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Abstract— Legged robots have become capable of performing
highly dynamic maneuvers in the past few years. However,
agile locomotion in highly constrained environments such as
stepping stones is still a challenge. In this paper, we propose
a combination of model-based control, search, and learning to
design efficient control policies for agile locomotion on stepping
stones. In our framework, we use nonlinear model predictive
control (NMPC) to generate whole-body motions for a given
contact plan. To efficiently search for an optimal contact plan,
we propose to use Monte Carlo tree search (MCTS). While the
combination of MCTS and NMPC can quickly find a feasible
plan for a given environment (a few seconds), it is not yet
suitable to be used as a reactive policy. Hence, we generate a
dataset for optimal goal-conditioned policy for a given scene and
learn it through supervised learning. In particular, we leverage
the power of diffusion models in handling multi-modality in the
dataset. We test our proposed framework on a scenario where
our quadruped robot Solo12 successfully jumps to different
goals in a highly constrained environment.

I. INTRODUCTION

Controlling legged robots is a challenging problem, in

particular, due to the need to decide over both continu-

ous (e.g., contact forces) and discrete (e.g., which surface

patch to step onto next) decision variables. While there

has been much progress in designing controllers based on

model predictive control (MPC) to tackle the continuous part

efficiently [1], [2], [3], [4], solving the mixed problem is still

computationally intractable. The main goal of this paper is

to propose an efficient framework based on a combination of

nonlinear MPC (NMPC), Monte Carlo tree search (MCTS),

and supervised learning to find feedback policies that decide

over discrete variables of the gait.

Several works have tried to solve the generation of

whole-body motion through a holistic approach, e.g., us-

ing differential dynamic programming (DDP) [5], contact-

invariant optimization (CIO) [6], contact-implicit trajectory

optimization [7], and phase-based gait parameterization [8].

While these approaches have shown impressive behaviors in

simulation for legged robots, they are not suitable for online

motion re-planning, mainly due to their large computation

load and being sensitive to initialization.
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To enable real-time motion re-planning, most state-of-the-

art frameworks decompose the problem into contact planning

and trajectory generation. In this setting, the contact planner

decides which end-effector goes to which contact patch, i.e.,

the discrete part of the decisions to be made. The search

over these discrete variables is traditionally done through

search-based algorithms [9], or mixed-integer quadratic pro-

gramming (MIQP) [10]. While it has been shown that a

relaxed version of the MIQP with L1 norm minimization [11]

can be run on a real quadruped robot in real-time [12],

these approaches do not scale well when the number of

discrete variables grows. Furthermore, these approaches do

not take into account the robot dynamics. This makes them

impractical for automatically generating dynamic locomotion

behaviors with flight phases which is the main focus of this

paper.

In [13], [14], the authors have included a simplified

convex version of the centroidal momentum dynamics in

the MIQP formulation. While an efficient implementation

of the approach can become real-time capable for a small

set of discrete decision variables, this approach can quickly

explode as the number of available contact patches increases.

To speed up the search problem, [15] proposes to learn the

outcome of contact transitions using centroidal momentum

dynamics. While this is a valid approach for fast contact

planning, it was never implemented in a physical simulation

or real robot.

As an alternative to model-based planning and control,

deep reinforcement learning (DRL) has shown impressive

results for agile quadrupedal locomotion [16], [17], [18].

However, none of these works have shown locomotion in

highly constrained environments like stepping stones. Re-

cently, [19] demonstrated locomotion on risky terrains like

stepping stones. Nevertheless, as mentioned by the authors,

even with the design of several non-trivial reward terms they

failed to learn these motions from scratch, mainly due to

the sparsity of the environment. Hence, they needed to first

train a generalist policy that is able to walk on a simple

stepping stone and then fine-tune the policy for each new

environment. In contrast, as we demonstrate in this paper, by

exploiting the structure of the problem and the environment,

our approach requires neither heavy reward shaping nor

multi-stage training.

In this paper, we aim to tackle the problem of contact

planning for dynamic maneuvers of legged robots on step-

ping stones. To do so, we propose to use Monte Carlo Tree

Search (MCTS) which has recently been shown to scale well

and outperform MIQP for dexterous manipulation [20] and
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(Nc is the current number of available contact locations),

xstate that includes some state variables (see Sec. III-A) and

xgoal, the final desired Ne end-effector locations (Ne is the

number of end-effectors). The size of the input is equal to

3× (Nc + 2× (Ne + 1)).
The neural network policy predicts the future H contact

locations for each end-effector, denoted by ĉ
ij,h
B for the end-

effector j ∈ [1, . . . , Ne] and the next step h ∈ [1, . . . , H].
The size of the output ŷ is equal to 3×H×Ne. As the NMPC

is quite sensitive to small errors in the contact locations, we

project the contact locations given by the policy to the closest

center of the patch. We refer to the projection function as

pC in the following. We show in Sec. IV-E that the distance

between the contact locations given by the policy and the

projected ones is way lower than the half distance between

the two stepping stones. This means that the choice of contact

patch by the policy is not influenced by this projection.

A. Problem specifications

In our setup, a quadruped robot (Ne = 4) navigates in

an environment with up to 81 stepping stones. Each stone

provides the robot with a cylindrical patch of radius 4.4 cm

and height h = 10 cm to step onto. The stepping stones

initially form a regular grid of spacing (ex, ey) so that the

feet lay on 4 stepping stones in the initial configuration. From

this, the environment is randomized. The position of each

stone is then displaced by ǫx(
ex
2
−r) with ǫx ∼ U(−αx, αx),

αx ∈ [0, 1] in the x direction (respectively for the direction

y). Similarly, the randomized height equals (1 + ǫh)h with

ǫh ∼ U(−αh, αh), αh ∈ [0, 1]. Additionally, Nremoved stones

are randomly removed. The simulated environment can be

seen in Fig. 2.

Goals are also sampled randomly so that the center of

the 4 goal contact locations is within d
g
min and dgmax of the

initial robot position.

In our experiments, H encodes the NMPC horizon, which

in our problem is two jumps in the future (H = 2). The

goal is to evaluate the learned policy before each jump and

feed the selected contact locations to the NMPC. As state

variables, we consider the position of the end-effectors, the

current base linear and angular velocities (all expressed in

base frame B).

B. Dataset

To collect a diverse dataset, we sample a random envi-

ronment and run MCTS for a fixed maximum number of

iterations. To collect diverse paths towards a goal, we keep

up to Npaths different feasible paths for the same goal and

environment. To cover a wider range of robot states, for

each MCTS solution, we perturb the simulation Nrand times

and add feasible solutions to the dataset. The randomization

procedure consists of randomizing the initial state of the

robot (position and velocity) as well as the contact locations

inside the selected patches. The training data (x,y) (see Fig.

3) are recorded at each jump (y are the contact locations

of the next two jumps). We repeat the procedure on Nenv

different environments (set of stepping stones).

C. Neural network architectures

Our learning problem structure is a selection procedure

as the policy should ideally return contact locations that

are given as input. While this can be achieved using a

projection function, some network architectures are suited to

this task such as the Pointer-Network architecture (III-C.1)

that we consider as a candidate. Additionally, our dataset is

multi-modal as MCTS provides different contact sequences

for the same start and goal contact locations in a given

environment. It is not possible to represent such multi-modal

data distribution with a conventional uni-modal policy class

as the model could collapse to one of the modes or an

average over several modes (see Fig 7). Therefore, we con-

sider Denoising diffusion probabilistic models (DDPMs) [32]

(cf. III-C.2), as another potential candidate, since they are

theoretically grounded to handle multi-modality [33] and is

practically verified for some robotic applications [34] [35].

We also consider multi-layer perceptron (MLP) architecture

as a baseline.

1) Pointer-Networks: Pointer-Networks [36] take as input

a sequence and output discrete indices, called pointers,

that select elements from the input sequence. In this case,

the projection pC is not performed as the model directly

outputs from the input set. The architecture is composed of 2
recurrent networks and an attention mechanism that operates

on the past decoder’s hidden states and all the encoder’s

hidden states. At each step, the output of the decoder is the

index of the encoder’s hidden state that has the maximum

attention value with the past decoder’s hidden state. This

operation is repeated for as many times as needed. In our

case 8 times (the next two contact locations for each four

legs).

To make the model select only the contact patches from

the input x, xcontact is given as the input sequence while

[xstate,xgoal] is embedded and given as the first hidden state

of the encoder. Like so, contact patches can be provided in

any order and a different number which is not the case for

instance for an MLP.

2) Diffusion models: DDPMs are generative models that

map samples from a latent random distribution to the data

distribution in T steps by successive denoising of the original

noise. For each intermediate step t ∈ [1, T ], one can sample

a corrupted input xt by adding noise ǫt to a sample of

the data x0. A variance schedule assigns an increasing

noise level at each step t so that xT can be seen as a

pure random noise (usually from a Gaussian distribution).

Those corrupted samples are used to train the diffusion

model ǫθ , parametrized by θ, to estimate the noise added

in a supervised manner. It is done by minimizing the MSE

loss between the actual sampled noise ǫt and the estimated

one ǫθ(x0 + ǫt, t). Minimizing the MSE loss leads to the

minimization of the variational lower bound of the KL-

divergence between the data distribution and the distribution

of samples drawn from the DDPM [32].

To sample with the trained model, noise is successively







and hyperparameters are similar to [35] and are detailed in

the appendix.

As done in [35], we used a DDIM [42] approach to

decouple the number of denoising iterations in training and

inference. Taking a similar number of steps in the forward

and backward diffusion process usually leads to better results

but is time-consuming. For 15 steps in the backward process

and above, the policy achieved approximately a similar

success rate (our policy was trained on T = 50 diffusion

steps). Therefore, we used 15 denoising iterations in the

experiments. It takes 70 ms for the policy to be evaluated on

an AMD Ryzen 5 5625u CPU.

1) Static environments: Our policy has been trained to

output different contact patches for the next jump as our

dataset contains multi-modal samples. Therefore, by combi-

nation, the final full-length contact plan is likely to differ

from the ones of MCTS. This is confirmed as 40% of the

successful contact plans were not in the training dataset

when replaying on the training environment. However, since

a maximum of 3 different paths are recorded for each goal

in a given environment, it could lead to a poorer success rate

as the policy might end up out of the training distribution.

When replayed in the same conditions 20 times for a goal

in a corner of the environment, our trained policy reached

the goal all the times in 14 different ways. Some examples

can be seen in the accompanying video. This confirms the

results of Sec. IV-D with a policy trained on a more diverse

dataset.

2) Dynamic environments: Now, we proceed to evaluate

how well the policy can be used in a dynamic environment.

To do that, we randomly remove two contact locations from

the environment before each jump while the robot is reaching

a goal. The removed stepping stones are chosen among the

ones found by MCTS. This way, it is more likely to remove a

stepping stone that would have been initially selected, which

shows the ability of the policy to replan reactively. This task

is challenging, as removing stepping stones could make the

robot jump into a position that is bound to fail or that is

out of the training data distribution. Our policy sporadically

succeeded on this task (22% of the time on 50 trials on a goal

in diagonal). Additionally, our trained policy was also able

to perform navigation to reach some user-defined changing

goals in a new environment with 12 removed stepping stones.

Successful examples of those two tasks can be seen in the

accompanying video.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a framework to efficiently

search for non-trivial contact plans in a known environ-

ment for legged robots. In our framework, we proposed a

customized version of MCTS together with an NMPC to

search for feasible solutions on stepping stones. We showed

that we can reliably find feasible solutions for different

arrangements of the stepping stones as well as initial and

final conditions. Collecting feasible rollouts enabled us to

collect a rich dataset and learn a control policy that can gen-

erate contact plans for the NMPC reactively. Our extensive

analyses showed that, due to the multi-modal nature of the

dataset, using diffusion models is an ideal way to perform

supervised learning on the dataset.

In the future, we plan to explore alternative architectures

for diffusion models, as the one used in this study is derived

from works with different learning problem structures. We

would like to implement the learned high-level contact plan-

ner together with the NMPC on the real hardware. To further

reduce the computation time of the whole control pipeline

for real-world experiments, we are interested in replacing the

NMPC with a learned low-level policy [43]. We also aim to

extend our framework to optimize the gait as well as the

surface patches, given a local environment map. Finally, we

are interested in learning the high-level policy from partial

observation of the robot on-board cameras.
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APPENDIX

In this appendix, we present the detailed values used for

training the networks. Training parameters can be seen on

Tab. I.

1) MLP: We used a standard MLP with 4 hidden layers

of latent dimension 64 with LeakyReLU activation. The size

input dimension is 273 (81 stepping stones locations) and the

size output dimension is 24. The total number of trainable

parameters of this model is 35736.

2) Pointer-Networks: Both the encoder and decoder are

LSTMs with 2 layers and hidden dimension 32. The attention

mechanism is also of hidden dimension 32. [xstate,xgoal] is

embedded through an MLP with 2 hidden layers of hidden

dimensions 16 and 32 with PReLU activation. The total

number of trainable parameters is 31521 which is comparable

to the MLP architecture considered.

3) U-Net1D: We chose a U-Net with 3 layers with respec-

tively a channel width equal to 64, 128 and 256 and a kernel

size of 3 for the convolutions. Convolutions are sliding on the

temporal/end-effector dimension. The sinusoidal embedding

dimension is 32. The multi-head attention layer has only

one head. We used a squared cosine noise schedule with

β1 = 0.004 and βT = 0.02 as suggested by [32] for

T = 50 training iterations. The model has in total 2639207

parameters.


