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Abstract—Wearable biomechanical sensors can be placed on
different body locations and each sensor may have multiple
channels. Deep mining of the spatial variability in these sensor
locations and channels, is essential for not only optimal system
configuration towards energy efficient edge computing, but also
comprehensive musculoskeletal dynamics understanding.
Targeting these needs, we propose to leverage deep learning to
investigate seven body locations and six channels for each
location, thereby demonstrating the spatial variability among 42
combinations. The research findings indicate that the thigh
location and the accelerometer axis-Y is the best configuration.
Further, experimental results also indicate the diverse spatial
variability among different sensor locations and sensor
channels, which provide interesting and rich information about
the biomechanical dynamics. This study will thus greatly
advance our understanding of the spatial variability in wearable
biomechanical sensors and channels, thereby minimizing the
data analytics load and facilitating energy efficient edge
computing for big biomechanical data mining.
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I. INTRODUCTION

With the advancement in smart sensors, more and more
emerging applications are paving the way toward big data-
driven precision medicine [1]. Wearable biomechanical big
data provides promising means for medical decision support
and lifestyle management. The motion sensors like the
accelerometer and gyroscope, can continuously monitor the
physical movements of humans. The signals can be wirelessly
streamed to the cloud for further data analytics and long-term
big data management.

We in this study take a special interest in wearable
biomechanical monitoring applications. Previous studies have
reported different algorithms for signal processing of sensor
data from some specific location. For instance, the wrist
sensor was used for motion data acquisition and the support
vector machine was designed for motion detection in [2]. In
[3], the phone sensor and the decision tree were used. There
are also other studies which used methods like the frame
difference method [4], and random forest [5]. Recently, deep
learning methods have also been used in motion detection,
such as the convolutional neural network and long short-term
memory. However, the understanding of the spatial variability
among different sensor locations and sensor channels, is still
limited. Filling this gap is essential to determine the optimal
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sensor configuration for minimum data analytics load and
maximum power efficiency in real-time edge computing.

Targeting this challenge, we in this study propose to
leverage a customized deep neural network for deep mining
of the spatial variability. This study is essential for not only
optimal system configuration but also comprehensive
musculoskeletal dynamics understanding. We have leveraged
the convolutional neural network (CNN) to investigate seven
body locations and six channels for each location, thereby
demonstrating the spatial variability among 42 combinations.

Our research findings indicate that the thigh location and
the accelerometer axis-Y is the best configuration, for
minimizing the data analytics load and maximize energy
efficiency on the edge. Further, experimental results also
indicate the diverse spatial variability among different sensor
locations and sensor channels, which provide interesting and
rich information about the biomechanical dynamics. This
study will thus greatly advance our understanding of the
spatial variability in wearable biomechanical sensors and
channels, and also facilitate energy efficient big
biomechanical data mining.

II. METHODS

A. The Spatial Variability Mining Algorithm

To maximize the energy efficiency, we have developed a
convolution neural network with shared pattern filters. It is
well known that convolutional operations are highly efficient
with these shared connections. However, no previous study on
using it on wearable spatial variability mining has been
conducted, to the best of our knowledge. We here leverage it
to thoroughly evaluate 42 different combinations of sensor
locations and sensor channels.

The selected optimal sensor location and sensor channel
will be set as the final recommendation, meaning that in the
real-world use, we only need to execute the deep learning
algorithm on this minimized amount of data. To further
illustrate the variability of the wearable biomechanical
dynamics, in Fig. 1a), the selected biomechanical signals are
visualized, which indicate the diverse behaviors for different
channels. The dynamics will be automatically learned with the
proposed deep learning algorithm, to determine the optimal
channel among six dimensions. And the process will be
executed for each sensor location among seven.

B. Potential System Configurations

We will consider seven different body locations, including
locations, chest, forearm, head, shin, thigh, upper-arm, and
waist. For each location, we will consider both the
accelerometer and gyroscope sensors, each with tri-axis
signals. So, in total there are 42 combinations. We will
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Fig. 1. The illustration of (a) the selected biomechanical signals from a subject during running, with six dimensions (3-axis
accelerometer and 3-axis gyroscope), and (b) the selected detection accuracy under different configurations (chest, thigh) that

indicates the accelerometer-Y axis is optimal.

Notes. A/G: accelerometer/gyroscope; X/Y/Z: 3 different axis.
therefore be able to comprehensively investigate the
biomechanical dynamics and determine the optimal
configuration with deep learning.

Mathematically, the optimal system configuration is
determined by (1), where u is the optimal combination of the
sensor location [, sensor type s, and sensor channel c.

u = argmax ®(Dys)
Ls,c
And @ is the deep learning model, and D;. is the
corresponding dataset with the configuration [, s, and c.

C. Experimental Evaluation

The real-world motion database [6] is used. Fifteen
participants performed six different activities, including
climbing downstairs, climbing upstairs, jumping, lying,
running/jogging, and walking. Each activity is from two to ten
minutes, and the signal is segmented with a size of 100.

III. RESULTS

A. Comprehensive Study of 42 Configurations

We have compared all 42 configurations in terms of the
physical activity detection accuracy. As shown in Fig. 1b), we
have highlighted the chest and thigh locations, and their
corresponding channels, which have better performance
compared with the forearm, head, thin, upper-arm and waist
locations and channels. Especially, for the forearm, head, and
upper-arm locations, the performance is relatively low,
considering there are more diversity during the movements.

We finally determine the chest location and the
accelerometer axis-Y channel as the optimal combination,
with an accuracy around 95.1%. One thing worth noting is
that, the thigh location and accelerometer axis-Y is also a
possible candidate solution, considering the chest location
may need a strap that lowers the wearability.

B. Further Investigations

In future, we will further enhance the motion detection
accuracy though model improvements. We will also evaluate
the power consumption of the model on the edge based on the
optimal configuration, considering this study mainly
minimizes the data needed through determining the optimal
and minimum sensor configuration.

IV. CONCLUSION

In this study, we have systematically investigated the
spatial variability among different sensor locations and sensor
channels, for biomechanical energy efficient big data-driven
precision medicine. More specifically, we have designed and
developed a deep neural network to compare seven sensor
locations and six signal channels per location, in terms of
physical activity detection accuracy. We have then evaluated
the algorithm on a real-world database and determined the
optimal combination. This study will significantly advance the
biomechanical big data mining and relevant smart health
applications, by minimizing the data need while maintaining
effective edge inference.
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