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Abstract—With the rapid development of modern
electronics and computation capability, biomechanical mining
is attracting more and more attentions. Due to the complexity
and inter-person variance among the biomechanical dynamics,
it is important to study the spatial variability to not only
optimize the activity recognition performance but also deepen
the understanding of inter-sensor-location and inter-subject
differences. We here propose a system with both wearable
motion sensing and deep learning, for comprehensive
biomechanical dynamics understanding. More specifically, the
system allows collection of motion data from diverse body
locations. Further, the deep learning algorithm then learns the
signals and yields the physical activity types. The experiments
have promisingly indicated the spatial variability of
biomechanical dynamics capturing and analysis. This study
will benefit the understanding of biomechanical dynamics.
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I. INTRODUCTION

Biomechanical dynamics of human motion is a critical
and long-lasting area in kinematic and locomotion areas [1].
By studying the biomechanical dynamics of human motion,
people could analyze the gait patterns, muscle and joint
functions, balance and stability, foot biomechanics, foot
biomechanics, footwear, and orthotics, among many. To
make a quantitative analysis of motion, there are many ways
to acquire the motion data of the human body, such as the
video camera, Electromyography (EMG), force plate, 3D
Imaging, wearable sensors, and others. [2-5]. Force plate is
the most straight forward way to analyze the human motion.
It can get the load of the body directly, especially the lower
body with other sensors [6]. But with the limitation of the
plate area, the subject can only move in a small area which
means not all the activities can be captured. Video cameras
are a popular way to gather motion data in many research
areas. Recently, a system containing the video and motion
sensor is widely used to record ground-truth motion [7].
While the video camera and 3D image system can gather the
motion data effectively, there are still some constraints [8, 9].
The video method usually costs much resources and time to
set up the system. Same as the force plate, the data
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acquisition will be usually used in the lab and most of the
motions of a subject in daily lives cannot be easily captured.

Recently, with the rapid development of electronics,
MEMS technology has experienced a significant growth over
the years [10]. Based on inertia devices’ performance
boosting and price drops, the inertia chip which can detect
and record the motion of the human body has been integrated
into smart phones, smart watches, and other wearable
devices with a low cost [11]. The high precision and the
portable ability of smart devices enable various studies based
on the inertia data. D. Micucci et al. also set up a human
activity dataset UniMiB SHAR which includes seventeen
kinds of activities. They also studied the data with different
classifiers such as Support Vector Machine (SVM) and
Random Forest (RF) [12]. In 2019, Q. Zhang also proposed
deep learning algorithms for motion data analysis [13]. To
get more accurate motion data, H. Leutheuser ef al
developed a four-sensor classification system gathering the
inertia data. More and more sensors are added on the human
body to get more dynamics [15]. It’s therefore promising to
gather the motion data of different body locations.

Due to the complexity and inter-person variance among
the biomechanical dynamics, it is important to study the
spatial variability to not only optimize the activity
recognition performance but also deepen the understanding
of inter-sensor-location and inter-subject differences. We
here propose a system with both wearable motion sensing
and deep learning, for comprehensive biomechanical
dynamics understanding. More specifically, the system
allows collection of motion data from diverse body locations.
Further, the deep learning algorithm then learns the signals
and yields the physical activity types. The experiments have
promisingly indicated the spatial variability of biomechanical
dynamics capturing and analysis. This study will benefit the
understanding of biomechanical dynamics.

II. METHODS

A. Experiment Setup for Biomechanical Bynamics Sensing

In this study, we’ve built the experiment in our
laboratory based on daily activity facilities, such as the
treadmill, the excise bike, the bed and the sofa. The motion
we have studied includes sleeping, sitting, walking, running,
climbing, and biking.



A multi motion data capturing system is crucial for
biomechanical dynamics study based on human movement.
We here put motion sensors on twenty different body
locations, which gathering the biomechanical data on
different locations of the human body as TABLE I, with the
IRB approval. The sensor is based on the nRF52840 which is
an MCU produced by Nordic Semiconductor. The nRF52840
is built with the 32-bit ARM Cortex-M4 processor and the
motion sensor is a 6-axis MEMS Motion Tracking device
that combines a 3-axis gyroscope and a 3-axis accelerometer.
To the best of our knowledge, it is the first time to have such
as rich dataset with diverse biomechanical dynamics of
different body locations.

TABLE I The sensor location on the body

Sensor Location Sensor Location
number number
1 Left foot 11 Left elbow
2 Left ankle 12 Left up arm
3 Left knee 13 Right hand
4 Left thigh 14 Right hand
5 Right foot 15 Right elbow
6 Right ankle 16 Right up arm
7 Right knee 17 Belt
8 Right thigh 18 Down chest
9 Left hand 19 Up chest
10 Left wrist 20 Head
B. Motion Data Analysis and Processing
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Fig. 1 The waveform of the 6-axis walking data. Notes, the
data is normalized.

There are six kinds of motion types during the
experiment: lying, sitting, walking, running, climbing, and
biking in one session. Each activity is 3-min long. The whole
experiment contains seven sessions for each subject. The raw
data includes the 3-axis accelerometer and 3-axis gyroscope,
waveform during walking is shown in Fig. 1. As
demonstrated, the figures have successfully reflected
different dynamics in different directions and with different
sensing modalities.

To capture the details of the activities in experiments, the
sampling rate of the motion sensor is set as 50Hz and a bit
resolution of 16 has been configured. A two-second window
is applied for activity data segmentation.

C. Deep Learning of Biomechanical Dynamics Data

After capturing and processing the data, we have
developed a Convolutional Neural Network (CNN), as Fig.
2, to analyze the patterns of different activities, different
sensing locations, and different subjects.

The dimension of the input data for the CNN model is
100x6. There are multiple Convolutional layers to capture
the spatial motifs in the data. To accelerate the training
process, the ‘Relu’ activation function is applied to each 1D
Convolution layer. To deal with potential overfitting, the
Dropout layer is also applied after the Convolution layer. To
classify the input instances to six categories of activities, in
the final layer, the ‘Softmax’ activation function is applied to
generate the category probability.
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Fig. 2 The CNN Model architecture.

D. Spatial
Dynamics

Variability —Learning for Biomechanical

To analyze the spatial variability, we have applied the
same CNN to process the motion data for all the sensors, and
then compare the performance accordingly. That means, we
have obtained the sensor-location-specific performance,
which allows us to comprehensively compare different body
locations in terms of sensor placement.

III. RESULTS

The results of our study are given and discussed in this
section.

A. Learning Patterns of the Biomechanical Dynamics

Fig. 3 shows the learning accuracy and learning loss of
the CNN model based on the data acquired in the
experiment. From the figure, we can see the accuracy of the
learning model is approximately to 100% and the loss is



almost 0 after around 100 epochs. The results clearly indicate
the success of the CNN model training.
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Fig. 3 Learning accuracy and loss curve of the deep learning
model. Note: sensor 2 is corresponding to the left ankle
location.

B. Confusion Matrices

To demonstrate the performance of the CNN model, we
a confusion matrix is given in Fig. 4, based on the motion
data on the sensor 1 of the subject 1. As shown, most of
motions are accurately predicted. The average motion
prediction accuracy for this sensor is also calculated as
92.2%.
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Fig. 4 Confusion matrix of the deep learning model for
motion data on the sensor 1 of the subject 1. Note: sensor 1 is
corresponding to the left foot location.

C. Spatial Varability of the Biomechanical Dynamices on
Different Sensor Locations

To study the spatial variability of the motion of the
human body, we analyzed accuracy of all the sensors on the
body. Fig. 5 shows the comparison of the accuracy of all the
sensors on the subject 1. From the figure, the accuracy of the
sensor on different parts of the body is from 66.8% to 92.2%.
The highest accuracy of the sensor is the sensor 1 which is
located on the left foot.
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Fig. 5 Comparation of all sensor accuracy on the subject 1.
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Fig. 6 F1-score of different subjects

D. Spatial Varability Learning pattern of the biomechanical

dynamices on different subjects

To get the performance of the system on different
subjects, we used the F1-score as shown in Fig. 6. For all the
subjects, the Fl-score is calculated by the average F1-score



of all the motions on all the sensors. As shown, the F1-scores
of five subjects vary from 76.1% to 82.6%.

IV. CONCLUSION

In this study, to comprehensively understand the spatial
variability of the subject in human movement experiments, a
system with biomechanical dynamics sensing and deep
learning has been developed. In specific six normal activity
types, we have captured the 3-axis accelerometer and 3-axis
gyroscope data, and afterwards fed the data into a
customized CNN model for motion pattern recognition. In
our experiments, we tested five subjects and the results
clearly show that the data has been successfully captured
from and the CNN model has also effectively detected
different activity types. The prediction accuracy of the
sensors is above 90% for the sensors on the feet and head.
This research is expected to further our understanding of the
spatial variability of biomechanical dynamics and also
suggest the optimal configuration to boost the performance.
In future, we will advance the study on more subjects and
enhance the deep learning algorithms.
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