2406.02081v2 [cs.MA] 24 Jun 2024

arxiv

FightLadder: A Benchmark for Competitive
Multi-Agent Reinforcement Learning

Wenzhe Li!, Zihan Ding', Seth Karten', and Chi Jin'

!Princeton University*

Abstract

Recent advances in reinforcement learning (RL) heavily rely on a variety of
well-designed benchmarks, which provide environmental platforms and consistent
criteria to evaluate existing and novel algorithms. Specifically, in multi-agent RL
(MARL), a plethora of benchmarks based on cooperative games have spurred the
development of algorithms that improve the scalability of cooperative multi-agent
systems. However, for the competitive setting, a lightweight and open-sourced
benchmark with challenging gaming dynamics and visual inputs has not yet been
established. In this work, we present FightLadder, a real-time fighting game
platform, to empower competitive MARL research. Along with the platform,
we provide implementations of state-of-the-art MARL algorithms for competitive
games, as well as a set of evaluation metrics to characterize the performance
and exploitability of agents. We demonstrate the feasibility of this platform by
training a general agent that consistently defeats 12 built-in characters in single-
player mode, and expose the difficulty of training a non-exploitable agent without
human knowledge and demonstrations in two-player mode. FightLadder provides
meticulously designed environments to address critical challenges in competitive
MARL research, aiming to catalyze a new era of discovery and advancement in the
field. Videos and code at https://sites.google.com/view/fightladder/home.

1 Introduction

As an active branch of artificial intelligence (Al), deep reinforcement learning (DRL)
has achieved significant success in various domains, including, but not limited to,
strategic games (s ; s ; s ;

s ; s), robotics control (s ;

, ; ,), and large language models alignment (

,). Underpinning these rapid advances are not only the development of
sample-efficient RL algorithms but also the availability of well-designed benchmarks.
These benchmarks provide environmental platforms, unify evaluation protocols, en-
able comparisons of state-of-the-art methods, motivate improved solutions, and guide

*Email: {wenzhe.li, zihand, sethkarten,chij}@princeton.edu.

Figure 1: FightLadder currently supports various cross-platform video fighting games:
Street Fighter II (Genesis platform), Street Fighter III (Arcade platform), Fatal Fury 2
(Genesis platform), Mortal Kombat (Genesis platform), and The King of Fighters '97
(Neo Geo platform).

practical applications. As an example, policy proximal optimization (PPO) (Schulman
et al.,, 2017) demonstrates its superior performance across different single-agent RL
benchmarks, hence being considered as one of the most widely adopted single-agent
RL algorithms (Andrychowicz et al., 2020a). In the realm of multi-agent reinforcement
learning (MARL), while a series of benchmarks have also been proposed, most of them
focus on fully cooperative settings. For competitive environments, some platforms
simulate games with tabular representations and relatively simple dynamics, such as
board games, while others, based on complex game engines, require significant compu-
tational resources and expert knowledge, such as Starcraft II and DOTA. To advance
research on competitive multi-agent reinforcement learning (MARL) and transform
game-theoretical results into practical applications, a fully competitive game platform
that strikes the right balance between complexity, efficiency, and generality is urgently
needed.

Multi-agent games are known to be more challenging than single-agent ones due
to the additional non-stationarity introduced by the interactions with other players.
Among different types of interactions, fully competitive settings can be rather difficult.
People have a long history of designing and playing competitive games, as well as
building strong Al opponents to make the game more challenging and hence intriguing.
Previous Al research has investigated the solutions of competitive games using RL, but
mostly for small-scale games like Backgammon (Tesauro et al., 1995) or other board
games (Schrittwieser et al., 2020; Brown & Sandholm, 2018, 2019). Moreover, this
line of work mostly uses state vectors as inputs, which is arguably easier than directly
learning from raw pixel inputs that commonly appear in most popular video games.
In contrast, this paper considers fighting games, which feature rich policy space, and
significant depth in strategy — including catching specific timing, counter-attack by
exploiting the stiffness of the opponents, managing energy resources, etc. Moreover,

these games also have a rather large number of characters with distinct move-sets which
add another layer of complexity for Al agents to master the game. As a result, we are
motivated to build a platform for a series of fighting games, with image inputs and
complex fighting dynamics, to serve as a challenging competitive multi-player platform
for the broad Al research community.

Apart from the game platform, the evaluation criteria and benchmark results for
certain game settings are essential for boosting the field. MARL has been greatly
investigated in the past few years for solving multi-player games, from both theoretical
and empirical perspectives. A large number of algorithms have been proposed according
to specific settings (s ; s ; s ; ,

; , ; s ; s). Nonetheless, for
competitive game settings, there is a lack of unified evaluation criteria with thorough
comparisons among different approaches.

In this work, we present FightLadder, a competitive two-player games benchmark.
Our contributions are three-fold: We build the FightLadder platform to support five
two-player fighting games, with ease to extend to other games in the future. The
games support various observation spaces involving rendered images. Based on prior
work, we provide implementations of the most popular algorithms for solving these
competitive games, including an AlphaStar league training algorithm (,

) and policy space response oracle (,). Furthermore, a unified
evaluation framework with Elo rating and exploitability tests are provided alongside
the game platforms and algorithm library. We report experimental results using the
above toolkits to serve as the baselines for two-player competitive game settings. One
important challenge of MARL is its diverse nature, which includes collaborative games,
competitive games, two-player games, and multiplayer games, all of which have rather
different problem structures, properties, and solution concepts. While it is promising to
develop a unified solution that addresses them all together, in this work, we empirically
demonstrate that to some extent, existing methods are still limited in solving competitive
two-player zero-sum games alone when combined with visual input, rich strategy
space, and lack of extensive human demonstration. We hope that FightLadder, which
particularly focuses on this fundamental two-player setting, can serve as a stepping stone
for the research community to develop effective self-play style algorithms to tackle it
first before moving on to even more complicated scenarios, and inspire future directions
that involve more types of interactions.

2 Related Work

MARL Environments. MARL environments can be categorized into three types
according to the payoff structure of the game: fully cooperative, fully competitive, and
general.

Existing environments for fully cooperative games are designed for various scenar-

ios, including simulated games like MAMuJoCo (s), card games like
Hanabi (s), video games like small-scale StarCraft SMAC (

s) and Google Research Football (R), as well as practical
scenarios like Traffic Junction (,) in a grid world, Flatland (

s) for railway networks, network load balancing (s)

and CityFlow (,) for city traffic. Cooperative environments feature a
single reward function shared by all agents, which makes them distinct from competitive
games.

On the other hand, the fully competitive game benchmarks are relatively underde-
veloped. Prior competitive environments are either on games with low-dimensional

or discrete state space such as Pommerman (,) and board games
(s R s ; s); or complex
games with image input that require a significant amount of computational resources,
such as Starcraft II (,) or DOTA (,). The fighting

game environments proposed in this paper strike the right balance between complexity,
efficiency, and generality. A few previous works also have explored fighting games:
() focuses on developing an algorithm for a single fighting game—street
fighter, as opposed to this paper which provides an environment that supports various
fighting games. While () provides a platform for fighting games, most of
its efforts have been focused on the single-agent setting. It lacks explicit criteria for two-
player scenarios with adaptive opponents, and does not provide a benchmark evaluating
existing competitive MARL algorithms. () focuses on fighting games
in the blind setting where agents have to rely on acoustic inputs to play.
Finally, there are also a number of environments for general multiagent games that

feature both cooperation and competition, including MPE (,),
MAgent (,), Hide-and-Seek (,), DMLab2D (

s), Arena (,), Smarts (s), Neural MMO (

s), PettingZoo (,), MATE (s), etc. Generic multi-

agent general-sum games are rather challenging to evaluate — even the optimal solution
concepts remain elusive. In contrast, the fully competitive setting considered in this
paper presents clear game-theoretic properties and well-defined solution concepts. We
also remark that while a number of the platforms above support several fully competitive
games, they did not provide carefully designed evaluation toolkits as well as extensive
baselines for competitive MARL algorithms.

MARL Algorithms and Evaluation. To solve multi-agent learning tasks, researchers
have proposed algorithms and built libraries for ease of usage and evaluation. Py-

MARL (,) is an initial MARL library built for solving SMAC
tasks, while PYMARL2 (R) extends PYMARL with QMIX (,
). EPyMARL (,) is also an extension of PYMARL, as a

unified library for cooperative games supporting different learning paradigms including
centralized and decentralized learning, value decomposition, etc. MARLIib (,

) includes major cooperative MARL algorithms like VDN (,),
MAPPO (,), MADDPG (,), etc. More recent libraries
include Pantheonrl] (R), MALib (,), etc. These libraries

mainly support MARL algorithms for cooperative games, lacking support for solving
competitive games.

On the other hand, there is a line of research for solving competitive games with
algorithms like self-play (,), fictitious play (,), Nash Q-

learning (R ; ,), double oracle (s),
policy space response oracle (PSRO) (,) and league training (

,). A unified benchmark remains missing to compare and evaluate the
efficiency these algorithms on the same set of tasks, especially when combined with deep
RL. This paper addresses this issue in the fully competitive setting. We concentrate on
two-player zero-sum games, and propose a platform for fighting-style fully competitive
games, along with a baseline implementation and evaluation of popular algorithms.

3 Multi-Agent Reinforcement Learning

FightLadder is designed to motivate novel algorithms for fully competitive two-player
games in the domains of MARL and game theory. Markov Games (MGs) (,

) generalize single-player Markov Decision Processes (MDPs) into multi-player
settings. Each player has its own utility and optimizes its policy to maximize the
utility. The two-player zero-sum setting in MG represents a competitive relationship
between the two players. With a shaped dense reward, the games can be generalized to
general-sum.

We denote a finite-horizon two-player general-sum partially observable MG as
POMG(S,0, A,B,P,0,{r}?_,, H). S is the state space, which can be partially
observable and transformed through an observation emission function @: S — O to the
observation space O. A and B are action spaces for two players, respectively. P(+|s, a, b)
is the state transition distribution, r; : S x A x B — R is the reward function for the
i-th player. In the zero-sum setting, two reward functions satisfy the zero-sum payoff
structure 1 + 72 = 0. H is the horizon length. We denote the policies of two players as
w and v, respectively. V¥ & — R represents the value function for player i evaluated
with policies p and v, which can be expanded as the expected cumulative reward starting
from the state s,

V;#’V(S) =]Eu,v[zzozl 7i(Sh, an, bh)|51 - S]'

In zero-sum games, we have V/""(s) = —VJ""(s),Vs € S and define V*¥(s) =
V¥ (s) for simplicity.

Definition 3.1 (Best Response). For any policy of the first player p, there exists a best
response (BR) against it from the second player, which is a policy v (u) satisfying
I/T v " I/T
Vi 1) (5) = max, V4! (s) for any (s, h) € S x [H]. We denote V33 := VJ'})
for simplification. V3" () is the value function of the second player. BR against the

second player can be defined similarly.

Definition 3.2 (Nash Equilibrium). The Nash equilibrium (NE) in zero-sum setting is
defined as a pair of policies (p*, v*) satisfying the following minimax equation:

max min VA (s) = V* " (s) = min max V*"(s).
o v v o

Definition 3.3 (Exploitability). The exploitability for a policy u of the first player
is defined as V4“T(s1) — V" (s1), i.e., the value of its BR policy (1) or the

suboptimality gap from the NE value. The exploitability of the other side policy v can
be defined accordingly.

Note that NE strategies will always lead to zero exploitability, thus approaching the
non-exploitable strategies is a reasonable pursuit for the game.

4 FightLadder

In this section, we present technical details of FightLadder. In the following part, we
first introduce different game settings of FightLadder, followed by elaborating elements
of MGs corresponding to the environment, and conclude with highlighting features of
our benchmark.

4.1 Scenarios

FlghtLadder provides a flexible interface between modern game emulators (

; ,) and algorithm developers. Thanks to its flexibility, F1ghtLad-
der can support a wide range of classical fighting games over the past decades, including
Street Fighter, Mortal Kombat, Fatal Fury, and The King of Fighters, some of which
are still very popular nowadays. Figure 1 shows screenshots of several fighting games
provided by FightLadder. With this diverse set of supported games, we can bench-
mark algorithms on various fighting scenarios differing in backgrounds, characters, and
moving dynamics, which can further motivate novel algorithms that are general rather
than overfitting to one specific game. For better readability and clarity, we would use
Street Fighter as an example for illustration and evaluation in the rest of the paper. The
other fighting games are very similar, and readers could refer to Appendix A.2 for more
details. We name each scenario in the form [game alias]_[character left]_vs_[character
right], for example sf_ryu_vs_ryu in Street Fighter.

While FightLadder mainly focuses on the competitive two-player setting, the nature
of fighting games allows it to be seamlessly deployed to the single-player scenario where
the agent’s task is to compete against a built-in game Al (e.g., sf_ryu_vs_ryu(cpu)).
Under this single-player setting, users have the freedom to choose characters and set
up the difficulty of the scripted Al opponent. Moreover, our benchmark also supports
training in a much more challenging full-game scenario (e.g., sf_ryu_full_game), where
the agent needs to defeat all 12 characters controlled by computers with the difficulty
progressively increasing. As we shall see in later experiments, this scenario could also
serve as a sanity check for our baseline algorithms to see whether they could learn
effective behaviors from the environment.

4.2 State and Observations

We define the state space S as the complete set of attributes stored in the game emulator
after each step of action. Same as human players, the agent is not allowed to access the
underlying full state but can only access the observation space O of pixels, which forms
a 128x 100 RGB image corresponding to the rendered screen. This image includes the

i

th
Defensive Crouch | Offensive Crouch @

Crouch L M H

Jump

Back Flip

KICK

55
Forward Flip
_\ PUNCH @

Figure 2: Motion and attack action spaces of fighting games. Images are adapted from
Instruction Manual of Street Fighter II.

position and movement of both sides of the players, as well as the hit-point bar and the
round timer on the top of the screen. At every step, a configurable number of images
are stacked as the input of the agent.

While we use pixels as default observations, we also provide an interface for users
to access additional information about the game status, including position, hit-point, and
exact countdown number for agents on both sides. Users can leverage these attributes to
better understand the agent’s behavior or augment feature representations. More details
are provided in Appendix A.2.

4.3 Action Space

In fighting games, two players share the same action space A. The native human action
space Apuman 18 designed to mimic the joystick control of arcade games, which is a
12-dimensional binary space (['B’, ’A’, "MODE’, "START’, "UP’, 'DOWN’, "LEFT’,
’RIGHT’, °C’,’Y’, ’X’, °Z’]) with each dimension representing a button being pressed
or not. Note that due to the nature of fighting game engines, this space contains many
redundant actions that are invalid, for instance, moving in opposite directions or moving
and attacking at the same moment. To filter out these redundant actions and to construct
a more structured space, we develop a categorical transformed action space Ajans
through an encoding function F' : Apyman — Auans- Specifically, Ay.ans is the joint
set of a direction move set Aoion={defense, forward, jump, crouch, back flip, front
flip, offensive crouch, defensive crouch} and an attack move set A.y,c={light punch,
medium punch, hard punch, light kick, medium kick, hard kick}, as shown in Figure 2.
Each action will remain a number of frames according to users’ configuration. The
games also have special techniques called close attack, i.e., Throws and Holds, which
can be applied in certain regions near the opponent.

In addition to the standard move set, one signature element of fighting games is
special moves, which is a kind of powerful attack or maneuver that requires the player
to follow a specific action sequence (i.e., sequential keys combination, or combination
of key holding and key pressing), with an example depicted in Figure 3. These moves
usually have special properties (e.g., invincibility frames, larger coverage, etc.) and
play a critical role in the strategy and depth of the game. They are especially useful for
higher levels of play, from which players could create complex combos and outperform

Figure 3: Example of special moves for character Ryu in StreetFighter IT (left to right):
Fireball, Dragon Punch, Hurricane Kick. Images are adapted from Instruction Manual
of Street Fighter II.

opponents. However, we observe that learning to perform special moves from scratch
can be challenging to baseline algorithms, as it requires the agent to memorize frames
and actions in previous steps and accurately perform the next action in the action
sequence of special moves. Moreover, the special moves can be different from character
to character, which increases the difficulty of the game. Therefore, to alleviate this
challenge, we also include hard-coded special move lists as one part of the action space
so that the agent can directly access special moves with one single action.

4.4 Rewards

Sparse Reward. Both sides of the agents are to maximize their win rate for each
round of the game. The sparse reward 7sparse assigns +1 for the winner and -1 for the
loser at the end of each episode. In the sparse reward setting, all fighting games are
two-player zero-sum games, which are theoretically guaranteed to exist at least one Nash
Equilibrium (,), which directly induces a pair of non-exploitable
policies.

Win Rate. For two players A and B, policy 74 winning against policy 75 can be
defined as a reward relationship 78, (74, 78) > r5.(7a,7p) in a single match,
with r;’%me and rs%arse as the sparse reward for players A and B in the zero-sum setting.
The win rate is defined as the probability of winning as p(m4 > 7).

Shaped Dense Reward. While sparse reward is straightforward for evaluation, we
discover that baseline algorithms could not effectively learn to behave well from such
a sparse signal. To address this issue, we introduce a shaped dense reward 7gepse fOr
training, which is a weighted sum of the hit-point damage inflicted by the agent on
the opponent and the damage it receives, together with a bonus (penalty) for winning
(losing) the game. Specific format of this reward refers to Appendix A.1. The dense
reward 7gense 1S chosen to coincide with the win rate of the policy, such that 74 > 7p
will always lead to 74l . (74, 75) > r2 (74, 7p) in expectation. The dense reward
also offers some flexibility, that the user can control the agent’s aggressiveness by
configuring the weighing scales in the reward function.

Table 1: FPS and memory usage of several open-sourced platforms.

Environment Speed (FPS) Memory (MB)
FightLadder (Ours) 1935.76 195.46
SMACV2 146.72 876.96
PettingZoo Atari 6268.18 32.13
DMLab2D 1144.27 47.41

4.5 Features

We remark on the following features of the proposed benchmark that could benefit
MARL research.

Rich Strategy Space. One key feature of our benchmark is the rich strategy space
as the nature of fighting games, which is particularly beneficial to the development of
game-theoretical algorithms. To name a few, fighting games require players to consider
(a) character diversity: each character has a unique skill set with different strengths
and weaknesses, so one needs to master the strategy and counter-strategy of all possible
opponents, and even reason how to select and order characters when they have the
freedom to do so; (b) complexity of mechanics: fighting games are designed with
sophisticate mechanics such as invincibility frame, hitboxes, and combo systems, which
are challenging for micromanagement of characters; and (c¢) adversarial opponents:
opponents may progressively adapt their policies to players’ policies, thus finding
non-exploitable policies is crucial in mastering fighting games.

Various Difficulty Levels. FightLadder provides several kinds of scenarios: single-
player mode against one CPU player (e.g., sf_ryu_vs_ryu(cpu)), single-player mode
full game (e.g., sf_ryu_full_game), two-player mode (e.g., sf_ryu_vs_ryu), team mode
(supported in some games such as The King of Fighters). The difficulty levels are
increasing in this order, as two-player mode (no CPU) introduces additional non-
stationary (opponents can be adaptive), and team mode offers a richer strategy space.
Moreover, FightLadder supports specifying arbitrary difficulty levels of CPUs and
arbitrary characters for both the player and its opponent. This enriches the features of
our platform and the diversity of strategy space.

Computational Efficiency. FightLadder also enjoys efficient computation for its
usage, and the comparison with several other popular game environments is shown in
Table 1. The frame rate is 13 times faster than SMACv2, with one-fourth usage of the
memory. While FightLadder is less efficient than PettingZoo Atari, it provides more
game complexity. The balance of complexity and low computational cost is important
for evaluating algorithms at scale.

Fidelity and Popularity. FightLadder allows testing agents in full-length fighting
games with an interface similar to human perception, thus providing a high-fidelity
evaluation of competitive RL algorithms. Moreover, fighting games have been gaining

popularity since they were released, making it easier to test the learned RL agents
against human expert players.

Open-Source and Compatibility. FightLadder is designed for the broad RL research
community, so we make efforts to improve the ease of usage and make it accessible to
all potential users. It is compatible with the Gym (,) interface so
that users can leverage off-the-shelf RL algorithms implementation.

Customization, Extension, and Flexibility. FightLadder is extremely flexible for
configuration and extension. For customization, the users can customize action spaces
(human/transformed action), reward functions (sparse/tunable shaped dense reward),
number of frames to be observed per step, as well as access to additional information to
help training. Moreover, our platform is built upon popular modern game emulators so
that it is easy to extend to other games not provided by us. Specifically, it supports Gym
Retro and MAMEToolkit, which already support a wide range of games. This extension
capability of diverse games is provided by our platform with minimal engineering efforts.
Please check our open-source project! for more details.

5 Evaluation Metrics

Versus Built-In Game Als. Directly competing with the built-in Als of the games
provides a straightforward way of measuring policy performance. Typically, fighting
games offer a hierarchical structure of levels, enabling players to adjust the difficulty
setting (for example, Street Fighter features eight distinct levels). This structure allows
for the empirical evaluation of the policy against the game’s scripted Al at varying levels
of challenge. It is important to acknowledge, however, that the limitations associated
with hard-coded adversaries restrict the extent to which this metric can accurately reflect
the policy’s real capability. For brevity, we shall refer to such agents as CPU.

Elo Ratings. The skills of agents can be ranked through the FIDE rating system (

,), which is an incremental learning system that increases the Elo of winners
and decreases the Elo of losers. The larger the difference in Elo between players A and
B, the higher the probability that the player with the higher Elo, A, beats the player
with the lower Elo, B. The Elo score calculation takes the following procedures:

First, the probability of player A winning is estimated with,

Elog —Elo 4 1

pai=p(ma = 7mp)=(1.04+10" 40)

Then the Elo rating for player A as Elo 4 will be updated with following formula:
Eloy = Elos + k - (1[winner = A] — py4),

where k is a constant of update rate. The update is symmetric for player B, as well as
any other player in the ranking system.

Thttps://sites.google.com/view/fightladder/home

10

Versus AI Exploiters. As discussed in Section 3, exploitability (as Definition 3.3)
measures the distance of a policy to the Nash equilibrium of the game. Specifically, the
exploitability of a policy y is measured by the win rate of its BR policy v/ (1) against
p, since V#*" (s1) = 0 for symmetric zero-sum game and VQ”’T(sl) =1-pv >
1) +0-p(v = u) =p(v > u) for sparse reward setting. In practice, we can use any
single-agent deep RL algorithm as an exploiter to approximately learn the BR policy
vt (). For fair comparisons, we should use one consistent exploiter (same RL algorithm
with same configurations) to evaluate the exploitability of different baselines.

Versus Human Players. While Definition 3.3 is a general metric to measure ex-
ploitability, it may be limited to the capability of deep RL algorithms in usage. There-
fore, we also provide an interface for human players such that they can play with any
learned model with convenience. This feature will show the strengths and weaknesses
of agents directly and visibly, and motivate developers to improve their algorithms
to be more non-exploitable in general. Given the remarkable success of modern RL
algorithms outperforming expert human players in various video games (,

; s ; s), we believe that FightLadder will emerge
as a promising platform for the broad competitive MARL community and researchers
will eventually build Al agents that could beat world champions in a much richer set of
strategic games with significantly less engineering efforts.

6 FightLadder-Baselines

For the convenience of the community to evaluate existing methods and new algorithms
on FightLadder platform, we open-source the implementation of several state-of-the-art
(SOTA) competitive MARL algorithms, including independent learning (,

), two-timescale learning (s), fictitious self-play (

,), policy-space response oracle (,) and league train-
ing (,). Our codebase supports decentralized learning across multiple
GPUs, and it is built upon Stable-Baselines3 (s) so that users can
leverage off-the-shelf implementations of RL algorithms. We choose proximal pol-
icy optimization (PPO) (,) as the backbone policy optimization
algorithm in our experiments. More details of baseline algorithms refer to Appendix B.

7 Results

In this section, we provide benchmark results on a selected game in FightLadder—the
Street Fighter. We aim to answer the following questions through our benchmark: (a)
Can existing RL algorithms solve the full video game in the single-player scenario?
(b) How does the performance of state-of-the-art baseline algorithms in the two-player
competitive setting compare? and (c¢) Does multi-agent training help to improve the
non-exploitability?

11

Level 1 (Guile) Level 2 (Ken) Level 3 (Chun-Li) Level 5 (Zangief) Level 6 (Dhalsim) Level 7 (Ryu)

1.0 A 104

% a

(]

o Q<

£05 1 053

H 2

0.0 L uut In “-I.Il 1 [0.083

Level 9 (E. Honda) Level 10 (Blanka) Level 11 (Balrog) Level 13 (Vega) Level 14 (Sagat) Level 15 (M. Bison) .

1.0 P~ — 1.04

% /\,_A_,—‘ z

(]

o _

= 0.5 O.S_g

= 2

0.olaartdy a1 | pe 1 Ll 003
Y 10 20 0 10 20 0 10 20 0 10 20 0 10 20 0 10 20 .

Epoch Epoch Epoch Epoch Epoch Epoch

Figure 4: The win rate curves and scheduling distribution bar plot in sf_ryu_full_game
via the proposed PPO with curriculum learning. Opponents of different characters are
marked with different levels. Levels 4, 8, and 12 are omitted as they are bonus levels
without fighting.

7.1 Single-Player Full Video Game

To answer question (a), we evaluate PPO’s performance in the scenario sf_ryu_full_game
with human action space as a feasibility check. As mentioned in Section 4, this sce-
nario requires the agent to learn a generalizable policy to compete against all different
characters with increasing difficulty levels. Curriculum learning is applied to train
the policy from easy to hard cases. Furthermore, to improve learning efficiency we
develop a curriculum scheduler for opponent sampling to match with the learner after
each epoch. More specifically, for the current learner L with policy 77, we sample its
opponent C from the entire character set C, with the following inverse-weight scheduling
distribution:
C~A(C) x1—p(ry = mc),

where p(7r, > m¢) is the win rate of the learner against the opponent and A(+) is the
simplex. Intuitively, such a curriculum will encourage the agent to focus on the hardest
opponents, similarly to prioritized experience play (,). We defer other
implementation details to Appendix C.

Figure 4 shows the performance of our proposed method during training. With 20
epochs of training (each epoch involves 10M training steps competing with opponents
sampled from the curriculum scheduler in parallel), the agent is capable of defeating
characters at each level with a win rate close to 1. In addition to beating each character
with a high probability, the trained policy can complete the full video game with over
0.6 win rate, outperforming human players with hours of playing experience. This result
shows that existing RL algorithms can already learn a well-behaved policy to solve the
full single-player video game, which provides a good starting point for exploring the
multi-agent setting.

As an additional experiment, we also test the inclusion of hard-coded special move
lists in this setting with exactly the same algorithm implementation. Although it could
be easier for the agent to learn more offensive policies, significant improvement in the

12

overall win rate is not observed. It indicates that the agents without encoded special
moves can also effectively learn policies against CPUs. Constantly playing special
moves will lead to a vulnerable situation for the agent, whereas the defensive strategy
also matters greatly in the game. Moreover, given that an experienced human player can
perform special moves easily (by executing the action sequences almost instantly), we
do not think that hard-coded special move lists will become the advantage of trained
agents over human players.

7.2 Performance of Two-Player Baseline Algorithms

To answer question (b), we evaluate five SOTA algorithms mentioned in Section 6:
independent PPO (IPPO), two-timescale IPPO (2Timescale), fictitious self-play (FSP),
policy-space response oracles (PSRO), and league training (League) in the scenario
sf_ryu_vs_ryu. IPPO and 2Timescale can be categorized into the independent learning
paradigm, while FSP, PSRO, and League can be categorized into the population-based
learning paradigm. For each algorithm, we initialize the population of agents with a
pretrained policy in sf_ryu_vs_ryu(cpu) against the most difficult CPU?. We use the
transformed actions Ay.,,s with hard-coded special moves to unleash the full potential
for agents. As a fair comparison, we use the same codebase (FightLadder-Baselines) and
fix the hyperparameters of the backbone PPO algorithm. We train IPPO and 2Timescale
for approximately SOM steps until the Elos saturate across all three seeds, FSP and
PSRO for approximately 250M steps, and League for approximately 700M steps due to
a larger population. A slice of the league during the league training process is visualized
in Figure 5 Please refer to Appendix C for more implementation details.

For each algorithm, we report the training Elos of agents in the population during the
course of training, respectively. The results are shown in Appendix D, which reveal that
all baseline algorithms are improving their policies at the onset of training. Subsequently,
IPPO and 2Timescale gradually converge and oscillate around the peak Elos, where
FSP, PSRO, and League continue to increase their scores. This suggests that IPPO and
2Timescale may suffer from optimization issues during training and population-based
methods may be more suitable for policy learning in fighting games.

To compare different baseline algorithms, we select the top ten agents (five on
each left or right side) from each algorithm to form a new population, and compute
the test Elos for this group of agents and CPU policies. We report the highest Elos
for each algorithm in Table 2 and the distribution of these agents’ Elos in Figure 6,
where we find that League and PSRO significantly outperform other baselines, and
population-based methods deliver better results than independent learning counterparts,
which is aligned with our previous observation inspecting Elos of baselines individually.
On the other hand, we notice that CPU policies may defeat most of the agents in this
group except for a few best-performing agents, suggesting that it is still very challenging
for existing SOTA algorithms to reach an advanced or superhuman level of performance
in these fighting games. We also noticed that two sides of agents reveal asymmetric
strengths in terms of Elos in both individual evaluation for each algorithm (Appendix D

2We do not pre-train in sf_ryu_full_game as sf_ryu_vs_ryu does not require skills to compete with other
characters rather than Ryu.

13

1.0
LEO_left
LEO_left_h_10M
LEO_left_h_20M 0.8
LE1_left
LE1_left_h_10M
0.6
LE1_left_h_20M
MAO_left
0.4
MAO_left_h_OM
MAO_left_h_10M
MAO_left_h_20M 02
MEO_left
MEO_left_h_10M
0.0
»
&
Q-
&

Figure 5: The payoff matrix for each pair of agents at a certain stage of League training.
For league training, there is one main agent (MA), two league exploiters (LEO, LE1),
and one main exploiter (ME) for each side (left or right). The name of each row indicates
the agent information as Character_Side_Checkpoint. Checkpoint=h_xM
represents a historical version of agent saved at x million steps. The value indicates
the win rate of the left (row) player against the right (column) player. For instance,
MEO_right wins all MAO_left_h_xM with high probability, indicating that main
exploiters in the league can fully exploit previous main agents. Also the high win rate
of MAO_left against all right agents (except MAO_right) shows that the main agent
at current steps outperforms other agents in the league.

Figure 10-14) and overall evaluations across algorithms (Table 2). Such an imbalance
may result from various factors, for instance, optimizing instability, variance from the
population or Elos computation, etc, and can be an interesting research question for
future work.

14

Left
5| mmm 1PPO '
4 I League
[2Timescale

‘C 3/ mmm PSRO
3 | mmm FSP
O2 mm cpu

1

05 250 1000 1250 1500 1750

Right

05 250 500 750 1000 1250 1500 1750
Elo

Figure 6: The distribution of Elo ratings for top ten agents from each baseline.

7.3 Non-Exploitability of Trained Agents

To answer question (c¢), we measure the non-exploitability of baseline algorithms accord-
ing to the evaluation approaches proposed in Section 5. More specifically, we choose
models with the highest Elos from each two-player baseline algorithm respectively, and
compare their exploitability with the single-player pretrained model used for initializing
the population-based methods in Section 7.2.

The practical exploitability is calculated by setting the trained policy fixed on one
side, and deploying a PPO agent on the other side as an exploiter. The PPO exploiter
will be trained until convergence, and the success rate of the exploiter is the estimated
exploitability of the original policy, according to Definition 3.3.

Single-Agent RL Exploiters. We use PPO as the algorithm for training exploiters,
given its decent performance in both single-player and two-player scenarios shown in
previous experiments. Table 3 shows the exploitability of comparing methods evaluated

15

Table 2: Comparison of training steps and the best Elo ratings among baselines, with
CPU’s Elos as references.

Method Training Steps (Left/Right) Elo (Left/Right)

IPPO 46M / 46M 1082 /1164
League 647M / 630M 1682 /1503
2Timescale 51IM /46M 1080/919
PSRO 176M / 161M 1262 /1517
FSP 262M / 244M 1079/ 1150
CPU N/A 395/ 1541

Table 3: Comparison of methods’ exploitability. A lower number indicates the evaluated
policy is more robust to exploitation.

Method Exploitability (Left/Right)

IPPO 0.96 + 0.03/0.91 = 0.03
League 0.94 + 0.05/0.94 &+ 0.00
2Timescale 0.96 £ 0.02/0.90 £ 0.05
PSRO 0.97 £ 0.02/ 0.88 £ 0.05
FSPp 1.00 £ 0.00/0.95 £ 0.01
PPO 0.99 £0.02/0.99 £ 0.01

across three seeds, from which we observe that the single-player pretrained policy via
PPO is easier to exploit and suffers from higher exploitability than almost all selected
policies from two-player baselines. Therefore, this result indicates that two-player
learning algorithms such as League and PSRO can help to improve the robustness
of learned policies. On the other hand, the PPO exploiter eventually learns to beat
policies from all baselines (with a win rate greater than 0.5), which means that none of
these algorithms can result in the exact Nash equilibrium policies, or even close to it.
Therefore, closing this gap is a challenging direction for future research.

Human Players as Exploiters. In addition to exploiting the learned models with
RL algorithms, we also attempt to exploit their policies with human effort. During
human evaluations, the evaluated models reveal some robustness to human players (e.g.,
defend when a human player attacks), but some simple strategies (e.g., defensive posture
combined with low kicks at proper timing) could still defeat them rather consistently.
Visualizations are provided in Appendix E.

Therefore, based on two exploiting experiments, we observe that existing competi-
tive MARL algorithms are found hard to learn non-exploitable strategies in competitive
fighting games like Street Fighter, thus raising a new challenge for the research commu-
nity.

16

8 Conclusion and Limitation

In this paper, we present the FightLadder platform and evaluation benchmarks as a novel
testbed for competitive MARL research. The platform supports various video action
games including the popular Street Fighter series, with flexible support for new game
integration.

We further provide experimental evaluations of present RL and MARL algorithms
in both single-player and two-player modes of one specific game Street Fighter. In the
single-player setting, we proposed a learning scheme based on curriculum learning. It
trains a general RL agent that can consistently beat CPUs across different characters. In
the two-player setting, the Elo rating and exploitability test are conducted as part of the
proposed evaluation criteria. Our implementation of league training and PSRO provides
stronger agents than FSP and IPPO in terms of Elo ratings. However, both single-agent
RL and human players are capable of exploiting all agents learned by current widely
adopted algorithms.

Our current work is limited to fully competitive two-player games. One important
challenge of MARL is its diverse nature, which includes collaborative games, com-
petitive games, two-player games, and multiplayer games, all of which have rather
different problem structures and solution concepts. The more general setting, which in-
volves more than two players and both cooperation and competition, is not yet explored
and should be an important future direction. Although FightLadder supports multiple
fighting games, our current results are mostly conducted on Street Fighter, and we are
curious to see more results on other games.

This work motivates further research in developing more efficient and effective
self-play algorithms finding non-exploitable strategies. We hope that our platform
prompts general interest and more extensive research in competitive MARL and serves
as a standard benchmark for developing practically useful self-play training paradigms.

17

Acknowledgements

This work was supported by Office of Naval Research N0O0014-22-1-2253, National
Science Foundation Grant NSF-1IS-2107304, and National Science Foundation Graduate
Research Fellowship Program under Grant No. DGE-2039656.

Impact Statement

This work may advance the field of game Al, thus has potentials to affect the gaming
experience for human players. The strong Al agents for popular fighting games may
attract people’s attention to get involved in these games, or make them feel that the
games can be even more challenging for human. Another positive impact is that our
study promotes the research for robust systems against adversarial attacks.

References

Andrychowicz, M., Raichuk, A., Stanczyk, P., Orsini, M., Girgin, S., Marinier, R.,
Hussenot, L., Geist, M., Pietquin, O., Michalski, M., et al. What matters in
on-policy reinforcement learning? a large-scale empirical study. arXiv preprint
arXiv:2006.05990, 2020a.

Andrychowicz, O. M., Baker, B., Chociej, M., Jozefowicz, R., McGrew, B., Pachocki,
J., Petron, A., Plappert, M., Powell, G., Ray, A., et al. Learning dexterous in-hand
manipulation. The International Journal of Robotics Research, 39(1):3-20, 2020b.

Baker, B., Kanitscheider, 1., Markov, T., Wu, Y., Powell, G., McGrew, B., and Mordatch,
I. Emergent tool use from multi-agent autocurricula. arXiv preprint arXiv:1909.07528,
2019.

Bard, N, Foerster, J. N., Chandar, S., Burch, N., Lanctot, M., Song, H. F., Parisotto, E.,
Dumoulin, V., Moitra, S., Hughes, E., et al. The hanabi challenge: A new frontier for
ai research. Artificial Intelligence, 280:103216, 2020.

Beattie, C., Koppe, T., Duéiiez-Guzman, E. A., and Leibo, J. Z. Deepmind lab2d. arXiv
preprint arXiv:2011.07027, 2020.

Berner, C., Brockman, G., Chan, B., Cheung, V., D¢biak, P., Dennison, C., Farhi, D.,
Fischer, Q., Hashme, S., Hesse, C., et al. Dota 2 with large scale deep reinforcement
learning. arXiv preprint arXiv:1912.06680, 2019.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and
Zaremba, W. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Brohan, A., Brown, N., Carbajal, J., Chebotar, Y., Dabis, J., Finn, C., Gopalakrishnan,
K., Hausman, K., Herzog, A., Hsu, J., et al. Rt-1: Robotics transformer for real-world
control at scale. arXiv preprint arXiv:2212.06817, 2022.

18

Brown, G. W. Iterative solution of games by fictitious play. Act. Anal. Prod Allocation,
13(1):374, 1951.

Brown, N. and Sandholm, T. Superhuman ai for heads-up no-limit poker: Libratus beats
top professionals. Science, 359(6374):418-424, 2018.

Brown, N. and Sandholm, T. Superhuman ai for multiplayer poker. Science, 365(6456):
885-890, 2019.

Daskalakis, C., Foster, D. J., and Golowich, N. Independent policy gradient methods
for competitive reinforcement learning. Advances in neural information processing
systems, 33:5527-5540, 2020.

de Witt, C. S., Gupta, T., Makoviichuk, D., Makoviychuk, V., Torr, P. H., Sun, M.,
and Whiteson, S. Is independent learning all you need in the starcraft multi-agent
challenge? arXiv preprint arXiv:2011.09533, 2020.

Ding, Z., Su, D., Liu, Q., and Jin, C. A deep reinforcement learning approach for finding
non-exploitable strategies in two-player atari games. arXiv preprint arXiv:2207.08894,
2022.

Domabhidi, A., Chu, E., and Boyd, S. ECOS: An SOCP solver for embedded systems.
In European Control Conference (ECC), pp. 3071-3076, 2013.

Dresher, M., Shapley, L. S., and Tucker, A. W. Advances in Game Theory.(AM-52),
Volume 52, volume 52. Princeton University Press, 2016.

Elo, A. E. and Sloan, S. The rating of chessplayers: Past and present. (No Title), 1978.

Filar, J. and Vrieze, K. Competitive Markov decision processes. Springer Science &
Business Media, 2012.

Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., and Whiteson, S. Counterfactual
multi-agent policy gradients. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Go, S.-X., Jiang, Y., and Loke, D. K. A phase-change memristive reinforcement learning
for rapidly outperforming champion street-fighter players. Advanced Intelligent
Systems, 5(11):2300335, 2023.

Heinrich, J., Lanctot, M., and Silver, D. Fictitious self-play in extensive-form games. In
Bach, F. and Blei, D. (eds.), Proceedings of the 32nd International Conference on
Machine Learning, volume 37 of Proceedings of Machine Learning Research, pp.
805-813, Lille, France, 07-09 Jul 2015. PMLR. URL https://proceedings.
mlr.press/v37/heinrichl5.html.

Hu, J. and Wellman, M. P. Nash g-learning for general-sum stochastic games. Journal
of machine learning research, 4(Nov):1039-1069, 2003.

19

Hu, J., Jiang, S., Harding, S. A., Wu, H., and Liao, S.-w. Rethinking the implementation
tricks and monotonicity constraint in cooperative multi-agent reinforcement learning.
arXiv preprint arXiv:2102.03479, 2021.

Hu, S., Zhong, Y., Gao, M., Wang, W., Dong, H., Liang, X., Li, Z., Chang, X., and
Yang, Y. Marllib: A scalable and efficient multi-agent reinforcement learning library.
Journal of Machine Learning Research, 24(315):1-23, 2023.

Khan, I., Van Nguyen, T., Dai, X., and Thawonmas, R. Darefightingice competition: A
fighting game sound design and ai competition. In 2022 IEEE Conference on Games
(CoG), pp. 478-485. IEEE, 2022.

Kurach, K., Raichuk, A., Staiczyk, P., Zajac, M., Bachem, O., Espeholt, L., Riquelme,
C., Vincent, D., Michalski, M., Bousquet, O., et al. Google research football: A
novel reinforcement learning environment. In Proceedings of the AAAI conference
on artificial intelligence, volume 34, pp. 4501-4510, 2020.

Lanctot, M., Zambaldi, V., Gruslys, A., Lazaridou, A., Tuyls, K., Pérolat, J., Silver,
D., and Graepel, T. A unified game-theoretic approach to multiagent reinforcement
learning. Advances in neural information processing systems, 30, 2017.

Li, J., Koyamada, S., Ye, Q., Liu, G., Wang, C., Yang, R., Zhao, L., Qin, T., Liu, T.-Y.,
and Hon, H.-W. Suphx: Mastering mahjong with deep reinforcement learning. arXiv
preprint arXiv:2003.13590, 2020.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and
Wierstra, D. Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Lowe, R., Wu, Y. L., Tamar, A., Harb, J., Pieter Abbeel, O., and Mordatch, I. Multi-agent
actor-critic for mixed cooperative-competitive environments. Advances in neural
information processing systems, 30, 2017.

McMabhan, H. B., Gordon, G. J., and Blum, A. Planning in the presence of cost functions
controlled by an adversary. In Proceedings of the 20th International Conference on
Machine Learning (ICML-03), pp. 536-543, 2003.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, 1., Wierstra, D., and
Riedmiller, M. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529-533, 2015.

Mohanty, S., Nygren, E., Laurent, F., Schneider, M., Scheller, C., Bhattacharya, N.,
Watson, J., Egli, A., Eichenberger, C., Baumberger, C., et al. Flatland-rl: Multi-agent
reinforcement learning on trains. arXiv preprint arXiv:2012.05893, 2020.

20

Moravvcik, M., Schmid, M., Burch, N., Lisy, V., Morrill, D., Bard, N., Davis, T., Waugh,
K., Johanson, M., and Bowling, M. Deepstack: Expert-level artificial intelligence in
heads-up no-limit poker. Science, 356(6337):508-513, 2017.

Mordatch, I. and Abbeel, P. Emergence of grounded compositional language in multi-
agent populations. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Murphy, D. Hacking public memory: Understanding the multiple arcade machine
emulator. Games and Culture, 8(1):43-53, 2013.

Nichol, A., Pfau, V., Hesse, C., Klimov, O., and Schulman, J. Gotta learn fast: A new
benchmark for generalization in rl. arXiv preprint arXiv:1804.03720, 2018.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang, C.,
Agarwal, S., Slama, K., Ray, A., et al. Training language models to follow instructions
with human feedback. Advances in neural information processing systems, 35:27730—
27744, 2022.

Palmas, A. Diambra arena: a new reinforcement learning platform for research and
experimentation. arXiv preprint arXiv:2210.10595, 2022.

Pan, X., Liu, M., Zhong, F., Yang, Y., Zhu, S.-C., and Wang, Y. Mate: Benchmarking
multi-agent reinforcement learning in distributed target coverage control. Advances
in Neural Information Processing Systems, 35:27862-27879, 2022.

Papoudakis, G., Christianos, F., Schifer, L., and Albrecht, S. V. Benchmarking multi-
agent deep reinforcement learning algorithms in cooperative tasks. arXiv preprint
arXiv:2006.07869, 2020.

Peng, B., Rashid, T., Schroeder de Witt, C., Kamienny, P.-A., Torr, P., Bochmer, W., and
Whiteson, S. Facmac: Factored multi-agent centralised policy gradients. Advances in
Neural Information Processing Systems, 34:12208-12221, 2021.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., and Dormann, N. Stable-
baselines3: Reliable reinforcement learning implementations. Journal of Machine
Learning Research, 22(268):1-8, 2021. URL http://jmlr.org/papers/
v22/20-1364 .html.

Rashid, T., Samvelyan, M., De Witt, C. S., Farquhar, G., Foerster, J., and Whiteson, S.
Monotonic value function factorisation for deep multi-agent reinforcement learning.
The Journal of Machine Learning Research, 21(1):7234-7284, 2020.

Resnick, C., Eldridge, W., Ha, D., Britz, D., Foerster, J., Togelius, J., Cho, K., and
Bruna, J. Pommerman: A multi-agent playground. arXiv preprint arXiv:1809.07124,
2018.

Samvelyan, M., Rashid, T., De Witt, C. S., Farquhar, G., Nardelli, N., Rudner, T. G.,
Hung, C.-M., Torr, P. H., Foerster, J., and Whiteson, S. The starcraft multi-agent
challenge. arXiv preprint arXiv:1902.04043, 2019.

21

Sarkar, B., Talati, A., Shih, A., and Sadigh, D. Pantheonrl: A marl library for dynamic
training interactions. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pp. 13221-13223, 2022.

Schaul, T., Quan, J., Antonoglou, 1., and Silver, D. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

Schrittwieser, J., Antonoglou, 1., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., Guez,
A., Lockhart, E., Hassabis, D., Graepel, T., et al. Mastering atari, go, chess and shogi
by planning with a learned model. Nature, 588(7839):604—609, 2020.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Shapley, L. S. Stochastic games. Proceedings of the national academy of sciences, 39
(10):1095-1100, 1953.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,
Schrittwieser, J., Antonoglou, 1., Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search. nature, 529(7587):484-489,
2016.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, ., Lai, M., Guez, A., Lanctot, M.,
Sifre, L., Kumaran, D., Graepel, T., et al. A general reinforcement learning algorithm
that masters chess, shogi, and go through self-play. Science, 362(6419):1140-1144,
2018.

Song, Y., Wojcicki, A., Lukasiewicz, T., Wang, J., Aryan, A., Xu, Z., Xu, M., Ding,
Z.,and Wu, L. Arena: A general evaluation platform and building toolkit for multi-
agent intelligence. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7253-7260, 2020.

Suarez, J., Du, Y., Zhu, C., Mordatch, 1., and Isola, P. The neural mmo platform for
massively multiagent research. arXiv preprint arXiv:2110.07594, 2021.

Sukhbaatar, S., Fergus, R., et al. Learning multiagent communication with backpropa-
gation. Advances in neural information processing systems, 29, 2016.

Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W. M., Zambaldi, V., Jaderberg, M.,
Lanctot, M., Sonnerat, N., Leibo, J. Z., Tuyls, K., et al. Value-decomposition networks
for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296, 2017.

Tan, M. Multi-agent reinforcement learning: Independent vs. cooperative agents. In
Proceedings of the tenth international conference on machine learning, pp. 330-337,

1993.

Terry, J., Black, B., Grammel, N., Jayakumar, M., Hari, A., Sullivan, R., Santos, L. S.,
Dieffendahl, C., Horsch, C., Perez-Vicente, R., et al. Pettingzoo: Gym for multi-agent
reinforcement learning. Advances in Neural Information Processing Systems, 34:
15032-15043, 2021.

22

Tesauro, G. et al. Temporal difference learning and td-gammon. Communications of the
ACM, 38(3):58-68, 1995.

Vinyals, O., Babuschkin, 1., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J.,
Choi, D. H., Powell, R., Ewalds, T., Georgiev, P, et al. Grandmaster level in starcraft
ii using multi-agent reinforcement learning. Nature, 575(7782):350-354, 2019.

Yao, Z. and Ding, Z. Learning distributed and fair policies for network load balancing

as markov potential game. Advances in Neural Information Processing Systems, 35:
2881528828, 2022.

Yu, C., Velu, A., Vinitsky, E., Gao, J., Wang, Y., Bayen, A., and Wu, Y. The sur-
prising effectiveness of ppo in cooperative multi-agent games. Advances in Neural
Information Processing Systems, 35:24611-24624, 2022.

Zhang, H., Feng, S., Liu, C., Ding, Y., Zhu, Y., Zhou, Z., Zhang, W., Yu, Y., Jin, H., and
Li, Z. Cityflow: A multi-agent reinforcement learning environment for large scale
city traffic scenario. In The world wide web conference, pp. 3620-3624, 2019.

Zheng, L., Yang, J., Cai, H., Zhou, M., Zhang, W., Wang, J., and Yu, Y. Magent: A
many-agent reinforcement learning platform for artificial collective intelligence. In
Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.

Zhou, M., Luo, J., Villella, J., Yang, Y., Rusu, D., Miao, J., Zhang, W., Alban, M.,
Fadakar, 1., Chen, Z., et al. Smarts: Scalable multi-agent reinforcement learning
training school for autonomous driving. arXiv preprint arXiv:2010.09776, 2020.

Zhou, M., Wan, Z., Wang, H., Wen, M., Wu, R., Wen, Y., Yang, Y., Yu, Y., Wang,
J., and Zhang, W. Malib: A parallel framework for population-based multi-agent
reinforcement learning. Journal of Machine Learning Research, 24(150):1-12, 2023.

23

A Details of FightLadder
A.1 Dense Reward

The shaped dense reward for the i-th agent at step ¢ is defined as follows:
rit = o [ANHP_; ;1 —HP_;;) — (HP; :—1 — HP; 1) + 7 bonus] » (D

where « is a scaling factor, HP; ; denotes agent 4’s hit-point at step ¢ and X control the
aggressiveness of learned agents, and —i denotes the opponent agent. At the end of the
game, the agent ¢ will receive a bonus reward 7; ponus, Which is positively correlated to
HP; if it wins and negatively correlated to HP_; if it loses. By default, we choose A = 3
in SF2, FF2, and MK, and A = 1 in SF3 and KOF97, for the consideration of practical
performances.

A.2 Game Settings

Table 4 illustrates the observation, action, and rewards as well as other elements in the
environment for all supported games — Street Fighter II (SF2), Fatal Fury 2 (FF2),
Mortal Kombat (MK), Street Fighter III (SF3), and The King of Fighters 97 (KOF97).

Table 4: Specification of supported games in FightLadder.

SF2 FF2 MK SF3 KOF97
Observation (Pixels) 100x128x3 112x128x3 112x160x3 112x192x3 112x192x3
Human Action Supported Yes Yes Yes Yes Yes
Transformed Action Supported Yes Yes Yes No No
Shaped Dense Reward Yes Yes Yes Yes Yes
Default Frames Per Step 8 8 8 3 3
Default Frames Stacked” 12 12 12 9 9
.. . HPs, Countdown, HPs, Countdown HPs, Countdown, HPs HPs, Countdown,
Additional Available Info . .
Scoreboard, Positions Scoreboard Positions, Power Status

A.3 Comparison of MARL Game Platforms

Table 5 compares our FightLadder with several popular MARL game platforms mostly
focusing on competitive settings, in terms of observation space, action space, whether
baseline methods are included and the number of agents in games. For the observa-
tion space, ‘Continuous’ indicates a vector-form latent state information of the game
with continuous numerical values, and ‘Image’ indicates visual RGB information as
observations. PommerMan (s) uses grid environments therefore its
observation only has discrete values. For the action space, most of the games only
involves discrete action values except for Arena (s). For the number
of agents in these platforms, MPE provide diverse competitive settings like 1v1, 1vN,
1vlvl and so on. MAgent includes 1 million agents competing againts each other, and
for Neural MMO (,) the number of agents is 256 or 1024. The team
mode in our FightLadder and Arena supports the competitive settings of two teams,
where each team includes multiple characters to be controlled by one team policy or
separate agent policies.

3We uniformly sample the stacked frames as observations to improve the computational efficiency.

24

Table 5: Comparison of popular MARL game platforms.

Env Observation Space Action Space Baselines # Agents
MPE (s) Continuous Discrete Yes Ivl, IvN and lvlvl...
MAgent (s) Continuous+Image Discrete Yes 1 million
Arena (s) Continuous+Image Continuous/Discrete Yes 1vl, NvN and team mode
Neural MMO (s) Continuous Discrete Yes 256 and 1024
PettingZoo Atari (s) Continuous+Image Discrete No 1vl
PommerMan (s) Discrete Discrete No 2v2
FightLadder (Ours) Continuous+Image Discrete Yes 1v1 and team mode

B Baseline Algorithms of FightLLadder-Baselines

Independent Learning (IPPO). Independent learning is a straightforward extension
of single-agent RL into MARL. It decomposes the joint optimization into individual
ones for each agent while regarding all other agents as part of the environment. It
can be implemented easily by simultaneously running single-agent RL algorithms for
each player. Theoretically, this independent learning paradigm suffers from suboptimal-
ity (Tan, ; s), because the environment becomes non-stationary
while other agents are updating their policies. However, recent work (,

; ,) finds that with modest hyperparameter tuning, IPPO can serve
as a strong baseline compared to other state-of-the-art algorithms in some cooperative
MARL tasks.

Two-timescale Learning (2Timescale). Two-timescale learning follows the indepen-
dent learning paradigm, but requires two players to update gradients according to the
two-timescale rule, i.e., one player uses a much smaller step size than the other one.
As a result of this modification, two-timescale learning enjoys some nice theoretical
properties — it is proven that under some mild assumptions, independent policy gradi-
ent algorithms satisfying two-timescale converge to a Nash equilibrium in two-player
zero-sum stochastic games (,).

Population-Based Methods. The independent learning framework is only training
agents against the current version of their opponents, which may fail or converge
slowly due to the lack of diversity (,). Population-based methods
are proposed to increase policy diversity by maintaining a pool of policies in previous
iterations, and using them as a curriculum to update the current policy. More specifically,
for t-th update, the agent p! plays with previous versions of its opponent & sampled
from the meta-strategy p,, which is a distribution over 10, !, ... v*~1. Algorithm 1
presents the pseudo-code for general population-based methods. With different choices
of sampling distribution, we can recover several state-of-the-art baselines:

* Fictitious Self-Play (FSP), where p,, is the uniform distribution (,

): Uniform(2%, vt ... i1,

* Policy-Space Response Oracles (PSRO), where (ji,7) are sampled from the
meta-strategy (p,,, p,) by solving Nash equilibrium of the payoff matrix game
between p0, b, ..., wt "t and 0,00, . i (,).

25

* League Training (League), where three types of agents — main agents, league
exploiters, and main exploiters, are introduced into the population. Main agents
train against themselves as well as all previous versions of agents in the population;
league exploiters train against all previous agents; and main exploiters optimize
the best response of main agents. Each type of agent adopts a different sampling
distribution which is a mixture of self-play and prioritized fictitious self-play. We
refer readers to (,) for more implementation details.

Algorithm 1 Population-Based Methods for MGs
1: Initialize policies u® = {up},° = {v;,}, h € [H]
2: Initialize policy sets: p = {u°}, v = {+°}
3: Initialize meta-strategies: p, = [1.], p, = [1]
4: fort=1,...,T do

5: if t%2 == 0 then

6: v = BEST_RESPONSE(p,,, 1t

7: v=v{J{v'}

8: Update p,, according to specific algorithms
9: else

10: pt = BEST_RESPONSE(p,,, V)

1 p=pU{n'}

12: Update p,, according to specific algorithms
13: end if

14: end for

15: Return p, p,,, v, py,

C Experiment Details

C.1 Hyperparameters (Table 6 and 7)
C.2 Training Details

Figure 7, 8, and 9 report the payoff matrix of policies within the population for FSP,
PSRO, and League, respectively, with the value representing the win rate of the left
player against the right player. We trained all our agents on one server with 192 CPUs
and 8 A6000 GPUs.

26

Hyperparameters ‘ Value

feature extractor

rollout steps for each environment
batch size

epochs per update

v

GAE)\

learning rate

clipping range

advantage normalization
entropy coefficient
gradient clipping

value function coefficient

CNN (,)

512

1024

4

0.94

0.95

linear schedule from 2.5e-4 to 2.5e-6
linear schedule from 0.15 to 0.025
True

0.0

0.5

0.5

Table 6: Training hyperparameters for PPO, which is the backbone for both single-player
and two-player algorithms in the experiment.

FSP | PSRO | League
#envs per learner 24 # envs per learner 24 #envs per learner 24
steps for BR 10M | steps for BR 10M steps for BR 10M
total steps 50M | total steps 250M total steps 700M
main agent 1 # main agent 1 # main agent 1
Nash solver ECOS # main exploiter 1
() | #league exploiter 2

Table 7: Training hyperparameters for FSP, PSRO, and League. We omit the details
of League’s opponent scheduling here as it strictly follows the pseudocode provided

in (

))

D Individual Elo Results

D.1
D.2
D.3
D.4
D.5

IPPO (Figure 10)
2Timescale (Figure 11)
FSP (Figure 12)

PSRO (Figure 13)
League (Figure 14)

E Visualization of Human Exploiters

Figure 15 visualizes how human players can exploit learned models with a simple
strategy. Full videos are provided in the supplementary material.

27

10

10
Fspo_ten|

os e

os os
Fsro, et n_on

o0 o

o2 o2
Fspo_ten n_1om|

oo

s jenf

Fspa,tef o

oo .
s & &
< & o
& o8 <
& &
Fsroen
s
e F5PO_left_h_om| e
o e 1 on
s et o]
s . o] st 200
s o]
s 200
N 50 . o] .
s o]
B B K 5 s
> 37 & S &
B o o € &
ry £ &
& & E &
10 10
’SWU(" N
vt on
FSPO_left_h_om| os e
0 e b 100
st o0
s et 200
s s
st 2o 0 e b 30m
FSPO_left_n_30M| Foro etn.eon
b b
o i1 500
st com
FSPO_left_h_S0M| - -
0 e b 7om
sp0 st . on 0 e aon
o o
3 R R & &
o o < o s o S
& &

S &
& &

Figure 7: FSP details (training order from top left to bottom right): For FSP, there is one
agent for each side (left or right). The name of each row indicates the agent information
as Character_Side_Checkpoint. Checkpoint=h_xM represents a previous
version of agent saved at x million steps. The value indicates the win rate of the left
(row) player against the right (column) player.

28

P00 e

Pso0 et

P00 letn o

PSO0 et ow|

PSR00 et 100

oo oo

Figure 8: PSRO details (training order from top left to bottom right): For PSRO, there
is one agent for each side (left or right). The name of each row indicates the agent in-
formation as Character_Side_Checkpoint. Checkpoint=h_xM represents
a previous version of agent saved at x million steps. The value indicates the win rate of
the left (row) player against the right (column) player.

29

50 te

L0 tet n 20w

L£0_tet n 20w

e e

£ tet n 20w

LE1tet n 20w

a0 en

0, tef . ow|

a0 et 1 10w

A0 et 200

weo ten|

Weo tef n 20w

LE0_jert_n_300

Le1 e
LEL e 10
LEL et n 200
LEL et 300
LeL et n 4o

s en|
0 et ow|
0 tef_n 0m|
10 set 20w
0 tef 30w
0 et _som|

o, en]

ME et om|

Meo et 3om]

Figure 9: League training details (training order from top left to bottom right): For
league training, there is one main agent (MA), two league exploiters (LEO, LE1), and
one main exploiter (ME) for each side (left or right). The name of each row indicates
the agent information as Character_Side_Checkpoint. Checkpoint=h_xM
represents a previous version of agent saved at x million steps. The value indicates the

20

10

oo

Leo et

Leo_set n_10M

LEo_tetn 200

LEo_sertn 300

e sen|

LEL et n_10M

LEL et n 200

LEL et n 300

o jen|

0 et ow|

10 tef 0w

10 set 20w

0 sen__3om|

e jen|

MEo et om]

e et _3om|

teo_tef n_30m|
Leo_tef n_sov|

LEL e

e tet n 20w
LELter n_30m|
LELtet n_aom|
e tet n som|
e tet n_6om|

o

Leo st n_z00

Lea st n 200

o ten

a0 et ow|

o tet _30m|

Meo ten]

Meo ten n_3om|

L ten]
. 10v|

a0 et
et ow|

win rate of the left (row) player against the right (column) player.

30

10

oo

10

Figure 10: The Elo rating for the population of agents trained with IPPO algorithm.
The upper three plots are for left-side player and the bottom three are for the right-side
player. The Elo rating is plotted against the winning rate over matched policies (left

10IPPO: Left IPPO: Left IPPO: Left
o 5M o 1IM o 17M o ™ Seed 1
08 o 23M © 29M O 35M 1500 o Seed 2
am a7M L D Seed 3
06l © o oS o 6 © 1000 X ik L
o 50 o . .
04~ @ « .
02 500 o
0.0=—500 800 1000 1200 1400 1600 1800 0 T 2 5 700 600 800 1000 1200 1400 1600
Elo Steps le7 Elo
loIPPO: Right IPPO: Right IPPO: Right
e sm o 1IM o 17M
08 o 23M © 29M O 35M 1500|
0 © MM O 47m . o
. L3 e g
o @ 81000 3t iy . H
0.4/ @ wa 8% i . o
02 © 500
ool 1] (0 &
0400 600 800 1000 1200 1400 1600 0 T Z 7 5 400 600 800 1000 1200 1400 1600
Elo Steps le7 Elo

figures), training steps (middle figures) and the number of policies (right figures).

Win Rate

Figure 11: The Elo rating for the population of agents trained with 2Timescale algorithm.
The upper three plots are for left-side player and the bottom three are for the right-side
player. The Elo rating is plotted against the winning rate over matched policies (left

2Timescale: Left

. cZTimescaIe: Left

2Timescale: Left

5M o 13M o 21M 1500 .) 15| BN Seed 1
08 o 29Mm o 37TM Q 45M g e o m Seed 2

53M 61M ttetLe tee :
0.6 © ° ,M o 1000 3 :

® - ©® W
0.4 .
500)
0.2
0.0750 600 800 1000 1200 1400 1600 [T 7 3 7 5
Elo Steps le7
N 2Timescale: Right 2Timescale: Right
e sm o 13M o 21M 1500

08 o 20M © 3IM Q 45M .

53M 61M - =
os| © © o 1000 5 I oy I

o g 0 -TwwmEee®°® I HER S
0.4 & s . s i S
& 500| « .
02| & :
0000 400 600 800 1000 1200 1400 05 7 7 5
Elo Steps le7

figures), training steps (middle figures) and the number of policies (right figures).

31

10FSP: Left FSP: Left FSP: Left
’ 5M o 38M o TIM — FsP
08 o 104M 0 137M O 170M)
% 06l © 203M O 236M
< o oy 00E0E® D
S04 o %
2.

007230 600 800 1000 1200 1400 00 05 10 15
Elo Steps
_,FSP: Right FSP: Right FSP: Right
. sm o 38M o 7IM = FSP
08 o 104M O 137M O 170M
O 203M (O 236M

27400 600

0.4/ e o

(]
0w o 000% @ ()

800 _ 1000 1200 1400
Elo

0.0 0.5 1.

0 15
Steps

Elo

Figure 12: The Elo rating for the population of agents trained with FSP algorithm. The
upper three plots are for left-side player and the bottom three are for the right-side player.
The Elo rating is plotted against the winning rate over matched policies (left figures),
training steps (middle figures) and the number of policies (right figures).

10PSRO: Left PSRO: Left PSRO: Left
’ 5M o 36M o &M mm PSRO
08 o 98M O 129M O 160M
i
Fos O 191M (O 222M
C o ® occo@me®0 & 00
R
0.2
0900 500 800 1000 1200 0.0 05 10 700 600 800 1000 1200 1400 1600
Elo Steps Elo
10PSRO: Right PSRO: Right PSRO: Right
YL osm o 36M o e7m @ . . PSRO
08 o o98M 0 129M O 160%’%
o
2 O 191M (O 222M
g0.6 @ QQ) @@
£S04
=7 -
0.2

00250 %00

800 1000 1200 1400
Elo

0 T
Steps

Figure 13: The Elo rating for the population of agents trained with PSRO algorithm.
The upper three plots are for left-side player and the bottom three are for the right-side
player. The Elo rating is plotted against the winning rate over matched policies (left
figures), training steps (middle figures) and the number of policies (right figures).

32

10League: Left League: Left League: Left

5M o 116M PY 1500)
08 o 227Mm o 338M &? @
Q
£06 O 49M O seom 1000
-4 o
S04 [w
ERE P * 500
0.2 ®
0.0—%55 800 1000 1200 1400 0 1 2 3 4 5 6 0700 600 800 1000 1200 1400 1600
Elo Steps le8 Elo
10League: Right League: Right League: Right
' 5M o 116M 1500 . 30| HEE MAO
08 o 227M O 338M = MEO
Q
Soel O 49M O s60M D} 1000 %
-4 o
£04| Op w .
= 500
0.2
0800 800 1000 1200 0 1 2 3 4 5 6 0700 600 800 1000 1200 1400 1600
Elo Steps le8 Elo

Figure 14: The Elo rating for the population of agents trained with League training.
The upper three plots are for left-side player and the bottom three are for the right-side
player. The Elo rating is plotted against the winning rate over matched policies (left
figures), training steps (middle figures) and the number of policies (right figures).

K‘(Jb) 1y '](0“ o

wey 728 i wey RYU |

Figure 15: Demonstration of the exploiting strategy of one human player. The human
player (Ryu on the right in white) defends when the AI opponent (Ryu on the left in
gray) attacks, and inflicts damage with low kicks.

33

	Introduction
	Related Work
	Multi-Agent Reinforcement Learning
	FightLadder
	Scenarios
	State and Observations
	Action Space
	Rewards
	Features

	Evaluation Metrics
	FightLadder-Baselines
	Results
	Single-Player Full Video Game
	Performance of Two-Player Baseline Algorithms
	Non-Exploitability of Trained Agents

	Conclusion and Limitation
	Details of FightLadder
	Dense Reward
	Game Settings
	Comparison of MARL Game Platforms

	Baseline Algorithms of FightLadder-Baselines
	Experiment Details
	Hyperparameters (Table 6 and 7)
	Training Details

	Individual Elo Results
	IPPO (Figure 10)
	2Timescale (Figure 11)
	FSP (Figure 12)
	PSRO (Figure 13)
	League (Figure 14)

	Visualization of Human Exploiters

