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Spatial Variability Learning of Biomechanical 

Dynamics  

  

 

Abstract—With the rapid development of modern 

electronics and computation capability, biomechanical mining 

is attracting more and more attentions. Due to the complexity 

and inter-person variance among the biomechanical dynamics, 

it is important to study the spatial variability to not only 

optimize the activity recognition performance but also deepen 

the understanding of inter-sensor-location and inter-subject 

differences. We here propose a system with both wearable 

motion sensing and deep learning, for comprehensive 

biomechanical dynamics understanding. More specifically, the 

system allows collection of motion data from diverse body 

locations. Further, the deep learning algorithm then learns the 

signals and yields the physical activity types. The experiments 

have promisingly indicated the spatial variability of 

biomechanical dynamics capturing and analysis. This study 

will benefit the understanding of biomechanical dynamics.   
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I. INTRODUCTION  

Biomechanical dynamics of human motion is a critical 
and long-lasting area in kinematic and locomotion areas [1]. 
By studying the biomechanical dynamics of human motion, 
people could analyze the gait patterns, muscle and joint 
functions, balance and stability, foot biomechanics, foot 
biomechanics, footwear, and orthotics, among many. To 
make a quantitative analysis of motion, there are many ways 
to acquire the motion data of the human body, such as the 
video camera, Electromyography (EMG), force plate, 3D 
Imaging, wearable sensors, and others. [2-5]. Force plate is 
the most straight forward way to analyze the human motion. 
It can get the load of the body directly, especially the lower 
body with other sensors [6]. But with the limitation of the 
plate area, the subject can only move in a small area which 
means not all the activities can be captured. Video cameras 
are a popular way to gather motion data in many research 
areas. Recently, a system containing the video and motion 
sensor is widely used to record ground-truth motion [7]. 
While the video camera and 3D image system can gather the 
motion data effectively, there are still some constraints [8, 9]. 
The video method usually costs much resources and time to 
set up the system. Same as the force plate, the data 

acquisition will be usually used in the lab and most of the 
motions of a subject in daily lives cannot be easily captured. 

Recently, with the rapid development of electronics, 
MEMS technology has experienced a significant growth over 
the years [10]. Based on inertia devices’ performance 
boosting and price drops, the inertia chip which can detect 
and record the motion of the human body has been integrated 
into smart phones, smart watches, and other wearable 
devices with a low cost [11]. The high precision and the 
portable ability of smart devices enable various studies based 
on the inertia data. D. Micucci et al. also set up a human 
activity dataset UniMiB SHAR which includes seventeen 
kinds of activities. They also studied the data with different 
classifiers such as Support Vector Machine (SVM) and 
Random Forest (RF) [12]. In 2019, Q. Zhang also proposed 
deep learning algorithms for motion data analysis [13]. To 
get more accurate motion data, H. Leutheuser et al. 
developed a four-sensor classification system gathering the 
inertia data. More and more sensors are added on the human 
body to get more dynamics [15]. It’s therefore promising to 
gather the motion data of different body locations.  

Due to the complexity and inter-person variance among 
the biomechanical dynamics, it is important to study the 
spatial variability to not only optimize the activity 
recognition performance but also deepen the understanding 
of inter-sensor-location and inter-subject differences. We 
here propose a system with both wearable motion sensing 
and deep learning, for comprehensive biomechanical 
dynamics understanding. More specifically, the system 
allows collection of motion data from diverse body locations. 
Further, the deep learning algorithm then learns the signals 
and yields the physical activity types. The experiments have 
promisingly indicated the spatial variability of biomechanical 
dynamics capturing and analysis. This study will benefit the 
understanding of biomechanical dynamics.    

II. METHODS 

A. Experiment Setup for Biomechanical Bynamics Sensing 

In this study, we’ve built the experiment in our 
laboratory based on daily activity facilities, such as the 
treadmill, the excise bike, the bed and the sofa. The motion 
we have studied includes sleeping, sitting, walking, running, 
climbing, and biking.  
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A multi motion data capturing system is crucial for 
biomechanical dynamics study based on human movement. 
We here put motion sensors on twenty different body 
locations, which gathering the biomechanical data on 
different locations of the human body as TABLE I, with the 
IRB approval. The sensor is based on the nRF52840 which is 
an MCU produced by Nordic Semiconductor. The nRF52840 
is built with the 32-bit ARM Cortex-M4 processor and the 
motion sensor is a 6-axis MEMS Motion Tracking device 
that combines a 3-axis gyroscope and a 3-axis accelerometer. 
To the best of our knowledge, it is the first time to have such 
as rich dataset with diverse biomechanical dynamics of 
different body locations.   

 

TABLE I The sensor location on the body 

Sensor 
number 

Location Sensor 
number 

Location 

1 Left foot 11 Left elbow 

2 Left ankle 12 Left up arm 

3 Left knee 13 Right hand 

4 Left thigh 14 Right hand 

5 Right foot 15 Right elbow 

6 Right ankle 16 Right up arm 

7 Right knee 17 Belt 

8 Right thigh 18 Down chest 

9 Left hand 19 Up chest 

10 Left wrist 20 Head 

 

B. Motion Data Analysis and Processing 

 

 

Fig. 1 The waveform of the 6-axis walking data. Notes, the 
data is normalized. 

There are six kinds of motion types during the 
experiment: lying, sitting, walking, running, climbing, and 
biking in one session. Each activity is 3-min long. The whole 
experiment contains seven sessions for each subject. The raw 
data includes the 3-axis accelerometer and 3-axis gyroscope, 
waveform during walking is shown in Fig. 1. As 
demonstrated, the figures have successfully reflected 
different dynamics in different directions and with different 
sensing modalities.  

To capture the details of the activities in experiments, the 
sampling rate of the motion sensor is set as 50Hz and a bit 
resolution of 16 has been configured. A two-second window 
is applied for activity data segmentation.  

 

C. Deep Learning of Biomechanical Dynamics Data 

After capturing and processing the data, we have 
developed a Convolutional Neural Network (CNN), as Fig. 
2, to analyze the patterns of different activities, different 
sensing locations, and different subjects.  

The dimension of the input data for the CNN model is 
100x6. There are multiple Convolutional layers to capture 
the spatial motifs in the data. To accelerate the training 
process, the ‘Relu’ activation function is applied to each 1D 
Convolution layer. To deal with potential overfitting, the 
Dropout layer is also applied after the  Convolution layer. To 
classify the input instances to six categories of activities, in 
the final layer, the ‘Softmax’ activation function is applied to 
generate the category probability.  

 

Fig. 2 The CNN Model architecture.  

 

D. Spatial Variability Learning for Biomechanical 

Dynamics 

To analyze the spatial variability, we have applied the 
same CNN to process the motion data for all the sensors, and 
then compare the performance accordingly. That means, we 
have obtained the sensor-location-specific performance, 
which allows us to comprehensively compare different body 
locations in terms of sensor placement.  

 

III. RESULTS 

The results of our study are given and discussed in this 
section. 

A. Learning Patterns of the Biomechanical Dynamics 

 Fig. 3 shows the learning accuracy and learning loss of 
the CNN model based on the data acquired in the 
experiment. From the figure, we can see the accuracy of the 
learning model is approximately to 100% and the loss is 



almost 0 after around 100 epochs. The results clearly indicate 
the success of the CNN model training.  

 

 

Fig. 3 Learning accuracy and loss curve of the deep learning 
model. Note: sensor 2 is corresponding to the left ankle 
location. 

 

B. Confusion Matrices 

To demonstrate the performance of the CNN model, we 

a confusion matrix is given in Fig. 4, based on the motion 

data on the sensor 1 of the subject 1. As shown, most of 

motions are accurately predicted. The average motion 

prediction accuracy for this sensor is also calculated as 

92.2%. 

 

 

Fig. 4 Confusion matrix of the deep learning model for 
motion data on the sensor 1 of the subject 1. Note: sensor 1 is 
corresponding to the left foot location. 

 

C. Spatial Varability of the Biomechanical Dynamices on 

Different Sensor Locations 

To study the spatial variability of the motion of the 
human body, we analyzed accuracy of all the sensors on the 
body. Fig. 5 shows the comparison of the accuracy of all the 
sensors on the subject 1. From the figure, the accuracy of the 
sensor on different parts of the body is from 66.8% to 92.2%. 
The highest accuracy of the sensor is the sensor 1 which is 
located on the left foot. 

 

 
Fig. 5 Comparation of all sensor accuracy on the subject 1. 

 
Fig. 6 F1-score of different subjects 

 

D. Spatial Varability Learning pattern of the biomechanical 

dynamices on different subjects 

To get the performance of the system on different 
subjects, we used the F1-score as shown in Fig. 6. For all the 
subjects, the F1-score is calculated by the average F1-score 



of all the motions on all the sensors. As shown, the F1-scores 
of five subjects vary from 76.1% to 82.6%.  

   

IV. CONCLUSION 

In this study, to comprehensively understand the spatial 
variability of the subject in human movement experiments, a 
system with biomechanical dynamics sensing and deep 
learning has been developed. In specific six normal activity 
types, we have captured the 3-axis accelerometer and 3-axis 
gyroscope data, and afterwards fed the data into a 
customized CNN model for motion pattern recognition. In 
our experiments, we tested five subjects and the results 
clearly show that the data has been successfully captured 
from and the CNN model has also effectively detected 
different activity types. The prediction accuracy of the 
sensors is above 90% for the sensors on the feet and head. 
This research is expected to further our understanding of the 
spatial variability of biomechanical dynamics and also 
suggest the optimal configuration to boost the performance. 
In future, we will advance the study on more subjects and 
enhance the deep learning algorithms. 
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