2403.03639v2 [cs.RO] 16 Jul 2024

arxiv

Diffusion-based learning of contact plans for agile locomotion

Victor Dhédin'*, Adithya Kumar Chinnakkonda Ravi'*, Armand Jordana?, Huaijiang Zhu?, Avadesh Meduri?,
Ludovic Righetti?, Bernhard Scholkopf?, Majid Khadiv'

Abstract— Legged robots have become capable of performing
highly dynamic maneuvers in the past few years. However,
agile locomotion in highly constrained environments such as
stepping stones is still a challenge. In this paper, we propose
a combination of model-based control, search, and learning to
design efficient control policies for agile locomotion on stepping
stones. In our framework, we use nonlinear model predictive
control (NMPC) to generate whole-body motions for a given
contact plan. To efficiently search for an optimal contact plan,
we propose to use Monte Carlo tree search (MCTS). While the
combination of MCTS and NMPC can quickly find a feasible
plan for a given environment (a few seconds), it is not yet
suitable to be used as a reactive policy. Hence, we generate a
dataset for optimal goal-conditioned policy for a given scene and
learn it through supervised learning. In particular, we leverage
the power of diffusion models in handling multi-modality in the
dataset. We test our proposed framework on a scenario where
our quadruped robot Solo12 successfully jumps to different
goals in a highly constrained environment.

I. INTRODUCTION

Controlling legged robots is a challenging problem, in
particular, due to the need to decide over both continu-
ous (e.g., contact forces) and discrete (e.g., which surface
patch to step onto next) decision variables. While there
has been much progress in designing controllers based on
model predictive control (MPC) to tackle the continuous part
efficiently [1], [2], [3], [4], solving the mixed problem is still
computationally intractable. The main goal of this paper is
to propose an efficient framework based on a combination of
nonlinear MPC (NMPC), Monte Carlo tree search (MCTS),
and supervised learning to find feedback policies that decide
over discrete variables of the gait.

Several works have tried to solve the generation of
whole-body motion through a holistic approach, e.g., us-
ing differential dynamic programming (DDP) [5], contact-
invariant optimization (CIO) [6], contact-implicit trajectory
optimization [7], and phase-based gait parameterization [8].
While these approaches have shown impressive behaviors in
simulation for legged robots, they are not suitable for online
motion re-planning, mainly due to their large computation
load and being sensitive to initialization.

*The authors contributed equally.

IMunich Institute of Robotics and Machine Intelligence, Technical Uni-
versity of Munich, Germany adithyakumarcr@hotmail.com,
{victor.dhedin, majid.khadiv}@tum.de

2Tandon School of Engineering, New York University, USA {aj2988,
hzhu, am9789, ludovic.righetti}@nyu.edu

3Max-Planck Institute for Intelligent Systems, Tiibingen, Germany
bs@tuebingen.mpg.de

This work was supported by the Max-Planck Institute for Intelligent
Systems, New York University and the National Science Foundation grants
1932187, 2026479, 2222815 and 2315396.

To enable real-time motion re-planning, most state-of-the-
art frameworks decompose the problem into contact planning
and trajectory generation. In this setting, the contact planner
decides which end-effector goes to which contact patch, i.e.,
the discrete part of the decisions to be made. The search
over these discrete variables is traditionally done through
search-based algorithms [9], or mixed-integer quadratic pro-
gramming (MIQP) [10]. While it has been shown that a
relaxed version of the MIQP with L1 norm minimization [11]
can be run on a real quadruped robot in real-time [12],
these approaches do not scale well when the number of
discrete variables grows. Furthermore, these approaches do
not take into account the robot dynamics. This makes them
impractical for automatically generating dynamic locomotion
behaviors with flight phases which is the main focus of this
paper.

In [13], [14], the authors have included a simplified
convex version of the centroidal momentum dynamics in
the MIQP formulation. While an efficient implementation
of the approach can become real-time capable for a small
set of discrete decision variables, this approach can quickly
explode as the number of available contact patches increases.
To speed up the search problem, [15] proposes to learn the
outcome of contact transitions using centroidal momentum
dynamics. While this is a valid approach for fast contact
planning, it was never implemented in a physical simulation
or real robot.

As an alternative to model-based planning and control,
deep reinforcement learning (DRL) has shown impressive
results for agile quadrupedal locomotion [16], [17], [18].
However, none of these works have shown locomotion in
highly constrained environments like stepping stones. Re-
cently, [19] demonstrated locomotion on risky terrains like
stepping stones. Nevertheless, as mentioned by the authors,
even with the design of several non-trivial reward terms they
failed to learn these motions from scratch, mainly due to
the sparsity of the environment. Hence, they needed to first
train a generalist policy that is able to walk on a simple
stepping stone and then fine-tune the policy for each new
environment. In contrast, as we demonstrate in this paper, by
exploiting the structure of the problem and the environment,
our approach requires neither heavy reward shaping nor
multi-stage training.

In this paper, we aim to tackle the problem of contact
planning for dynamic maneuvers of legged robots on step-
ping stones. To do so, we propose to use Monte Carlo Tree
Search (MCTS) which has recently been shown to scale well
and outperform MIQP for dexterous manipulation [20] and

reward

-
contact plan

> NMPC

next contacts A
'

start
—_—

MCTS
(Section II)
imitation learning

Policy NN

|—> (Section III)

Fig. 1: A schematic block diagram of the framework. We
use the NMPC formulation in [3].

goal

contact
locations

torques
—

measurements

state variables, current contacts

gait discovery in locomotion [21]. In particular, and unlike
previous approaches, we use nonlinear model predictive
control (NMPC) inside the MCTS formulation to ensure
the feasibility of the motion in a closed-loop sense. In
contrast to MIQP approaches that resort to a simplified model
of the system dynamics [13], [22], we do not have such
simplification and roll out the whole-body NMPC to evaluate
a contact plan. This way, we can make sure that the contact
plan is consistent with the limitations and constraints of the
whole control pipeline. This is in contrast with [23], [24]
which learns the contact planner in isolation of the low-
level policy that realizes it. In contrast to [25], [24], we
cast the problem as MCTS whose convergence properties are
better understood compared to continuous RL. Also, contrary
to [25] that only find a single solution, we collect all feasible
solutions for any goal position and use a diffusion model to
encode the multi-modality in the dataset.

We show that through learning the feasible solutions of
the MCTS, we can have reactive policies that can select the
next contact patches as a function of the current state of
the robot and the environment. Through extensive simulation
experiments of quadruped jumping on stepping stones, we
show the effectiveness of our proposed framework. It is
important to note that stepping stones are chosen as an
extremely sparse environment, hence our approach is trivially
applicable to any environment together with a segmentation
algorithm [26], [27].

The main contributions of the paper are as follows:

o We present a novel framework that takes the constraints
of the robot’s low-level controller and the environment
into account to efficiently control legged robots in
highly limited environments (stepping stones),

o Through a systematic comparison, we show that diffu-
sion models are an ideal candidate to learn from expert
data when multi-modality is present in the dataset,

o We demonstrate automatic online surface selection for
dynamic quadrupedal locomotion through a learned
feedback policy.

II. CONTACT PLANNING USING MCTS

We formalize our contact planning problem as a Markov-
decision process (MDP), where the state s represents the
location of end-effectors in contact with stepping stones
which we denote by a discrete index, and the action a selects
the next locations for each end-effectors and brings the
system to a new state s’ = f(s, a). Each state is evaluated by
a reward function r(s) that specifies its associated immediate
reward.

o®
e o0

’l
e ® ¢ 000

®,¢

3 0
e

i

L he @@
00 0 0q°®
0 %¢°

L L X
A LTY YN

~

L X

o ¢

00 0 0oy 3

Fig. 2: Top view of the environment. The stepping stones in
green represent the goal contact locations, and the stepping
stones in red represent the start contact locations. Some
stepping stones are randomly removed.

N

To solve this problem, MCTS creates a search tree 7 =
(V.€) where the set of nodes V contains the visited states
and the set of edges contains the visited transitions (s = s’).
Each transition maintains the state-action value Q(s, a) and
the number of visits N(s,a). MCTS grows this search tree
iteratively by the following steps.

1) Selection: Start from the root node (initial state) and
select successively a child until a leaf (node that has
not been expanded yet or terminal state) has been
reached. If all the children of a node have already
been expanded, a child is selected according to its
Upper Confidence Bound (UCB) (1) that balances
exploration and exploitation during the search.

2) Expansion: Unless the selected state from the previous
step is a terminal state, its successor states are added
to the tree by enumerating all possible actions. The
corresponding state-action pairs are initialized with
Q(s,a) =0 and N(s,a) =0.

3) Simulation: From one of the successor states, random
actions are performed onward for a predefined number
of steps to create a simulation rollout. The reward r is
evaluated at the end of the simulation.

4) Back-propagation: The reward is then back-
propagated to update the state-action value
Q(s,a) = Q(s,a) + r and the number of visits
N(s,a) = N(s,a)+ 1 for all the states along the
node selected in the selection and expansion steps.

As shown schematically in Fig. 2, in our problem formula-
tion, the MCTS is given the initial and final desired locations
of all the robot end-effectors and is asked to compute the
feasible set of patches that results in a successful motion.
To balance between the exploration of unvisited and visited
states, we consider the upper confidence bound (UCB) [28]
for each node. In the Selection phase, MCTS selects the
action with the highest UCB score a = argmax, U(s, a)
where the UCB score is defined as

U(s,a) = L& o lﬁ(gf)) (1)

where c is a coefficient to balance exploration against ex-
ploitation and N(s) = >, N(s,a) is the total number of
visits for a node. The reward function that is used to update

the state-action value is

1 < ety — 2yl
r(s) = WU(F Z(l - di)) 2)
e le max
where c{,v is the contact location in world frame of the jth
end-effector at state s, 9cj;, is the desired goal location for
the jth end-effector in world frame, and N, is the total
number of end-effectors. d,,,, 1s the maximum distance
between two contact patches in the map. o : [0,1] — [0, 1]
is a function that shapes the reward. W € {—1,1} is a
success indicator, by default set to 1 when the goal state
is not reached.

The following adjustments have been made to improve the
efficiency of the algorithm. During the Expansion phase, to
limit the search space, we additionally perform a simplified
kinematic feasibility check to prune the sequences that are
likely to be not reachable or cause self-collision for the legs
of the robot. This check verifies that the size of the step
taken by each foot is below a maximal step distance dgep
and that the legs are not crossing. It is important to note that,
similar to [29], since we can define a reward at each state that
gives us a proxy of how close this state is to the end goal,
we do not simulate a complete rollout to a terminal state
as opposed to game-play (such as chess or go). Instead, we
only take one action at the chosen state and back-propagate
the reward from the resulting next state, hence a rollout
depth of one in the Simulation phase. Moreover, we perform
whole-body NMPC using the found sequence of contact
locations only when a terminal state is reached (all the end-
effectors are at the desired goal surface patches). This way,
we avoid performing whole-body NMPC for every rollout
in the Simulation phase. This significantly reduces search
time as whole-body NMPC is computationally intensive. If
this contact sequence leads to dynamically feasible whole-
body motion physical simulation, W is set to 1, else to —1.
Ultimately, we back-propagate the final reward. Overall, the
MCTS searches for promising kinematically feasible contact
sequences, and the NMPC evaluates their dynamic feasibility
at the end.

We use the NMPC formulation in [3] to perform the
rollouts in MCTS and evaluate kinematically feasible contact
patch candidates. Our NMPC is based on a decomposition
of the problem into a kinematic and dynamic optimizer. In
this setting, given a contact plan (which end-effector goes
to which surface patch), the dynamic optimizer takes into
account the centroidal momentum dynamics and constructs
a finite-horizon optimal control problem to find a feasible set
of contact forces and centroidal trajectories. To track these
momentum trajectories, while penalizing contact constraints,
a whole-body kinematic optimal control problem is solved
to output the desired whole-body accelerations. The contact
forces from the dynamics optimizer and whole-body joint
trajectories from the kinematic optimizer are then used
within the full dynamics of the system to compute joint
torques. Finally, a joint low-impedance controller is added
to the feed-forward torques to account for model errors

state variables
Tstate _>

& H next
contact
2 ?oal cu}:ﬂaclﬁloc. locations it slH
Lgoal =| _>ur cachee for each e-eff B B
Ne)= : - :
5 \ \ —> = E
AUNe,1 AUNe, H
1) Cp* B
Cp | available contact
.| locations
Leontact =| : ’
ch
B

Fig. 3: High-level contact planning network policy

and uncertainties. The kinematic and dynamic optimizers
re-compute trajectories at 20 Hz and the joint torques are
computed at 1 kHz and are sent to the robot.

Remark 1: In our NMPC formulation, we keep the con-
tact locations fixed and consider them to be at the center of
the stepping stone. The stepping stones considered are small,
this simplification is not limiting in terms of the number of
feasible motions found. However, we can still optimize for
the location of the feet within the stepping stones patches in
the NMPC. We leave this modification for future work.

Remark 2: While we can consider all types of gaits and
terrain shapes to search over, to reduce the search space, here
we only consider jumping and trotting motion over stepping
stones. Note however that the framework can be deployed to
consider even a general acyclic gait at the cost of extremely
larger search space. In that case, we would need to have
different cost weights for different gaits.

III. LEARNING CONTACT PLANNER

While efficient, our MCTS together with the NMPC
framework cannot be run in real-time. To enable the robot to
reactively select the next feasible contact patches given the
current ones, we learn a neural network to imitate the MCTS
policy via supervised learning. While MCTS admits a natural
extension of a learnable value function and action probability
prior [30], [31], we decide not to adopt this methodology
despite its success in game-play for two reasons. First, in
contrast to generic game-play, locomotion tasks on different
maps (e.g. varying locations and numbers of stepping stones)
are likely to have different states and action space; an
MCTS trained on a specific map does not generalize to
other environment maps. Second, some other sensory inputs
that are not modeled in the MCTS state space may provide
additional information (eg. base velocity) on if and where
to make the next contact. Therefore, we take an imitation
learning perspective and treat the MCTS as an algorithmic
demonstrator, whose behavior will be cloned by a neural
network policy.

We collect data of the dynamically feasible solutions
discovered by the MCTS together with the contact locations
of the simulation environment. This dataset is then used to
train a neural network in a supervised fashion. A schematic
structure of the network is shown in Fig. 3. To be indepen-
dent of the global position of the robot and environment, we
express all positions in the inputs and outputs to the network
with respect to the current base frame B of the robot. The
inputs, to the network are the current 3D position of the
available contact locations @congct, denoted by ciB € C with
i € {l,...,N.} and C the set of available contact locations

(N, is the current number of available contact locations),
Tgae that includes some state variables (see Sec. III-A) and
Tgoal» the final desired N, end-effector locations (V. is the
number of end-effectors). The size of the input is equal to
3 X (Ne+2x (N +1)).

The neural network policy predicts the future H contact
locations for each end-effector, denoted by ég”‘ for the end-
effector j € [1,..., N.] and the next step h € [1,..., H].
The size of the output y is equal to 3x H x N,. As the NMPC
is quite sensitive to small errors in the contact locations, we
project the contact locations given by the policy to the closest
center of the patch. We refer to the projection function as
pc in the following. We show in Sec. IV-E that the distance
between the contact locations given by the policy and the
projected ones is way lower than the half distance between
the two stepping stones. This means that the choice of contact
patch by the policy is not influenced by this projection.

A. Problem specifications

In our setup, a quadruped robot (N, = 4) navigates in
an environment with up to 81 stepping stones. Each stone
provides the robot with a cylindrical patch of radius 4.4 cm
and height h = 10cm to step onto. The stepping stones
initially form a regular grid of spacing (e,ey) so that the
feet lay on 4 stepping stones in the initial configuration. From
this, the environment is randomized. The position of each
stone is then displaced by €, (% —r) with €, ~ U(—ay, ay),
oy € [0,1] in the x direction (respectively for the direction
y). Similarly, the randomized height equals (1 + €)h with
en ~ U(—ap,ap),ap € [0,1]. Additionally, Nemoved Stones
are randomly removed. The simulated environment can be
seen in Fig. 2.

Goals are also sampled randomly so that the center of
the 4 goal contact locations is within d? . and d9,,, of the
initial robot position.

In our experiments, H encodes the NMPC horizon, which
in our problem is two jumps in the future (H = 2). The
goal is to evaluate the learned policy before each jump and
feed the selected contact locations to the NMPC. As state
variables, we consider the position of the end-effectors, the
current base linear and angular velocities (all expressed in
base frame B).

B. Dataset

To collect a diverse dataset, we sample a random envi-
ronment and run MCTS for a fixed maximum number of
iterations. To collect diverse paths towards a goal, we keep
up to Npaws different feasible paths for the same goal and
environment. To cover a wider range of robot states, for
each MCTS solution, we perturb the simulation Ny,,q times
and add feasible solutions to the dataset. The randomization
procedure consists of randomizing the initial state of the
robot (position and velocity) as well as the contact locations
inside the selected patches. The training data (z, y) (see Fig.
3) are recorded at each jump (y are the contact locations
of the next two jumps). We repeat the procedure on Ny
different environments (set of stepping stones).

C. Neural network architectures

Our learning problem structure is a selection procedure
as the policy should ideally return contact locations that
are given as input. While this can be achieved using a
projection function, some network architectures are suited to
this task such as the Pointer-Network architecture (III-C.1)
that we consider as a candidate. Additionally, our dataset is
multi-modal as MCTS provides different contact sequences
for the same start and goal contact locations in a given
environment. It is not possible to represent such multi-modal
data distribution with a conventional uni-modal policy class
as the model could collapse to one of the modes or an
average over several modes (see Fig 7). Therefore, we con-
sider Denoising diffusion probabilistic models (DDPMs) [32]
(cf. III-C.2), as another potential candidate, since they are
theoretically grounded to handle multi-modality [33] and is
practically verified for some robotic applications [34] [35].
We also consider multi-layer perceptron (MLP) architecture
as a baseline.

1) Pointer-Networks: Pointer-Networks [36] take as input
a sequence and output discrete indices, called pointers,
that select elements from the input sequence. In this case,
the projection pc is not performed as the model directly
outputs from the input set. The architecture is composed of 2
recurrent networks and an attention mechanism that operates
on the past decoder’s hidden states and all the encoder’s
hidden states. At each step, the output of the decoder is the
index of the encoder’s hidden state that has the maximum
attention value with the past decoder’s hidden state. This
operation is repeated for as many times as needed. In our
case 8 times (the next two contact locations for each four
legs).

To make the model select only the contact patches from
the input @, Tconmet 1S given as the input sequence while
[@state, Tgoal] 15 embedded and given as the first hidden state
of the encoder. Like so, contact patches can be provided in
any order and a different number which is not the case for
instance for an MLP.

2) Diffusion models: DDPMs are generative models that
map samples from a latent random distribution to the data
distribution in 7" steps by successive denoising of the original
noise. For each intermediate step ¢ € [1,7], one can sample
a corrupted input x; by adding noise €; to a sample of
the data x;. A variance schedule assigns an increasing
noise level at each step ¢ so that xp can be seen as a
pure random noise (usually from a Gaussian distribution).
Those corrupted samples are used to train the diffusion
model €y, parametrized by 8, to estimate the noise added
in a supervised manner. It is done by minimizing the MSE
loss between the actual sampled noise €; and the estimated
one €yp(xg + €,t). Minimizing the MSE loss leads to the
minimization of the variational lower bound of the KL-
divergence between the data distribution and the distribution
of samples drawn from the DDPM [32].

To sample with the trained model, noise is successively

corrupted data
b &» U-Net1lD —_— Ti-1
conditioned

A

FiLM

{ ————— sin stack

I:: Add & Norm
L stat Q +
Lgoal K Multi—Head

Teomtact —— 3 Attention

Fig. 4: High-level description of the conditional U-Net1D
with multi-head attention. sin refers to Sinusoidal positional
embedding applied to t.

removed from a random sample x in the following way
@1 = ag (T, — by €g(my, 1)) + 012

where z ~ N (0,1), and ay, by, oy are computed according
to the noise schedule.

U-Net-based architectures are widely used as DDPMs,
especially for conditional image generation. Following [34],
we consider a conditional U-Net1D with 1D convolutions ap-
plied on the input sequence length (end-effector dimension).
The conditioning is done on both the denoising iteration ¢
of the diffusion process and the current input «. Similarly
to what has been done with the Pointer-Network in Sec. III-
C.1, the input x is split into two. We apply a multi-head
attention layer [37] with [mslatea mgoal} as query and Lcontact
as key and values. Thus, contact locations can be shuffled
and provided in any number. The resulting embedding of
Tgate 18 concatenated to a sinusoidal position embedding [37]
of ¢ to form the input of a feature-wise linear modulation
(FiLM) [38] layer, as proposed by [35]. The architecture is
detailed in Fig. 4. Finally, the conditioning vector is added
to all layers of the encoder and the decoder parts of the
network, as done in [34].

IV. RESULTS AND DISCUSSION

In this section, we present the results of applying the pro-
posed framework to control the Solo12 quadruped robot [39]
on stepping stones in the Pybullet simulation environ-
ment [40]. We start by showing the capability of the MCTS
together with NMPC to physically realizable contact plans
on stepping stones (IV-A). We also show that our method
can be extended to a trotting gait (IV-B). In addition,
to emphasize that the contact plans found by MCTS are
non-trivial, we compare our approach with a naive contact
planner (IV-C). About the learned policies, we first compare
the capability of different neural network architectures to
handle multi-modality in a simple example scenario (IV-D).
Then, we present the result of using the diffusion model
to learn a policy that can output contact plans from the
state of the robot and the environment (IV-E). Finally, we
show the effectiveness of our learned policy in selecting the
feasible contact patches as the environment and goal change
dynamically.

oo
1

NMPC simulations o
o 1 e 7 @ 3 ®

wo| |}
|_
L 50

-3
1

Number of jumps
(2 [=2}
1 1

.
1

o coomo 0t @
109 10! 107 10% 10

Number of iterations first solution
Fig. 5: performance analysis of the MCTS. The median
search time is 9.65s (blue line on the color bar). After 5000
iterations, it is unlikely to find a feasible contact plan (here
only 6 out of 500).

A. MCTS contact planner

To test the effectiveness of the MCTS with NMPC in
generating feasible jumping motions on stepping stones, we
run the algorithm for 10* iterations in highly randomized
environment: Neemoved = 9, dfm.n = 28cm, dY,,, = 42cm,
oz = ay = 0.9 and oy, = 0.25. For each episode, there are
Npox = 81 — 9 = T2 stepping stones in the environment.
Given that for jumping motion all N, end-effectors are in
contact, the number of configurations for each jump is equal
to N,fg;. This rules out the use of a brute-force search to
solve the problem. Pruning drastically reduces the number
of possible configurations, decreasing our branching factor

to 324 at maximum, which is still high.

As hyperparameters, we found out that ¢ = 0.01 and ¢ =
sigmoid(T(x — 1)) with T = 5 leads to a sufficient balance
between exploration and exploitation. o shapes the reward
so that it is significantly increased for a state close to the
goal state leading to a better exploitation for nodes close to
the terminal node. We chose dgp = 24 cm to prune long
jumps that are likely to fail.

We evaluate our method over 500 environments by esti-
mating the search time, the number of iterations, and the
number of NMPC simulations performed to find the first
feasible solutions with a maximum number of iterations
equal to 10%. MCTS was able to find 410 feasible contact
plans (success rate of 82%). For those, the median search
time is 9.65 sec, the median number of iterations is 35 and
the average number of NMPC simulations performed is 5.9.
The search time depends mostly on the contact sequence
length and the number of NMPC simulations, as shown in
Fig. 5. It is likely that some of the environments admitted
no feasible solution. Indeed, by doing the same experiment
without removing any stepping stones, MCTS found 94
solutions out of 100 under 10% iterations.

Qualitatively, contact plans found for the same goal are
quite similar to each other as MCTS explores nodes close to
the goal more often, as they have a higher average value and
have been visited less. Multi-modality is more pronounced
at short horizons, as can be seen in Fig. 6. Some interesting
and non-trivial motions found by the MCTS are also shown
in the accompanying video.

5
E

jump n

9+%+0

Fig. 6: 3 contact sequences generated by MCTS on the same
environment. Each path following the arrows is a contact
sequence for an individual foot. Starting contact locations are
circled in red and goal contact locations in green (the contact
location at the center circled in green is both a starting and
goal contact location).

o
o
o

3
T

B. Extension to trotting gait

To demonstrate that our framework can generalize to other
gaits, we show that different physically feasible contact plans
can also be found by only modifying the gait parameters and
costs of the NMPC. We experimented with a slow trot gait in
the following (gait period of 0.9 seconds, stance percentage
of 84%). The parameters of the gait are fixed during the
search.

We performed the search on 300 new environments, ran-
domized in the same way as for the jumping gait. MCTS
successfully found feasible contact plans in 68% of the cases.
The search is slower compared to the jumping gait, with a
median search time of 12.3 seconds. This could be explained
as trotting in this case is more demanding, as it constraints
more the possible motions of the legs. The quadruped
stands on two opposite legs while reaching the next contact
locations, which often cause imbalance. Qualitative results
of the trotting gait are shown in the accompanying video.

C. Comparison with a naive planner

To show the necessity of using MCTS in such challenging
environments, we implemented a naive contact planner based
on the Raibert heuristics used in [41] which gives the footstep
locations to follow in order to achieve the desired velocity.
For our naive contact planner, we project the output of
the Raibert heuristics to the closest stepping stones of the
environment. The desired velocity is set in the direction of
the goal and clipped to 0.25m.s~! in directions x and y.

On the same 500 randomized environments of Sec. IV-A,
this naive contact planner reached the goal 29% of the times
(82% for MCTS). Similarly, for the experiment of Sec. IV-B,
the naive controller had only 7% of success with the trotting
gait (68% for MCTS).

D. Choice of network architecture

To systematically compare the performance of different
neural network architectures, we design a simple learning
problem. In this problem, the dataset, multimod, consists of
two different contact sequences to reach the same goal (in
diagonal) starting from the same position in the same non-
randomized environment. One plan goes first straight and
left, the other one goes left and then straight to reach the
goal. We record 50 randomized runs for each plan for a

oo o i@ o_'} o 0of@)e@
(") .
(a) MLP (b) PtrNet (c) Diffusion

Fig. 7: Base position (z,y) for 20 randomized runs with
models trained on the multimod dataset. Starting contact
locations are circled in red and goal contact locations in
green. The base position is recorded every 20ms. The size
of the circles represents the height of the base. Only the
diffusion model 7c is able to reproduce both two contact
sequences of the training dataset.

total of 700 samples in the dataset (procedure described in
Sec. III-B). Note that the main reason that we performed
this experiment on a simple setting is to focus on the multi-
modality of the solutions rather than complexity.

Since we perturb the states while collecting data, the
dataset is not strictly multi-modal. We would like to evaluate
how this partial multi-modality affects the trained policy
to reproduce the variety of contact plans of the dataset.
Generating diverse contact plans is beneficial as some might
be more relevant in specific states.

We compare 3 different model architectures presented in
III-C on this dataset. The training parameters are detailed in
the appendix.

1) Results: As shown in Fig. 7, only the diffusion model
was able to reproduce the two possible modes of the solution.
On 20 simulations, the diffusion model reached the goal by
going 12 times first to the right and 8 times first up (we used
a different seed each time to generate the initial noise). MLP
and Pointer-Network collapsed to one of the solutions, as can
be seen on the base trajectories in Fig. 7. As we would like
to benefit from the multiple feasible solutions of MCTS for a
given goal, we focus on diffusion models for the navigation
task in the following section. Note that, for the diffusion
model, the projection error |[¢5" — pc(€5™)||2 is 5.4mm
on average and at a maximum 2.2cm for the predicted jump
locations, which is approximately 3 times less than the half
distance between two stepping stones.

E. Learning to navigate on stepping stones

In this subsection, we aim to qualitatively show that the
learned policy can reactively generate feasible contact plans
when the environment or the goals change on the fly. To
do that, we generated N, = 80 different environments, but
this time with less randomization as we focus on the ability
of the policy to plan and select the right contact locations:
Nremoved = 12, o = ay = ap, = 0. We expect the results to
be reproducible in a randomized environment with a larger
dataset. The number of goals for each environment Ngoqs is
8, Npaths = 3 and Nyepear = 5. Our training dataset, multigoal,
has 52224 samples in total. Our test environment has been
generated in the same conditions on Ng,, = 20 different
environment. We tested our policy on test goals for which
MCTS found a feasible contact plan. Our training procedure

and hyperparameters are similar to [35] and are detailed in
the appendix.

As done in [35], we used a DDIM [42] approach to
decouple the number of denoising iterations in training and
inference. Taking a similar number of steps in the forward
and backward diffusion process usually leads to better results
but is time-consuming. For 15 steps in the backward process
and above, the policy achieved approximately a similar
success rate (our policy was trained on 7" = 50 diffusion
steps). Therefore, we used 15 denoising iterations in the
experiments. It takes 70 ms for the policy to be evaluated on
an AMD Ryzen 5 5625u CPU.

1) Static environments: Our policy has been trained to
output different contact patches for the next jump as our
dataset contains multi-modal samples. Therefore, by combi-
nation, the final full-length contact plan is likely to differ
from the ones of MCTS. This is confirmed as 40% of the
successful contact plans were not in the training dataset
when replaying on the training environment. However, since
a maximum of 3 different paths are recorded for each goal
in a given environment, it could lead to a poorer success rate
as the policy might end up out of the training distribution.
When replayed in the same conditions 20 times for a goal
in a corner of the environment, our trained policy reached
the goal all the times in 14 different ways. Some examples
can be seen in the accompanying video. This confirms the
results of Sec. IV-D with a policy trained on a more diverse
dataset.

2) Dynamic environments: Now, we proceed to evaluate
how well the policy can be used in a dynamic environment.
To do that, we randomly remove two contact locations from
the environment before each jump while the robot is reaching
a goal. The removed stepping stones are chosen among the
ones found by MCTS. This way, it is more likely to remove a
stepping stone that would have been initially selected, which
shows the ability of the policy to replan reactively. This task
is challenging, as removing stepping stones could make the
robot jump into a position that is bound to fail or that is
out of the training data distribution. Our policy sporadically
succeeded on this task (22% of the time on 50 trials on a goal
in diagonal). Additionally, our trained policy was also able
to perform navigation to reach some user-defined changing
goals in a new environment with 12 removed stepping stones.
Successful examples of those two tasks can be seen in the
accompanying video.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a framework to efficiently
search for non-trivial contact plans in a known environ-
ment for legged robots. In our framework, we proposed a
customized version of MCTS together with an NMPC to
search for feasible solutions on stepping stones. We showed
that we can reliably find feasible solutions for different
arrangements of the stepping stones as well as initial and
final conditions. Collecting feasible rollouts enabled us to
collect a rich dataset and learn a control policy that can gen-
erate contact plans for the NMPC reactively. Our extensive

analyses showed that, due to the multi-modal nature of the
dataset, using diffusion models is an ideal way to perform
supervised learning on the dataset.

In the future, we plan to explore alternative architectures
for diffusion models, as the one used in this study is derived
from works with different learning problem structures. We
would like to implement the learned high-level contact plan-
ner together with the NMPC on the real hardware. To further
reduce the computation time of the whole control pipeline
for real-world experiments, we are interested in replacing the
NMPC with a learned low-level policy [43]. We also aim to
extend our framework to optimize the gait as well as the
surface patches, given a local environment map. Finally, we
are interested in learning the high-level policy from partial
observation of the robot on-board cameras.

REFERENCES

[1] J.-P. Sleiman, F. Farshidian, M. V. Minniti, and M. Hutter, “A unified
mpc framework for whole-body dynamic locomotion and manipula-
tion,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 4688—
4695, 2021.

[2] E. Daneshmand, M. Khadiv, F. Grimminger, and L. Righetti, “Variable
horizon mpc with swing foot dynamics for bipedal walking control,”
IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 2349-2356,
2021.

[3] A. Meduri, P. Shah, J. Viereck, M. Khadiv, I. Havoutis, and L. Righetti,
“Biconmp: A nonlinear model predictive control framework for whole
body motion planning,” arXiv preprint arXiv:2201.07601, 2022.

[4] C. Mastalli, W. Merkt, G. Xin, J. Shim, M. Mistry, I. Havoutis,
and S. Vijayakumar, “Agile maneuvers in legged robots: a predictive
control approach,” arXiv preprint arXiv:2203.07554, 2022.

[5] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of
complex behaviors through online trajectory optimization,” in 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp- 4906-4913, IEEE, 2012.

[6] 1. Mordatch, E. Todorov, and Z. Popovi¢, “Discovery of complex
behaviors through contact-invariant optimization,” ACM Transactions
on Graphics (TOG), vol. 31, no. 4, pp. 1-8, 2012.

[7]1 M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory op-
timization of rigid bodies through contact,” The International Journal
of Robotics Research, vol. 33, no. 1, pp. 69-81, 2014.

[8] A. W. Winkler, C. D. Bellicoso, M. Hutter, and J. Buchli, “Gait and
trajectory optimization for legged systems through phase-based end-
effector parameterization,” IEEE Robotics and Automation Letters,
vol. 3, no. 3, pp. 1560-1567, 2018.

[9] S. Tonneau, A. Del Prete, J. Pettré, C. Park, D. Manocha, and
N. Mansard, “An efficient acyclic contact planner for multiped robots,”
IEEE Transactions on Robotics, vol. 34, no. 3, pp. 586-601, 2018.

[10] R. Deits and R. Tedrake, “Footstep planning on uneven terrain with
mixed-integer convex optimization,” in 2014 IEEE-RAS international
conference on humanoid robots, pp. 279-286, IEEE, 2014.

[11] S. Tonneau, D. Song, P. Fernbach, N. Mansard, M. Taix, and
A. Del Prete, “Sllm: Sparse 11-norm minimization for contact plan-
ning on uneven terrain,” in 2020 IEEE International Conference on
Robotics and Automation (ICRA), pp. 6604—6610, IEEE, 2020.

[12] F. Risbourg, T. Corberes, P.-A. Léziart, T. Flayols, N. Mansard, and
S. Tonneau, “Real time footstep planning and control of the solo
quadruped robot in 3d environments,” 2022.

[13] B. Ponton, A. Herzog, S. Schaal, and L. Righetti, “A convex model
of humanoid momentum dynamics for multi-contact motion genera-
tion,” in 2016 IEEE-RAS 16th International Conference on Humanoid
Robots (Humanoids), pp. 842-849, IEEE, 2016.

[14] B. Aceituno-Cabezas, C. Mastalli, H. Dai, M. Focchi, A. Radulescu,
D. G. Caldwell, J. Cappelletto, J. C. Grieco, G. Ferndndez-Ldpez, and
C. Semini, “Simultaneous contact, gait, and motion planning for robust
multilegged locomotion via mixed-integer convex optimization,” IEEE
Robotics and Automation Letters, vol. 3, no. 3, pp. 2531-2538, 2017.

TABLE I: Training parameters for the models. EMA: Exponential Moving Average. wd: weight decay.

Model | Dataset | Optimizer | LR | LR scheduler | Batch Size | Epochs | Additional Parameters
for removed contacts
. -3 .

MLP multimod Adam 10 Exp. decrease (0.996) 32 500 height is set to 0

Pointer-Network | multimod Adam 103 Exp. decrease (0.996) 8 500 shuffled contact
T . AdamW _3 Cosine annealing .

Diffusion Model | multimod (EMA: 0.75 + wd: 10~ 10 w. linear warmup 32 500 shuffled contact
Diffusion Model | multigoal AdamW 10-3 Cosine annealing 64 2000 shuffled contact

(EMA: 0.75 + wd: 107%)

w. linear warmup

[15] Y.-C. Lin, B. Ponton, L. Righetti, and D. Berenson, “Efficient hu-
manoid contact planning using learned centroidal dynamics predic-
tion,” in 2019 International Conference on Robotics and Automation
(ICRA), pp. 5280-5286, IEEE, 2019.

M. Bogdanovic, M. Khadiv, and L. Righetti, “Model-free reinforce-
ment learning for robust locomotion using demonstrations from tra-
jectory optimization,” Frontiers in Robotics and Al, vol. 9, 2022.

Z. Zhuang, Z. Fu, J. Wang, C. Atkeson, S. Schwertfeger, C. Finn, and
H. Zhao, “Robot parkour learning,” arXiv preprint arXiv:2309.05665,
2023.

X. Cheng, K. Shi, A. Agarwal, and D. Pathak, “Extreme parkour with
legged robots,” arXiv preprint arXiv:2309.14341, 2023.

C. Zhang, N. Rudin, D. Hoeller, and M. Hutter, “Learning agile
locomotion on risky terrains,” arXiv preprint arXiv:2311.10484, 2023.
H. Zhu, A. Meduri, and L. Righetti, “Efficient object manipula-
tion planning with monte carlo tree search,” in 2023 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pp. 10628-10635, IEEE, 2023.

L. Amatucci, J.-H. Kim, J. Hwangbo, and H.-W. Park, “Monte carlo
tree search gait planner for non-gaited legged system control,” in
2022 International Conference on Robotics and Automation (ICRA),
pp. 4701-4707, 1IEEE, 2022.

J. Wang, S. Kim, S. Vijayakumar, and S. Tonneau, “Multi-fidelity
receding horizon planning for multi-contact locomotion,” in 2020
IEEE-RAS 20th International Conference on Humanoid Robots (Hu-
manoids), pp. 53—-60, IEEE, 2021.

V. Tsounis, M. Alge, J. Lee, F. Farshidian, and M. Hutter, “Deepgait:
Planning and control of quadrupedal gaits using deep reinforcement
learning,” IEEE Robotics and Automation Letters, vol. 5, no. 2,
pp. 3699-3706, 2020.

W. Yu, D. Jain, A. Escontrela, A. Iscen, P. Xu, E. Coumans, S. Ha,
J. Tan, and T. Zhang, “Visual-locomotion: Learning to walk on
complex terrains with vision,” in 5th Annual Conference on Robot
Learning, 2021.

S. Gangapurwala, M. Geisert, R. Orsolino, M. Fallon, and I. Havoutis,
“Rloc: Terrain-aware legged locomotion using reinforcement learning
and optimal control,” IEEE Transactions on Robotics, vol. 38, no. 5,
pp. 2908-2927, 2022.

R. Deits and R. Tedrake, “Computing large convex regions of
obstacle-free space through semidefinite programming,” in Algorithmic
Foundations of Robotics XI: Selected Contributions of the Eleventh
International Workshop on the Algorithmic Foundations of Robotics,
pp. 109-124, Springer, 2015.

R. Grandia, F. Jenelten, S. Yang, F. Farshidian, and M. Hutter,
“Perceptive locomotion through nonlinear model predictive control,”
IEEE Transactions on Robotics, 2023.

L. Kocsis and C. Szepesvari, “Bandit based monte-carlo planning,”
in European conference on machine learning, pp. 282-293, Springer,
2006.

Y. Labbé, S. Zagoruyko, I. Kalevatykh, I. Laptev, J. Carpentier,
M. Aubry, and J. Sivic, “Monte-carlo tree search for efficient visu-
ally guided rearrangement planning,” IEEE Robotics and Automation
Letters, vol. 5, no. 2, pp. 3715-3722, 2020.

D. Silver et al., “Mastering the game of go without human knowledge,”
Nature, vol. 550, no. 7676, pp. 354-359, 2017.

J. Schrittwieser, 1. Antonoglou, T. Hubert, K. Simonyan, L. Sifre,
S. Schmitt, A. Guez, E. Lockhart, D. Hassabis, T. Graepel, et al.,
“Mastering atari, go, chess and shogi by planning with a learned
model,” Nature, vol. 588, no. 7839, pp. 604-609, 2020.

J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic
models,” 2020.

A. Block, A. Jadbabaie, D. Pfrommer, M. Simchowitz, and R. Tedrake,

[16]

[17

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

“Provable guarantees for generative behavior cloning: Bridging low-
level stability and high-level behavior,” 2023.

M. Janner, Y. Du, J. B. Tenenbaum, and S. Levine, “Planning with
diffusion for flexible behavior synthesis,” 2022.

C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song,
“Diffusion policy: Visuomotor policy learning via action diffusion,”
2023.

0. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” 2017.
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2023.
E. Perez, F. Strub, H. de Vries, V. Dumoulin, and A. Courville, “Film:
Visual reasoning with a general conditioning layer,” 2017.

F. Grimminger, A. Meduri, M. Khadiv, J. Viereck, M. Wiithrich,
M. Naveau, V. Berenz, S. Heim, F. Widmaier, T. Flayols, et al.,
“An open torque-controlled modular robot architecture for legged
locomotion research,” IEEE Robotics and Automation Letters, vol. 5,
no. 2, pp. 3650-3657, 2020.

E. Coumans and Y. Bai, “Pybullet, a python module for physics
simulation for games, robotics and machine learning.” http://
pybullet.org, 2016-2021.

D. Kim, J. D. Carlo, B. Katz, G. Bledt, and S. Kim, “Highly dynamic
quadruped locomotion via whole-body impulse control and model
predictive control,” 2019.

J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit
models,” 2022.

M. Khadiv, A. Meduri, H. Zhu, L. Righetti, and B. Scholkopf,
“Learning locomotion skills from mpc in sensor space,” in Learning
for Dynamics and Control Conference, pp. 1218-1230, PMLR, 2023.

[34]

[35]

[36]
[37]

(38]

[39]

[40]
[41]

[42]

[43]

APPENDIX

In this appendix, we present the detailed values used for
training the networks. Training parameters can be seen on
Tab. L.

1) MLP: We used a standard MLP with 4 hidden layers
of latent dimension 64 with LeakyReLLU activation. The size
input dimension is 273 (81 stepping stones locations) and the
size output dimension is 24. The total number of trainable
parameters of this model is 35736.

2) Pointer-Networks: Both the encoder and decoder are
LSTMs with 2 layers and hidden dimension 32. The attention
mechanism is also of hidden dimension 32. [Zue, Tgoal] 1S
embedded through an MLP with 2 hidden layers of hidden
dimensions 16 and 32 with PReLU activation. The total
number of trainable parameters is 31521 which is comparable
to the MLP architecture considered.

3) U-NetID: We chose a U-Net with 3 layers with respec-
tively a channel width equal to 64, 128 and 256 and a kernel
size of 3 for the convolutions. Convolutions are sliding on the
temporal/end-effector dimension. The sinusoidal embedding
dimension is 32. The multi-head attention layer has only
one head. We used a squared cosine noise schedule with
51 0.004 and B 0.02 as suggested by [32] for
T = 50 training iterations. The model has in total 2639207
parameters.

