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ABSTRACT This research introduces an advanced approach to automate the segmentation and quantification
of nuclei in fluorescent images through deep learning techniques. Overcoming inherent challenges such
as variations in pixel intensities, noisy boundaries, and overlapping edges, our devised pipeline integrates
the U-Net architecture with state-of-the-art CNN models, such as EfficientNet. This fusion maintains the
efficiency of U-Net while harnessing the superior capabilities of EfficientNet. Crucially, we exclusively
utilize high-quality confocal images generated in-house for model training, purposefully avoiding the pitfalls
associated with publicly available synthetic data of lower quality. Our training dataset encompasses over
3000 nuclei boundaries, which are meticulously annotated manually to ensure precision and accuracy in
the learning process. Additionally, post-processing is implemented to refine segmentation results, providing
morphological quantification for each segmented nucleus. Through comprehensive evaluation, our model
achieves notable performance metrics, attaining an F1-score of 87% and an Intersection over Union (IoU)
value of 80%. Furthermore, its robustness is demonstrated across diverse datasets sourced from various
origins, indicative of its broad applicability in automating nucleus extraction and quantification from
fluorescent images. This innovative methodology holds significant promise for advancing research efforts
across multiple domains by facilitating a deeper understanding of underlying biological processes through
automated analysis of fluorescent imagery.

INDEX TERMS Deep learning, UNet architecture, fluorescent image processing, nuclei segmentation,
mammary epithelial cells.

I. INTRODUCTION
Biological image analysis typically initiates with object seg-
mentation, a critical phase involving the extraction of regions
or objects of interest within the images. These regions encap-
sulate vital information such asmolecular activities, organelle
details, cell phenotypes, tissue structures, and anatomical
features. The precision and efficacy of biomedical image
segmentation are paramount, as they form the basis for subse-
quent quantitative analyses, visualization projections, and the
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elucidation of complex biological events [1]. A meticulously
performed segmentation process not only facilitates accurate
identification and delineation of relevant objects but also
enables researchers to quantitatively analyze their character-
istics, track dynamic changes, and unveil underlying patterns
or relationships within the biological system.

At a fundamental level, cell segmentation enables quan-
titative analyses of cellular and molecular data, as well as
the classification and clustering of morphological phenotypes
in individual cells and organoids [2]. Analyzing this foun-
dational information allows for the extraction of mid-level
insights such as cellular migration, division, and tissue
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FIGURE 1. Illustration of deep learning frameworks, replaces the UNet encoder with ResNet-50,
EfficientNet-B5, EfficientNet-B7, and Inception-ResNet-v2 models, is shown.

development under environmental stimuli in real-time. More-
over, the combination of low- and mid-level data enables
the identification and highlighting of apoptotic/necrotic cells,
diseased cells, damaged tissue, and aberrant genetic and
proteomic expressions, facilitating disease diagnosis and
assessment of therapeutic effects [3]. However, manual
examination and analysis of these images pose significant
challenges, as the tasks are labor-intensive and error-prone,
which may lead to missed diagnoses. Additionally, semantic
segmentation of cell nuclei proves challenging due to
the unconventional morphologies in diseased environments,
noise in images, large dynamic range within a single picture,
and overlapping nuclei. Deep learning emerges as a power-
ful solution to address these shortcomings and enhance the
efficiency of automated cell segmentation [4].
Deep learning algorithms offer precise mappings and

enhanced performance by automating processes, making
them invaluable tools. Leveraging these benefits, this paper
delves into utilizing a deep-learning approach for segmenting
and identifying cell nuclei in fluorescent images. Among
the prominent frameworks in computer vision, U-Net stands
out as a widely adopted architecture that was introduced
by Ronneberger et al. [5]. U-Net features a distinctive
‘‘U-shaped’’ design. Its architecture comprises an encoder
which is responsible for capturing features through a con-
tracting path, and a decoder which facilitates a symmetric
expanding path. This configuration enables U-Net to effec-
tively capture both local and global information at the pixel
level. Notably, U-Net’s efficiency surpasses that of fully
convolutional networks (FCN), as evidenced by previous
studies [6].

In this project, we capitalized on the remarkable effi-
ciency of the encoder-decoder-based U-Net architecture,
which produces favorable segmentation results even when
working with a limited training dataset, thanks to the
incorporation of data augmentation techniques. Expanding
upon this foundation, we integrated compound scaled
CNN models as the encoder during the feature extrac-
tion phase, coupled with the U-Net decoder to reconstruct
intricate segmentation maps. Specifically, we employed
the EfficientNet-B5 model as the encoder, departing from
the conventional use of traditional convolutional layers. The
design of EfficientNet systematically adjusts the network’s
width, depth, and image resolution, resulting in enhanced
performance for U-Net in generating finely detailed segmen-
tation maps upon replacing its feature extraction encoder
pathway.

EfficientNet models have demonstrated state-of-the-art
accuracy while maintaining smaller sizes and faster pro-
cessing speeds compared to existing convolutional neural
networks [7]. The proposed network architecture utilizes the
first four layers in the contracting path and the last four layers
in the expansion path, with the fifth layer serving to connect
the two. As we traverse deeper into the encoder, the image
dimensions gradually diminish. Beginning with images sized
at 256 × 256 × 3, we progressively downscale them to
8 × 8 × 256, effectively capturing the broader image con-
text. The model’s architecture, including channel count,
resolution, and bandwidth, is depicted in Figure 1. By sys-
tematically scaling the network’s width, depth, and image res-
olution, EfficientNet optimizes performance. Consequently,
when we replace the feature extraction encoder path in U-Net
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with CNN modules, it excels in generating finely detailed
segmentation maps.

As a result of this modification, the U-Net model was sig-
nificantly improved, boasting enhanced capabilities in both
its encoder and decoder components. Subsequently, we con-
ducted an evaluation of various deep-learning models to
replace the U-Net backbones for nuclei segmentation. This
evaluation utilized fluorescent microscopy images that had
been meticulously annotated at the pixel level. Additionally,
in order to tackle the challenge of segmenting overlapping
nuclei regions, we introduced a post-processing step [8]. This
step effectively resolves touching boundaries, assigns unique
labels to each identified cell, and provides morphological
measurements for individual nuclei.

Therefore, we evaluated the performance of differ-
ent deep learning models to replace UNet backbones
for nuclei segmentation by using fluorescent microscopy
images that were manually annotated at the pixel level.
We used the following pre-trained models, ResNet-50,
EfficientNet-B5, EfficientNet-B7, Inception-ResNet-v2,
Vgg19, Densenet 121, and Mobilenet as the backbone to
replace the decoder. DAPI images will be input images to
test the efficiency.

II. METHOD
The code is available on the GitHub webpage: https://github.
com/aishstha/Segment-and-quantify-cells

A. SELECTION OF PRETRAINED BACKBONES FOR UNet’s
ENCODER
This project aimed to assess the performance of different
deep learning models in replacing the UNet backbones for
nuclei segmentation, utilizing manually annotated fluores-
cent microscopy images at the pixel level. The pre-trained
models to be evaluated include:

• ResNet-50 [9], [10] is a convolutional neural network
comprising 50 layers and is renowned for its success in
reducing performance errors and enhancing efficiency in
object detection, segmentation, and localization [9].

• EfficientNet-B5 [11] and EfficientNet-B7 [11] are engi-
neered to operate within fixed resource constraints, yet
they can be scaled up for improved accuracy given addi-
tional resources. These models are particularly suitable
for smaller-scale tasks and research endeavors operating
within limited budgetary constraints. EfficientNet mod-
els have consistently achieved state-of-the-art accuracy
while maintaining smaller sizes and faster processing
speeds than existing convolutional neural networks [7].

• Inception-ResNet-v2 [12], [13] is another residual neu-
ral network model that facilitates the direct flow of
information from earlier layers to subsequent layers.
Trained on over a million images from ImageNet [13],
Inception-ResNet-v2 is trained on more than a million
images from ImageNet [14] and has proven to be effec-
tive on various image types. Inception-ResNet-v2 has

demonstrated effectiveness across various image types
as potential replacements for the decoder.

• Vgg19 [15], [16] includes 16 convolutional layers and
3 fully connected layers. It is known for its simplic-
ity and effectiveness in image classification tasks. The
architecture comprises several sets of convolutional
layers followed by max-pooling layers, with fully con-
nected layers at the end.

• Densenet 121 [17], [18] consists of 121 layers and is
known for its dense connectivity pattern. In DenseNet,
each layer receives feature maps from all preceding
layers as input, and its own feature maps are passed on to
all subsequent layers. This dense connectivity facilitates
feature reuse, enhances gradient flow, and encourages
feature propagation throughout the network.

• Mobilenet [19], [20] consists of a series of depthwise
separable convolutional layers followed by pointwise
convolutional layers and optional additional layers such
as batch normalization and ReLU activation.

B. DATA COLLECTION
The dataset utilized in this study originates from a prior
publication by Cheng et al. [21] The 3D data were captured
using a Zeiss LSM 710 imaging system equipped with a
Zeiss Apochromat 40X/1.1 water immersion objective lens.
Excitation filters were set at 405 and 561 nm, while emission
filters were configured to detect signals between 420-480 and
597-700 nm, respectively. Laser intensity was maintained at
1%, and a twin-gate main beam splitter with two wheels, each
containing 10 filter positions (resulting in 100 possible com-
binations), was employed to separate excitation and emission
beams. The pinhole aperture was set at ‘‘1’’, and digital
gain was adjusted to approximately ¾of the maximum gain,
ensuring a dynamic range of pixel values between 500–2000
(12 bits). Leveraging the acquired raw data, we introduce a
novel dataset termed the ‘Breast Mammary Gland Dataset
(BMGD)’, featuring manually annotated masks that provide
precise delineation of objects of interest. This dataset serves
as the training dataset for deep learning frameworks and
comprises 547 images containing over 3000 cell nuclei.

The dataset from the Kaggle Data Science Bowl 2018 [11]
competition comprises annotated histopathological images
showcasing nuclei with varying shapes, cell types, magnifica-
tions, and modalities, including fluorescence or bright fields.
Originally, the dataset contained 670 images contributed by
diverse research laboratories in various fields of cell biology.
To ensure consistency and precision, we manually curated
546 fluorescent images with distinctive characteristics from
this pool.

Additionally, the Broad Bioimage Benchmark Collection
includes the BBBC022 dataset [22], which comprises
20 plates. Each plate contains 384 wells, with each well
featuring 9 fields of view, resulting in a total of 69,120
fields of view. Each field was captured in five channels
(detection wavelengths), with each channel stored as a
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separate grayscale image file. The images were acquired at a
magnification of 20X, corresponding to 0.656 µm per pixel.

C. DATA PRE-PROCESSING
To begin the pre-processing phase, we utilized a Python script
to extract 2D image slices from the 3D dataset, employing
a threshold intensity level set above 2000. We opted for
2D images to streamline analysis, as the features of interest
were primarily concentrated in a select few slices. Subse-
quently, we manually filtered out noisy data to ensure precise
data curation. Given that the raw images collected vary in
size and cannot be directly inputted into our deep learning
model, we standardized their dimensions across the dataset
by resizing them to 256 × 256 pixels. This resizing step
was necessary to accommodate GPUmemory limitations and
ensure uniform input size for our model.

D. DATA ANNOTATION
The annotation process comprises several sequential steps.
Initially, we undertook manual pixel-based delineation of
nuclear boundaries, marking them as foreground by high-
lighting them in red. Additionally, we designated background
examples, which were colored in blue. This facilitates
the labeling of a few pixels per class (foreground and
background), following which we utilized a random forest
classifier integrated into Labkit to generate the mask.We then
manually verified the segmented mask against the original
image. In cases where noise was detected, Laplacian of
Gaussian filters are applied to enhance edge detection. Upon
finalizing segmentation, we rescaled image values to a range
of 0-1 and converted the mask type to an 8-bit image format.
The data annotation process is depicted in Figure 2.

E. DATA AUGMENTATION
To mitigate the risk of overfitting, we implemented aug-
mentation techniques on the images. Our approach leveraged
the augmentation library developed by Buslaev et al [23] to
accomplish this task. We integrated a range of traditional
2D image processing techniques, including horizontal flip-
ping, random cropping, elastic transformations, shift-scale
rotations, and random adjustments to brightness and contrast.
These techniques were applied in various combinations to
diversify the dataset and enhance the robustness of our model.
The data augmentation was performed on the fly, and some
of the examples are shown in Figure 3.

F. POST PROCESSING
As a post processing step, we implemented histogram-based
segmentation including marker-based watersheds to separate
the nuclei that are close to each other. Figure 4 shows the
workflow carried out in this step. For the quantification of
nuclei, we labeled each cell with numbering and calculated
various metrics by labeling each nucleus, such as area, equiv-
alent diameter, mean intensity, perimeter, small diameter, and
large diameter.

FIGURE 2. The flow of data annotation is shown.

G. TESTING BED AND EXPERIMENTAL SETUP
The deep learning framework was implemented using Keras
with TensorFlow backend, while data processing was con-
ducted using Python 3.10 alongside popular machine learning
libraries such as Keras, NumPy, and pandas. To facilitate
model training and evaluation, we divided the dataset using
the [train_test_split] function from the scikit-learn library.
This split allocated 80% of the data for training the proposed
deep learning model, with 10% reserved for evaluation and
another 10% designated for testing, as detailed in Table 1.
The training was executed over 100 epochs, with each epoch
consuming approximately 2-4 hours to complete. Optimal
results were achieved with a batch size of 4, surpassing
performance obtained with both 2 and 8, hence this value
was selected. Adam was chosen as the optimizer, with a
learning rate (LR) of 10e−4 during training to maximize loss
reduction and tolerate sparse gradients of nucleus foreground
pixels. The entire model training process was conducted on a
server with specifications outlined in Table 2.

TABLE 1. Subdivision of dataset is shown.
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FIGURE 3. Example of transformations applied for data augmentation.

FIGURE 4. Pipeline of post-processing method is shown.

TABLE 2. Training specifications are shown.

H. EVALUATION METRICS
The efficacy of the nuclei segmentation models is assessed
through two metrics: mean F1-score (Dice coefficient) and
mean IoU (Jaccard Index). Thesemetrics offer distinct advan-
tages in evaluating the accuracy and overlap of segmented
regions. By combining precision and recall, the F1 score
provides a balanced measure of model performance and is
particularly useful for tasks with imbalanced data or vary-
ing region sizes. Additionally, the IoU metric quantifies the
overlap between predicted and ground truth regions, offering
insights into segmentation accuracy. This combined approach
ensures a comprehensive assessment of segmentation quality,
considering both precision and recall while accounting
for potential data imbalances and region size variations.

The F1 score is computed using the following equation:

F1 =
TP

TP +
1
2 (FP + FN)

where TP, FP, and FN denote true positives, false positives,
and false negatives classified by the model. The F1 score
ranges from 0 to 1, with a value of 1 indicating all predicted
segments align perfectly with the ground truth. Generally,
an F1 score larger than 0.7 indicates good segmentation accu-
racy and the training model is considered a well-performing
model for image segmentation tasks.

The Intersection-over-Union (IoU) metric is computed by
dividing the area of intersection between the predicted and
ground truth masks by the area of their union. The mean
IoU is then calculated by dividing the sum of IoU scores for
all instances by the total number of instances. The detailed
equations for these computations are as follows:

IoU =
|A ∩ B|

|A ∪ B|

where c is the number of classes.
The Dataset in this project also includes binary class seg-

mentation, therefore, the sigmoid activation function is used
in the final layer, which is computed as follows:

σ (x) =
1

1 + e−x
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FIGURE 5. Illustration of predicted image in different CNN models is shown.

FIGURE 6. The loss per epoch is shown.

The loss function is used by models to learn the trainable
parameters, such as weights and biases. Due to the sizable
imbalance of overlapping and background regions, we trained
the model using a combination of dice loss and binary focal

loss. The purpose of combining these loss functions was to
create a composite loss that considers both the similarity
between the predicted and ground truth and the difficulty of
classifying the pixels. Dice loss uses the dice coefficient to
measure the overlapping of the pixels of the predicted labels
with the ground truth label. Binary focal loss generalizes
binary cross-entropy by introducing a hyperparameter γ ,
called the focusing parameter, that allows hard-to-classify
examples to be penalized more heavily relative to easy-to-
classify examples [24]. The formulas for Dice loss, Focal
loss, and Total loss are illustrated in the following equations:

Dice =
2 × |X ∩ Y |

|X | + |Y |

Focal Loss (pt) = −at (1 − pt) log (pt)

Total Loss = Dice Loss + (1 × Binary Focal Loss)

III. RESULTS AND DISCUSSION
In our feature extraction experiments, we tested several
encoders including EfficientNet, ResNet-50, InceptionRes-
NetV2, Vgg19, Densenet121, and MobileNet paired with
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FIGURE 7. The results are shown compared to the original images.

the U-Net decoder, as outlined in Table 3. Figure 5 rep-
resents a comparison of the predicted masks that were
generated using various CNN models from the same original
image. The comparative analysis presents results for the
same predicted image across different CNN frameworks
employed as U-Net’s encoder. Our findings revealed that
using EfficientNet-B5 as the backbone of the nuclei segmen-
tation network yielded the most promising results, achieving
an F1 score of 87.1% and a mean IoU score of 80%.
This indicates that the combination of Efficient-B5 with
U-Net produced superior outcomes. Additionally, we noted
a significant enhancement in the F1-score, which rose from
0.85485 to 0.871 when altering the data split from 70-30%
to 80-20%. Moreover, our proposed network demonstrated
effective generalization, evidenced by a validation loss of
0.02456. Given the notable performance of EfficientNet-B5,
further investigation into the performance of various Effi-
cientNet frameworks was deemed prudent. Our findings,
presented in Table 4, illustrate that EfficientNet-B5 offers
the best cost-performance efficiency. While newer versions
such as EfficientNet-B6 and EfficientNet-B7 showed com-
parable performance. We believe the better performance
of EfficientNet-B5 is because the use of multiple MBCov
blocks with different receptive field sizes in EfficientNet-B5
for multi-scale feature extraction is particularly advanta-
geous in segmentation tasks where objects of different

TABLE 3. Performance of different CNN encoders in U-Net on BMDG
dataset is listed.

TABLE 4. Comparison of EfficientNet frameworks is shown.

sizes need to be accurately delineated. Since our dataset is
small, EfficientNet-B7’s greater capacity might not be fully
exploited, which would result in declining results.

In Figure 6, we present the loss per epoch, where it’s worth
noting that augmentation was not applied to the validation
dataset, resulting in a lower validation loss. A low validation
loss indicates that the model’s predictions on unseen data
closelymatch the actual target values, underscoring the robust
performance of the developed deep learning framework in
capturing underlying patterns in the dataset.

Furthermore, Figure 7 illustrates that our deep learning-
based model outperforms a classical computer vision-based
segmentation approach, the Otsu algorithm [25]. This superi-
ority is particularly noteworthy as the Otsu algorithm strug-
gles to identify an optimal threshold in cases where there is
no clear bimodal distribution in the intensity histogram. This
observation highlights the shortcomings of traditional com-
puter vision methods when faced with images lacking clear
distinctions between background and foreground values.
In such scenarios, the newly developedmodel excels, yielding
more precise and nuanced segmentation results.

Additionally, we implemented histogram-based segmen-
tation, including marker-based watersheds, as a post-
processing step to separate nuclei that are in close proximity.
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FIGURE 8. The efficiency of deep learning model on segmenting unseen
datasets is shown.

For the quantification of nuclei, we assigned each cell a
numerical label and calculated various metrics for each
nucleus, such as area, equivalent diameter, mean intensity,
perimeter, small diameter, and large diameter.

Finally, we evaluated the effectiveness of the developed
deep learning algorithms by testing them on public datasets,
namely KDSB18 and BBBC022. These datasets represent
new data that our algorithm has never encountered or been
trained with. Our results demonstrated successful segmenta-
tion, as illustrated in Figure 8.

IV. CONCLUSION
In this study, we have established a pipeline for the automatic
segmentation of nuclei in DAPI-stained fluorescent images,
aimed at assisting medical experts in their diagnostic pro-
cesses through automation. Even with expert oversight, errors
can occur, underscoring the necessity for fully automated
pipelines.

In conclusion, our study successfully addresses the
challenges associated with semantic segmentation of cell
nuclei, including issues such as unconventional morphology,
noise, and overlapping instances. We employ a U-Net

encoder-decoder-based approach, leveraging a pre-trained
EfficientNet-B5 as the network backbone for pixel-level
nuclei segmentation. Experimental results demonstrate the
effectiveness of our proposed method in extracting nuclei
cells, achieving an F1-score of 87% and an IoU of 80%.
Compared to state-of-the-art networks like ResNet-50, Incep-
tionResNetV2, Vgg19, Densenet121, and Mobilenet, our
model exhibits highly accurate segmentation.

Furthermore, this investigation offers quantified outcomes
for the analysis of individual cell nuclei. The manual seg-
mentation conducted on this dataset serves as a valuable
resource for training segmentation algorithms, reducing the
labor-intensive manual tracing typically required by other
researchers.
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