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ABSTRACT The long-term and continuous streaming of big data from medical Internet of Things (IoT), 

poses a great challenge for the battery-limited tiny devices. To address this challenge, we propose a novel 

framework for medical IoT data sparsification, leveraging both deep learning and optimal space searching. 

More specifically, the deep sparsification networks are designed to learn to extract key sparse patterns in 

the medical IoT data, by projecting the original data stream to a sparsified data representation. Further, the 

principles for designing deep encoding networks have been analyzed by an optimal space searching 

strategy, aiming to determine the best deep sparsification architecture that meets the energy constraint or 

sparsification error constraint. Compared with state-of-the-art approaches, our deep learning-based and 

space search-optimized framework shows a dramatic capability to tackle the power hungriness problem on 

medical IoT big data. This novel study, by enabling energy-efficient medical IoT big data sparsification, is 

expected to boost the continuous and long-term medical IoT applications, such as cardiac monitoring, 

thereby advancing precision medicine. 

INDEX TERMS Big Data, Deep Learning, IoT Big Data, Space Search 

I. INTRODUCTION 

Medical Internet of Things (IoT) [1-10] are advancing 

various smart health applications [11-14]. The long-term 

and continuous streaming of big data from medical IoT is 

expected to broadly ignite emerging big data-driven 

precision medicine. We take a special interest in wearable 

Electrocardiogram (ECG)-based cardiac health monitoring 

[15-17], and will demonstrate a generalizable deep learning 

framework [18, 19] that can learn and extract the critical 

patterns in the data, for energy consumption minimization.  

The medical IoT devices are expected to be play an 

increasingly important role in human or environmental 

health monitoring. Nevertheless, the challenges arises when 

these devices need to continuously transmit the data 

wirelessly to the smart phones, relays, or cloud. Frequent 

recharging the monitor is troublesome and impacts the 

long-term usage of the device. How to lower the energy 

need is a critical question for IoT monitoring applications.  

Major components of an IoT device usually include the 

controller, the sensing module, the communication module, 

and the power management module. The former two can 

now be implemented with a very low energy consumption, 

nevertheless, the wireless module consumes significant, 

usually the majority of the energy. Therefore, one 

promising strategy is to lower the energy consumption of 

the wireless module with acceptable energy overhead. In 

this study, targeting (ECG) monitoring [20, 21], we will 

demonstrate how deep learning [22-25] enables efficient 

IoT big data streaming.  

ECG is a vital sign of human health, and a critical 

biomarker of heart diseases, which is the leading cause of 

death in the world. There have been some previously 

reported studies on lowering the energy consumption of 

ECG monitors. Discrete Wavelet Transformation (DWT) 

has been a common practice in many studies [26-29], which 

firstly transforms the original signal to the time-frequency 

domain, and then selects out significant wavelet 

coefficients for transmission. The signal can then be 

reconstructed on the receiver side from the coefficient. 

Compressed Sensing (CS) [29-32] has also been applied and 

reported in various data compression studies. The conversion 

matrix is used to project the original signal to a sparse space. 

Discrete Cosine Transform (DCT) [33-35] is another widely 

used method for data compression. It uses the cosine waves 

to decompose the original signal.   
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Interesting findings have been obtained in these previous 

studies. At the same time, current methods like DWT, DCT, 

and CS, are mainly using either predefined basis functions, 

or random conversion matrices, to perform the data 

projection. Nevertheless, the complex and nonlinear 

characteristics in the medical signals will benefit from more 

advanced and nonlinear methods in sparse pattern 

extraction. Another question that lack of comprehensive 

study is the overhead of the compression algorithm, which 

is crucial since the energy overhead may cancel out or even 

exceeds the energy saving on the big data transmission 

tasks.  

In this study, we propose a novel and systematic AI-

enabled framework, aiming to provide a data-driven, 

intelligent, and comprehensive methodology towards 

energy-efficient IoT applications as shown in Fig. 1. Our 

framework is leveraging both deep learning and optimal 

space searching. More specifically, the deep sparsification 

networks are designed to be able to learn the critical 

patterns in the IoT data, thereby projecting the original data 

stream to a sparsified data representation. Further, the 

principles for designing deep sparsification networks have 

been analyzed by an optimal space searching strategy, 

aiming to determine the best deep sparsification 

architecture with the energy constraint or sparsification 

error constraint. 

Our major contributions include: 

(a) Proposing a ‘deep learning-based’ and ‘space search-

optimized’ framework for energy-efficient IoT big data 

streaming;  

(b) Designing deep sparsification neural networks that can 

intelligently learn complex, critical dynamics in IoT data 

for effective pattern extraction; 

(c) Developing optimal space search algorithms to 

determine optimal deep sparsification architectures under 

the energy constraint or sparsification error constraint; 

(d) Validating the novel data-driven framework in the 

ECG-based cardiac health monitoring application, to 

demonstrate the feasibility and effectiveness.  

This novel study, by enabling energy-efficient IoT big 

data streaming, is expected to boost the continuous and 

long-term IoT monitoring practices, thereby greatly 

advancing the big data-driven smart health and smart world. 

  
II. APPROACHES 

We here detail the proposed data-driven, intelligence 

systematic framework for energy-efficient IoT big data 

streaming. We will firstly give the system overview, then 

introduce the deep learning-based sparsification approach 

and the design variabilities, afterwards give the Optimal 

Deep Architecture Search (ODAS) algorithms with two 

typical kinds of constraints, and end this section with the 

system evaluation strategy.  

A. SYSTEM OVERVIEW  

The proposed novel system in given Fig. 2, where the top 

shows the deep learning-enabled dynamics sparsification 

approach, and the bottom illustrates the deep architecture 

search algorithms. More specifically, in Fig. 2(a), the IoT big 

data, i.e., ECG in this study, is projected to a sparsified 

representation, which is then wirelessly transmitted to the 

smart phone. The phone then recovers the original ECG 

FIGURE. 2 The proposed novel framework for IoT big data streaming, leveraging (a) deep learning-enabled dynamics sparsification, and (b) 
deep architecture search of design variables with energy or error constraint. 

AI AI 

Source data Sparse data Recovered data 

FIGURE 1. Deep learning of sparse patterns in medical IoT for 
efficient big data harnessing. 
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signal from the sparse vector received, with an acceptable 

error. In such a way, the ECG data, after being sparsified, can 

consume much less energy compared with the case without 

sparsification or traditional approaches.  

In Fig. 2(b), the ODAS algorithms search from the design 

variabilities the optimal deep sparsification architecture, with 

either energy constraint or error constraint. The resulted 

architectures will have minimum energy consumption or 

minimum error, respectively.  

B. DEEP SPARSIFICATION  

The proposed deep sparsification approach for ECG 

streaming is 1D Convolutional Autoencoder (CAE) [1-3]. 

CAE has two building blocks: the encoder and the decoder. 

The former one has multiple stages of convolutional filters to 

extract the key patterns in the ECG data 𝑋, as well as max 

pooling layers to reduce the dimensionality of the feature 

map. In such a way, the ECG signal is sparsified into a short 

vector 𝑆 with critical patterns. The decoding process is given 

in (1), where 𝑋 is the original signal with a length of 𝑁, and 

𝑆 is the sparse representation with a length of 𝑀. One thing 

to note is that we have designed the CAE to be 1D, meaning 

that the input image is 1D and the feature map is also 1D for 

temporal pattern extraction. 

 

𝑆 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑋)                                                    (1) 

                    𝑋 = {𝑥𝑖|𝑖 = 1, … 𝑁}, 𝑆 = {𝑠𝑗|𝑗 = 1, … 𝑀}  
 

 Afterwards, on the smart phone, the sparse representation 

𝑆 is decoded as the estimate of the original signal, 𝑋̂. The 

process is given in (2), where 𝑋̂ also has a length of 𝑁. 

 

𝑋̂ = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟(𝑆), 𝑋̂ = {𝑥𝑖̂|𝑖 = 1, … 𝑁}                   (2) 

 

The promising advantage of the proposed 1D CAE is that 

it can effectively learn the patterns in the ECG data through 

deep neural learning and efficiently sparsify ECG with 1D 

operators. But CAE design has a high degree of design 

freedom, meaning that there are many variables which are 

related to sparsification error, energy reduction and energy 

overhead. 

C. DEEP ARCHITECTURE VARIABILITIES  

To further investigate how design factors of 1D CAE impact 

the sparsification error, energy reduction and energy 

overhead, we here select four critical design variabilities for 

the CAE architecture 𝛼, which is a function of input 

dimension 𝐼, feature map 𝐹, convolutional filter size 𝐶, and 

the depth 𝐷, as given in (3).  

The sparsification ratio is determined by the depth D, i.e., 

the number of stages, since here we have fixed the 

maxpooling size of each stage to be two for convenient 

comparison. The sparsification error is related to all four 

variables. The total energy is related to the transmission 

energy reduction, the energy overhead of sparsification, and 

other system energy consumptions. Therefore, it is a 

nonlinear problem and thus the ODAS algorithms are 

proposed to solve this problem for determining the optimal 

architecture. 

 

𝛼 = 𝜓(𝐼, 𝐹, 𝐶, 𝐷)                                     (3) 

D. OPTIMAL DEEP ARCHITECTURE SEARCH (ODAS) 

The ODAS algorithms are proposed to solve the nonlinear 

problem of searching an optimal CAE architecture, given the 

complex design variables and their relationships to both error 

and total energy.  

Two strategies are considered here: ODAS with energy 

constraint (ODAS-energy), and ODAS with sparsification 

error constraint (ODAS-error), given in (4) and (5), 

respectively. The former one, as shown in (4), searches an 

optimal CAE architecture 𝛼𝜀∗
 with minimum error 𝛧, while 

making sure the total energy 𝜀 is no more than a threshold 

𝜀𝑡ℎ. 

 

𝛼𝜀∗
= 𝑎𝑟𝑔𝑚𝑖𝑛

𝛼
𝛧(𝛼) , 𝑠. 𝑡. 𝜀 ≤  𝜀𝑡ℎ                    (4) 

The second algorithm, i.e., ODAS-error as shown in (5), 

searches an optimal CAE architecture 𝛼𝜖∗
 with minimum 

energy 𝛦, while making sure the sparsification error 𝜖 is no 

more than a threshold 𝜖𝑡ℎ. 

 

𝛼𝜖∗
= 𝑎𝑟𝑔𝑚𝑖𝑛

𝛼
𝛦(𝛼) , 𝑠. 𝑡. 𝜖 ≤  𝜖𝑡ℎ                    (5) 

We will then detail two ODAS algorithms, which can be 

used for different application scenarios, i.e., energy-

constrained or error-constrained applications.  

 

D. ODAS WITH SPARSIFICATION ENERGY 
CONSTRAINT 

ODAS-energy handles the scenario which has an energy 

constraint, meaning that the total energy should not exceed a 

threshold.  

ODAS-energy is detailed in Algorithm 1, which reads in 

the architecture variables and constraint, searches through the 

solution space, and returns the optimal CAE architecture. 

More specifically, the algorithm will first search through 

different CAE depths, since the depth directly determines the 

sparsification ratio and thus has major contributions to the 

energy reduction. However, when increasing the depth, the 

error usually increases. Therefore, the optimal architecture 

should correspond to appropriate depth that can meet the 

energy constraint while resulting in a small error. This will 

be further demonstrated in the results section, which will 

indicate that depth is the first degree of freedom where the 

ODAS-energy algorithm needs to explore.  

Then, the ODAS-energy algorithm will search through the 

input dimension, i.e., the second degree of freedom, followed 

by the feature map and then the convolutional filter size. 

Considering the ECG database that we will use contains lots 
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of arrythmia heartbeats, the signal is highly diverse, which 

makes long-signal-segment sparsification challenging. So the 

algorithm searches the input dimension from low to high. 

Further, more feature maps and greater filter sizes usually 

yield lower reconstruction errors, we will search them from 

high to low.  

By leveraging the proposed ODAS-energy algorithm we 

expect that the optimal CAE architecture can be effectively 

determined. The optimal architecture will not only meet the 

energy constraint but also own minimum sparsification error. 

E. ODAS WITH ERROR CONSTRAINT 

The ODAS-error algorithm aims to determine the optimal 

architecture that meets the sparsification error constraint 

while owns minimum energy. Here we mainly introduce the 

strategy of ODAS-error algorithm, which firstly search depth 

from high to low, i.e., the error is from high to low. Then the 

algorithm searches the input width, the feature map, and the 

convolutional filter size. More demonstrations will be given 

in the results section. 

F. SYSTEM EVALUATION 

To evaluate the proposed novel framework, we will study 

different CAE design parameters. The set of depth values 𝛷𝐷 

includes 2, 4 and 6 (sparsification ratio = 4/16/64, 

respectively); the set of input dimension values 𝛷𝐼 includes 

128, 256 and 512; the set of feature map values 𝛷𝐹 includes 

2, 4 and 6; the set of convolutional filter sizes 𝛷𝐶 includes 2, 

4, 8 and 12. Through this through evaluation, we aims to 

demonstrate the design principles of effective CAE and the 

ODAS algorithms proposed.    

III. RESULTS 

A. . EXPERIMENTAL SETUP 

To evaluate the proposed framework, we here use the 

popular MIT-BIH Arrythmia ECG Database [4-6] and select 

ten subjects without severe motion artifacts. This database 

include not only arrhythmia but also other kinds of heart 

diseases, making the data sparsification very challenging. 

The sampling rate of ECG is 360Hz, and the signal is 

preprocessed by a band-pass filter (0.5 to 49.5 Hz) to remove 

the baseline wander and powerline interference. The ECG 

stream is segmented with a window size equal to the input 

width of CAE, depending on the simulation requirements. To 

minimize the engineering effort and maximize the 

generalization ability of the algorithm, the ECG heartbeat 

locations are not identified, meaning that the segmentation is 

random. We have conducted subject-wise evaluation, to 

investigate whether a subject’s own data is sufficient for 

training the deep learning framework. In future, we will 

further consider other evaluation method like leave-

one/more-subject out cross validation. 75% of each ECG 

stream is used for training and 25% for testing. 

B. SPARSIFICATION RATIO VERSUS SPARSIFICATION 
ERROR 

With different CAE depths, we can achieve various 

sparsification ratios, or compression ratios. Meanwhile, the 

corresponding sparsification errors also differ. Fig. 3 

illustrates sparsification ratio versus sparsification Error, 

where CAE, DWT, ORI, CR and RMSE stand for 

convolutional autoencoder, discrete wavelet transform, 

original data without sparsification, compression ratio and 

root mean square error, respectively.  

When increasing CR, for both CAE and DWT, RMSE 

increases since more non-critical patterns are filtered out 

for sparsification purpose. Under low CR, say 16, DWT 

show better performance, but when increasing CR to 32 or 

64, CAE shows much better performance, thanks to CAE’s 

Algorithm 1   ODAS-energy 

Input:  

input dimension 𝛷𝐼 = {𝐼|𝐼 = 1, … , 𝐼𝑚𝑎𝑥} 

feature map 𝛷𝐹 = {𝐹|𝐹 = 1, … , 𝐹𝑚𝑎𝑥} 

convolutional filter size 𝛷𝐶 = {𝐶|𝐶 = 1, … , 𝐶𝑚𝑎𝑥} 

depth 𝛷𝐷 = {𝐷|𝐷 = 1, … , 𝐷𝑚𝑎𝑥} 

energy threshold 𝜀𝑡ℎ 

Output: 

optimal architecture 𝛼𝜀∗
 

error for the optimal architecture 𝜖𝜀∗
 

energy for the optimal architecture 𝜀∗ 

Procedure: 

𝛼𝜀∗
= 𝑁𝑈𝐿𝐿                                         //initialization 

𝜖𝜀∗
= 𝐼𝑁𝐹𝐼𝑁𝐼𝑇𝑌                                 //initialization 

for 𝐷 = 1, … 𝐷𝑚𝑎𝑥 do                       //low to high 

    for 𝐼 = 1, … , 𝐼𝑚𝑎𝑥 do                    //low to high 

        for 𝐹 = 𝐹𝑚𝑎𝑥, … , 1 do              //high to low 

            for 𝐶 = 𝐶𝑚𝑎𝑥, … , 1do           //high to low 

                𝜀 = 𝑬𝑻𝒓 + 𝑬𝑫𝒍 + 𝑬𝑺𝒚𝒔         //energy from wireless 

transmission, CAE overhead, and other system components 

                if 𝜀 ≤ 𝜀𝑡ℎ                             //energy threshold 

                    if 𝛧(𝛼) ≤ 𝜖𝜀∗
                  //minimize error 

                        𝛼𝜀∗
← 𝜓(𝐼, 𝐹, 𝐶, 𝐷) 

                        𝜖𝜀∗
← 𝛧(𝛼) 

                        𝜀∗ ← 𝜀 

                    end if 

                 end if 

             end for 

         end for 

    end for 

if 𝛼𝜀∗
 is not 𝑁𝑈𝐿𝐿                         //stop searching depth 

        break 

    end if  

end for 

return 𝛼𝜀∗
, 𝜖𝜀∗

, 𝜀∗                              //optimal architecture 
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intelligent removal of non-critical information in the ECG 

signal. This will be further illustrated later by the 

waveforms of the reconstructed signals.  
Further, for CAE, there are multiple dots since there are 

combinations of different design variables. Take CR=64 as 

an example, the design variables, if chosen appropriately, 

can reduce RMSE dramatically.  

Overall, the CAE approaches provide many solution 

candidates that have a less RMSE, given high compression 

ratios. 

Next, we will analyze the contribution of different 

design variables to RMSE in detail. 

C. DESIGN PRINCIPLE – INPUT DIMENSION 

Fig. 4 shows the changes of sparsification error, under 

different input dimensions (128, 256, 512). The top left dot 

(2, 2) corresponds to (#feature map, filter size), and the 

horizontal axis gives the scenario indices. CR64 is selected to 

illustrate the details.  

We can observe that the input dimension has a positive 

correlation with RMSE. It is because the disease ECG 

database is highly diverse, and if the input dimension is too 

high, it is much more challenging to reconstruct the diverse 

signals.  

The complexity when considering the feature map and 

the convolutional figure size is further given below. 

D.  DESIGN PRINCIPLE – FEATURE MAP 

Fig. 5 gives the changes of sparsification error, under 

different #feature map (2, 4, 6). The top left dot (128, 2) 

corresponds to (input dimension, filter size).  

The #feature map, relatively speaking, has a negative 

correlation with RMSE, meaning that more feature maps 

can capture richer patterns from the original signal, thereby 

decreasing the error. Meanwhile, other design variables are 

also related to RMSE, resulting in a complex distribution of 

solution space.  

E.  DESIGN PRINCIPLE – CONVOLUTIONAL FILTER 
SIZE 

Fig. 6 gives the sparsification error, under different filter 

sizes (2, 4, 8, 12). The top left dot (128, 2) corresponds to 

(input dimension, #feature map).  

When increasing the convolutional filter size, RMSE 

basically decreases, indicating that a stronger ability to 

capture more spatial information contributes to signal 

reconstruction. Again, the complex distribution of solution 

space is related to all design variables. Besides, the design 

variables also generate different energy overhead. 

F.  TOTAL ENERGY VERS  US SPARSIFICATION ERROR 

Different CAE architectures make various contributions to 

the reconstruction error, however, for a specific sparsifcation 

ratio, we should not simply select the CAE architecture with 

the smallest error. This is because CAE also generated 

FIGURE. 3 Sparsification (compression) Ratio versus 
Sparsification Error. 
Notes. CAE: convolutional autoencoder; DWT: discrete wavelet 
transform; ORI: original data without sparsification; CR: 
compression ratio; root mean square error. 

FIGURE. 4 Changes of Sparsification Error, under different input 
dimensions (128, 256, 512). 
Notes. The top left dot 2, 2: #feature map, filter size; horizontal 
axis: scenario index; InWidth: input dimension. 

FIGURE. 5 Changes of Sparsification Error, under different 
#feature map (2, 4, 6). 
Notes. The top left dot 128, 2: input dimension, filter size; 
horizontal axis: scenario index; FM: feature map. 
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energy consumption and we need to consider the overhead 

induced by CAE to the total energy.  

 In Fig. 7, total energy versus sparsification error is 

given. Encouragingly, for CAE-CR16 and CAE-CR-64, 

there are many CAE options that are better than the DWT 

options. These CAE solutions are under the DWT curve, 

indicating these solutions can offer lower RMSE with the 

same energy constraint, or offer lower energy with the same 

error constraint.  

G. DESIGN PRINCIPLES WHEN CONSIDERING 
OVERHEAD  

The zoomed in versions of these better CAE solutions are 

given in Fig. 8, 9 and 10, which illustrate the distribution of 

the solutions under different input dimensions, different 

#feature map, and different filter sizes, respectively. One 

thing to note is that these three figures show the same 

measurement distribution but with different annotation 

methods to highlight the contribution of different design 

parameters. In Fig. 8, we want to compare three input 

dimensions labeled with different colors, in Fig. 9, different 

#feature map is highlighted with different colors, and Fig. 10 

highlights different filter sizes. These visualizations further 

show that the solution space is highly complex. But at the 

same time, some principles still hold: the smaller input 

dimensions, more feature maps, and larger filter sizes 

relatively give better solutions.  

 Therefore, we will later demonstrate that, by leveraging 

these principles, the proposed ODAS algorithm can 

effectively select the optimal CAE architectures.  

To further demonstrate the performance of CAE and 

DTW, in Fig. 11, the recovered signals for different subjects 

and different approaches (CAE and DWT) are given. 

FM2/4/6 corresponds to CR4/16/64, respectively. We can 

observer that CAE significantly outperforms DWT.  

H. ODAS WITH SPARSIFICATION ENERGY 

FIGURE. 8 Total Energy versus Sparsification Error, under 
different input dimensions (128, 256, 512). 
Notes. The top left dot 6, 12: #feature map, filter size; horizontal 
axis: scenario index; InWidth: input dimension. 

FIGURE. 7 Total Energy versus Sparsification Error. 
Notes. CAE: convolutional autoencoder; DWT: discrete wavelet 
transform; ORI: original data without sparsification; CR: 
compression ratio. 

FIGURE. 9 Total Energy versus Sparsification Error, under 
different #feature map (2, 4, 6). 
Notes. The top left dot 128, 2: input dimension, filter size; 
horizontal axis: scenario index; FM: feature map. 

FIGURE. 6 Changes of Sparsification Error, under different filter 
sizes (2, 4, 8, 12). 
Notes. The top left dot 128, 2: input dimension, #feature map; 
horizontal axis: scenario index; COV: convolutional filter size. 
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CONSTRAINT  

The ODAS-energy algorithm searches the solution space to 

determine the optimal CAE architecture that meets the 

energy constraint and owns the smallest sparsification error.  

The comparison on the optimal CAE architecture with 

DWT is given in Fig. 12(a), which the energy constrain is 

set as 1.90 mJ. The sparsification error (RMSE) for DWT 

and CAE is 0.13 mV and 0.09 mV, respectively. The 

optimal CAE architecture is (128, 2, 8, 6), corresponds to  

(input dimension, #feature map, filter size, depth). So the 

sparsification ratio is 64. The optimal DWT architecture is 

CR64. This is in align with the solution space shown in Fig. 

7, and detailed in Fig. 8, 9, and 10.  

The algorithm first searches the CAE depth from low to 

high until the depth meets the requirements of the energy 

constraint. The algorithm then searches the in put 

dimension from low to high, the #feature map from high to 

low, and the filter size from high to low, respectively. 

Overall, ODAS-energy searches better solutions first based 

on the design principles, and if the current CAE depth 

provides at least one solution, it stops. For each depth, 

before search termination.  

In such a way, the ODA-energy algorithm can determine 

an optimal solution that, not only meets the energy budget, 

but also has best combination of the design variables for 

error minimization.   

I. ODAS WITH ERROR CONSTRAINT  

The ODAS-error algorithm, similar to ODAS-energy, also 

searches the solution space to determine the CAE 

architecture. But different constraints usually yield different 

optimal solutions.  

Fig. 12(b), where the error (RMSE) constraint is set as 

0.08 mV, the optimal architecture for DWT and CAE has an 

energy consumption of 2.03 mJ and 1.91 mJ, respectively. 

The optimal CAE architecture is (128, 4, 8, 6), corresponds 

to (input dimension, #feature map, filter size, depth). So the 

sparsification ratio is 64. The optimal DWT architecture is 

CR16, indicating that DWT, to meet the error constraint, 

FIGURE. 10 Total Energy versus Sparsification Error, under 
different filter sizes (2, 4, 8, 12). 
Notes. The top left dot 128, 2: input dimension, #feature map; 
horizontal axis: scenario index; COV: convolutional filter size. 

FIGURE. 11 The recovered signals for different subjects and different approaches (CAE and DWT), suggesting that CAE significantly 
outperforms DTW. FM2/4/6 corresponds to CR4/16/64, respectively.  

(a1) CAE @ subject A (a2) CAE @ subject B 

(b1) DWT @ subject A (b2) DWT @ subject B 
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can only decreases the sparsification ratio and increases the 

energy. 

IV. CONCLUSION 

IoT big data streaming is essential for data-driven smart 

health and smart world applications. Targeting the challenges 

induced by the power hungriness of IoT long-term streaming, 

we have proposed a deep learning-enabled big data 

sparsification framework. The novel framework can, not only 

sparsify the IoT data using intelligent autoencoder neural 

networks, but also determines the optimal deep learning 

architecture under the constraint. Compared with the 

traditional DWT data sparsification, the deep learning 

architecture determined by our framework provides better 

solutions, meaning that our framework can either offer the 

smallest error under the energy constraint, or offer the lowest 

energy under the error constraint. This research, validated on 

the ECG-based cardiac monitoring application, is expected to 

greatly advance IoT big data applications.  
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