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ABSTRACT The long-term and continuous streaming of big data from medical Internet of Things (IoT),
poses a great challenge for the battery-limited tiny devices. To address this challenge, we propose a novel
framework for medical IoT data sparsification, leveraging both deep learning and optimal space searching.
More specifically, the deep sparsification networks are designed to learn to extract key sparse patterns in
the medical IoT data, by projecting the original data stream to a sparsified data representation. Further, the
principles for designing deep encoding networks have been analyzed by an optimal space searching
strategy, aiming to determine the best deep sparsification architecture that meets the energy constraint or
sparsification error constraint. Compared with state-of-the-art approaches, our deep learning-based and
space search-optimized framework shows a dramatic capability to tackle the power hungriness problem on
medical IoT big data. This novel study, by enabling energy-efficient medical IoT big data sparsification, is
expected to boost the continuous and long-term medical IoT applications, such as cardiac monitoring,

thereby advancing precision medicine.

INDEX TERMS Big Data, Deep Learning, loT Big Data, Space Search

I. INTRODUCTION
Medical Internet of Things (IoT) [1-10] are advancing
various smart health applications [11-14]. The long-term
and continuous streaming of big data from medical IoT is
expected to broadly ignite emerging big data-driven
precision medicine. We take a special interest in wearable
Electrocardiogram (ECG)-based cardiac health monitoring
[15-17], and will demonstrate a generalizable deep learning
framework [18, 19] that can learn and extract the critical
patterns in the data, for energy consumption minimization.
The medical IoT devices are expected to be play an
increasingly important role in human or environmental
health monitoring. Nevertheless, the challenges arises when
these devices need to continuously transmit the data
wirelessly to the smart phones, relays, or cloud. Frequent
recharging the monitor is troublesome and impacts the
long-term usage of the device. How to lower the energy
need is a critical question for IoT monitoring applications.
Major components of an IoT device usually include the
controller, the sensing module, the communication module,
and the power management module. The former two can
now be implemented with a very low energy consumption,
nevertheless, the wireless module consumes significant,
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usually the majority of the energy. Therefore, one
promising strategy is to lower the energy consumption of
the wireless module with acceptable energy overhead. In
this study, targeting (ECG) monitoring [20, 21], we will
demonstrate how deep learning [22-25] enables efficient
IoT big data streaming.

ECG is a vital sign of human health, and a critical
biomarker of heart diseases, which is the leading cause of
death in the world. There have been some previously
reported studies on lowering the energy consumption of
ECG monitors. Discrete Wavelet Transformation (DWT)
has been a common practice in many studies [26-29], which
firstly transforms the original signal to the time-frequency
domain, and then selects out significant wavelet
coefficients for transmission. The signal can then be
reconstructed on the receiver side from the coefficient.
Compressed Sensing (CS) [29-32] has also been applied and
reported in various data compression studies. The conversion
matrix is used to project the original signal to a sparse space.
Discrete Cosine Transform (DCT) [33-35] is another widely
used method for data compression. It uses the cosine waves
to decompose the original signal.
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FIGURE 1. Deep learning of sparse patterns in medical loT for
efficient big data harnessing.

Interesting findings have been obtained in these previous
studies. At the same time, current methods like DWT, DCT,
and CS, are mainly using either predefined basis functions,
or random conversion matrices, to perform the data
projection. Nevertheless, the complex and nonlinear
characteristics in the medical signals will benefit from more
advanced and nonlinear methods in sparse pattern
extraction. Another question that lack of comprehensive
study is the overhead of the compression algorithm, which
is crucial since the energy overhead may cancel out or even
exceeds the energy saving on the big data transmission
tasks.

In this study, we propose a novel and systematic Al-
enabled framework, aiming to provide a data-driven,
intelligent, and comprehensive methodology towards
energy-efficient IoT applications as shown in Fig. 1. Our
framework is leveraging both deep learning and optimal
space searching. More specifically, the deep sparsification
networks are designed to be able to learn the critical
patterns in the IoT data, thereby projecting the original data
stream to a sparsified data representation. Further, the
principles for designing deep sparsification networks have
been analyzed by an optimal space searching strategy,
aiming to determine the best deep sparsification
architecture with the energy constraint or sparsification
error constraint.

Our major contributions include:

(a) Proposing a ‘deep learning-based’ and ‘space search-
optimized’ framework for energy-efficient IoT big data
streaming;

(b) Designing deep sparsification neural networks that can
intelligently learn complex, critical dynamics in IoT data
for effective pattern extraction;

(c) Developing optimal space search algorithms to
determine optimal deep sparsification architectures under
the energy constraint or sparsification error constraint;

(d) Validating the novel data-driven framework in the
ECG-based cardiac health monitoring application, to
demonstrate the feasibility and effectiveness.

This novel study, by enabling energy-efficient IoT big
data streaming, is expected to boost the continuous and
long-term IoT monitoring practices, thereby greatly
advancing the big data-driven smart health and smart world.

Il. APPROACHES

We here detail the proposed data-driven, intelligence
systematic framework for energy-efficient IoT big data
streaming. We will firstly give the system overview, then
introduce the deep learning-based sparsification approach
and the design variabilities, afterwards give the Optimal
Deep Architecture Search (ODAS) algorithms with two
typical kinds of constraints, and end this section with the
system evaluation strategy.

A. SYSTEM OVERVIEW

The proposed novel system in given Fig. 2, where the top
shows the deep learning-enabled dynamics sparsification
approach, and the bottom illustrates the deep architecture
search algorithms. More specifically, in Fig. 2(a), the [oT big
data, i.e., ECG in this study, is projected to a sparsified
representation, which is then wirelessly transmitted to the
smart phone. The phone then recovers the original ECG
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FIGURE. 2 The proposed novel framework for loT big data streaming, leveraging (a) deep learning-enabled dynamics sparsification, and (b)

deep architecture search of design variables with energy or error constraint.
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signal from the sparse vector received, with an acceptable
error. In such a way, the ECG data, after being sparsified, can
consume much less energy compared with the case without
sparsification or traditional approaches.

In Fig. 2(b), the ODAS algorithms search from the design
variabilities the optimal deep sparsification architecture, with
either energy constraint or error constraint. The resulted
architectures will have minimum energy consumption or
minimum error, respectively.

B. DEEP SPARSIFICATION

The proposed deep sparsification approach for ECG
streaming is 1D Convolutional Autoencoder (CAE) [1-3].
CAE has two building blocks: the encoder and the decoder.
The former one has multiple stages of convolutional filters to
extract the key patterns in the ECG data X, as well as max
pooling layers to reduce the dimensionality of the feature
map. In such a way, the ECG signal is sparsified into a short
vector S with critical patterns. The decoding process is given
in (1), where X is the original signal with a length of N, and
S is the sparse representation with a length of M. One thing
to note is that we have designed the CAE to be 1D, meaning
that the input image is 1D and the feature map is also 1D for
temporal pattern extraction.

S = Encoder(X) (1)
X={xli=1..N}LS={s|j =1,..M}

Afterwards, on the smart phone, the sparse representation
S is decoded as the estimate of the original signal, X. The
process is given in (2), where X also has a length of N.

X = Decoder(S),X = {%]i = 1,..N} )

The promising advantage of the proposed 1D CAE is that
it can effectively learn the patterns in the ECG data through
deep neural learning and efficiently sparsify ECG with 1D
operators. But CAE design has a high degree of design
freedom, meaning that there are many variables which are
related to sparsification error, energy reduction and energy
overhead.

C. DEEP ARCHITECTURE VARIABILITIES

To further investigate how design factors of 1D CAE impact
the sparsification error, energy reduction and energy
overhead, we here select four critical design variabilities for
the CAE architecture «, which is a function of input
dimension I, feature map F, convolutional filter size C, and
the depth D, as given in (3).

The sparsification ratio is determined by the depth D, i.e.,
the number of stages, since here we have fixed the
maxpooling size of each stage to be two for convenient
comparison. The sparsification error is related to all four
variables. The total energy is related to the transmission
energy reduction, the energy overhead of sparsification, and
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other system energy consumptions. Therefore, it is a
nonlinear problem and thus the ODAS algorithms are
proposed to solve this problem for determining the optimal
architecture.

a =y, F,C, D) 3)

D. OPTIMAL DEEP ARCHITECTURE SEARCH (ODAS)
The ODAS algorithms are proposed to solve the nonlinear
problem of searching an optimal CAE architecture, given the
complex design variables and their relationships to both error
and total energy.

Two strategies are considered here: ODAS with energy
constraint (ODAS-energy), and ODAS with sparsification
error constraint (ODAS-error), given in (4) and (5),
respectively. The former one, as shown in (4), searches an
optimal CAE architecture @® with minimum error Z, while
making sure the total energy & is no more than a threshold

Eth-
af =argminZ(a),s.t.e < & 4
a

The second algorithm, i.e., ODAS-error as shown in (5),
searches an optimal CAE architecture @€ with minimum
energy E, while making sure the sparsification error € is no
more than a threshold €,,.

a¢ = argminE(a),s.t.e < € %)
a

We will then detail two ODAS algorithms, which can be
used for different application scenarios, i.e., energy-
constrained or error-constrained applications.

D. ODAS WITH SPARSIFICATION ENERGY
CONSTRAINT

ODAS-energy handles the scenario which has an energy
constraint, meaning that the total energy should not exceed a
threshold.

ODAS-energy is detailed in Algorithm 1, which reads in
the architecture variables and constraint, searches through the
solution space, and returns the optimal CAE architecture.
More specifically, the algorithm will first search through
different CAE depths, since the depth directly determines the
sparsification ratio and thus has major contributions to the
energy reduction. However, when increasing the depth, the
error usually increases. Therefore, the optimal architecture
should correspond to appropriate depth that can meet the
energy constraint while resulting in a small error. This will
be further demonstrated in the results section, which will
indicate that depth is the first degree of freedom where the
ODAS-energy algorithm needs to explore.

Then, the ODAS-energy algorithm will search through the
input dimension, i.e., the second degree of freedom, followed
by the feature map and then the convolutional filter size.
Considering the ECG database that we will use contains lots
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Algorithm 1 ODAS-energy

Input:

input dimension @' = {I|I = 1, ..., Imax}

feature map @ = {F|F = 1, ..., Fmax}
convolutional filter size ¢ = {C|C = 1, ..., Cmax}
depth ®? = {D|D =1, ..., Dmax}

energy threshold &,

Output:
optimal architecture a&’
error for the optimal architecture €’

energy for the optimal architecture £*

Procedure:
a® = NULL //initialization
€ = INFINITY //initialization
for D = 1,... Dmax do //low to high
for] =1,...,Imax do //low to high
for F = Fmax, ...,1 do //high to low
for C = Cmax, ..., 1do //high to low

€ =Er. + Ep;+ Egys /lenergy from wireless
transmission, CAE overhead, and other system components
ife <&y
ifZ(a) < e
at «y(U,F,C,D)
€ « Z(a)

//energy threshold

//minimize error

e ¢
end if
end if
end for

end for
end for
if a®" is not NULL

break
end if

//stop searching depth

end for

*

return a¢, e ¢ /loptimal architecture

of arrythmia heartbeats, the signal is highly diverse, which
makes long-signal-segment sparsification challenging. So the
algorithm searches the input dimension from low to high.
Further, more feature maps and greater filter sizes usually
yield lower reconstruction errors, we will search them from
high to low.

By leveraging the proposed ODAS-energy algorithm we
expect that the optimal CAE architecture can be effectively
determined. The optimal architecture will not only meet the
energy constraint but also own minimum sparsification error.

E. ODAS WITH ERROR CONSTRAINT

The ODAS-error algorithm aims to determine the optimal
architecture that meets the sparsification error constraint
while owns minimum energy. Here we mainly introduce the
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strategy of ODAS-error algorithm, which firstly search depth
from high to low, i.e., the error is from high to low. Then the
algorithm searches the input width, the feature map, and the
convolutional filter size. More demonstrations will be given
in the results section.

F. SYSTEM EVALUATION

To evaluate the proposed novel framework, we will study
different CAE design parameters. The set of depth values ®°
includes 2, 4 and 6 (sparsification ratio = 4/16/64,
respectively); the set of input dimension values @' includes
128, 256 and 512; the set of feature map values @ includes
2, 4 and 6; the set of convolutional filter sizes @ includes 2,
4, 8 and 12. Through this through evaluation, we aims to
demonstrate the design principles of effective CAE and the
ODAS algorithms proposed.

lll. RESULTS

A. . EXPERIMENTAL SETUP

To evaluate the proposed framework, we here use the
popular MIT-BIH Arrythmia ECG Database [4-6] and select
ten subjects without severe motion artifacts. This database
include not only arrhythmia but also other kinds of heart
diseases, making the data sparsification very challenging.
The sampling rate of ECG is 360Hz, and the signal is
preprocessed by a band-pass filter (0.5 to 49.5 Hz) to remove
the baseline wander and powerline interference. The ECG
stream is segmented with a window size equal to the input
width of CAE, depending on the simulation requirements. To
minimize the engineering effort and maximize the
generalization ability of the algorithm, the ECG heartbeat
locations are not identified, meaning that the segmentation is
random. We have conducted subject-wise evaluation, to
investigate whether a subject’s own data is sufficient for
training the deep learning framework. In future, we will
further consider other evaluation method like Ileave-
one/more-subject out cross validation. 75% of each ECG
stream is used for training and 25% for testing.

B. SPARSIFICATION RATIO VERSUS SPARSIFICATION
ERROR

With different CAE depths, we can achieve various
sparsification ratios, or compression ratios. Meanwhile, the
corresponding  sparsification errors also differ. Fig. 3
illustrates sparsification ratio versus sparsification Error,
where CAE, DWT, ORI, CR and RMSE stand for
convolutional autoencoder, discrete wavelet transform,
original data without sparsification, compression ratio and
root mean square error, respectively.

When increasing CR, for both CAE and DWT, RMSE
increases since more non-critical patterns are filtered out
for sparsification purpose. Under low CR, say 16, DWT
show better performance, but when increasing CR to 32 or
64, CAE shows much better performance, thanks to CAE’s
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FIGURE. 3 Sparsification versus
Sparsification Error.

Notes. CAE: convolutional autoencoder; DWT: discrete wavelet
transform; ORI: original data without sparsification; CR:

compression ratio; root mean square error.

(compression) Ratio

intelligent removal of non-critical information in the ECG
signal. This will be further illustrated later by the
waveforms of the reconstructed signals.

Further, for CAE, there are multiple dots since there are
combinations of different design variables. Take CR=64 as
an example, the design variables, if chosen appropriately,
can reduce RMSE dramatically.

Overall, the CAE approaches provide many solution
candidates that have a less RMSE, given high compression
ratios.

Next, we will analyze the contribution of different
design variables to RMSE in detail.

C. DESIGN PRINCIPLE — INPUT DIMENSION

Fig. 4 shows the changes of sparsification error, under
different input dimensions (128, 256, 512). The top left dot
(2, 2) corresponds to (#feature map, filter size), and the
horizontal axis gives the scenario indices. CR64 is selected to
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FIGURE. 5 Changes of Sparsification Error, under different
#feature map (2, 4, 6).

Notes. The top left dot 128, 2: input dimension, filter size;
horizontal axis: scenario index; FM: feature map.
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FIGURE. 4 Changes of Sparsification Error, under different input
dimensions (128, 256, 512).

Notes. The top left dot 2, 2: #feature map, filter size; horizontal
axis: scenario index; InWidth: input dimension.

illustrate the details.

We can observe that the input dimension has a positive
correlation with RMSE. It is because the disease ECG
database is highly diverse, and if the input dimension is too
high, it is much more challenging to reconstruct the diverse
signals.

The complexity when considering the feature map and
the convolutional figure size is further given below.

D. DESIGN PRINCIPLE — FEATURE MAP
Fig. 5 gives the changes of sparsification error, under
different #feature map (2, 4, 6). The top left dot (128, 2)
corresponds to (input dimension, filter size).

The #feature map, relatively speaking, has a negative
correlation with RMSE, meaning that more feature maps
can capture richer patterns from the original signal, thereby
decreasing the error. Meanwhile, other design variables are
also related to RMSE, resulting in a complex distribution of
solution space.

E. DESIGN PRINCIPLE — CONVOLUTIONAL FILTER
SIZE

Fig. 6 gives the sparsification error, under different filter
sizes (2, 4, 8, 12). The top left dot (128, 2) corresponds to
(input dimension, #feature map).

When increasing the convolutional filter size, RMSE
basically decreases, indicating that a stronger ability to
capture more spatial information contributes to signal
reconstruction. Again, the complex distribution of solution
space is related to all design variables. Besides, the design
variables also generate different energy overhead.

F. TOTAL ENERGY VERS US SPARSIFICATION ERROR
Different CAE architectures make various contributions to
the reconstruction error, however, for a specific sparsifcation
ratio, we should not simply select the CAE architecture with
the smallest error. This is because CAE also generated
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FIGURE. 6 Changes of Sparsification Error, under different filter
sizes (2, 4, 8, 12).

Notes. The top left dot 128, 2: input dimension, #feature map;
horizontal axis: scenario index; COV: convolutional filter size.

energy consumption and we need to consider the overhead
induced by CAE to the total energy.

In Fig. 7, total energy versus sparsification error is
given. Encouragingly, for CAE-CR16 and CAE-CR-64,
there are many CAE options that are better than the DWT
options. These CAE solutions are under the DWT curve,
indicating these solutions can offer lower RMSE with the
same energy constraint, or offer lower energy with the same
error constraint.

G. DESIGN PRINCIPLES WHEN CONSIDERING
OVERHEAD

The zoomed in versions of these better CAE solutions are
given in Fig. 8, 9 and 10, which illustrate the distribution of
the solutions under different input dimensions, different
#feature map, and different filter sizes, respectively. One
thing to note is that these three figures show the same
measurement distribution but with different annotation
methods to highlight the contribution of different design
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FIGURE. 8 Total Energy versus Sparsification Error, under
different input dimensions (128, 256, 512).

Notes. The top left dot 6, 12: #feature map, filter size; horizontal
axis: scenario index; InWidth: input dimension.

VOLUME XX, 2023

] = CAE-CR4
4.5 | CAE-CR16
= CAE-CR64
= 4.0 e _DWT
= - ORI
=
g 3.5 4
.ol N
— 3.0 4
© \
*5 \
F 254 S =
‘.\"I-_._
2.0 1 [T -.:'.'ﬁ'-“i‘l-r--l--

0.000 0.025 0.050 0.075 0.100 0.125
RMSE (mV)

FIGURE. 7 Total Energy versus Sparsification Error.

Notes. CAE: convolutional autoencoder; DWT: discrete wavelet
transform; ORI: original data without sparsification; CR:
compression ratio.

parameters. In Fig. 8, we want to compare three input
dimensions labeled with different colors, in Fig. 9, different
#feature map is highlighted with different colors, and Fig. 10
highlights different filter sizes. These visualizations further
show that the solution space is highly complex. But at the
same time, some principles still hold: the smaller input
dimensions, more feature maps, and larger filter sizes
relatively give better solutions.

Therefore, we will later demonstrate that, by leveraging
these principles, the proposed ODAS algorithm can
effectively select the optimal CAE architectures.

To further demonstrate the performance of CAE and
DTW, in Fig. 11, the recovered signals for different subjects
and different approaches (CAE and DWT) are given.
FM2/4/6 corresponds to CR4/16/64, respectively. We can
observer that CAE significantly outperforms DWT.

H. ODAS WITH SPARSIFICATION ENERGY
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FIGURE. 9 Total Energy versus Sparsification Error, under
different #feature map (2, 4, 6).

Notes. The top left dot 128, 2: input dimension, filter size;
horizontal axis: scenario index; FM: feature map.
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FIGURE. 10 Total Energy versus Sparsification Error, under
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CONSTRAINT
The ODAS-energy algorithm searches the solution space to
determine the optimal CAE architecture that meets the
energy constraint and owns the smallest sparsification error.
The comparison on the optimal CAE architecture with
DWT is given in Fig. 12(a), which the energy constrain is
set as 1.90 mJ. The sparsification error (RMSE) for DWT
and CAE is 0.13 mV and 0.09 mV, respectively. The
optimal CAE architecture is (128, 2, 8, 6), corresponds to
(input dimension, #feature map, filter size, depth). So the
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sparsification ratio is 64. The optimal DWT architecture is
CR64. This is in align with the solution space shown in Fig.
7, and detailed in Fig. 8, 9, and 10.

The algorithm first searches the CAE depth from low to
high until the depth meets the requirements of the energy
constraint. The algorithm then searches the in put
dimension from low to high, the #feature map from high to
low, and the filter size from high to low, respectively.
Overall, ODAS-energy searches better solutions first based
on the design principles, and if the current CAE depth
provides at least one solution, it stops. For each depth,
before search termination.

In such a way, the ODA-energy algorithm can determine
an optimal solution that, not only meets the energy budget,
but also has best combination of the design variables for
error minimization.

I. ODAS WITH ERROR CONSTRAINT

The ODAS-error algorithm, similar to ODAS-energy, also
searches the solution space to determine the CAE
architecture. But different constraints usually yield different
optimal solutions.

Fig. 12(b), where the error (RMSE) constraint is set as
0.08 mV, the optimal architecture for DWT and CAE has an
energy consumption of 2.03 mJ and 1.91 mJ, respectively.
The optimal CAE architecture is (128, 4, 8, 6), corresponds
to (input dimension, #feature map, filter size, depth). So the
sparsification ratio is 64. The optimal DWT architecture is
CR16, indicating that DWT, to meet the error constraint,
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FIGURE. 11 The recovered signals for different subjects and different approaches (CAE and DWT), suggesting that CAE significantly

outperforms DTW. FM2/4/6 corresponds to CR4/16/64, respectively.
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(a) Energy constrained (<=1.90)
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(b) Error constrained (<=0.08)
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FIGURE. 12 The energy and error for the selected optimal
architectures, under energy constraint (a) and error constriction,
respectively.

can only decreases the sparsification ratio and increases the
energy.

IV. CONCLUSION

IoT big data streaming is essential for data-driven smart
health and smart world applications. Targeting the challenges
induced by the power hungriness of IoT long-term streaming,
we have proposed a deep learning-enabled big data
sparsification framework. The novel framework can, not only
sparsify the IoT data using intelligent autoencoder neural
networks, but also determines the optimal deep learning
architecture under the constraint. Compared with the
traditional DWT data sparsification, the deep learning
architecture determined by our framework provides better
solutions, meaning that our framework can either offer the
smallest error under the energy constraint, or offer the lowest
energy under the error constraint. This research, validated on
the ECG-based cardiac monitoring application, is expected to
greatly advance IoT big data applications.
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