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Abstract—Wearable biomechanical sensors can be placed on 

different body locations and each sensor may have multiple 

channels. Deep mining of the spatial variability in these sensor 

locations and channels, is essential for not only optimal system 

configuration towards energy efficient edge computing, but also 

comprehensive musculoskeletal dynamics understanding. 

Targeting these needs, we propose to leverage deep learning to 

investigate seven body locations and six channels for each 

location, thereby demonstrating the spatial variability among 42 

combinations. The research findings indicate that the thigh 

location and the accelerometer axis-Y is the best configuration. 

Further, experimental results also indicate the diverse spatial 

variability among different sensor locations and sensor 

channels, which provide interesting and rich information about 

the biomechanical dynamics. This study will thus greatly 

advance our understanding of the spatial variability in wearable 

biomechanical sensors and channels, thereby minimizing the 

data analytics load and facilitating energy efficient edge 

computing for big biomechanical data mining. 
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I. INTRODUCTION  

With the advancement in smart sensors, more and more 
emerging applications are paving the way toward big data-
driven precision medicine [1]. Wearable biomechanical big 
data provides promising means for medical decision support 
and lifestyle management. The motion sensors like the 
accelerometer and gyroscope, can continuously monitor the 
physical movements of humans. The signals can be wirelessly 
streamed to the cloud for further data analytics and long-term 
big data management. 

We in this study take a special interest in wearable 
biomechanical monitoring applications. Previous studies have 
reported different algorithms for signal processing of sensor 
data from some specific location. For instance, the wrist 
sensor was used for motion data acquisition and the support 
vector machine was designed for motion detection in [2]. In 
[3], the phone sensor and the decision tree were used. There 
are also other studies which used methods like the frame 
difference method [4], and random forest [5]. Recently, deep 
learning methods have also been used in motion detection, 
such as the convolutional neural network and long short-term 
memory. However, the understanding of the spatial variability 
among different sensor locations and sensor channels, is still 
limited. Filling this gap is essential to determine the optimal 

sensor configuration for minimum data analytics load and 
maximum power efficiency in real-time edge computing. 

Targeting this challenge, we in this study propose to 
leverage a customized deep neural network for deep mining 
of the spatial variability. This study is essential for not only 
optimal system configuration but also comprehensive 
musculoskeletal dynamics understanding. We have leveraged 
the convolutional neural network (CNN) to investigate seven 
body locations and six channels for each location, thereby 
demonstrating the spatial variability among 42 combinations.  

Our research findings indicate that the thigh location and 
the accelerometer axis-Y is the best configuration, for 
minimizing the data analytics load and maximize energy 
efficiency on the edge. Further, experimental results also 
indicate the diverse spatial variability among different sensor 
locations and sensor channels, which provide interesting and 
rich information about the biomechanical dynamics. This 
study will thus greatly advance our understanding of the 
spatial variability in wearable biomechanical sensors and 
channels, and also facilitate energy efficient big 
biomechanical data mining.  

II. METHODS 

A. The Spatial Variability Mining Algorithm 

To maximize the energy efficiency, we have developed a 
convolution neural network with shared pattern filters. It is 
well known that convolutional operations are highly efficient 
with these shared connections. However, no previous study on 
using it on wearable spatial variability mining has been 
conducted, to the best of our knowledge. We here leverage it 
to thoroughly evaluate 42 different combinations of sensor 
locations and sensor channels.  

The selected optimal sensor location and sensor channel 
will be set as the final recommendation, meaning that in the 
real-world use, we only need to execute the deep learning 
algorithm on this minimized amount of data. To further 
illustrate the variability of the wearable biomechanical 
dynamics, in Fig. 1a), the selected biomechanical signals are 
visualized, which indicate the diverse behaviors for different 
channels. The dynamics will be automatically learned with the 
proposed deep learning algorithm, to determine the optimal 
channel among six dimensions. And the process will be 
executed for each sensor location among seven.  

B.  Potential System Configurations 

We will consider seven different body locations, including 
locations, chest, forearm, head, shin, thigh, upper-arm, and 
waist. For each location, we will consider both the 
accelerometer and gyroscope sensors, each with tri-axis 
signals. So, in total there are 42 combinations. We will 
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therefore be able to comprehensively investigate the 
biomechanical dynamics and determine the optimal 
configuration with deep learning.  

Mathematically, the optimal system configuration is 
determined by (1), where 𝜇 is the optimal combination of the 
sensor location 𝑙, sensor type 𝑠, and sensor channel 𝑐. 

𝜇 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑙,𝑠,𝑐

𝛷(𝐷𝑙,𝑠,𝑐) 

And 𝛷  is the deep learning model, and 𝐷𝑙,𝑠,𝑐  is the 

corresponding dataset with the configuration 𝑙, 𝑠, and 𝑐.  

C. Experimental Evaluation 

The real-world motion database [6] is used. Fifteen 
participants performed six different activities, including 
climbing downstairs, climbing upstairs, jumping, lying, 
running/jogging, and walking. Each activity is from two to ten 
minutes, and the signal is segmented with a size of 100.  

III. RESULTS 

A.  Comprehensive Study of 42 Configurations  

We have compared all 42 configurations in terms of the 
physical activity detection accuracy. As shown in Fig. 1b), we 
have highlighted the chest and thigh locations, and their 
corresponding channels, which have better performance 
compared with the forearm, head, thin, upper-arm and waist 
locations and channels. Especially, for the forearm, head, and 
upper-arm locations, the performance is relatively low, 
considering there are more diversity during the movements.  

We finally determine the chest location and the 
accelerometer axis-Y channel as the optimal combination, 
with an accuracy around 95.1%. One thing worth noting is 
that, the thigh location and accelerometer axis-Y is also a 
possible candidate solution, considering the chest location 
may need a strap that lowers the wearability.  

B. Further Investigations 

In future, we will further enhance the motion detection 
accuracy though model improvements. We will also evaluate 
the power consumption of the model on the edge based on the 
optimal configuration, considering this study mainly 
minimizes the data needed through determining the optimal 
and minimum sensor configuration. 

IV. CONCLUSION 

In this study, we have systematically investigated the 
spatial variability among different sensor locations and sensor 
channels, for biomechanical energy efficient big data-driven 
precision medicine. More specifically, we have designed and 
developed a deep neural network to compare seven sensor 
locations and six signal channels per location, in terms of 
physical activity detection accuracy. We have then evaluated 
the algorithm on a real-world database and determined the 
optimal combination. This study will significantly advance the 
biomechanical big data mining and relevant smart health 
applications, by minimizing the data need while maintaining 
effective edge inference.  
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