see that the distributions of the transition probabilities for these trajectory-level models clearly
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separate into two populations that scale linearly with the true proportions of the subpopulations. This
signifies that information regarding the statically heterogeneous subpopulations may be captured at
the trajectory level. However, we see that the ability to differentiate these subpopulations is completely
lost for two-state models at the ensemble level (Fig. 5). Neither the composite HMM constructed from
the individual trajectory-level HMMs (Fig. S5) nor the global HMM (Fig. 5) has enough complexity (i.e.,
enough transition DoFs) to describe the kinetics of the two subpopulations. However, it is somewhat
surprising that the ensemble behaviors of the composite and global HMMs are very similar. In both
cases, the inferred transition probabilities linearly scale with the subpopulation averaged transition
probability for a specific state. Given that the individual HMMs themselves contain information on the
heterogeneous subpopulations, this shows that both the composite and global two-state HMMs lose
this information about the underlying heterogeneity due to ensemble averaging.

Interestingly, both the four-state composite and global HMMs, which have the same number
of hidden states as observational DOFs of the molecular mechanism (Figs. 1b and S2), are unable to
differentiate between the two subpopulations. This failure of the four-state models lies both in the
inference process and an intrinsic inability of this unconstrained kinetic model to capture the ensemble
static heterogeneity. Without constraints to match the apparent four observational DoFs of the
ensemble (see Theory), the four-state HMMs (with eight emission DoFs) do not computationally
separate the observed emissions centered at 0.0 and 1.0 into the correct underlying hidden states
(Fig. S6). Despite the flexibility provided by the additional DoFs, the inferred dynamics for the four-
state HMMs are nearly identical to those for the two-state HMMs, when represented using their
corresponding ACFs (Fig. S7). To further investigate this behavior, we initialized the inference process
of the four-state global HMMs at the correct emission parameters (u;s and g;s) and the correct steady
state fractions (m;s). While this leads to a better estimation of the emission distribution themselves,
where two emission means are clustered around 0.0 and two around 1.0 (Fig. S8a), the corresponding
dynamics in the ACF remain unchanged (Fig. S8b). The major error is the inability to correctly identify
and assign the observed datapoints to the slow or fast population, and this leads to a single, average
Markovian behavior being assigned to states with the same emission means (Fig. S8c). Notably, this

error persists even if the inference is initialized at all of the correct parameter values, including the
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correct transition matrix (Fig. S8d-f). Thus, further DoF constraints are required for accurate kinetic
modeling.

Indeed, while the four-state models fail to correctly separate the observed emissions without
fore-knowledge of the true values, the four-state hierarchical HMM (Fig. S3), which constrains the
emission DoFs, is able to do so (Figs. 5 and S6). As a result, the four-state hierarchical HMM is the
only ensemble kinetic model we used here that is capable of accurately capturing the statically
heterogeneous subpopulations in the ensemble of trajectories. In particular, we see that it is most
accurate for intermediate amounts of static heterogeneity where the fraction of fast subpopulation
molecules in the ensemble is between 20% and 60%. Deviations from the true values of the transition
probabilities outside of this regime can be explained by the hierarchical HMM assigning a non-zero
probability to the rate of slow-to-fast interconversion at these levels of static heterogeneity. For our
simulated ensembles exhibiting static heterogeneity, these probabilities should be zero, because the
subpopulations do not interchange. However, since a constraint limiting this exchange is not explicitly
applied for this hierarchical HMM, we observe that non-zero transition probabilities are inferred
between the slow and fast subpopulations. Notably, this is the case even in the regime where the
hierarchical HMM is the most accurate (Figs. 5 and S9). Instead of a near-infinite free-energy barrier
separating the two subpopulations (Fig. 1b), the hierarchical HMM thus infers a finite barrier that may
be traversed.

Altogether, these results highlight how essential it is to match the correct number of
mechanistic and observational DoFs in a molecular mechanism when performing kinetic modeling.
Here, static heterogeneity resulted in a reduction of the apparent number of hidden states from four
to two (see Theory). A full, four-state HMM with eight emission DoFs was unable to compensate for
this reduction. Being over-parameterized for the task, the four-state HMM was unable to correctly
identify the two distinct emission states in the dataset. We found that only models with the correct
number of emission DoFs were able to identify these states (i.e., both the composite and global two-
state HMMs, and the four-state hierarchical HMM). Additionally, none of the HMMs we used had the
same number of transition DoFs as the underlying molecular mechanism (i.e., five). The under-

parametrized, two-state HMM with two transition DoFs yielded the correct ensemble-averaged

24



Verma, A.R., et al.

transition probabilities but was unable to distinguish between the two subpopulations. On the other
hand, the over-parametrized four-state hierarchical HMM with twelve transition DoFs (see
Supplementary Information) was able to distinguish between the two subpopulations. However, the
seven additional transition DoFs, which correspond to transitions between the two subpopulations,
led to inaccuracies when one of the subpopulations had a significantly greater fraction than the other.

While beyond the scope of this work, our results suggest a simple approach to developing a
kinetic model that exactly matches the transition DoFs of the molecular mechanism in the case of
static heterogeneity. Since the heterogeneous subpopulations are captured in the individual HMMs
with the matching emission DoFs (Fig. 5), a clustering algorithm can be used to classify the transition
probabilities of these individual HMMs into a certain number of subpopulations (52), with the
proportions of each cluster providing the additional transition DoFs; this is similar to, and could be
done in conjunction with, the emission means-clustering approach we have used for the composite
HMM. These results thus show how existing models like hierarchical HMMs (20) can be used to apply
constraints that yield more accurate mathematical descriptions of static heterogeneity, while also

serving as a guide for developing newer and better-performing kinetic models.

Kinetic models can accurately describe dynamic heterogeneity when underlying processes are
separated across timescales.

Finally, we evaluated the abilities of HMM-based models to infer the kinetics of a mesoscopic
ensemble exhibiting different levels of dynamic heterogeneity (Fig. 1c). For this purpose, we simulated
datasets of trajectories in which molecules can interchange between a fast-transitioning and a slow-
transitioning phase, both of which have the same emission properties (Fig. S1). Unlike in the case of
static heterogeneity, each individual trajectory here appears to be non-Markovian. This is because,
for each signal state (i.e., the set of hidden states with the same emission distributions), the transition
probabilities depend on whether the molecule is in the fast-transitioning phase or the slow-
transitioning phase (Fig. 1c). Furthermore, the ensemble, in this case, is ergodic since each molecule
can access all of the wells in the underlying conformational free-energy landscape.

The differences between static and dynamic heterogeneity become clear when we consider
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Figure 6. The effects of dynamic heterogeneity on kinetic modeling. (leff) Kernel density estimated
distributions of the transition probabilities for the observed ‘open’ and ‘closed’ states inferred by the individual
trajectory-level HMMSs for each molecule in mesoscopic ensembles with varying total probability of transition
between slow- and fast-transitioning phases (Pst + Prs). Dashed red and blue lines denote the transition
probabilities of each state for the fast- and slow-transitioning phases respectively. The dashed grey line denotes
the ensemble average transition probability of each observed state. (middle) The ensemble-level transition
probabilities for the observed states inferred using global HMMs as a function of the total probability of transition
between slow- and fast-transitioning phases. (right) The two transition probabilities for each observed state
inferred using hierarchical HMMs as a function of the total probability of transition between slow- and fast-
transitioning phases.

how an individual, two-state HMM models the trajectories containing dynamic heterogeneity before
being used to create the two-state composite HMM (Fig. 6). As the total rate of interchange between
the two kinetic phases (defined as Pys + Pr;, where the subscripts stand for the slow and fast-
transitioning phases) was increased, we found that the distributions of the individual transition
probabilities between the open and closed states approached the ensemble average values for the
slow and fast kinetic phases (Fig. 6). This asymptotic behavior highlights how the simulated
trajectories more rapidly relax to the equilibrium behavior of the ensemble at higher rates of
interchange. At lower rates of interchange, there are insufficient numbers of transitions between the
two phases on the timescale of the experiment. As such, the individual trajectories, and thus the
individual HMMs, more closely resemble the static heterogeneity case (Fig. 5). Indeed, this
observation reflects how static heterogeneity can be thought of as a limiting case of dynamic
heterogeneity where the transitions between the different kinetic phases occur much slower than the

experimental timescale, making the free-energy barrier between the two effectively infinite within the
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experimental context (see Theory). Interestingly, we did not see an effect from varying the rates of
interchange on the results of either the composite HMM (Fig. S10) or the global HMM (Fig. 6), because
the dynamical effects caused by the underlying dynamic heterogeneity are not able to be captured by
either of these kinetic models.

As we saw in the case of static heterogeneity, analyzing simulated datasets exhibiting dynamic
heterogeneity using full four-state HMMs that lacked any constraints on the emission distributions
yielded the same ACFs as the analysis using two-state HMMs (Fig. S11). This was caused by the
same mischaracterization of the emission distributions of the hidden states as was observed for the
static case (Fig. S12). Even initializing the inference process at the correct underlying model
parameters was unable to address this error (Fig. S13). In contrast, we saw that analyzing the
datasets with a four-state hierarchical HMM was much more successful and could accurately
distinguish between the two kinetic phases (Figs. 6 and S12). Although, we note that increasing the
rates of interchange did slightly decrease the accuracy of the transition probabilities between the
observed signal states (Fig. 6). This inaccuracy appears to correlate with the inaccuracy in estimating
the correct values of Py and Py, themselves at higher rates of interchange (Fig. S14). Indeed, we saw
that at lower rates of interchange, the inferred values of Psf and P, themselves matched the simulated
values, albeit with a slight systematic over-estimation, and they plateaued for fast interchange
between the kinetic phases. We hypothesize that this is because at higher rates of interchange
between the kinetic phases, the underlying molecular mechanism of the dynamic heterogeneity stops
reflecting a hierarchical set of dynamics (Figs. 1¢c and S3a), and more closely resembles a system
where transitions between all four states are equally temporally separated on the conformational free-
energy landscape. Furthermore, the hierarchical HMM was able to model the statically heterogeneous
ensembles with equal proportions of slow- and fast-transitioning molecules (Fig. 5) more accurately
than the dynamic heterogeneous ensembles—which also have an equal average proportion of slow-
and fast-transitioning molecules. Taking this statically heterogeneous dataset to represent the limit of
infinitely slow interchange for the dynamic heterogeneity we have simulated here, our results thus

suggest that a large separation of timescales between the directly observed molecular process (i.e.,
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the open=closed dynamics) and the ones responsible for causing the dynamic heterogeneity (i.e.,
the slow=fast interchanges) is required for the hierarchical HMM to accurately infer kinetics from
these datasets.

Once again, these results demonstrate that the number of transition and emission DoFs
serves as a good rule of thumb to determine how different HMMs will perform at inferring the
underlying molecular mechanism of a biological system. When analyzing single-molecule datasets,
thorough consideration must be given to how the HMM DoFs correspond to the specific mechanistic
and observational DoFs of the molecular mechanism(s) of interest. For example, while ensembles
exhibiting static heterogeneity and dynamic heterogeneity differ by a single transition DoF (five and
six, respectively), considering the apparent ergodicity of the resulting signals means that we should
expect that each individual trajectory is also characterized by two or six transition DoFs, respectively.
An individual two-state HMM matches the transition DoFs in the individual trajectories in the static
case. However, two-state HMMs are under-parameterized while four-state HMMs, including
hierarchical HMMs, are over-parameterized in the dynamic case. Thus, the only general approach to
accurately extract heterogeneous kinetics and molecular mechanisms from single-molecule datasets
using HMMs is to customize the HMM being used by applying constraints that match the transition
DoFs and emission DoFs to the mechanistic and observational DoFs of the underlying molecular
mechanism. Such customization requires that a researcher know whether they are expecting static
or dynamic heterogeneity a priori, so we do not expect a universally applicable method to be easily
developed. Regardless of these difficulties, approaching kinetic modeling of single-molecule datasets
in this manner will greatly expand the richness of information that can be extracted from single-
molecule experiments, as well as the types of biomolecular processes that may be studied using
these techniques. Altogether, our results show that developing more accurate kinetic modeling
strategies will require thoughtful approaches to applying physico-chemically informed constraints to
presently existing models. For instance, the hierarchical HMM does apply constraints to the emission
DoFs, but at present is still over-parametrized with twelve transition DoFs compared to the six
transition DoFs in the dynamic heterogeneity molecular mechanism. Fully matching all of the

mechanistic and observational DoFs of an experimental molecular mechanism will enable kinetic
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models to better replicate the underlying dynamics they seek to describe.

Conclusions

In this work, we have shown how mismatches in the transition and emission DoFs of kinetic models
and the mechanistic and observational DOFs of molecular mechanisms, respectively, play a role in
determining the accuracy of modeling single-molecule dynamics. However, matching mechanistic and
observational DoFs is only the first step in mechanism-informed modeling. True mechanism-informed
modeling requires an in-depth formulation of how a model captures the underlying physico-chemical
properties of both the biomolecular system of interest and the detection process that yields the
experimental signal vs. time trajectory (53). For example, previous work has shown that accounting
for the Poisson-distributed counting statistics of photon emission and the effects of detector noise
affects the accuracy of kinetic modeling (40). Similarly, accounting for the integration time of a detector
allows for the modeling of sub-temporal-resolution kinetics (54-59).

Taken together, a universal single-molecule kinetic model (32) is unlikely to be appropriate for
all experimental contexts. Indeed, in this work, we have focused on analyzing relatively ideal,
simulated datasets by using just two hidden states, Gaussian noise, optimal signal-to-noise ratio, a
lack of temporally averaged measurements, a large number of long trajectories, and a clear
mechanistic separation of static and dynamic heterogeneity. Yet, even under these ideal conditions,
we quickly reached the limits of current HMM-based modeling approaches. Real experimental
datasets are much more complex, with more hidden states, non-trivial noisy emission distributions,
and kinetics that may be slower or faster than is experimentally accessible. Additionally, in many
cases, the information in real datasets is limited in terms of the length (e.g., due to photobleaching)
or number of trajectories (e.g., due to experimental throughput). In contrast to our simulated datasets,
experimental datasets may contain both static and dynamic heterogeneity that simultaneously
originate from different sources. In such cases, it is not immediately obvious what the underlying
mechanism for a particular biomolecular system should be, which makes the use of solely HMMs to
analyze such data nontrivial. In some of these scenarios, other analysis methods (e.g., dwell-time

distribution analysis (60, 61)) may indicate the presence of heterogeneity and model-mechanism
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mismatch. However, in many cases, even if related biochemical experiments or alternative analysis
methods indicate that a single-molecule dataset is heterogeneous, a mismatched model may remain
the only way meaningful mechanistic information can be extracted from the experimental data.

In the absence of a universally optimal kinetic model, we propose that the most appropriate
approach to kinetic modeling is to use multiple different kinetic models and compare the relative
insight of their results to one another. Our investigation, which demonstrates how different types of
models can be expected to perform in several cases of model-mechanism mismatch, can aid the
interpretation of kinetic modeling results in situations where external evidence points to a model-
mechanism mismatch, which may, in turn, guide the design of further experiments to avoid or minimize
such mismatch. Of course, the seamless application and evaluation of multiple kinetic models to the
same dataset is computationally and logistically challenging. This is especially true given that many
kinetic models and their corresponding software implementations were developed at different times,
in different research groups, and using different programming languages. The development and use
of tMAVEN, which can interchangeably apply and visualize several different types of HMMs and other
kinetic models, alleviates many of these challenges. At present, we have packaged tMAVEN with
Python implementations of ~15 kinetic models including upgraded versions of those used in
previously published work (e.g., HaMMy, vbFRET, ebFRET, hFRET, efc.) (6, 11, 12, 16, 20) as well
as in the current work. As an open-source, extensible program, we have also ensured that the core
tMAVEN modeling functions are flexible enough to allow other modeling approaches to be easily
added. We envision tMAVEN as a platform that can be used by the entire single-molecule biophysics
community for the future development of single-molecule data analysis software, including the further
development of some of the modeling approaches we discuss here. By allowing developers to make
use of the pre-existing user interface and data processing functions in tMAVEN, we hope to streamline
future advances in the kinetic modeling of single-molecule datasets. This accessibility, paired with
tMAVEN's user-friendly interface, lowers the barriers for both the use and development of kinetic
modeling tools and thereby enables the type of mechanism-informed kinetic modeling that we
envision will be so powerful for researchers using single-molecule experimental techniques to study

biomolecular dynamics.
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1 Construction of simulated datasets

Many hidden Markov model-based (HMM-based) analysis approaches used for single-molecule kinetic analy-
sis were developed specifically for single-molecule fluorescence resonance energy transfer (smFRET) exper-
iments [1]. As such, we decided to generate simulated datasets with parameters that replicate an ideal time
series that might be obtained from such smFRET experiments. Nonetheless, our datasets can also be thought
of as a set of general normalized signal vs. time trajectories, and, therefore, our results remain applicable
to datasets obtained using other single-molecule techniques (e.g., force-clamp spectroscopy, single-molecule
field effect transistors, efc.).

For the dataset lacking heterogeneity (“Homogeneous”), we generated an ensemble of trajectories rep-
resenting a hypothetical biomolecular reaction 0=1, where 0 and 1 are the respective labels for the open
and closed states described in the main text (Figure S1). The emission distributions for this dataset (and all
subsequent simulated datasets described here) were Gaussian distributions with emission means g = 0.0
and p; = 1.0 for the states 0 and 1, respectively. The emission noise for these Gaussian distributions was
op =01 = % ~ 0.11. As a result, the signal-to-noise ratio (SNR) for these trajectories was 9. The steady-state
probabilities were chosen to asymmetrically favor state 0 over state 1 with 79 = 0.6 and m; = 0.4, resulting in
K., =~ 0.66. We chose to simulate these trajectories in a 'slow’ kinetic regime that replicated the experimental
scenarios where the effects of time averaging, which negatively affect the effectiveness of single-molecule ex-
periments [2, 3], would not be significantly present. Based on this constraint and the pre-defined steady-state
probabilities, transition probabilities (written as P;; for transitions from the initial state i to the final state j) were
chosen to be Fy; = 0.02 and Py = 0.03. Due to constraints on normalization, the remaining self-transition
probabilities were Ppg = 1 — Py; and P;; = 1 — Pjg. These transition probabilities are large enough that
multiple transitions between states 0 and 1 would occur within the length of a typical smFRET time series
(e.g., 1000 datapoints). To replicate an ideal experimental dataset, each simulated dataset consisted of 200
individual trajectories of 1000 time-points each (unless otherwise stated). To ensure that our results were sta-
tistically reliable and accounted for the uncertainties due to sampling errors, we generated and analyzed 100
dataset variations for each ensemble using the same parameters. Details about the parameters used for this
simulated dataset are shown in Figure S1. This Homogeneous dataset is a good representation of an ideal
single-molecule experiment and thus is appropriate for investigating the analysis of kinetic information using
HMMs.
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To investigate heterogeneous ensembles, we simulated datasets containing static heterogeneity or dy-
namic heterogeneity (Figure S1). For the ensembles with static heterogeneity (“Static”), we simulated datasets
composed of two different subpopulations of trajectories. Both subpopulations were characterized by the same
emission distribution as the Homogeneous datasets; however, one exhibited ‘slow’ kinetics while the other ex-
hibited ‘fast’ kinetics. The slow subpopulation consisted of trajectories generated with identical kinetic param-
eters to the Homogeneous ensemble above. The fast subpopulation had identical steady-state probabilities
as the slow subpopulation but had transition probabilities between 0 and 1 states which are three times larger
than the ones for the slow subpopulation (i.e., Py1 = 0.06 and P;y = 0.09). To test the effect of varying levels
of static heterogeneity, we varied the fraction of the fast subpopulation in these datasets from 5% to 95%.
Details about the parameters used for this simulated Static dataset are shown in Figure S1.

For the ensembles with dynamic heterogeneity (“Dynamic”), we simulated trajectories with inter-converting
‘fast’ and ‘slow’ kinetic phases. The emission probabilities for these two phases were identical to the Homoge-
neous and Static datasets. The transition and steady-state probabilities of the fast kinetic phase were the same
as those for the fast subpopulation of the Static dataset, and those for the slow phase corresponded to the
slow subpopulation. The transition probabilities of interchange between the fast (f) and slow (s) phases were
varied such that the steady-state proportion of the two phases remained constant at a 1:1 ratio, and were in-
creased to test increasing dynamic heterogeneity. This yielded i.e., Py = Py, that varied from 0.0005 to 0.01.
Details about the parameters used for this simulated Dynamic dataset are shown in Figure S1.

2 Calculation of Degrees of Freedom of HMMs

The number of degrees of freedom (DoFs) of a model refers to the number of independent parameters required
to completely define it. The number of DoFs can be computed by considering the total number of parameters in
the model and the number of constraints that need to be applied to these parameters based on prior knowledge
of the system. DoFs provide useful insight into the complexities of kinetic models and how they can match the
mechanism of a biomolecular system. Below, we calculate the DoFs for a general HMM and then show these
can be applied to the specific cases described in the main text.

2.1 General Approach for calculating DoFs for a standard HMM

A standard HMM consists of the following sets of parameters: the transition matrix A, the initial probabilities
7, and, for an HMM with univariate (one-dimensional) Gaussian emission distributions, the sets of emission
means p and emission standard deviations . For an arbitrary K-state HMM, A will contain K? entries to
account for the probabilities for all possible transitions between the K states. In the As described below, each
element represents the probability of transition between the initial state as given by the row index and the final
state as given the column index (i.e., Pyitial, finat)- ThUs,

Poo P10 Pyk-1
P P - Prgo
A= ) . _ "
Pk 10 Prk-11 -+ Pr-1,k-1

However, these elements in A are not all independent. Each row of A consists of the probabilities of
all possible transitions from a particular state and thus must sum to one. By enforcing a row normalization
constraint for each of the K rows, we are left with only the number of independent parameters required to
define the transition matrix, which is seen to be K (K — 1). In terms of molecular mechanism, this can be
rationalized with the observation that transition rates are only defined between different states, and so, there
is no rate constant (or free-energy barrier) for self-transitions. The corresponding self-transition probabilities
(which are the elements along the diagonals of A) can be thought of as consequences of the normalization of
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the transition probabilities to other states in the model. Thus,

1- Zfi}l Py, Py “ee Po k-1
Py 1=y P o Py g1
A= . . _ .
Px_1p Px_11 R D el R

Similar to A above, a K-state HMM has K initial probabilities which can be represented by w. Yet,
for a system at chemical equilibrium, it is immaterial when the observation starts, and thus each of the m;s
(representing the initial probability of the ith state) is equal to the steady-state probability of the ith state, Pfs,
which in turn is wholly defined in terms of A by the relation

T, = .PZ»SS = lim [An}“
n—oo
where the notation B;; represents the element in the ith row and ith column of a given matrix B. With these
K constraints, therefore, we see that w can be expressed completely in terms of A. Thus, while the kinetics
of a K-state HMM has K? + K parameters, they are also characterized by 2K constraints (K for A, and K
for ), leading to a net K (K — 1) independent parameters (i.e., DoFs) that define the kinetics of these HMMs.
We refer to these as the transition DoFs of the HMM.

Similar to the above, we can also determine the number of DoFs that characterize the emissions of an
HMM, (i.e., the emission DoFs). While this choice scales with K for a given HMM, we see that the exact
number of DoFs depends on the specific emission distribution used for the HMM [4], with a proportionality
constant m that is characteristic of this emission distribution. For a univariate Gaussian distribution emission,
each state i is characterized by a single emission mean p; and a single emission standard deviation ;. These
are typically independent for each state, and therefore i and o are together characterized by 2K DoFs (in this
case, m = 2). It follows from this that HMMs which have other emission distributions would also have differing
numbers of such emission DoFs. For example, HMMs with univariate Poisson (m = 1) or beta distributions
(m = 2) for emissions have K and 2K emission DoFs, respectively. In the case of smFRET, where the
individual trajectories may be analyzed as either two-dimensional independent intensities of a pair of donor
and acceptor fluorophores (Ip and I4 respectively) or as the one-dimensional normalized FRET efficiency
(ErreT = [DITA]A), the two-dimensional case may also be represented by HMMs with a multivariate (in this
case, bivariate) Gaussian emission distribution (m = 4). In this case, this HMM would be characterized by 4 K
emission DoFs. Crucially, while the exact number may vary depending on the specific emission distributions,
for a standard HMM with no constraints on emission, the number of emission DoFs is proportional to K.

Based on the above framework, we can directly see, as mentioned in the main text (and Figure 2), that
a two-state HMM with univariate Gaussian emission distributions will have 2 transition DoFs and 4 emission
DoFs. Similarly, a four-state HMM with univariate Gaussian emissions (Figure S2) will have 12 transition DoFs
and 8 emission DoFs. In the following section, we shall use the above approach to calculate the DoFs of a
hierarchical HMM.

2.2 Calculating DoFs for a two-level four-state hierarchical HMM

Hierarchical HMMs (hHMMSs) are a category of kinetic models that can be thought of as HMMs within HMMs,
across several levels. For this work and the ease of the following discussion, we shall focus in particular on a
two-level, four-state hHHMM (Figure S3a). The lowest level of the hHMM is called the production level (in this
case, d = 3), and the states in this level are used to define the emission distributions of the hHMM. Since
there are four states in this level, the entire hLHMM is a four-state kinetic model. Crucially, however, unlike a
four-state HMM (Figure S2), these four states are connected using two HMMs, which in turn are related using
a higher level (d = 2) HMM. Because of this structure, in addition to the expected transition parameters for
each of these HMMs (As and 7rs), hHMMs also require a set of exit probabilities, E's, that define transitions
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to a higher level. The root level (d = 1), in this case, functions like the initial node of an HMM (Figure 2 in the
main text and Figure S2). Thus, for the two-level, four-state hHMM, the transition parameters can be arranged
in families, based on their levels, as follows

2 2 3 3 3 3
A — {A(2) } _ A(()O) A((n) AB) — {A(S) A®) } _ Aéo) A(()l) Aéz) Aés)
ool < By o Aed = i ] [ af

w0 - (e} - s ]} B0 (e}~ ([ o) [0 2]}

R ) e (LI R )

where the superscript (n) denotes the level of the hHMM and subscripts refer to the states of the HMM at that
specific level (Figure S3a). Because of the hHMM structure, the parameters do not necessarily independently
capture the probabilities of transition between states of the production level, as would be the case with a
standard HMM. Instead, using these parameters, we can generate a four-by-four transition matrix (where each
element is defined as above for the standard HMM) that describes the probability of all possible transitions
between production states. It is important to note, that, in this case, for each transition between production
states, multiple transition paths must be accounted for (Figure S3b). For example, the 0 state of the production

level (d = 3) may self-transition in the production level itself (Aé%)), enter the higher level (d = 2), self-

transition, and rejoin itself in the production level (E(()S)Aé%)wég)) or journey vertically to the root node (d = 1)

before returning to itself (E((]S) E[()Q)wéQ)wé?’)). Thus, the total probability of self-transition for the production-level
0 state (Pyp) is the sum of these three paths. Repeating this process for all possible transitions between states
in d = 3, we have:
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Based on the above, we see that two-state four-level h(HMMs have, in total, 24 parameters that define the
kinetics of these models. However, we also see that there are constraints on these parameters. For example,
each HMM across all levels of the hHMM (three in this case) have normalization constraints [5]. First, the sum
of the entry probabilities for all HMMs must equal one. In this case,

(2)+7r§):1,
(3)+ (3):17
(3)+7r:(,,):1.

Second, the sum of all transitions and exits from a state at all levels must equal one. Thus
AD 14D 4 ED — 1, AR 4 AP gD 1,
A(()i(%)) JrA(3) ( ) _ 1, Aﬁo) + A(s) i Ef’) -1,
A AR ED 1 A A4 1
Imposing these nine normalization constraints on the corresponding transition probabilities, we get
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Apart from the above normalization constraints, we see that there are constraints on the steady-state
probabilities of each of the HMMs across the different levels, which arise from the consideration that the un-
derlying chemical system is in equilibrium. Unlike the standard HMMs however, the expressions for these
steady-state probabilities are not straightforward, and require enumeration of the multiple paths that con-
nect the states using the diagram method [6]. Nonetheless, these steady-state probabilities may be used to
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constrain one set of parameters (for example, the TFJ(Z) for state j in level ¢) with respect to the other param-
eters. Following the application of these constraints, we are left with an independent parameter count of 12:
A3y, A3y, A3y, A3y, AR A2 ES B3 B, ES, E2, E7. Thus, this hHMM has 12 transition DoFs.

The strength of hHHMMs comes from the fact that these kinetic models may be used for inference in cases
where the emissions between different production states are shared. In this case, even though the kinetic
model possesses four underlying states, the emissions between states 0 and 2 are identical, as are the ones
between states 1 and 3. Thus, this hHMM possesses only two univariate Gaussian emission distributions,
resulting in 4 emission DoFs. This is what differentiates this two-level, four-state hHMM from a standard four-
state HMM, which also possesses 12 transition DoFs but 8 emission DoFs. In the main text, we discuss the
implications of this difference and how they result in the different abilities of these kinetic models to capture
the underlying molecular mechanism of a single-molecule dataset.

3 Evaluation of ensemble dynamics using auto-correlation functions

One of the most straightforward ways to determine the accuracy of HMMs in modeling our simulated data
is to compare the inferred HMM parameter distributions to the ‘ground truth’ HMM parameters used in the
simulations. However, for several of our analyses, the HMM used during inference was fundamentally different
from the generative model used in the simulation. The use of two-point auto-correlation functions (ACFs)
enabled us to ascertain the ability of an HMM to quantitatively describe the dynamics of the entire ensemble
of trajectories, even in the case of disparate underlying models.

Briefly, the signal y measured in a single-molecule experiment is a function of time (y = y(¢)). A two-point
ACF quantifies the correlation in the value of y(¢) and the value of y(t + 7) after some lag time, 7, during which
the signal evolves [7]. In its un-normalized form, this ACF is an expectation value given by

ACF (1) = E[dy(t) - oy(t + 7)) = // doy(t)doy(t + 1) dy(t)dy(y + 1) P(oy(t), dy(t + 7)),
where E[X] is the expectation value of X, dy(t) = y(t) — E[y(t)], and

P(y(t), 0y(t + 7)) = P(dy(t + 7)[oy () P(5(y(t)).

A static signal will stay perfectly correlated over time. However, as a dynamic signal y(t) evolves through
time, (e.g., as it transitions between states), it becomes less correlated across longer time intervals. Conse-
quently, the correlation captured by the ACF decreases as a function of 7. Because of this property, the ACF
of an HMM reports simultaneously on the dynamic range of the signal, the noise in the signal, and the overall
rates of transitions between states. Since HMMs are a well-defined probability model, the characteristic ACF
for the process defined by an HMM can be calculated directly from the model parameters themselves [8]. For
a discrete-time K-state HMM, the ACF is

K K

ACF(r) =Y | Dy = )i — { (A7) -8} | PSS forr >0,

i=1 \ j=1 J

where u;, 0;, A, and PZ»SS are defined as above, A” is the transpose of A, §; is a column vector where the
only non-zero element is a 1 in the i** row, the notation {V'} signifies the element in the ;" row of the column
vector V', and [ is the signal mean for the HMM at the steady state, given by i = Zfil uiPiSS.

To compare the results of an HMM modeling a simulated dataset with an inferred HMM that may or may
not match the simulated HMM model, we calculate the ACF of the inferred HMM and then compare it to the
‘ground truth’ ACF calculated using the HMM parameters used in the simulation of the data. In our calculations,
the limit lim,_,~, A7 for P is approximated by exponentiating A to an arbitrarily large number—in our case,
100 times the inverse of the minimum F;; in a specific transition matrix A. Using this approach, we can



Verma, A.R., etal.

generate the analytical ACF for any given HMM and circumvent complications in calculating the empirical ACF
from specific instances of Markov chains inferred from time-limited trajectories (using, for example, the Viterbi
algorithm [9]). The use of analytical ACFs ensures that any differences highlighted between HMM ACFs can be
attributed to discrepancies in the model parameters themselves and thereby report on the abilities of specific
inferred HMMs to explain the complete dynamics of a mesoscopic ensemble.

4 Kinetic Modeling with Composite HMMs

In the composite modeling approach, an HMM is inferred for each individual time-series before using a Gaus-
sian mixture model (GMM) to cluster these results and provide ensemble-level information. The individual
HMM for each trajectory is inferred using the variational Bayesian inference algorithm as implemented in the
tMAVEN software package. The priors and likelihoods for the inference may be found in [10]. During this
process, each trajectory is modeled with HMMs possessing a variable number of emission states (K = 1 to
K = K.,s, where K., is the number of states for the ensemble model, which in our case is either 2 or 4),
and the HMM with the number of states that maximizes the evidence lower bound (ELBO) is chosen [10]. To
identify the ensemble-level emission states, the composite approach then uses a K., s-state GMM to cluster
the individual trajectory-level emission states, using prior distributions and likelihoods as specified in [11]. The
GMM is inferred using a variational Bayesian algorithm as implemented in the tMAVEN software package. The
values of the prior distribution hyper-parameters for the GMM means and precisions (which are the inverse
of the squares of the standard deviations) are the same as the ones for the emissions of the HMM. Similarly,
the priors used for the fractions of the GMM follow those used for the HMM initial probabilities [10]. The GMM
takes as its input the set of individual idealized Viterbi paths [9] from each trajectory and is initialized with a
K-means algorithm [11] with K = K.

In addition to the ensemble emission distributions, the GMM yields the ‘responsibilities’ of each state
(P(m]i)), which are the probabilities that an individual trajectory-level emission state i corresponds to a specific
ensemble emission state m. This allowed us to map the parameters for the individual trajectory-level HMM
into the ensemble-level composite HMM. For example, the composite counts matrix C, which represents the
number of transitions between all of the states in the dataset and thus may be thought of as the un-normalized
form of the composite transition matrix .A, can be assembled by adding the transition counts between the states
for each trajectory, which is given by the individual counts matrix C* (for a given trajectory s). This, however,
requires the mapping of the states between those that occur in the individual trajectory model to those that
occur in the ensemble model. Using the corresponding responsibilities, thus, the transitions between the m!"
and the n'" state of the ensemble may be estimated as

N
Cmm = 3 _ C3; x P*(mli) x P*(nlj),
s=1

where the notation B;; refers to the element on the it" row and jth column of the matrix B, and P? is the
responsibility corresponding to the trajectory s. Having estimated the counts for all the states of the ensemble
in this manner, C is then row normalized to yield the transition matrix, .A.

5 Kinetic Modeling with Global HMMs

The global modeling approach infers a single, ensemble-level HMM from a given set of experimental time
series. This HMM is inferred using the variational Bayesian algorithm as implemented in the tMAVEN software
package. The priors for the global HMM are the same as the individual HMM above and can be found in [10].
Since the trajectories are modeled as independent and identically distributed (i.i.d.) to one another, the global
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log-likelihood is the sum of the individual trajectory likelihoods given by

N
In(£) =Y In(L}),
s=1

where L) is the the HMM likelihood function for a single trajectory as reported in [10]. This is equivalent to
concatenating the ensemble of trajectories into a single, long trajectory which is then analyzed with an HMM.

6 Estimation of Higher-level Transition Probabilities for hHMMs

In the above sections, we showed how we could relate the transition probabilities of the states at the production
level (in our case, d = 3, Figure S3a) to the parameters of the hHMM. Because of the structure of the hHMM,
these can be achieved for states at the higher levels (in our case, d = 2) of the HMM as well. These can be

written as
SS SS
P _ LR (O BN & W OB IC)
01 Pégs‘i_PlSS 0 Pégs‘i_PlSS 1 01
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where the superscript (n) denotes the level the quantity refers to, the hHMM parameters are defined as
above, and the steady-state probabilities for the production-level states (PZSS ) are calculated using the diagram
method [6]. These expressions allow us to calculate the probabilities of transition between the slow (s) and
fast (f) phases (Psy and Py,) from the inferred hHMMs for our simulated datasets.

7 tMAVEN Software Organization

The tMAVEN software is written in Python and provided as open-source code. It consists of (/) a stand-alone
graphics-less backend object that can run all of the analysis and that is available for scripting purposes; and
(i) the frontend graphical user interface (GUI) that facilitates interactive use of a backend instance. This sec-
tion covers the use of the tMAVEN GUI and the design principles and organization of that software. Broadly
tMAVEN is meant to enable users to easily (/) preprocess their data, (ii) perform kinetic modeling to analyze
their data, (/i) reproducibly create publication-quality plots of their data and/or analysis. Additional docu-
mentation, including tutorials and example datasets, can be found on the tMAVEN documentation website
(https://gonzalezbiophysicslab.github.io/tmaven/).

7.1 Preprocessing data with tMAVEN

The main window of tMAVEN consists of a plot of a single trajectory (Fig. S4a); this is the “current” trajectory.
Users may use the keyboard arrow keys, a mouse scroll wheel, or the slider at the bottom of the GUI to rapidly
scan through their trajectories. Additionally, the “Molecule Table” dock provides information on each of the
trajectories (Fig. S4a). Trajectories may be loaded into tMAVEN from a variety of sources (e.g., HDF5 files,
ASCII, NumPy binary, etc.). Newly loaded trajectories are added to the currently loaded trajectories, rather
than replacing them; this allows large, combined datasets from multiple sources (e.g., different movies) to be
easily created.

Trajectories may be sorted into numbered “classes” using the number keys or by selecting groups of tra-
jectories in the “Molecule Table” and using menu options (i.e., Tools > Classes > Set Class). The suggested
workflow is for a user to rapidly survey all trajectories and perform an initial classification (e.g., ‘good’ trajec-
tories into class 1 while ‘bad’ trajectories stays as the default class 0). Trajectories may be removed using
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menu options (e.g., Tools > Cull > Cull Class). Importantly, however, a basic design principle of tMAVEN is
that the raw trajectories are immutable and are never directly changed, even when saved (see below). This is
important for maintaining accurate records; notably, the filename of the origin of every trajectory is recorded
and propagated as meta-data in subsequently saved files (see below) to enable the user to track the ‘source’
of their data. Many of the preprocessing options in tMAVEN do affect the trajectory values, however, they do
so by acting on a copy of the ‘raw’ data called ‘corrected.” For example, if a user applies a filter (e.g., a moving
average) or a correction (e.g., bleed-through) to their data, the action affects the ‘corrected’ trajectories, which
maybe be reset back to the ‘raw’ trajectories at any time (i.e., Tools > Corrections > Reset). All plotting and
analyses operate using the corrected trajectories, however, only the raw trajectories are ever saved. Thus, all
corrections must be reapplied if tMAVEN is closed or the data is cleared (i.e., File > Clear Data) and reloaded.

Aside from enabling facile sorting of trajectories, tMAVEN preprocessing capabilities are largely concerned
with identifying single sub-regions of each trajectory for analysis. This enables users to isolate the region of
their trajectories where, e.g., fluorophore photobleaching has not affected the intensity values. Sub-regions
are determined by setting a ‘pre’ and a ‘post’ time point (left or right clicking, respectively) for each trajectory.
Automatic photobleaching detection methods can be used to process multiple trajectories at the same time.
The design choice of only allowing a single sub-region per trajectory is meant to forcibly ensure users avoid
improperly affecting the underlying kinetics by inducing strange conditional dependencies, e.g., by excluding
regions of fluorophore blinking which may preferentially occur from certain intensity states. Recognizing that
certain types of binding experiments benefit from isolating multiple binding events per trajectory, tMAVEN does
allow users to ‘split’ a trajectory by cloning it and setting the post-point of the first trajectory to be the pre-point
of the second trajectory (using the ‘c’ key). In this manner, isolating multiple regions per trajectory can be
performed by creating multiple copies of the trajectory and using the single sub-region of each trajectory to
isolate separate regions of the trajectory. Note that such split trajectories are tracked by tMAVEN and can be
recombined back into a single trajectory (using the ‘v’ key).

Trajectories in tMAVEN are preferentially saved in a variation of the Single-Molecule Dataset (SMD) format
[12] but may also be exported in ASCIlI or NumPy binary format. This variation is primarily to enable use of
HDFS5 files, rather than the original JSON format, which enables more facile cross-program compatibility as
HDF5 datasets self-describe data formats and libraries for parsing HDF5 files exist for many programming
languages. tMAVEN considers each dataset saved in SMD format as an HDF5 group; thus, multiple SMD
datasets may be saved in the same HDF5 file (Fig. S4b). An example HDF5 file with two real single-molecule
fluorescence resonance energy transfer (smFRET) SMD datasets is available on the tMAVEN documentation
website at https://gonzalezbiophysicslab.github.io/tmaven/examples/example_smd.hdf5. Notably,
all information relating to tMAVEN preprocessing (e.g., class assignments, pre- and post-points) are not directly
specified as a requirement of the SMD format, and so are instead saved as an HDF5 group called tMAVEN
within the SMD group (Fig. S4b). The SMD format saves the ‘raw’ trajectories as a dense array of data in the
order: number of trajectories, time, and then ‘color’ channels. Also included for each trajectory is a ‘source
index’, which specifies the ‘source’ of that trajectory. To ensure proper tracking of trajectory data origins,
meta-data about these sources are included in the ‘sources’ group within the SMD group (Fig. S4b).

7.2 Kinetic Analysis with tMAVEN

Once a user has obtained a pre-processed set of trajectories, they may analyze these trajectories using a
kinetic model. The design principles of tMAVEN are to consider (i) every initialized instance of a kinetic model
as a ‘model’ (e.g., the untrained instance of an HMM is a different model than the trained version of that HMM),
and (ii) models as representing the kinetics of macroscopic ensembles of molecules. Thus, while a user may
‘update’ a model by inferring kinetic parameters from a single or even several trajectories, the updated model
technically describes an entire ensemble of hypothetical molecules. This means that all parameters of a model
exist outside of the context of the particular trajectories used to estimate that model. In order for a user to “see
the model of their data”, the model must be projected onto those trajectories, a process we call ‘idealization’.
Note, this means that any trajectory can be idealized with a model, regardless of whether or not that trajectory



Verma, A.R., etal.

was involved in estimating the model in the first place.

tMAVEN includes the ability to create several types of kinetic models that have been specialized for sm-
FRET data (e.g., vbFRET [10]), however, these may be adapted and/or new types may be added. There are
only a few requirements for a ‘model’ instance in tMAVEN. Currently these are limited to the parameters re-
quired to represent a Gaussian-distributed mixture model that can be overlaid onto a histogram of the trajectory
values (n.b., this is a loose requirement required only for certain plots), and an ‘idealize’ function that takes an
input trajectory and returns the idealized version of that trajectory (Fig. S4c). These idealized trajectories are
often ‘Viterbi paths’, and are displayed overlaid on top of the original trajectory in the main tMAVEN window.

Notably, tMAVEN enables users to estimate multiple different models of their data. These are dynamically
held in the maven.modeler object in a list called models (Fig. S4d). Only one model may be the ‘active’ model
at a time, however, the user may change the active model (Modeling > Change Active), remove models (Model-
ing > Remove Models), or load and save models (Modeling > Load Active/Export Active). Dwell time analyses,
based upon the state-space idealization of the loaded trajectories using a model, can be also performed (i.e.,
Modeling > Analyze Dwell Times). Additionally, several of the plotting options will include additional features,
such as post-synchronization, based upon these state-space idealizations (e.g., FRET HIST 2D; see below).
Finally, information about each model, such as kinetic parameters, may be obtained as a ‘report’ (Modeling >
Generate Report) that may be viewed in the tMAVEN log (View > Show Log).

7.3 Data Visualization with tMAVEN

While there are several types of plots that may be made in tMAVEN, they all have a common design principle
of enabling the user to programmatically customize all visual aspects in order to obtain complete continuity
between plots across multiple datasets. These customizations are performed by changing the plot preferences
in the Preferences dock (e.g., ‘plot.intensity_max’ changes the y-axis maximum value); note that each plot has
its own set of preferences. Once a user settles on a set of preference values for a plot, they may create a
script to programmatically set all those values in one step rather than editing the underlying tMAVEN code.

A plot of the ‘current’ trajectory is shown in the main interface (Fig. S4a). This may be saved by clicking
on the ‘disk’ icon in the toolbar underneath the plot; suggested file types are .pdf and .png. The analysis
plots that are accessible under the ‘Plots’ menu bar include data from all trajectories. The ‘FRET Hist 1D’ plot
is a one-dimensional histogram of the normalized data values (i.e., EggeT) between the pre- and post-points
for all the trajectories; if there is an active model, a Gaussian mixture representing the states of that model
are shown overlaid on this histogram. The ‘FRET Hist 2D’ plot is a two-dimensional heat map of the Egget
values at each time point; if there is an active model, this histogram may be post-synchronized to a specified
transition between two (or more) of the identified states. The ‘FRET TDP’ plot is a transition density plot of
the Epget values between neighboring datapoints (i.e., initial and final ErgeT); it defaults to a log-scaled color-
bar. The ‘Dwell Times’ plot creates survival plots of a dwell time analysis (Modeling > Analyze Dwell Times)
that can be fit and plotted along with the residual. Finally, custom plots are readily created by writing scripts
(see the tMAVEN documentation website for examples of creating a ‘rastergram’ or plotting stochastic entropy
production vs. time).

References

(1) Lerner, E. et al. eLife 2021, 10, e60416.

(2) Kinz-Thompson, C. D.; Bailey, N. A.; Gonzalez, R. L. In Methods in Enzymology; Single-Molecule En-
zymology: Fluorescence-Based and High-Throughput Methods, Vol. 581, 2016, pp 187-225.

Kinz-Thompson, C. D.; Gonzalez, R. L. Biophysical Journal 2018, 114, 289-300.
(4) Liu, Y.; Park, J.; Dahmen, K. A.; Chemla, Y. R.; Ha, T. J. Phys. Chem. B 2010, 114, 5386-5403.

&)

10



Verma, A.R., etal.

(5) Wakabayashi, K.; Miura, T. In Advances in Neural Information Processing Systems, 2012; Vol. 25,
pp 1493-1501.

(6) Hill, T. L., Free Energy Transduction and Biochemical Cycle Kinetics, New York, NY, 1989.

(7) Berne, B. J.; Pecora, R., Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics,
2013.

(8) Kampen, N. G. V., Stochastic Processes in Physics and Chemistry, 3rd edition, Amsterdam ; Boston,
2007.

(9) Forney, G. Proceedings of the IEEE 1973, 61, 268—-278.

(10) Bronson, J. E.; Fei, J.; Hofman, J. M.; Gonzalez, R. L.; Wiggins, C. H. Biophysical Journal 2009, 97,
3196-3205.

(11) Bishop, C., Pattern Recognition and Machine Learning; Information Science and Statistics, New York,
2006.

(12) Greenfeld, M.; van de Meent, J.-W.; Pavlichin, D. S.; Mabuchi, H.; Wiggins, C. H.; Gonzalez, R. L.;
Herschlag, D. BMC Bioinformatics 2015, 16, 3.

11



Verma, A.R., etal.

Supplemental Figures
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Figure S1: Parameter details for the simulated datasets. The underlying parameters for the three simulated
datasets with Markovian kinetics (self-transition probabilities are omitted) and Gaussian emission distributions:
(left) two-state Markovian ensembles, where the states are 0 and 1 (Homogeneous), (center) ensembles
of varying proportions of two, non-interconverting two-state subpopulations exhibiting fast and slow kinetics
(Static), and (right) ensembles of systems representing increasing transitions between a ‘slow’ phase (s) and
a ‘fast’ phase (f) of the two emission states (Dynamic). The common parameters used for these datasets are
shown (bottom left).
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Figure S2: Schematic diagram of a four-state HMM Diagram of the tree structure for a four-state HMM
showing the transition and the emission parameters.
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Figure S3: Schematic diagram of two-level four-state hHMM. a) Diagram of the tree structure for a two-
level, four-state hHMM showing the transition and emission parameters. b) Transition probabilities from the
production-level state 0 to the other production-level states decomposed into contributions from different path-
ways that traverse the tree structure to reach the final state.
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Figure S4: Annotated tMAVEN interface and data structures. a) The user interface for tMAVEN is shown.
The Preferences dock in the upper-left allows users to change any parameters involved in plotting, analysis,
efc.. The Molecule Table dock in the lower-left provides information about status of the trajectories and can
be used to select multiple trajectories at once. b) Schematic of two example datasets saved as individual
Single-Molecule Datasets (SMD) in a single HDF5 file. HDF5 group names are shown in dark blue, HDF5
attributes are shown in white, and HDF5 datasets are shown in light blue. c) A schematic of a kinetic model
Python object in tMAVEN with the parameters required for all types of kinetic models on top, and several non-
required model-specific parameters shown on bottom. d) After being estimated, every kinetic model is stored
in tMAVEN’s modeler object under the models list. The currently active model may be chosen from amongst
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Figure S5: The effect of static heterogeneity on kinetic modeling using composite HMMs.
ensemble-level transition probabilities for the observed states inferred using composite HMMs as a function
of the average transition probability of the observed states (calculated using the proportions of fast- and slow-
transitioning molecules). The dashed grey line denotes identity. The dashed red and blue lines denote the
transition probabilities from each state for the subpopulation of fast- and slow-transitioning molecules respec-

tively.
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Figure S6: Effect of static heterogeneity on emission distributions for different four-state kinetic mod-
els. Kernel density estimated distributions of the emission means for the four states inferred using composite
HMMs, global HMMs, and two-level hHMMs for a statically heterogeneous ensemble where the fraction of the
fast subpopulation is 50%.
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Figure S7: Comparison of ACFs for varying levels of static heterogeneity analyzed using different
kinetic models. (a) (top) The true ACF (dashed) along with the mean of the inferred ACFs (solid) for Static
datasets where the fraction of the fast subpopulation was 5%, 25%, 50%, 75%, and 95%, analyzed using
two-state composite (left) and global (right) HMMs, along with (bottom) the corresponding mean (solid) of
the residuals of the inferred ACFs to the true ACF. (b) (top) The true ACF (dashed) along with the mean of
the inferred ACFs (solid) for Static datasets where the fraction of the fast subpopulation was 5%, 25%, 50%,
75%, and 95%, analyzed using four-state composite (left) and global (right) HMMs, along with (bottom) the
corresponding mean (solid) of the residuals of the inferred ACFs to the true ACF. (c) (top) The true ACF
(dashed) along with the mean of the inferred ACFs (solid) for Static datasets where the fraction of the fast
subpopulation was 5%, 25%, 50%, 75%, and 95%, analyzed using two-level, four-state hHMMs, along with
(bottom) the corresponding mean (solid) of the residuals of the inferred ACFs to the true ACF. The shaded
area denotes the region one standard deviation away from the mean. The dashed grey line corresponds to
zero.
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Figure S8: Effect of initializations at true parameter values on the modeling of static heterogeneity. (a)
Kernel density estimated distributions of the emission means for the four states inferred using global HMMs for
a statically heterogeneous ensemble where the fraction of the fast subpopulation is 50%, when the inference
process is initialized at the true emission means, emission noise, and steady-state probabilities. (b) (top) The
corresponding true ACF (dashed) along with the mean of the inferred ACFs (solid), along with (boffom) the
corresponding mean (solid) of the residuals of the inferred ACFs to the true ACF. (¢) The corresponding mean
transition probabilities between the states inferred by the global HMMs. The errors are standard deviations
of the probabilities across the 100 simulated ensembles. (d) Kernel density estimated distributions of the
emission means for the four states inferred using global HMMs for a statically heterogeneous ensemble where
the fraction of the fast subpopulation is 50%, when the inference process is initialized at the true emission
means, emission noise, steady-state probabilities, and transition matrix. (e) (fop) The corresponding true
ACF (dashed) along with the mean of the inferred ACFs (solid), along with (bottom) the corresponding mean
(solid) of the residuals of the inferred ACFs to the true ACF. (f) The corresponding mean transition probabilities
between the states inferred by the global HMMs. The errors are standard deviations of the probabilities across
the 100 simulated ensembles.
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Figure S9: Hierarchical kinetics inferred using hHMMs for statically heterogeneous ensembles. The
transition probabilities between the slow (s) and fast (f) subpopulations of Static datasets with varying levels of
static heterogeneity, inferred using two-level, four-state hHMMs. The dashed grey line corresponds to the true
value of transition probabilities between the two populations, which, in the case of static heterogeneity, is zero.
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Figure S10: The effect of dynamic heterogeneity on kinetic modeling using composite HMMs. The
ensemble-level transition probabilities for the observed states inferred using composite HMMs as a function
of the total probability of transition between slow- and fast-transitioning phases (Ps; + Py;). The dashed
red and blue lines denote the transition probabilities of each state for the fast- and slow-transitioning phases
respectively. The dashed grey line denotes the ensemble average transition probability of each observed state.
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Figure S11: Comparison of ACFs for varying levels of dynamic heterogeneity analysed using different
kinetic models. (a) (top) The true ACF (dashed) along with the mean of the inferred ACFs (solid) for Dynamic
datasets where the total probability of interchange was 0.001, 0.005, 0.01, 0.015, and 0.02, analyzed using
two-state composite (leff) and global (right) HMMs, along with (botftom) the corresponding mean (solid) of
the residuals of the inferred ACFs to the true ACF. (b) (top) The true ACF (dashed) along with the mean of
the inferred ACFs (solid) for Dynamic datasets where the total probability of interchange was 0.001, 0.005,
0.01, 0.015, and 0.02, analyzed using four-state composite (left) and global (right) HMMs, along with (bottom)
the corresponding mean (solid) of the residuals of the inferred ACFs to the true ACF. (c) (top) The true ACF
(dashed) along with the mean of the inferred ACFs (solid) for Dynamic datasets where the total probability of
interchange was 0.001, 0.005, 0.01, 0.015, and 0.02, analyzed using two-level, four-state hHMMs, along with
(bottom) the corresponding mean (solid) of the residuals of the inferred ACFs to the true ACF. The shaded

area denotes the region one standard deviation away from the mean. The dashed grey line corresponds to
zero.
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Figure S12: Effect of dynamic heterogeneity on emission distributions for different four-state kinetic
models. Kernel density estimated distributions of the emission means for the four states inferred using com-
posite HMMs, global HMMs, and two-level h(HMMs for a dynamically heterogeneous ensemble where the total
probability of interchange between the slow and the fast phases is 0.01.
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Figure S13: Effect of initializations at true parameter values on the modeling of dynamic heterogeneity.
(a) Kernel density estimated distributions of the emission means for the four states inferred using global HMMs
for a dynamically heterogeneous ensemble where the total probability of interchange between the slow and the
fast phases is 0.01, when the inference process is initialized at the true emission means, emission noise, and
steady-state probabilities. (b) (fop) The corresponding true ACF (dashed) along with the mean of the inferred
ACFs (solid), along with (bottom) the corresponding mean (solid) of the residuals of the inferred ACFs to the
true ACF. (c) The corresponding mean transition probabilities between the states inferred by the global HMMs.
The errors are standard deviations of the probabilities across the 100 simulated ensembles. (d) Kernel density
estimated distributions of the emission means for the four states inferred using global HMMs for a dynamically
heterogeneous ensemble where the total probability of interchange between the slow and the fast phases
is 0.01, when the inference process is initialized at the true emission means, emission noise, steady-state
probabilities, and transition matrix. (e) (top) The corresponding true ACF (dashed) along with the mean of the
inferred ACFs (solid), along with (bottom) the corresponding mean (solid) of the residuals of the inferred ACFs
to the true ACF. (f) The corresponding mean transition probabilities between the states inferred by the global
HMMs. The errors are standard deviations of the probabilities across the 100 simulated ensembles.
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Figure S14: Hierarchical kinetics inferred using hHMMs for dynamically heterogeneous ensembles.
The transition probabilities between the slow (s) and fast (f) subpopulations of Dynamic datasets with varying
levels of dynamic heterogeneity, inferred using two-level four-state hHMMs. The dashed grey line corresponds
to the true value of transition probabilities between the two populations.
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