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Solid waste management (SWM) is an interdisciplinary field which requires a range of metrics to make informed
decisions. Social indicators are of high interest to decision-makers but are particularly difficult to integrate into
optimization frameworks, largely due to challenges of quantification. This study presents a methodology for
quantifying a social metric for integration into sustainability assessment of solid waste management (SWM)
systems using optimization. To identify social indicators, waste managers were consulted in Columbia, Missouri,
USA. Meetings were held prior to indicator creation and reviewed mid-project with stakeholders. A number of
concerns that could be categorized as social were raised. For the two most pressing issues to managers, quan-
titative metrics were created. First, SWM experiences high employee turnover, largely due to low wages.
Turnover leads to less efficiency in collection and treatment, gaps in service, and cost to citizens. Hence, the first
social metric proposed represents turnover of employees including loss of productivity, hiring and replacement
costs, and quit rate. Second, this work estimated the value of exposure risk associated with manual material
handling activities. This second social metric considered a worker’s physical exposure to risk via activities of
lifting, carrying, placing, emptying, and sitting. These social metrics were used within a multi-criterion decision-
making framework for SWM, extending the traditional focus on economic and environmental objective functions.
Results illustrate the trade-offs among these conflicting criteria and provide managerial insights into the costs
and benefits of different waste management strategies.
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1. Introduction

Solid Waste Management (SWM) generation has grown proportion-
ally with increasing global population. This growing generation rate
demands businesses and public-sector entities collect, treat, and dispose
of SWM efficiently (Kovacic et al., 2017). This requires making tailored
decisions for SWM strategies with many variables, time lags, and un-
certainties. There is a robust academic literature applying optimization
models to address SWM issues (Achillas et al., 2013; Goulart Coelho
et al., 2017; Singh, 2019) with increasing desire for inclusion of the
social impacts and benefits, in addition to the economic and environ-
mental pillars of sustainability (Gutierrez-Lopez et al., 2023). The inte-
gration of economic, environmental and social considerations presents a
multi-criteria decision making problem for managers to identify sus-
tainable practices that generate the greatest mix of benefits
(Rodriguez-Espindola et al., 2022). However, inclusion of social di-
mensions of sustainabiltiy remains under-represented.

Previous studies have focused on design phases of SWM systems and
define social costs and risks based on their potential impact on cus-
tomers (i.e., users of the WM service). One common approach has been
to use externality costs to characterize the social effects of an SWM
system. Cucchiella et al. (2014) used the term “wealth public benefit” to
capture the effect on public health from the use of an incinerator.
Similarly, Mavrotas et al. (2015) implemented external costs to repre-
sent impacts to the environment and the quality of life. Other re-
searchers have defined these concepts in terms of risks such as
describing societal risk through possible fatalities due to a WM system
implementation  (Santibanez-Aguilar et  al,  2015) and
visual-contamination due to emissions (i.e. CO2, SO NOy, heavy metals,
and volatile organic carbon molecules) which impair citizens in nearby
areas (Yousefloo and Babazadeh, 2020). Externality costs and risks,
although widely used, struggle with the internalization process, i.e.,
incorporating the parties involved into the decision-making process
(Fianu, 2017).

Life Cycle Assessment (LCA)-based optimization has been applied to
environmental impacts of SWM systems, although applications to social
sustainability have been more limited. Levis et al. (2013) presented a
modeling approach (SWOLF, the Solid Waste Optimization Life Cycle
Framework), to more accurately represent SWM systems that consider
many different waste streams, varying generation sector types (e.g.,
single family collection), and multiple potential collection and treat-
ment processes. However, SWOLF and other similar optimization
frameworks have incorporated costs and environmental criteria into
analyses of SWM, without inclusion of social criteria (Habibi et al.,
2017). Limited attention has been placed on optimization approaches
that incorporate the three pillars of sustainability together
(Gutierrez-Lopez et al., 2023), hence, a need for further research in this
area exists, particularly with respect to the quantification of social costs
and benefits. Minimal consideration has been given to the definition of
social metrics that can be used in an operational WM system using input
from both decision makers and literature.

This study departs from previous work in that it narrows the range of
concerns not from literature but by using details from a case site ob-
tained by speaking with the managers directly involved with the waste
management operations. Using data from the field to shape the metrics
yields a more socially robust analysis best suited for decision making.
This work elaborates on further alternatives to quantify such impacts of
SWM activities on employees.

This paper first provides a new approach for the quantification of
stakeholder-identified social concerns within a local WM system, then
introduces these metrics into an optimization framework to provide
insights into the interactions between the conflicting criteria associated
with WM systems. This is achieved via an extension of SWOLF to include
social criteria. Social components are defined based on the needs of a
local WM system, in Columbia, Missouri, USA. These social components
are employee turnover and the related factor of a worker’s physical
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exposure to activities such as lifting, carrying, placing, emptying, and
sitting. The grounds for the selection of these components are detailed in
Section 4.2.

These two new social criteria are utilized for both single objective
optimization minimizing social costs, and to perform a multi-criteria
analysis, identifying trade-offs between social, economic and environ-
mental criteria. Consequently, Section 2 summarizes the previous
research and applications of social criteria in SWM optimization in the
literature. Section 3 introduces the case study used in this article. Sec-
tion 4 provides explanations of the adaptation of SWOLF to consider
social metrics and elaborates on their quantification. Section 5 presents
the results and discussion derived from the case study and sensitivity
analysis. Finally, Section 6 states the conclusions and identifies possible
directions for future research.

2. Literature review
2.1. Social criteria and optimization

Mathematical programming has been widely used to address SWM
problems, with many authors considering multiple objectives. A
comprehensive review presented by Gutierrez-Lopez et al. (2023) dis-
cussed studies from the past decade emphasizing the inclusion of social
aspects and the challenges of their quantification for optimization pur-
poses. Applications vary from general SWM networks design to more
specific optimization of WM treatment processes. Sustainable WM sys-
tems frameworks include the interests of multidisciplinary stakeholders
such as manufacturers, managers, local governments, customers, tech-
nical and legislative experts, among others (Chowdhury et al., 2023). To
understand these social system factors, researchers use a variety of
methods such as interviews, surveys, or questionnares to learn from
different stakeholders (Table 1). According to the findings presented by
Gutierrez-Lopez et al. (2023), only 10% (N = 125) of the authors
involved stakeholders to define social indicators with decision-making
purposes.

Previous multi-criteria optimization studies have considered social
concerns in SWM that can be associated with different stakeholder
groups identified in United Nations Environment Program (UNEP)
guidelines for Social Life Cycle Assessment (S-LCA) (Benoit and Mazijn,
2013). Table 2 summarizes the social concerns included in prior opti-
mization studies (please see the Stakeholder groups identified in the
bottom row), we observe that the previous literature has focused on the
Local Community (all 19 studies included in Table 2), with other
stakeholder groups addressed in many, but not all of these studies, such
as Workers (10 studies), Consumers (13 studies), Society (12 studies)
and Value Chain Actors (including SWM management, 12 studies),
although none of the studies specifically addressed Children. The most
popular social metric modeled was Job Creation which presents a
straightforward definition to measure the number of job opportunities
due to the SWM decisions made (e.g., establishing new treatment fa-
cilities) (De Feo et al., 2021; Deus et al., 2019; Heidari et al., 2019;

Table 1
Methods to understand social factors from stakeholders.

Methods Social aspects Authors

Questionnaire-based Determinants of sustainability: social, Zurbriigg et al.

assessment institutional, and economic elements (2012)
Structured Attitudes of residents related to life Al-Khatib et al.
questionnarie cycle of facilities (2014)
Social surveys Social awareness about WM Ferronato et al.
(2017)

Govind Kharat
et al. (2019)

Fuzzy delphi method Evaluation of WM technology

alternatives

Fuzzy simple Opinion of experts of social Rabbani et al.
additive weighting performenace of WM technologies (2021)

S-LCA Social inventory indicators that affects ~ Ardolino et al.
workers, local community, and society. (2023)
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Mamashli and Javadian, 2021). Other common social impact metrics
found in the literature were related to Health and Safety, such as esti-
mating damage to human health using the concept of disability adjusted
life years (DALY) (De Feo et al., 2021); lost days caused by work injuries
(Mamashli and Javadian, 2021), effect that treatment centers might
have to employees health using a scoring system (Govind Kharat et al.,
2019; Rabbani et al., 2021), or risk based on population location
(Mamashli and Javadian, 2021).

LCA has been used to assess environmental impacts and resources in
waste management systems (Christensen et al., 2020; Fei et al., 2022;
Gonzalez-Garcia et al., 2018). By extending the consideration to social
themes, S-LCA aims to capture social impacts over the supply chain, and
in some cases into future generations of the system under analysis
(Ardolino et al., 2023; Mahdavi et al., 2022). The range of possible
metrics required to capture all potential health and safety concerns
poses a challenge to developing a natural quantification method. S-LCA
as a standalone process lacks the capability and role to directly
guide-decision-making, since it does not provide prescriptive analysis. In
order to provide solutions that incorporate stakeholder perspectives that
reflect their experiences, LCA-based methods can be integrated with
disciplines such as operations research, through techniques such as
multi-criteria decision-making. Thus, in this paper we suggest the
application of a collaborative process involving stakeholders to develop
a social metric integrated within a mathematical optimization
framework.

2.2. Life-cycle based optimization using SWOLF

The SWOLF mathematical optimization framework provides a deci-
sion support tool that accounts for costs and environmental aspects
related to SWM. SWOLF utilizes a life cycle-based approach for quan-
tifying environmental impacts and for populating a database of cost
components for generic SWM systems. Therefore, it provides adapt-
ability and flexibility accommodating diverse constraints and goals.

SWOLF was introduced by Levis et al. (2013) as a life cycle-based
framework to optimize — over multiple time stages — the collection
and treatment of all waste materials from curb to final disposal by
minimizing cost or environmental impacts. The foreground emissions
are calculated using engineering equations and the background emis-
sions, e.g., electricity, diesel, associated with inputs to the SWM system
are estimated using data from Ecoinvent v3.5. SWOLF allows a user to
adjust key process parameter values to represent local technology or
management conditions, (e.g., landfill moisture) and waste diversion
constraints. In 2022, Sardarmehni et al. (2022) adapted SWOLF into an
open-source Python package called SwolfPy that allows users to create
and analyze SWM networks. For illustration purposes, Fig. 1 shows an
abbreviated structure of the SwolfPy package with the main elements
utilized in this manuscript (see Sardarmehni et al., 2022).

Its adaptability and flexibility has allowed the development of
several applications, accordingly, Levis et al. (2014) and other authors
have employed SWOLF in case studies using hypothetical or real data,
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and have developed extensions to the modeling framework. To our
knowledge, only one author attempted to integrate a social metric into
SWOLF for analysis. Martinez-Sanchez et al. (2017) developed a case
study to integrate social costs using S-LCC (societal lifecycle costing),
which is defined as accounting prices to represent the marginal damage
of externalities caused by pollutants (e.g., CO2. NOy, etc.) associated
with each treatment option (e.g., incineration, composting) and added
to the budget costs. Martinez-Sanchez et al. (2017) excluded other social
impacts (such as odor, noise, visual instruction, congestion, etc.) due to a
lack of representative data.

SWOLF has been used to evaluate policies in a few instances. Levis
et al. (2014) presented the first SWOLF application, analyzing a hypo-
thetical suburban U.S. city over 30 years considering changes in popu-
lation waste generation, energy mix and costs. Stanisavljevic et al.
(2017) used SWOLF to evaluate scenarios that meet EU goals by 2030 in
terms of biodegradable materials diversion and recycled materials.
Jaunich et al. (2019) evaluated costs and environmental implications of
SWM policies for Wake County, North Carolina, showing the potential of
waste-to-energy technologies to increase landfill diversion. Later, Luo
et al. (2020) reported the use of SWOLF in combination with Reactive
Nitrogen (Nr) flow assessment applied to a case study in China, high-
lighting the economic and environmental trade-offs of recycling SW.

Another SWOLF implementation was proposed by Jaunich et al.
(2021) for policy analysis, aiming to incorporate more flexibility when
selecting SWM strategies. These authors included feedback from SWM
personnel to define and analyze revised strategies for an iterative
optimization-based solution approach. However, their work was limited
to the use of costs and GHG emissions as objectives.

3. Case study description

In this manuscript, the case study evaluates two social costs, total
costs, and global warming potential (GWP) of the SWM system of the
city of Columbia, Missouri, USA. An optimization-based approach is
presented to minimize the impacts of these criteria and analyze their
trade-offs. GWP is calculated according to CML 2001 over a 100-year
time horizon (Hischier et al., 2010). The functional unit is the total
mass of municipal solid waste (MSW) collected curbside in Columbia.
The technologies that are currently operational in Columbia are landfill
(LF), material recovery facility (MRF), and composting. SwolfPy con-
siders that recyclables and yard wastes are collected separately for
treatment in MRF and composting, respectively. The MRF is a sorting
process in SWOLF and not a standalone treatment process, thus the se-
lection of this process is followed by further treatment in a Reprocessing
facility. All other wastes present in MSW (i.e., not yard waste or re-
cyclables), referred to as residual waste, are collected separately and
disposed of in the landfill.

The city of Columbia has a population of 126,254 with 2.31 persons
per household according to the 2020 Census. The municipal solid waste
composition generated from the residential sector is taken from a state-
wide study conducted in 2016-2017 by Missouri Department of Natural
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Fig. 1. An extract of SwolfPy classes, highlighting the classes that are modified in the extension proposed. Based on Sardarmehni et al. (2022).
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Resources & MSW Consultants (2018) and modeled Columbia as a small
metro. The residential waste generation rate used was 5.59 kg/per-
son-day as calculated based on Equation (1) (Sardarmehni et al., 2022).
A complete list of modelling parameters can be found in Appendix A.

waste generation rate
Total waste [kg/year| 'e))

person
house

] “Number of houses [houses] 222

Residents per house [

Social metrics exist within a wide spectrum, they could refer to
satisfaction, public participation, employment potential, population
affected, or visual pollution (among others), depending upon the specific
stakeholders and the local context (Tokede and Traverso, 2020). De-
cisions made by stakeholders can directly influence the social impact
derived from WM activities. We worked with stakeholders in Columbia,
Missouri, USA to identify their social concerns and then developed
quantitative indicators to address those concerns. Operational
decision-making rests with the City of Columbia Solid Waste Utility,
accordingly, we interviewed the five lead WM professionals from
Columbia. We gathered background information about the site’s oper-
ation, goals, and vision to understand their concerns and needs. Findings
from the interview data analysis performed by White et al. (2023), show
that the two topics of most concern to management are (1) general
employee turnover and (2) avoiding injury risks associated with
manually handling waste and while operating trucks.

4. Methodology

This section elaborates on the analytical process followed in this
paper. The extension of SwolfPy framework is explained in Section 4.1
and the quantification of social metrics is presented in Section 4.2.

4.1. Extending SwolfPy

The original SWOLF framework includes cost and environmental
criteria. These criteria are modeled using Life Cyle Impact Assessment
(LCIA) methods. Each treatment process (“process model” in SWOLF
nomenclature) is modeled independently using materials properties of
waste and engineering equations to represent treatments. Model outputs
are estimated per Mg for each incoming waste material (i.e., waste
fraction, categorized into groups such as organics, paper, plastics, etc.,
Appendix B). The resulting materials and energy flows (e.g., diesel
consumed, carbon dioxide emitted) of each process model is related to
life cycle data in Ecoinvent v3.5 for these materials to calculate and
aggregate an overall environmental LCA score. The LCA score is an
aggregated measure that considers all treatment processes in the SWM
system. SWOLF allows the user to choose environmental indicators from
existing LCIA methods datasets such as TRACI, CML, IPCC, etc. When the
single objective optimization occurs, it optimizes the LCA score for
either costs or a selected environmental criterion, here the impact
category climate change in units of global warming potential. Fig. 2
provides an illustration of this LCA computation process.
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The social indicator follows the same structure as the estimation of
materials and energy when estimating the social cost for each process
within the SWM system. That is, each process model is modified such
that the social indicator is computed individually in each process and
then aggregated to present a final social score, all using a common social
unit for social indicators. It is not a full life cycle perspective, because
only the social costs incurred within Columbia, MO waste management
are accounted for. Appendix C provides a more-detailed explanation of
the specific changes made to the SWOLF code and input files. Thus, the
LCA score as adopted by SWOLF to measure social aspects differs from S-
LCA in the definition of the social indicators. We focused the creation of
indicators based on stakeholders inputs; moreover, as our objective is to
aid decision making via optimization, we provide a procedure to obtain
quantitative indicators as explained in Section 4.2.

Equation (2) presents a mathematical representation of the local
social indicator score, which is defined as the summation of the indi-
vidual contribution per waste material per treatment process to the so-
cial impact metric.

LCA social score = ZZfistocijk (2)
T K

where,

fij = total flow of material i from treatment process j.

socjj, = social impact k of one unit of flow of material i from
treatment process j.

4.2. Creating quantitative social metrics

Social metrics have unique features that complicate their quantifi-
cation process. Social metrics can depend on the local setting, the
stakeholders’ interests, and the decisions under consideration, among
other things. We followed the process layout presented in Fig. 3 to un-
derstand the needs and quantify two social metrics of interest.

The City of Columbia interviewees acknowledged that the WM job is
physically demanding and while the city employee benefits were strong,
the pay level was reported as a reason for turnover. Consequently, SWM
workers often leave after a short tenure in their position, which con-
tributes to understaffing. The pay level was viewed by the WM pro-
fessionals as outside of their control, because, like other municipal
employees, the pay structure and benefits are determined through city
governance, and was thus excluded from our metric. In summary, by
combining input from WM stakeholders and the literature, we focused
our efforts on developing metrics to address worker safety and turnover.

Fig. 3. Social metrics quantification process.

ieemaiary

Fig. 2. Illustration of computations in SWOLF for local social metrics.
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Based on stakeholders’ concerns, we reviewed literature on ergo-
nomics, pay-level, and turnover in general and in WM contexts. Un-
surprisingly, we found pay level has a positive relationship with
employer attractiveness and retention (Rynes et al., 2004; Waples and
Brachle, 2020). Moreover, turnover is motivated by jobs with increased
physical demands (Ferguson et al., 2014) and that a climate of work-
place safety has a relationship with turnover intention and job satis-
faction (McCaughey et al. (2013). Accordingly, better safety climate
perceptions and training opportunities can significantly increase job
satisfaction and employee retention (Huang et al., 2016; Balogun et al.,
2020; Smith, 2018). It is imperative to explain to workers the correct
working procedures and manual material handling (MMH) practices to
avoid awkward postures, incorrect movements, and person-dependent
working approaches that can lead to increased risk levels (Battini
et al., 2018; Botti et al., 2020).

4.2.1. Worker’s physical exposure

Estimates for the social metric termed, Worker’s Physical Exposure
(WPE), were calculated for each waste typology, i, and treatment pro-
cess, j, following the conceptual framework shown in Fig. 4. In sum-
mary, risk associated with each combination of i and j were estimated in
$/ton based on workload, ergonomic risk and the cost associated with
worker injury.

MMH results in the largest fraction of work-related musculoskeletal
disorders (WMSDs) for workers in collection, transport, and treatment of
non-dangerous waste (Botti et al., 2020; Bunn et al., 2011; Mol et al.,
2017). The ergonomics analysis in previous studies presented risk as-
sessments of SWM activities using methodologies as NIOSH Variable
Lifting Index (VLI) for evaluating variable lifting tasks and Rapid Entire
Body Assessment (REBA) in combination with Rapid Upper Limb
Assessment (RULA) for postural analysis. In addition, driving activities
(e.g., collection trucks, compactors, or crawlers) pose another risk.
There is a relationship between whole-body vibration (WBV) and
musculoskeletal disorders (MSD) mainly due to the absorption and
dissipation of forces as a result of long sitting times in machinery
(Moraes et al., 2016).

Data from ergonomic studies were taken from the literature and
related to each treatment process and material in SWOLF (Appendices D
and E). We estimated the workload of workers on a year using frequency
of activities, time exposure, and weight exposure (Fig. 4). The activities
considered during waste management are lifting, carrying, emptying,
placing, and sitting. The time exposure to these activities was taken from
Rossi et al. (2022), and the weight load exposure for these same activ-
ities was taken from Ferguson et al. (2014). The percentage of time
dedicated to MMH for collection is assumed to be 47% (Botti et al.,
2020), while for treatment processes manual activities are assumed to

i
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constitute 83% (Degli Esposti et al., 2023). Frequencies of activities
based on waste typology are assumed in activities per minute according
to data presented by Rossi et al. (2022). Waste typology classification
(Botti et al., 2020; Rossi et al., 2022) is translated into six categories that
correspond to high level categories of waste fractions in SWOLF. These
are: organic, paper, glass, metals, plastics, and other.

Risk assessment is considered by waste typology and activities in a
scale ranging from low to very high according to NIOSH VLI and RULA
index as shown in Table 3. Lifting, carrying, and emptying risk is taken
from Rossi et al. (2022) and Botti et al. (2020). The risk associated with
the placing activity is assumed to be the same as carrying activity.
Carrying and placing activities shared similar physical efforts as the
weight load exposure involved in each one is equivalent in the ergo-
nomic study by Ferguson et al. (2014); hence, both activities have been
assigned a common risk level. The emptying activity represents the
highest risk as in this situation workers need to overturn or toss waste
contents into the truck container. Organic waste is considered riskier as
workers tend to keep the load far from the body to avoid splashes from
wet waste. A similar phenomenon is presumed for yard trimmings and
leaves, as workers need additional shaking to empty containers and
other safety issues due to contact with thorns and sticks.

The risk assessment for driving activities utilized previously pub-
lished measures of whole-body vibration (WBV) on a driver (Kim et al.,
2016; Maeda and Morioka, 1998; Smets et al., 2010) based on the In-
ternational Standard Organization (ISO) 2631-1 WBV standards.
Reference values used to represent driving impact on WPE due to pro-
cesses (e.g., LF, WTE, collection) in SWOLF ranged from 0.44 to 0.80
m/s? (Smets et al., 2010). These values are within the health guidance
caution zone, which is mostly above action limit (0.5 m/s%) but overall,
below daily exposure limit (1.15 m/s?). Additional information is pre-
sented in Table B-7, C-5, and C-6 in the Appendix.

Finally, we estimated average costs values of $1,590, $26,120,
$62,660 for each level of disability using (i.e. $/incident) information
from a report of costs by type of disability considering data from 2015 to
2018 according to the Missouri Department of Labor and Industrial

Table 3
Risk associated based on material and activity performed.
Material Lifting Carrying Emptying Placing
Organics Moderate Moderate Very High Moderate
Paper High Moderate High Moderate
Plastics Moderate Moderate High Moderate
Metal Moderate Moderate High Moderate
Glass High Moderate High Moderate
Other High Moderate High Moderate
m
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Fig. 4. Conceptual Framework to estimate Worker’s Physical Exposure Indicator.
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Relations. Occupational incidents are grouped into three types
depending on the severity of the disability caused; these types are
temporary, permanent, and death (Missouri Division of Workers’
Compensation, 2018).

4.2.1.1. Algorithm. The algorithm presented in Table 4 was applied to

estimate the worker’s physical exposure indicator. Estimates obtained
by following this algorithm are provided in Appendix F.

Table 4

Algorithm for Worker’s physical exposure indicator Estimation.

Journal of Cleaner Production 480 (2024) 144111

4.2.2. Turnover

Estimates for the turnover social metric were developed for each
waste typology i, and treatment process, j, following the conceptual
framework presented in Fig. 5. In summary, impact associated with each
combination of i and j were estimated in $/ton based on workload, loss
productivity, quit rate, and the cost associated with hiring and replacing
a worker that voluntarily quits.

Turnover can be voluntary (i.e., worker-initiated, such as

Algorithm 1: Workers’ Physical Exposure Indicator Estimation

input: f;;: frequency of MMH activities per waste typology i and treatment process j

(activities/min)
s_min: work-shift length (min/day)
s_days: work-shift length (days/year)

ty;: time exposure per manual activity k and treatment process j (s)

pj: percentage of time dedicated to MMH activities per treatment process j

wy,;: weight load exposure per manual activity k and treatment process j (N)

Tji: risk associated per waste typology i treatment process j and manual activity k

C: average costs per incident type m ($)

pj: estimated tons per day per truck/machine per treatment process j
a;: risk associated to sitting activity per treatment process j
output: WPE;: workers’ physical exposure indicator per waste typology i and treatment process j

1 For each treatment process j

2 If treatment process j has only sitting activity then

3 8;; = 0, Go to stetp 22

4 nd if

5 For each waste typology i

6 Transform f; to activities/year, new_f;; = f;; * s_min = s_days
7 For each manual activity k

8 Compute fraction of time exposure, Oy = (t;/ Xi tyj) * D)
9 For ecach waste typology i and manual activity k

10 Compute fraction of workload, w;j, = new_f;; * 6y

11 Transform workload to tons, Tjj, = @y * (1.01972 x 107% * wy;)
12 If 13 = moderate then

13 Pijk = Ctemporary /Tijk

14 else if 7, = high then

15 ‘Pijk = Cpermanent /Tijk

16 else

17 Pijk = Cdeath / Tijk

18 | |End if

19 For each waste typology i

20 |_ 8ij = Lk Pijk

21 If treatment process j has sitting activity do

22 If aj = moderate then

23 ﬁ]’ = Ctemporary /p]'

24 else if o; = high then

25 Bj = Cpermanent /pj

26 else

27 Bj = Caeatn / Pj

28 | end if

29 WPE;j = 6;; + B;

30 else
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Fig. 5. Conceptual Framework to estimate Turnover.
resignations) and involuntary (i.e., employer-initiated, such as termi- Ongori (2007) argued that voluntary resignations represent a departure
nation for poor performance) (O’Connell and Kung, 2007) In this of human capital investment, and the replacement process involves
research, we are interested in voluntary turnover, as waste management several costs to the organization. Cost components associated with
professionals interviewed shared that workers quit with high frequency. turnover according to O’Connell & Kung (2007) include 1) staffing such

Table 5
Algorithm for turnover indicator Estimation.

Algorithm 2: Turnover Indicator Estimation

input: §;;: workload in tons per year per waste typology i treatment process j
¢;j: average costs of hiring and training a new worker per treatment process j ($)
pj: estimated tons per year per truck/machine per treatment process j
a : quit rate

output: T;;: turnover indicator per waste typology i and treatment process j

1 For each treatment process j

2 If treatment process j has only sitting activity then

3 I;j = 0, Go to stetp 13

4  End if

5 For each waste typology {

6 Compute loss productivity first month, p 1;; = (8;;/12) = 0.25
7 Compute loss productivity second month, p 2;; = (8;/12)  0.50
8 Compute loss productivity third month, p_3;; = (8;;/12) * 0.75
9 Normal productivity from month 4 to 12, u_4;; = (6;) = 0.75

10 §i=c¢i/n i+ cj/p 2+ c;/p 3+ c;/u Ay

1 I =@i*a)

12 If treatment process j has sitting activity do

13 Compute loss productivity first month, 9_1; = (p;/12) * 0.25

14 Compute loss productivity second month, 9_2; = (p;/12) = 0.50
15 Compute loss productivity third month, 9_3; = (p;/12) x0.75
16 Normal productivity from month 4 to 12, 9_4; = (p;) *0.75

19 Else

21 | End if
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as recruiting and hiring, 2) vacancy that entails loss productivity or loss
business, and 3) training which refers to orientation and development.
The quit rate reflects the worker’s willingness to leave a job. This value
considers only employees who left voluntarily, excluding retirements or
transfers to other locations.

Data from previous studies and reports were taken from the literature
and related to each treatment process and material in SWOLF. Hiring
and training a replacement worker for a lost employee costs approxi-
mately 50% of the worker’s annual salary (Ongori, 2007). According to
the Occupational Employment and Wage Statistics Data the national
average annual salary for Waste Collection (NAICS 562100) was $51,
210 and for Waste treatment and disposal (NAICS 56200) was $59,380
in 2022 (U.S. Bureau of Labor Statistics, n.d.).

There is a learning curve for a new employee (Ongori, 2007) that can
be translated into the economic value associated with the loss of labor
productivity and efficiency relative to the output over the first three
months (Duda and Zirkova (2013). In this analysis, it was assumed that
a new employee works at 25% of capacity in the first month, during the
second month at 50%, in third month at 75%, and beyond 3 months at a
full 100%. The average annual quit rate of the state of Missouri was
28.8% based on data from 2013 to 2022 across all industries (U.S. Bu-
reau of Labor Statistics, 2023). Finally, the workload assumption for
workers and drivers (tons per year) is assumed to be the same as in the
previous metric Worker’s Physical Exposure.

4.2.2.1. Algorithm. The algorithm presented in Table 5 was used to
estimate the Turnover Indicator. Estimated values obtained by following
this algorithm are provided in Appendix G.

5. Results and discussion

First, in Section 5.1 we present the values determined for the local
social metrics described in Section 4.2.1 and 4.2.2. Then, Section 5.2
elaborates on the case study scenarios used to illustrate the model and its
potential implications; in Section 5.3, we conduct sensitivity analysis,
considering changes to the local social metric input values.

5.1. Estimates for social metrics

Implementing algorithms 1 and 2, we obtained estimates for the
social metrics as shown in Tables 6 and 7. More details about these es-
timates can be found in Appendix F and G. Among technologies, Mate-
rial Recovery Facility (MRF), Anaerobic Digestion (AD), and
Composting social values were greater than Landfill (LF) and Waste to
Energy (WTE), with WTE having the lowest social cost value. This dif-
ference in values is because MRF, AD, and Composting technologies
require more manual components than LF and WTE. Because waste
materials are often handled separately, or even separated by workers in
the MREF, it is possible to create metrics by waste typology for MRF, AD,
and Composting; while for LF and WTE a mix of waste is handled pri-
marily by machines, with the exception of tossing bags into a truck
during collection. Loss of productivity is negligible for machine driven
technologies (Table 7) which contributes to smaller Turnover impact
than with manual technologies (Table 6). Overall, smaller values are
better for these social metrics. For instance, our estimates for WPE

Table 6
Social metrics estimates for MRF, AD, and Composting treatment options.

Worker’s Physical Exposure [$/ton] Turnover [$/ton]

Organics 36.90 98.34
Paper 44.07 43.71
Plastics 29.52 78.67
Metal 147.61 393.36
Glass 99.16 98.34
Other 29.38 29.14
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Table 7
Social metrics estimates for Landfill (LF) and Waste to Entergy (WTE).

Worker’s Physical Exposure [$/ton] Turnover [$/ton]

LF 53.53 0.56
WTE 4.07 0.70

indicate that handling materials such as organics, paper, and plastics are
safer than manipulating glass and metal.

5.2. Case study scenarios

Scenarios were evaluated in SwolfPy to find the mix of mass flows of
waste to treatment technologies that minimizes the local social metric,
total costs, and GHG emissions (see Table 8).

Scenarios 1-3 explored the selection of technologies when opti-
mizing for one social indicator or both simultaneously. Scenario 4 in-
cludes the addition of two technologies and both social indicators. The
addition of these new technologies expands the decision space. Com-
parison of the results of this scenario analysis offers insights on the
trade-offs among social metric, costs, and GHG emissions.

Results from scenarios 1, 2, and 3 were similar in terms of technology
mix selection, diversion, total costs, and GHG emissions. Consequently,
results for scenarios 1 and 2 were not shown; instead we present results
for scenario 3 in Fig. 6. Given that materials sorting by workers increases
material manual handling, diversion of materials to the MRF for sub-
sequent recycling is not selected when optimizing for the social metric,
Fig. 6. However, due to the assumptions in SwolfPy that grant green-
house gas avoidance credits and economic value to recycled materials,
these options are selected when optimizing to minimize cost or GHGs,
Fig. 6.

When comparing the two indicators of the social metric, Scenario 3,
results indicate that turnover contributed less cost than the WPE under
each objective, due to most of the waste being landfilled and LF turnover
values were the smallest (i.e. 0.56 $/ton). The most expensive total cost
occurs when minimizing the social metric, while the most expensive
social metric occurs either when minimizing costs or GHG. Again, this
result reflects the additional WPE, and corresponding increased risk of
Turnover associated with materials handling (see Table 9).

When allowing for new treatment technologies in Scenario 4, the
selection of treatment technologies varies given optimization criteria
(Fig. 7 and Table 10). WTE is selected for most of the waste when social
or GHG metrics are the optimization target. WTE is selected based on
social indicator due to relatively low handling of materials. Likewise,
recycling, which is mediated by the MREF is the reason that MRF is not
selected when optimizing the social indicator, Table F-5 in Appendix F.
Although AD was available as a treatment technology, this was not
chosen by any of the optimization criteria due to its being a more
operationally expensive technology with significant manual material
handling. When costs were of interest, LF and MRF were selected,
whereas for the GHG objective LF, MRF and WTE were preferred.

The highest diversion of MSW from the landfill is reached by mini-
mizing GHGs through selecting WTE, LF, and MRF at the expense of

Table 8
Scenario descriptions for technology options and social indicators in
optimization.

Scenario  Technology Worker’s Physical Turnover
Exposure

1 Current mix 4

2 Current mix v

3 Current mix v v

4 Current mix + AD and WTE v/ v

Note. Current mix includes landfill, compost, and material recovery facility. AD
= anaerobic digestion. WTE = ‘waste-to-energy,” here incineration with elec-
tricity generation.
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Fig. 6. Results from Scenario 3. Technology mix and diversion.
Table 9
Optimization results Scenario 3.
GWP [kg Total Worker’s Turnover Social
CO,e/Mg] Cost Physical [$/Mg] metrics
[$/Mg] Exposure [$/Mg]
[$/Mg]
Min -52.71 52.47 164.96 42.27 207.23
Social
Min —316.17 25.75 217.78 104.62 322.4
Cost
Min —316.17 25.75 217.78 104.62 322.4
GHG

Bold values indicate the minimum cost achieved for each cost category.
higher social metric values. Diversion scenarios were not explored
further; however, this finding reveals an alternative option for sending

less waste to the landfill which contributes to one of Columbia’s policy
goals (City of Columbia, 2019).

5.3. Sensitivity analysis

Given the uncertainties associated with our social metric estimates,
we conducted additional analyses to determine how changes to the
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Fig. 7. Results from Scenario 4. Technology mix and diversion.

Table 10

Optimization results Scenario 4.

GWP [kg CO2e/Mg] Total Cost [$/Mg] Social metric [$/Mg]

Min Social —302.74 69.59 170.81
Min Cost —317.47 25.78 322.3
Min GHG —445.52 43.6 294.82

Bold values indicate the minimum cost achieved for each cost category.
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assumed social metric values would influence the optimal technology
mixes identified by our optimization model. Recall from Tables 6 and 7
that the Worker’s Physical Exposure costs for WTE were an order of
magnitude smaller than the costs for many waste materials under MRF,
AD and Composting. This likely influences the heavy utilization of WTE
under the solution minimizing the social cost objective (Fig. 7).

Therefore, in our sensitivity analysis we assumed that the WTE risk
levels would be increased from the range low — moderate to high risk
(increasing the Worker’s Physical Exposure cost for WTE from 4.07 to
66.91 dollars per ton). In total, eight new scenarios were developed for
potential reductions to both Worker’s Physical Exposure and Turnover
costs for MRF, AD, and Composting, Table 11. For this experiment, our
“high” level, denoted in Table 11 by an “ = ”, represents no change to
original values (Table 6), while the “low” level, denoted by an “-” as-
sumes a 90% decrease (improvement) to these social cost values for each
waste material. Such cost reductions for MRF, AD and Composting could
be achieved by implementing the use of devices or tools to assist workers
with MMH activities (e.g. switching to rolling carts for waste collection
purposes) along with reinforcement trainings in ergonomics, or auto-
mated sorting technologies.

The optimal technology mixes identified by our models differed
depending on the scenario, as illustrated in Table 11. Note that LF was
utilized in every scenario, this was expected as waste products from most
processes end up in the LF (e.g. bottom ash).

This sensitivity analysis found that Composting was selected in all
scenarios (B, C, F, H) when its social costs were reduced and in no sce-
narios when its social costs were unchanged. Similarly, AD was selected
in scenarios where its social costs were reduced and the social costs of
Composting were not reduced (A, D). MRF was not selected in any
instance where social costs were minimized. WTE was utilized in four of
these scenarios (A, B, F, H), generally in combination with Composting.
Observe that the GWP metric was significantly worse for these eight
scenarios, in which the social metric objective was minimized, relative
to the GWP values obtained under the baseline social costs in Table 10.
This occurs due to the selection of LF to treat most of the waste in these
sensitivity analysis scenarios, avoiding technologies with increased
material handling.

These sensitivity analyses suggest that there is no dominant solution
for technology mix in this city’s example, thus, such a determination
would depend on the stakeholders’ relative weighting of the multiple
objectives. Focusing on social metrics, we observe that under our
baseline estimates of social costs (Fig. 7), LF and WTE are the preferred
technologies. Scenarios in which WTE Worker’s Physical Exposure costs
are increased and Composting social costs are decreased show a pref-
erence for the use of LF, WTE and Composting. AD replaces Composting
in the solution when its social costs, but not the social costs of Com-
posting, are decreased. MRF is never selected when minimizing social
costs. However, when the objective is to minimize either Total Costs or
GHG (Fig. 7), neither AD nor Composting were ever selected, with the
solutions preferring LF, MRF and (in the case of the minimum GHG
objective) WTE. Although we consider it good to have more variety in
the technology mix, this could potentially become impractical if a small
percentage of waste is treated in one technology. Further analysis could
explore utilization constraints to require a minimum level of use such
that throughput is maintained at a desired level.

These results could be utilized for evaluation of policy alternatives.
For instance, feed-in tariff policies can be analyzed to support waste
management procedures, especially when the focus is on mitigating
GHG emissions (Chen and Liu, 2021); however, some authors have
discussed that government subsidy in technology could provide better
benefits (Li et al., 2023). In the case of Columbia, MO, the city has a
climate & adaption action plan with very aggressive goals in place (City
of Columbia, 2019). These goals target GHG emissions, landfill diver-
sion, and recycling rates. Although these specific targets were not
addressed in this analysis, we observed some benefits in terms of landfill
diversion. If the city desired to add social sustainability considerations to
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Table 11
Technology mix results from sensitivity Analysis.
Technology Mix Optimization Results
Scenarios | MRF | AD |Comp Description Op:;:;::’:on LF | MRF [Comp| AD | WTE | Social Metric ($/Mg)
Min Social 68.47
A = - = Improve only AD Min Costs 101.61
Min GHG 123.11
Min Social 68.13
B = - - Improve AD & Comp Min Costs 101.55
Min GHG 123.11
Min Social 68.12
C = = - Improve only Comp Min Costs 101.62
Min GHG 123.11
Min Social 68.46
D - - = Improve MRF & AD Min Costs 70.38
Min GHG 91.87
Min Social 207.23
E - = = Improve only MRF Min Costs 70.38
Min GHG 91.87
Min Social 68.13
F - = - Improve MRF & Comp  |Min Costs 70.35
Min GHG 91.87
Min Social 207.23
G = = = No improvements Min Costs 322.42
Min GHG 343.96
Min Social 68.13
H - - - Improve MRF, AD & Comp |Min Costs 70.31
Min GHG 97.87

Notes: Bold values indicate the minimum social cost achieved. Colored shading indicates some portion of waste was treated
with the corresponding technology; the diagonal stripe hatching indicates less than 1000 tons of waste was treated in that
technology; white/blank cells indicate the technology was not selected.

these target values, an approach similar to that of this analysis could be
used to estimate these social costs in terms commensurate with the
existing environmental goals.

6. Conclusions

SWM strategies need to be tailored to the specific needs of the system
in place, accordingly, the examination of multiple criteria is required.
Traditionally, capital, and operational costs along with environmental
impacts have been addressed in the literature. This study ventures to
introduce social metrics into consideration for decision making in waste
management.

We propose a process for the quantification of social metrics
involving stakeholders into the development. It is important to initiate
this task with input from stakeholders as social metrics are system-
specific—contingent on context—and not every potential social
consideration found in the literature is necessarily applicable to every
system (Fritz et al., 2024). Nor are those metrics equally important to
managers and decision makers. Involving stakeholders in this process
facilitates the understanding of the context and the selection of mean-
ingful metrics (Hall et al., 2024). Further, it can motivate the adoption of
results for decision-making.

Based on the information received from stakeholders, we focused our
social metrics on the solid waste workers. The metrics developed were
Worker’s Physical Exposure and Turnover. These social metrics can help
WM authorities to measure and control Occupational Safety and Health
Administration (OSHA) standards within their organizations. OSHA
protects workers and prevents work-related injuries, illness, and deaths.
Although not every state and local government worker in United States
is within federal OSHA jurisdiction, interventions to address these issues
can present benefits such as less workers’ compensation costs, reduced
employee turnover, and increase in work efficiency and productivity. In
addition, accounting for such considerations can help employers avoid

potential employees’ complaints or inspections of the workplace by a
regulatory entity.

We provided estimates for these metrics based on the literature from
ergonomics and employee turnover that best fit our WM setting. These
metrics can help WM authorities to be better prepared to comply with
law and regulations such as OSHA. Detailed algorithms quantifying each
metric were presented. Although other applications would require fine-
tuning to the specific considerations of that system and its stakeholders,
we anticipate that the structure of these algorithms could serve as
baselines for other social metrics.

These social metrics were integrated into the LCA-based optimiza-
tion framework SWOLF (Levis et al., 2013; Sardarmehni et al., 2022).
Results from a case study based on the city of Columbia, MO illustrate
that technology mix selection is dependent upon the criterion of interest.
For instance, WTE was preferred when the desire was to minimize GHG,
while Composting and AD were preferred under an objective minimizing
PWE and Turnover. We tested improvements that targeted better worker
conditions boosting safety and retention; under these circumstances’
manual treatment technologies had a more prominent role. Moreover,
we were able to identify the trade-offs that accompany these conflicting
criteria in waste management, as it exists in our case study community.

e The best social score, and the highest total cost, is obtained at the
expense of less landfill diversion.

e The best environmental score is obtained at the expense of the
highest social costs.

e The best cost score is obtained with intermediate social costs and
landfill diversion.

Future research studies might focus on other social metrics that point
to customers or waste management authorities instead of workers, or
other parts of the overall supply chain. In addition, there is a wide range
of space for policy analysis. Future research could add constraints to the

11
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modeled scenarios to analyze policy goals such as lawmakers’ desired
changes to diversion or recycling rate targets. The implications of each
policy scenario could be compared for impacts on not just on physical
operations but the social operations as defined and prioritized by the
acting organizations. Finally, a continuation to this research could move
from the single objective models utilized in this paper to a multi-
objective optimization to further explore the tradeoffs between the
three criteria discussed in this study.
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