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Abstract

Skeletal myofibers naturally regenerate after damage; however, impaired 
muscle function can result in cases when a prominent portion of skeletal 
muscle mass is lost, for example, following traumatic muscle injury. 
Volumetric muscle loss can be modeled in mice using a surgical model of 
muscle ablation to study the pathology of volumetric muscle loss and to test 
experimental treatments, such as the implantation of acellular scaffolds, 
which promote de novo myogenesis and angiogenesis. Here we provide 
step-by-step instructions to perform full-thickness surgical ablation, using 
biopsy punches, and to remove a large volume of the tibialis anterior muscle 
of the lower limb in mice. This procedure results in a reduction in muscle 
mass and limited regeneration capacity; the approach is easy to reproduce 
and can also be applied to larger animal models. For therapeutic applications, 
we further explain how to implant bioscaffolds into the ablated muscle site. 
With adequate training and practice, the surgical procedure can be performed 
within 30 min.

Key points

	• A surgical procedure for the 
full-thickness surgical ablation 
of ~20–60% of the mouse tibialis 
anterior using a commercial 
2–3-mm biopsy punch allows the 
ablation size to be customized. 
The model is representative of 
skeletal muscle loss.

	• The surgically ablated muscles’ 
uniform geometry does not fully 
reproduce the complexity of 
traumatic muscle injury, which 
includes other injuries associated 
with trauma to the bone, nerves 
or tendons.
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Introduction

Volumetric muscle loss (VML) is characterized by the loss of a large portion of skeletal muscle, 
resulting in impaired function1. In humans, it can result from traumatic injuries or vehicle 
accidents that lead to extensive muscle and bone damage. Skeletal muscle is normally highly 
regenerative, owing to the presence of satellite cells that give rise to newly formed muscle fibers2. 
However, depending on the severity of the muscle injury, the satellite cell population may not 
be able to compensate for large tissue loss, resulting in fibrosis rather than muscle formation3–5. 
The pathophysiological features of VML injuries include irreversible muscle impairment, muscle 
mass loss and intramuscular fibrosis characterized by collagen deposition6.

Standard treatment approaches for VML currently include physical therapy and autologous 
muscle grafts, which have shown limited effects on myofiber regeneration or restoration of 
function7,8. Muscle flap transfer requires surgical dexterity and is complicated by limited donor 
tissue reserves and donor site morbidity1,9,10. Owing to the drawbacks of surgical intervention, 
more recent strategies aim to deliver therapeutic cells and structural scaffolds to promote 
revascularization and myofiber regeneration in the affected areas1,11.

Development of the protocol
The development of cell and/or biomaterials therapies for the treatment of VML requires the 
use of a robust animal model that replicates the severity of tissue damage, as well as pathology, 
of muscle injury found in humans. Experimentally induced models of VML are based on the 
surgical ablation of specific muscle groups. This surgical model is based on a prior biopsy 
punch ablation model established in rodents that entails applying a biopsy punch to the tibialis 
anterior (TA) muscle to create a defined cylindrically shaped muscle defect12–14. Here we describe 
the procedure for a reproducibly inducing VML in mice, which we have previously successfully 
utilized15. We adapt the biopsy punch procedures for the induction of VML in mice16–18 
and further include the steps for the implantation of biological scaffolds into the ablated 
muscle region.

Overview of the protocol
The mouse model of VML is obtained via the full-thickness surgical ablation of ~20% or ~60% 
of the TA muscle mass. The major steps are an incision to the skin, biopsy punch ablation 
and then surgical implantation of a biomaterial at the site of ablation. The muscle ablation is 
performed using a commercial 2-mm or 3-mm biopsy punch. The different biopsy punch sizes 
allow the ablation size to be customized. Although the relationship between ablation size and 
severity of injury is understudied12, the muscle ablation size is an important design criterion. 
To demonstrate the feasibility of this approach, we explain how to induce the VML model using 
C57BL/6J mice (18 weeks old, male), in which two adjoining 2-mm punch full-thickness ablations 
reflect ~20% muscle mass ablation, whereas two adjoining 3-mm full-thickness punch ablations 
reflect ~60% ablation (Table 1 and Fig. 1). To assess the subsequent changes in muscle structure 
and function, we chose timepoints of 3–4 weeks after surgery, as this is a timeframe that permits 
the assessment of muscle structure and function, although longer time points can also be used 
to study the long-term effects of VML.

Table 1 | Characterization of full-thickness ablation dimensions in the TA muscle using two 
2-mm or 3-mm biopsy punches

Parameter 2-mm punch 3-mm punch

Percentage of TA weight removed on day 0 (mean ± s.d.) 17.5 ± 8.9%a 58.4 ± 11.1%

TA weight removed (day 0) (mean ± s.d.) 8.5 ± 4.4 mg 28.5 ± 5.4 mg

TA weight (day 21) (mean ± s.d.) 54.2 ± 7.2 mgb 34.9 ± 6.8 mg

Data are derived from 18-week-old C57/BL6 mice. aStatistically significantly different from 3-mm punch (n = 5, 2-mm punch group; n = 6, 3-mm 
punch group), Student’s t-test (P ≤ 0.0001). bStatistically significantly different from 3-mm punch, Student’s t-test (P ≤ 0.0005). Source Data.
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Advantages and limitations
Compared with other procedures that involve surgically ablating a muscle defect with other 
defined shapes19, this biopsy punch model is well suited for users with limited surgical training. 
The rodent models of VML can further be combined with voluntary exercise and/or engineered 
tissue-based therapies11,19,20.

A limitation of surgical ablation-mediated VML is that the uniform geometry of the ablated 
muscle does not fully mimic the complex geometries that result from traumatic muscle injury. 
This model is representative of skeletal muscle loss but does not reproduce other injuries 
associated with trauma to the bone, nerves or tendons.

A limitation associated with scaffold implantation is that suturing of the TA muscle after 
scaffold placement can alter the force or torque produced, since the structure of the muscle 
fibers will have changed. Additionally, only scaffolds with sufficient structural integrity can be 
sutured to the adjacent muscle, whereas soft biomaterials or hydrogels should be injected or 
otherwise placed into the ablation region. Despite the limitations and design considerations, 
this VML procedure is reproducible and requires minimal surgical expertise, which is well suited 
for beginners of VML preclinical research.

Applications
After generating the VML model, we further cover the implantation of acellular scaffolds into 
the ablated muscle as an experimental therapy. Such scaffolds can be generated from naturally 
derived extracellular matrix proteins or synthetic polymers. More generally, there is a wide 
range of experimental therapies that can be tested in muscle injury models, including cell-
seeded scaffolds11,19,21,22, decellularized extracellular matrix scaffolds23 and drug/gene-releasing 
scaffolds15,24,25. Alternatively, minced muscle grafts26 or therapeutic cells9,27 can be transplanted for 
muscle repair. These experimental treatments can be delivered acutely after the VML induction or at 
later timepoints when chronic VML has already been established. Furthermore, these experimental 
therapies can also be tested concurrently with rehabilitative strategies such as physical exercise15,20.

Alternative methods
For the procedure detailed here, we selected the induction of VML in the mouse TA muscle, owing 
to its relatively simple geometry and its parallel fusiform muscle structure19,28,29. Furthermore, the 
TA model is clinically relevant, owing to the high number of clinical cases of extremity wounds 
caused during military conflicts30. Alternative animal models of VML include muscle ablation to 
the gastrocnemius31, the rectus abdominis32, the latissimus dorsi22 and the quadriceps muscles12.

Experimental design
Previous studies have shown that a 20–30% muscle ablation is sufficient to impair muscle 
force generation and vascular function15,18,28,33,34. However, larger degrees of muscle ablations 
can simulate varying degrees of muscle trauma. In the protocol, we cover a range of muscle 
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b c Fig. 1 | Schematic overview of creating VML injury to the TA muscle using a 
biopsy punch.  a, Diagram of the TA muscle. b, An initial punch is made to create 
a full-thickness muscle defect. A spatula is placed behind the TA. c, The resulting 
ablation is 2 mm in diameter and 4 mm deep. d, A second biopsy punch is created 
adjacent to the first to expand the size of the ablation. e, The ablated muscle 
volume derived from two punches is estimated by 2πr2h, where muscle thickness 
is represented by h = 4 mm and r is the punch radius, as indicated by the inset.
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injuries, from ~20–60% muscle ablation. Following two overlapping biopsy punch ablations, the 
ablated muscle takes the shape of an oblong-shaped defect at the center of the TA muscle (Fig. 1). 
Increasing the number of biopsy punch ablations can further increase the muscle ablation size 
to represent a more severe clinically relevant muscle loss. We use a full-thickness model, in which  
the muscle is ablated through its entire depth. This model is more severe than the partial 
thickness ablation model, in which the ablation affects only a portion of the muscle depth, 
leaving some proportion of muscle remaining completely intact.

This procedure is suitable for both unilateral and bilateral surgical ablation to the TA muscle 
of the hind legs. The bilateral surgical model permits simultaneous analysis of two treatment 
groups within the same animal. However, it has been reported that isometric torque values 
were higher in bilateral VML models than in unilateral VML models35. Therefore, differences 
in potential muscle loading should be considered when deciding between bilateral and 
unilateral models.

This surgical procedure can be adapted for mice of varying strains, sexes and ages. We 
typically induce VML in C57BL/6J mice owing to the predominance of this strain in preclinical 
research. However, VML can be induced in most mouse strains. For nonallogenic cell delivery, 
we use nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice to obviate 
concerns of immune rejection. Mice as young as 7–8 weeks can be used depending on the study 
design. However, since muscle mass and dimensions vary with age, it is necessary to adjust the 
dimensions to accurately reproduce a consistent volume of muscle ablation. For example, the 
ablation dimensions for 18-week-old C57BL/6 mice are presented in Table 1.

Although larger animal models (such as sheep or pigs) are closer in size to a human18,36–38, 
mice are a good option for the initial preclinical testing of therapeutic strategies in VML because 
of their ease of handling, reduced cost and availability in research facilities, and rodents further 
allow the use of transgenic strains to study the molecular underpinnings of VML. Force or torque 
measurements can be used to assess muscle function21, and histological analyses can provide 
insight into the cellular composition and morphology of the injured muscle19,20,28.

Regardless of the experimental design, it is also necessary to include appropriate controls 
for the experiments, such as a no-surgery age-matched control, a sham surgery control and a 
VML lesion with no treatment control group for comparison. Where appropriate, the inclusion 
of a reference control scaffold should be considered. Typical cohort sizes range from 5 to 12 
animals per group to account for intragroup variances.

Regulatory approvals
All animal procedures must be reviewed and approved by the institutional animal care and use 
committee, as was done for the studies in this work, or other relevant institutional guidelines.

Materials

Animals
•	 Experimental mice greater than 7 weeks old (the Jackson Laboratory) 

▲ CAUTION  The use of experimental mice must be in compliance with national and 
institutional regulations related to the use of animals for research purposes. Permissions to 
carry out experiments should be obtained before the start of animal studies.

Reagents
•	 10% Povidone–iodine solution swabsticks (Fisher Scientific, cat. no. 19-065534 or 

equivalent)
•	 70% Isopropyl alcohol swabsticks (Fisher Scientific, cat. no. 13-680-63 or equivalent)
•	 Isoflurane (RWD Life Science, cat. no. R510-22-10 or equivalent)
•	 Veet depilatory cream (Amazon, cat. no. B00DTC0CL8 or equivalent)
•	 Ophthalmic ointment (Puralube Ophthalmic Ointment, Patterson Veterinary, 

cat. no. 07-888-2572 or equivalent)
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•	 Buprenorphine extended release 0.5 mg/mL (Wedgewood Pharmacy, 
cat. no. BUPREN-INJ010VC or equivalent)

•	 Enrofloxacin antibacterial injectable solution 2.27% (Covetrus, cat. no. 074743 
or equivalent)

•	 Optimal cutting temperature (OCT) compound (Fisher Scientific, cat. no. 23-730-571)

Equipment
•	 Electric hair clippers (Amazon, cat. no. B00068EXQ8 or equivalent)
•	 Surgical microscope (Zeiss, Opmi 6-SDFC, cat. no. OPMI6SDFC or equivalent)
•	 Heat therapy pump with warming pad (Adriot Medical Systems, cat. no. HTP-1500 

or equivalent)
•	 RC2 rodent circuit controller anesthesia system (VetEquip, cat. no. 922100 or equivalent)
•	 Microbead sterilizer (Fisher Scientific, cat. no.14-955-341 or equivalent)
•	 Ear tags (Fisher Scientific, cat. no. NC9208405 or equivalent)
•	 Ear tag applicator (Fisher Scientific, cat. no.NC0038715 or equivalent)
•	 Sterile drape (Fisher Scientific, cat. no. 19-310-671 or equivalent)
•	 Sterile gauze (Fisher Scientific, cat. no. 22-362178 or equivalent)
•	 Size 11 scalpel (Fisher Scientific, cat. no.14-840-01 or equivalent)
•	 Calipers (Fine Science Tools, cat. no. 30087-20 or equivalent)
•	 8-0 Nylon sutures (Fine Science Tools, cat. no. 12051-08)
•	 Fine scissors (Fine Science tools, cat. no. 14060-09 or equivalent)
•	 Sterile biopsy punch, 2 mm (Med Vet International, cat. no. BP2MMX25 or equivalent)
•	 Sterile biopsy punch, 3 mm (Med Vet International, cat. no. BP3MMX25 or equivalent)
•	 Chemi-Scraper spatula (Fisher Scientific, cat. no. 14-373 or equivalent)
•	 Dumont no. 7 forceps (Fine Science Tools, cat. no. 11272-40)
•	 Dumont no. 5/45 forceps (Fine Science Tools, cat. no. 11251-35)
•	 Castroviejo micro needle holders (Fine Science Tools, cat. no. 12060-01)
•	 Cryomolds, 15 mm × 15 mm × 5 mm (Fisher Scientific, cat. no. NC9642669 or equivalent)
•	 3M Transpore surgical tape (Fisher Scientific, cat. no. 18-999-381 or equivalent)
•	 Sharpie permanent marker (Sanford, cat no. SAN38264PP or equivalent)

Procedure

▲ CRITICAL  Procedures must be reviewed and approved by the institutional animal care and use 
committee or other relevant institutional guidelines.

Preoperative steps (day of surgery, before first incision)
● TIMING  20 min
1.	 Anesthetize the mouse by placing it in an isoflurane induction chamber. Induce the animal 

with 3–5% isoflurane and 100% oxygen at a flow rate of 1 L/min.
2.	 Remove the animal from the induction chamber and place the animal on a preoperative site 

with an isoflurane nose cone.
3.	 Reduce the isoflurane to a maintenance level of 1–2% isoflurane and 100% oxygen at a flow 

rate of 1 L/min.
4.	 Position the animal in a supine position.
5.	 Use clippers to remove the hair from the hind limb from as proximal as the thigh to as distal 

as the ankle.
6.	 To remove excess small hairs, apply depilation cream (Veet) and a cotton swab to massage 

the cream onto the skin. Let the cream sit for 30 s to 1 min. Remove the cream with gauze. 
Remove excess cream with alcohol swabs or water.

7.	 Identify each animal in a cohort using one of two methods:
(A)	 Method 1: tag the animal with a unique metal ear tag or ear punch.

http://www.nature.com/NatProtocol
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(B)	� Method 2: mark the tail with a unique marking scheme. Each cage is assigned a unique 
color using a Sharpie marker. Mice within the same cage are marked with the same 
color but differentiated by the number of lines for identification. The tails should be 
remarked twice a week or when the marker ink begins to fade away.

8.	 Create a sterile operative site by taping down a sterile drape over a warming plate that is set 
to 37 °C.

9.	 Make a pillow out of sterile gauze to prop up the hind leg for surgery and tape it down to 
the operative site. Place the animal in a supine position and rest the hind limb on the gauze 
pillow with surgical tape.

10.	 Align the femur in a neutral position, parallel to the long axis of the body, making sure 
that the ankle joint is plantarflexed so that the toes are pointed inferiorly and secured 
with surgical tape.

11.	 Reduce the isoflurane to a maintenance level of 1.5–2% isoflurane and 100% oxygen at a flow 
rate of 1 L/min. The maintenance level may vary between animals.

12.	 Administer preoperative buprenorphine extended release analgesia (0.6–1.0 mg/kg and 
antibiotics (enroflaxacin, 5 mg/kg) before the first incision according to institutional 
guidelines.

13.	 Aseptically prepare the leg by alternating betadine and alcohol, three times.
14.	 Begin the sterilization at the center of the limb and spiral outward in a clockwise direction.
15.	 After the last alcohol clean, allow the limb to dry for 30 s.
16.	 Place a sterile drape over the limb.
17.	 Check the depth of anesthesia by performing a toe-pinch test. Proceed with the surgery 

if there is no reflex response.

Operative procedure
● TIMING  20 min per leg
▲ CRITICAL  Conduct all operative procedures following aseptic techniques.
18.	 With a size 11 blade scalpel, make a longitudinal incision in the skin from as proximal 

to the knee joint to as distal to the ankle joint (Fig. 2a).
	 ◆ TROUBLESHOOTING

a b
mm

c d

e f g h

Fig. 2 | Intraoperative images of the VML surgical procedure followed by scaffold implantation.  a, A skin incision 
exposes the TA muscle. The ruler in the photo depicts increments in mm. b, The fascia is cut to expose the TA. The arrow 
indicates the fascia. c, A metal spatula is placed directly beneath the TA muscle. d, The morphology of the TA muscle is 
shown after the initial punch ablation, measuring 2 mm in diameter and 4 mm in depth. e, The morphology of the TA 
is shown after a second biopsy punch ablation adjacent to the first. f, A collagen scaffold is implanted into the region of 
ablation. g, The muscle is closed with sutures. h, The skin after closure with suture.
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19.	 Using forceps, gently lift the thin fascia up away from the TA muscle and use scissors to cut 
it parallel to the length of the muscle to expose the width of the TA (Fig. 2b).

20.	 Surgically dissect the TA from the extensor digitorum longus (EDL) muscle using the scalpel 
and place the spatula between the TA and the EDL (Fig. 2c).

21.	 Using the biopsy punch, create a defect just above the midline of the TA, pushing the biopsy 
punch until it contacts the spatula to ensure a full-thickness model.

	 ▲ CRITICAL STEP  When pressure from the biopsy punch is applied, the muscle tissue 
below it may move, leading to the ablated tissue being smaller than the size of the punch. 
Securing the periphery of the muscle group with hands or other appropriate tools in a 
sterile manner will help it retain its original shape so that the expected volume of tissue 
is removed. (Fig. 2d).

	 ◆ TROUBLESHOOTING
22.	 Make an overlapping punch adjacent to the first ablation, using the same technique as 

previously stated, to create a defect with oblong shape (Fig. 1d,e and Fig. 2e).
	 ▲ CRITICAL STEP  If applicable to the study, weigh the tissue that was removed after this 

step. The size of the ablation resulting from adjoining 2-mm or 3-mm diameter punches 
(Fig. 2e) is presented in Table 1 for 18-week-old mice. Optional: depending on the age and 
weight of the mice, the percentage ablation volume created by the punches may vary 
and should be determined in initial studies.

23.	 Scaffolds should be shaped to fit into the size of the ablation, leaving room for the muscle 
incision site to be closed (Fig. 2f).
(A)	� Optionally, scaffolds with sufficient structural integrity can be further sutured 

to adjacent muscle for increased stability.
	 (i)	 Suture the muscle with 8-0 vicryl sutures in an X fashion to secure the scaffold 

inside the ablated muscle39 (Fig. 2g).
(ii)	 Use two double knots to close the muscle. Note that suturing might alter the 

muscle architecture and force transmission along the muscle fibers.
24.	 Suture the skin with 8-0 vicryl suture by anchoring on the proximal end of the incision and 

using a continuous stitch pattern toward the distal end (Fig. 2h).
	 ◆ TROUBLESHOOTING
25.	 Apply antibiotic ointment to the incision site.
26.	 For bilateral studies, repeat the day-of-surgery preoperative steps and operative procedure 

for the other TA muscle, as desired.
27.	 Place the animal in a recovery cage with a warming base. Monitor the animal’s respiratory 

rate for 15 min or until fully conscious. Return the animal to group housing.
28.	 Monitor the animal for signs of pain or distress in compliance with institutional animal care 

and use policies. Use the Mouse Grimace Scale to identify signs of pain40. If signs of pain 
persist 72 h after the first injection of buprenorphine extended release, administer another 
dose and contact a veterinarian for a consultation.

29.	 Imaging and muscle physiology measurements can be carried out at various time points, 
before euthanasia and tissue collection.

Euthanasia
● TIMING  10 min
30.	 At the end of the experiment, commonly at 3 weeks after the induction of muscle ablation, 

euthanize the animal with CO2 or isoflurane overdose. Confirm euthanasia was successful 
by absence of diaphragm movement and heartbeat.

31.	 Perform an approved secondary form of euthanasia, such as cervical dislocation, 
by applying pressure to the neck to sever the spinal column from the skull.

Postmortem tissue collection
● TIMING  5 min
32.	 After euthanasia, explant both TA muscles from the hind limb. Use forceps and scissors 

to cut the skin laterally around the ankle. Insert the scissors underneath the skin and cut 
longitudinally up to the thigh.

http://www.nature.com/NatProtocol
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33.	 Expose the leg muscle groups by peeling back the skin from the ankle to the thigh.
34.	 Anchor the foot down with tape if needed.
35.	 Locate the TA tendon on the distal end of the TA muscle. While gripping the tendon, insert 

the tip of the scalpel against the distal end of the tibia and glide the scalpel proximally 
along the tibia until it reaches the lateral patellar retinaculum to separate the connecting 
fascia of the TA muscle and the tibia periosteum (Supplementary Video 1).

36.	 Isolate the TA muscle. Using fine forceps, gently separate the fascia beneath the tendon 
by sliding the forceps along the dorsal side of the tendon and sever it using a scalpel. 
Use forceps to lift and separate the TA muscle from the adjacent soleus and EDL muscle 
(Supplementary Video 1).

	 ▲ CRITICAL STEP  Be careful not to damage the TA muscle by accidentally removing part of 
the muscle during the collection step.

	 ◆ TROUBLESHOOTING
37.	 For cryosectioning, place the TA muscle in a cryomold filled with OCT freezing media and 

then snap freeze the mold in a bath of 2-methylbutane on dry ice.
(A)	� (Optional): note that if muscle fiber length should be maintained, first pin the 

explanted muscle to cork and then freeze in 2-methylbutane bath on dry ice, 
followed by embedding into OCT.

			  ◆ TROUBLESHOOTING
(B)	 Store the cryomold at −80 °C.

38.	 Alternatively, tissues can be processed for routine paraffin embedding.

Troubleshooting

Troubleshooting advice can be found in Table 2.

Timing

Steps 1–17, preoperative steps (day of surgery, before first incision): 20 min
Steps 18–29, operative procedure: 20 min per leg
Steps 30–31, euthanasia: 10 min
Steps 32–38, postmortem tissue collection: 5 min

Table 2 | Troubleshooting

Step Problem Possible reason Solution

18–24 TA muscle is dry Not enough saline is being periodically 
placed on the muscle

Use a sterile swab dipped in saline to moisten the TA muscle more often

21 Biopsy punches are ablating 
uneven or less than expected 
amounts of tissue

The muscle is not especially stiff, so it can 
slide around when the pressure from the 
biopsy punch is applied to it

Use the spatula on the underside of the muscle to help stabilize it so 
that it does not unexpectedly move while ablating tissue. In addition, 
securing the periphery of the muscle group with hands or other 
appropriate tools in a sterile manner will help it retain its original shape 
so that the expected volume of tissue will be removed

24 Mice rip out sutures Mice may find sutures uncomfortable Use interrupted sutures instead of a continuous stitch so that the 
incision does not completely open

36 Part of the TA muscle is damaged 
when collecting the muscle

When collecting the TA, the scalpel may 
accidentally remove part of the muscle

Remove muscles of anterior compartment by cutting the distal 
tendons and cutting at the proximal end. Then separate the TA from 
the other muscles using forceps

38 Tissue for histology shows 
degradation and/or artifacts

Tissue that is embedded in OCT without fixing 
can lead to tissue degradation or artifacts

Fix tissue in formalin immediately after collection and embed in 
paraffin

http://www.nature.com/NatProtocol
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Anticipated results

Characterizing VML ablation by weight
In 18-week-old C57BL/6 mice that undergo a VML surgery using either a 2-mm or 3-mm diameter 
biopsy punch, the resulting ablation dimensions and size are shown in Table 1. A 2-mm punch 
removes ~17% of the muscle, whereas the 3-mm punch removes ~58% of the TA muscle. When 
the 2-mm punch is used in 8-week-old C57BL/6 mice, the mass of ablated muscle is ~20% of the 
muscle instead of 17%, probably due to the difference in size and muscle gain experienced by 
mice as they age15. The 18-week-old C57BL/6 mouse TA muscles were collected 21 d after surgery 
and weighed. The weight of the TA muscle in the 3-mm punch group was significantly smaller 
than the 2-mm punch group, based on statistical analysis by a Student’s t-test. This indicates that 
the 3-mm group retains greater muscle loss than the 2-mm group after 3 weeks, as is expected 
from a more severe degree of muscle ablation.

Torque production of TA muscle post-injury
To assess the functional deficit of the VML model, muscle force or torque testing can 
be performed using muscle physiology equipment from companies such as the Aurora 
Scientific 3-in-1 Whole Animal System. Mice are anesthetized and their hindlimbs are shaved 
before placement onto the frame. The knee joints are stabilized, and the foot is attached to 
a footplate. Needle electrodes are then inserted percutaneously to stimulate the anterior 
crural compartment. Compared with the uninjured healthy control mice, the mice with 2-mm 
and 3-mm punch ablations show significant torque reduction at 21 d postablation (Fig. 3a). 
Functional deficit is relatively more pronounced in mice that receive muscle ablation from the 
3-mm punch, as showed by the significantly reduced torque production, in comparison with 
the 2-mm group, based on analysis of variance with Tukey post hoc testing (Fig. 3a).
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Fig. 3 | Histological staining and force measurements of TA muscle at 21 d after muscle ablation (2-mm and 3-mm 
models).  a, Torque measurements from tetanic contraction of the anterior crural muscles that include the TA muscle, based  
on analysis of variance with Tukey’s post hoc test. Data are shown relative to that of the uninjured muscle (n = 5, ****P < 0.0001 
for the indicated pair-wise comparison; ####P < 0.0001 when compared with the uninjured group). b,c, H&E staining of 
TA muscles after ablation using the 2-mm (b) or 3-mm (c) biopsy punch. d, Cross-sectional region of the TA immediately 
postsurgery shows the muscle gap after biopsy punch, as denoted by the dotted lines. e,f, Images show Masson’s trichrome 
staining of TA muscle using a 2-mm (e) or 3 mm (f) biopsy punch. Arrows indicate the areas of fibrotic connective tissue and 
disorganized myofibers. Scale bar, 500 µm for d and 100 µm for b,c,e and f.
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Previous studies by other groups employing surgical ablation of the TA muscle in rodents 
also show limited muscle regeneration. In a rat VML model involving 20% TA ablation, the 
muscle was unable to substantially regenerate after 4 weeks, and muscle physiology shows 
a notable reduction in torque that is consistent with persistent functional impairment41. In 
alignment with these results, we show in this mouse VML model that there is significantly 
reduced torque generation at 21 d postsurgery, compared with uninjured animals (Fig. 3a).

Histological assessment of TA muscle after VML
Tissue sections at 21 d postsurgery were stained using hematoxylin and eosin (H&E) and 
Masson’s trichrome stains to visualize tissue morphology (Fig. 3b–f). With the closure of the 
muscle after ablation, the borders of the ablation site can become less evident. Trichrome 
staining of the tissue sections allows for visualization of collagen deposition. The 3-mm punch 
group shows higher levels of collagen and disorganized myotubes in the region of the ablation, 
compared with the 2-mm punch group (Fig. 3e,f). Excess collagen deposition is characteristic 
of VML, as well as increasing muscle stiffness13,36.

When the ablated TA muscle is implanted with a porous fibrillar collagen scaffold15,20,42 after 
induction of VML, the implanted scaffold helps to retain the shape of the ablated muscle, in which 
the site of ablation becomes more evident (Fig. 4). Histological analyses can be used to visualize 
the partially degraded collagen scaffold at 3 weeks after implantation, where the collagen scaffold 
appears light pink in an H&E stain (Fig. 4a,b) or dark blue in the trichrome stain (Fig. 4c,d). The 
tissue sections may show signs of muscle regeneration as well as mild infiltration of inflammatory 
cells in the periphery of the scaffold. Acellular scaffolds may offer some therapeutic benefit but 
are not sufficient for the full restoration of muscle function and regeneration15,20,25.

Although the effect of VML injuries on other cell types is understudied, compared with healthy 
muscle, the ablated rat quadriceps muscle show notably fewer neuromuscular junctions as an 
indicator of innervation12. In the injured muscle, the majority of neuromuscular junctions were 
associated with fragmented morphology after 14 d. By day 28, the neuromuscular junctions showed 
either fragmented morphology or were forming new acetylcholine receptor clusters, but none 
showed normal innervation. Interestingly, the perfused vascular volume after 28 d was higher than 
in control uninjured model. These data suggest that VML injuries are also associated with nerve and 
vascular damage.

a b

c d

2 mm defect 3 mm defect Fig. 4 | Histological staining of TA muscle at 3 weeks after muscle ablation 
with collagen scaffold implantation.  a,b, H&E stain of TA ablation using a 2-mm 
(a) or 3-mm (b) biopsy punch, followed by implantation of a nanofibrillar collagen 
scaffold into the defect. c,d, Masson’s trichrome stain visualizes the nanofibrillar 
collagen scaffold in blue after implantation into the 2-mm (c) or 3-mm (d) defect 
for 3 weeks. The dotted line denotes the region of scaffold implantation. Scale bar, 
500 µm.
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Reporting summary
Further information on research design is available in the Nature Portfolio Reporting Summary 
linked to this article.

Data availability
All data generated or analyzed during this study are derived from our original research study or 
are included in this paper. Source data are provided with this paper.
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