
FightLadder: A Benchmark for Competitive

Multi-Agent Reinforcement Learning

Wenzhe Li1, Zihan Ding1, Seth Karten1, and Chi Jin1

1Princeton University*

Abstract

Recent advances in reinforcement learning (RL) heavily rely on a variety of

well-designed benchmarks, which provide environmental platforms and consistent

criteria to evaluate existing and novel algorithms. Specifically, in multi-agent RL

(MARL), a plethora of benchmarks based on cooperative games have spurred the

development of algorithms that improve the scalability of cooperative multi-agent

systems. However, for the competitive setting, a lightweight and open-sourced

benchmark with challenging gaming dynamics and visual inputs has not yet been

established. In this work, we present FightLadder, a real-time fighting game

platform, to empower competitive MARL research. Along with the platform,

we provide implementations of state-of-the-art MARL algorithms for competitive

games, as well as a set of evaluation metrics to characterize the performance

and exploitability of agents. We demonstrate the feasibility of this platform by

training a general agent that consistently defeats 12 built-in characters in single-

player mode, and expose the difficulty of training a non-exploitable agent without

human knowledge and demonstrations in two-player mode. FightLadder provides

meticulously designed environments to address critical challenges in competitive

MARL research, aiming to catalyze a new era of discovery and advancement in the

field. Videos and code at https://sites.google.com/view/fightladder/home.

1 Introduction

As an active branch of artificial intelligence (AI), deep reinforcement learning (DRL)

has achieved significant success in various domains, including, but not limited to,

strategic games (Silver et al., 2016; Li et al., 2020; Moravvcík et al., 2017; Vinyals

et al., 2019; Berner et al., 2019), robotics control (Lillicrap et al., 2015; Andrychowicz

et al., 2020b; Brohan et al., 2022), and large language models alignment (Ouyang

et al., 2022). Underpinning these rapid advances are not only the development of

sample-efficient RL algorithms but also the availability of well-designed benchmarks.

These benchmarks provide environmental platforms, unify evaluation protocols, en-

able comparisons of state-of-the-art methods, motivate improved solutions, and guide

*Email: {wenzhe.li,zihand,sethkarten,chij}@princeton.edu.

1

a
rX

iv
:2

4
0
6
.0

2
0
8
1
v
2

[c

s.
M

A
]

 2
4
 J

u
n
 2

0
2
4

Figure 1: FightLadder currently supports various cross-platform video fighting games:

Street Fighter II (Genesis platform), Street Fighter III (Arcade platform), Fatal Fury 2

(Genesis platform), Mortal Kombat (Genesis platform), and The King of Fighters ’97

(Neo Geo platform).

practical applications. As an example, policy proximal optimization (PPO) (Schulman

et al., 2017) demonstrates its superior performance across different single-agent RL

benchmarks, hence being considered as one of the most widely adopted single-agent

RL algorithms (Andrychowicz et al., 2020a). In the realm of multi-agent reinforcement

learning (MARL), while a series of benchmarks have also been proposed, most of them

focus on fully cooperative settings. For competitive environments, some platforms

simulate games with tabular representations and relatively simple dynamics, such as

board games, while others, based on complex game engines, require significant compu-

tational resources and expert knowledge, such as Starcraft II and DOTA. To advance

research on competitive multi-agent reinforcement learning (MARL) and transform

game-theoretical results into practical applications, a fully competitive game platform

that strikes the right balance between complexity, efficiency, and generality is urgently

needed.

Multi-agent games are known to be more challenging than single-agent ones due

to the additional non-stationarity introduced by the interactions with other players.

Among different types of interactions, fully competitive settings can be rather difficult.

People have a long history of designing and playing competitive games, as well as

building strong AI opponents to make the game more challenging and hence intriguing.

Previous AI research has investigated the solutions of competitive games using RL, but

mostly for small-scale games like Backgammon (Tesauro et al., 1995) or other board

games (Schrittwieser et al., 2020; Brown & Sandholm, 2018, 2019). Moreover, this

line of work mostly uses state vectors as inputs, which is arguably easier than directly

learning from raw pixel inputs that commonly appear in most popular video games.

In contrast, this paper considers fighting games, which feature rich policy space, and

significant depth in strategy Ð including catching specific timing, counter-attack by

exploiting the stiffness of the opponents, managing energy resources, etc. Moreover,

2

these games also have a rather large number of characters with distinct move-sets which

add another layer of complexity for AI agents to master the game. As a result, we are

motivated to build a platform for a series of fighting games, with image inputs and

complex fighting dynamics, to serve as a challenging competitive multi-player platform

for the broad AI research community.

Apart from the game platform, the evaluation criteria and benchmark results for

certain game settings are essential for boosting the field. MARL has been greatly

investigated in the past few years for solving multi-player games, from both theoretical

and empirical perspectives. A large number of algorithms have been proposed according

to specific settings (Sunehag et al., 2017; Yu et al., 2022; Lowe et al., 2017; Silver et al.,

2018; Lanctot et al., 2017; Vinyals et al., 2019; Ding et al., 2022). Nonetheless, for

competitive game settings, there is a lack of unified evaluation criteria with thorough

comparisons among different approaches.

In this work, we present FightLadder, a competitive two-player games benchmark.

Our contributions are three-fold: We build the FightLadder platform to support five

two-player fighting games, with ease to extend to other games in the future. The

games support various observation spaces involving rendered images. Based on prior

work, we provide implementations of the most popular algorithms for solving these

competitive games, including an AlphaStar league training algorithm (Vinyals et al.,

2019) and policy space response oracle (Lanctot et al., 2017). Furthermore, a unified

evaluation framework with Elo rating and exploitability tests are provided alongside

the game platforms and algorithm library. We report experimental results using the

above toolkits to serve as the baselines for two-player competitive game settings. One

important challenge of MARL is its diverse nature, which includes collaborative games,

competitive games, two-player games, and multiplayer games, all of which have rather

different problem structures, properties, and solution concepts. While it is promising to

develop a unified solution that addresses them all together, in this work, we empirically

demonstrate that to some extent, existing methods are still limited in solving competitive

two-player zero-sum games alone when combined with visual input, rich strategy

space, and lack of extensive human demonstration. We hope that FightLadder, which

particularly focuses on this fundamental two-player setting, can serve as a stepping stone

for the research community to develop effective self-play style algorithms to tackle it

first before moving on to even more complicated scenarios, and inspire future directions

that involve more types of interactions.

2 Related Work

MARL Environments. MARL environments can be categorized into three types

according to the payoff structure of the game: fully cooperative, fully competitive, and

general.

Existing environments for fully cooperative games are designed for various scenar-

ios, including simulated games like MAMuJoCo (Peng et al., 2021), card games like

Hanabi (Bard et al., 2020), video games like small-scale StarCraft SMAC (Samvelyan

et al., 2019) and Google Research Football (Kurach et al., 2020), as well as practical

scenarios like Traffic Junction (Sukhbaatar et al., 2016) in a grid world, Flatland (Mo-

3

hanty et al., 2020) for railway networks, network load balancing (Yao & Ding, 2022)

and CityFlow (Zhang et al., 2019) for city traffic. Cooperative environments feature a

single reward function shared by all agents, which makes them distinct from competitive

games.

On the other hand, the fully competitive game benchmarks are relatively underde-

veloped. Prior competitive environments are either on games with low-dimensional

or discrete state space such as Pommerman (Resnick et al., 2018) and board games

(Tesauro et al., 1995; Schrittwieser et al., 2020; Brown & Sandholm, 2018); or complex

games with image input that require a significant amount of computational resources,

such as Starcraft II (Vinyals et al., 2019) or DOTA (Berner et al., 2019). The fighting

game environments proposed in this paper strike the right balance between complexity,

efficiency, and generality. A few previous works also have explored fighting games:

Go et al. (2023) focuses on developing an algorithm for a single fighting gameÐstreet

fighter, as opposed to this paper which provides an environment that supports various

fighting games. While Palmas (2022) provides a platform for fighting games, most of

its efforts have been focused on the single-agent setting. It lacks explicit criteria for two-

player scenarios with adaptive opponents, and does not provide a benchmark evaluating

existing competitive MARL algorithms. Khan et al. (2022) focuses on fighting games

in the blind setting where agents have to rely on acoustic inputs to play.

Finally, there are also a number of environments for general multiagent games that

feature both cooperation and competition, including MPE (Mordatch & Abbeel, 2018),

MAgent (Zheng et al., 2018), Hide-and-Seek (Baker et al., 2019), DMLab2D (Beattie

et al., 2020), Arena (Song et al., 2020), Smarts (Zhou et al., 2020), Neural MMO (Suarez

et al., 2021), PettingZoo (Terry et al., 2021), MATE (Pan et al., 2022), etc. Generic multi-

agent general-sum games are rather challenging to evaluate Ð even the optimal solution

concepts remain elusive. In contrast, the fully competitive setting considered in this

paper presents clear game-theoretic properties and well-defined solution concepts. We

also remark that while a number of the platforms above support several fully competitive

games, they did not provide carefully designed evaluation toolkits as well as extensive

baselines for competitive MARL algorithms.

MARL Algorithms and Evaluation. To solve multi-agent learning tasks, researchers

have proposed algorithms and built libraries for ease of usage and evaluation. Py-

MARL (Samvelyan et al., 2019) is an initial MARL library built for solving SMAC

tasks, while PyMARL2 (Hu et al., 2021) extends PyMARL with QMIX (Rashid et al.,

2020). EPyMARL (Papoudakis et al., 2020) is also an extension of PyMARL, as a

unified library for cooperative games supporting different learning paradigms including

centralized and decentralized learning, value decomposition, etc. MARLlib (Hu et al.,

2023) includes major cooperative MARL algorithms like VDN (Sunehag et al., 2017),

MAPPO (Yu et al., 2022), MADDPG (Lowe et al., 2017), etc. More recent libraries

include Pantheonrl (Sarkar et al., 2022), MAlib (Zhou et al., 2023), etc. These libraries

mainly support MARL algorithms for cooperative games, lacking support for solving

competitive games.

On the other hand, there is a line of research for solving competitive games with

algorithms like self-play (Silver et al., 2018), fictitious play (Brown, 1951), Nash Q-

4

learning (Hu & Wellman, 2003; Ding et al., 2022), double oracle (McMahan et al., 2003),

policy space response oracle (PSRO) (Lanctot et al., 2017) and league training (Vinyals

et al., 2019). A unified benchmark remains missing to compare and evaluate the

efficiency these algorithms on the same set of tasks, especially when combined with deep

RL. This paper addresses this issue in the fully competitive setting. We concentrate on

two-player zero-sum games, and propose a platform for fighting-style fully competitive

games, along with a baseline implementation and evaluation of popular algorithms.

3 Multi-Agent Reinforcement Learning

FightLadder is designed to motivate novel algorithms for fully competitive two-player

games in the domains of MARL and game theory. Markov Games (MGs) (Shapley,

1953) generalize single-player Markov Decision Processes (MDPs) into multi-player

settings. Each player has its own utility and optimizes its policy to maximize the

utility. The two-player zero-sum setting in MG represents a competitive relationship

between the two players. With a shaped dense reward, the games can be generalized to

general-sum.

We denote a finite-horizon two-player general-sum partially observable MG as

POMG(S,O,A,B,P,O, {r}2i=1, H). S is the state space, which can be partially

observable and transformed through an observation emission function O: S → O to the

observation space O. A and B are action spaces for two players, respectively. P(·|s, a, b)
is the state transition distribution, ri : S × A× B → R is the reward function for the

i-th player. In the zero-sum setting, two reward functions satisfy the zero-sum payoff

structure r1 + r2 = 0. H is the horizon length. We denote the policies of two players as

µ and ν, respectively. V
µ,ν
i : S → R represents the value function for player i evaluated

with policies µ and ν, which can be expanded as the expected cumulative reward starting

from the state s,

V
µ,ν
i (s) := Eµ,ν

[
∑∞

h=1 ri(sh, ah, bh)
∣

∣s1 = s
]

.

In zero-sum games, we have V
µ,ν
1 (s) = −V

µ,ν
2 (s), ∀s ∈ S and define V µ,ν(s) =

V
µ,ν
1 (s) for simplicity.

Definition 3.1 (Best Response). For any policy of the first player µ, there exists a best

response (BR) against it from the second player, which is a policy ν†(µ) satisfying

V
µ,ν†(µ)
2,h (s) = maxν V

µ,ν
2,h (s) for any (s, h) ∈ S × [H]. We denote V

µ,†
2,h := V

µ,ν†(µ)
2,h

for simplification. V
µ,ν
2,h (s) is the value function of the second player. BR against the

second player can be defined similarly.

Definition 3.2 (Nash Equilibrium). The Nash equilibrium (NE) in zero-sum setting is

defined as a pair of policies (µ⋆, ν⋆) satisfying the following minimax equation:

max
µ

min
ν

V µ,ν(s) = V µ⋆,ν⋆

(s) = min
ν

max
µ

V µ,ν(s).

Definition 3.3 (Exploitability). The exploitability for a policy µ of the first player

is defined as V
µ,†
2 (s1) − V

µ⋆,ν⋆

2 (s1), i.e., the value of its BR policy ν†(µ) or the

5

suboptimality gap from the NE value. The exploitability of the other side policy ν can

be defined accordingly.

Note that NE strategies will always lead to zero exploitability, thus approaching the

non-exploitable strategies is a reasonable pursuit for the game.

4 FightLadder

In this section, we present technical details of FightLadder. In the following part, we

first introduce different game settings of FightLadder, followed by elaborating elements

of MGs corresponding to the environment, and conclude with highlighting features of

our benchmark.

4.1 Scenarios

FightLadder provides a flexible interface between modern game emulators (Murphy,

2013; Nichol et al., 2018) and algorithm developers. Thanks to its flexibility, FightLad-

der can support a wide range of classical fighting games over the past decades, including

Street Fighter, Mortal Kombat, Fatal Fury, and The King of Fighters, some of which

are still very popular nowadays. Figure 1 shows screenshots of several fighting games

provided by FightLadder. With this diverse set of supported games, we can bench-

mark algorithms on various fighting scenarios differing in backgrounds, characters, and

moving dynamics, which can further motivate novel algorithms that are general rather

than overfitting to one specific game. For better readability and clarity, we would use

Street Fighter as an example for illustration and evaluation in the rest of the paper. The

other fighting games are very similar, and readers could refer to Appendix A.2 for more

details. We name each scenario in the form [game alias]_[character left]_vs_[character

right], for example sf_ryu_vs_ryu in Street Fighter.

While FightLadder mainly focuses on the competitive two-player setting, the nature

of fighting games allows it to be seamlessly deployed to the single-player scenario where

the agent’s task is to compete against a built-in game AI (e.g., sf_ryu_vs_ryu(cpu)).

Under this single-player setting, users have the freedom to choose characters and set

up the difficulty of the scripted AI opponent. Moreover, our benchmark also supports

training in a much more challenging full-game scenario (e.g., sf_ryu_full_game), where

the agent needs to defeat all 12 characters controlled by computers with the difficulty

progressively increasing. As we shall see in later experiments, this scenario could also

serve as a sanity check for our baseline algorithms to see whether they could learn

effective behaviors from the environment.

4.2 State and Observations

We define the state space S as the complete set of attributes stored in the game emulator

after each step of action. Same as human players, the agent is not allowed to access the

underlying full state but can only access the observation space O of pixels, which forms

a 128×100 RGB image corresponding to the rendered screen. This image includes the

6

Figure 2: Motion and attack action spaces of fighting games. Images are adapted from

Instruction Manual of Street Fighter II.

position and movement of both sides of the players, as well as the hit-point bar and the

round timer on the top of the screen. At every step, a configurable number of images

are stacked as the input of the agent.

While we use pixels as default observations, we also provide an interface for users

to access additional information about the game status, including position, hit-point, and

exact countdown number for agents on both sides. Users can leverage these attributes to

better understand the agent’s behavior or augment feature representations. More details

are provided in Appendix A.2.

4.3 Action Space

In fighting games, two players share the same action space A. The native human action

space Ahuman is designed to mimic the joystick control of arcade games, which is a

12-dimensional binary space ([’B’, ’A’, ’MODE’, ’START’, ’UP’, ’DOWN’, ’LEFT’,

’RIGHT’, ’C’, ’Y’, ’X’, ’Z’]) with each dimension representing a button being pressed

or not. Note that due to the nature of fighting game engines, this space contains many

redundant actions that are invalid, for instance, moving in opposite directions or moving

and attacking at the same moment. To filter out these redundant actions and to construct

a more structured space, we develop a categorical transformed action space Atrans

through an encoding function F : Ahuman → Atrans. Specifically, Atrans is the joint

set of a direction move set Amotion={defense, forward, jump, crouch, back flip, front

flip, offensive crouch, defensive crouch} and an attack move set Aattack={light punch,

medium punch, hard punch, light kick, medium kick, hard kick}, as shown in Figure 2.

Each action will remain a number of frames according to users’ configuration. The

games also have special techniques called close attack, i.e., Throws and Holds, which

can be applied in certain regions near the opponent.

In addition to the standard move set, one signature element of fighting games is

special moves, which is a kind of powerful attack or maneuver that requires the player

to follow a specific action sequence (i.e., sequential keys combination, or combination

of key holding and key pressing), with an example depicted in Figure 3. These moves

usually have special properties (e.g., invincibility frames, larger coverage, etc.) and

play a critical role in the strategy and depth of the game. They are especially useful for

higher levels of play, from which players could create complex combos and outperform

7

Figure 3: Example of special moves for character Ryu in StreetFighter II (left to right):

Fireball, Dragon Punch, Hurricane Kick. Images are adapted from Instruction Manual

of Street Fighter II.

opponents. However, we observe that learning to perform special moves from scratch

can be challenging to baseline algorithms, as it requires the agent to memorize frames

and actions in previous steps and accurately perform the next action in the action

sequence of special moves. Moreover, the special moves can be different from character

to character, which increases the difficulty of the game. Therefore, to alleviate this

challenge, we also include hard-coded special move lists as one part of the action space

so that the agent can directly access special moves with one single action.

4.4 Rewards

Sparse Reward. Both sides of the agents are to maximize their win rate for each

round of the game. The sparse reward rsparse assigns +1 for the winner and -1 for the

loser at the end of each episode. In the sparse reward setting, all fighting games are

two-player zero-sum games, which are theoretically guaranteed to exist at least one Nash

Equilibrium (Filar & Vrieze, 2012), which directly induces a pair of non-exploitable

policies.

Win Rate. For two players A and B, policy πA winning against policy πB can be

defined as a reward relationship rAsparse(πA, πB) > rBsparse(πA, πB) in a single match,

with rAsparse and rBsparse as the sparse reward for players A and B in the zero-sum setting.

The win rate is defined as the probability of winning as p(πA ≻ πB).

Shaped Dense Reward. While sparse reward is straightforward for evaluation, we

discover that baseline algorithms could not effectively learn to behave well from such

a sparse signal. To address this issue, we introduce a shaped dense reward rdense for

training, which is a weighted sum of the hit-point damage inflicted by the agent on

the opponent and the damage it receives, together with a bonus (penalty) for winning

(losing) the game. Specific format of this reward refers to Appendix A.1. The dense

reward rdense is chosen to coincide with the win rate of the policy, such that πA ≻ πB

will always lead to rAdense(πA, πB) > rBdense(πA, πB) in expectation. The dense reward

also offers some flexibility, that the user can control the agent’s aggressiveness by

configuring the weighing scales in the reward function.

8

Table 1: FPS and memory usage of several open-sourced platforms.

Environment Speed (FPS) Memory (MB)

FightLadder (Ours) 1935.76 195.46

SMACv2 146.72 876.96

PettingZoo Atari 6268.18 32.13

DMLab2D 1144.27 47.41

4.5 Features

We remark on the following features of the proposed benchmark that could benefit

MARL research.

Rich Strategy Space. One key feature of our benchmark is the rich strategy space

as the nature of fighting games, which is particularly beneficial to the development of

game-theoretical algorithms. To name a few, fighting games require players to consider

(a) character diversity: each character has a unique skill set with different strengths

and weaknesses, so one needs to master the strategy and counter-strategy of all possible

opponents, and even reason how to select and order characters when they have the

freedom to do so; (b) complexity of mechanics: fighting games are designed with

sophisticate mechanics such as invincibility frame, hitboxes, and combo systems, which

are challenging for micromanagement of characters; and (c) adversarial opponents:

opponents may progressively adapt their policies to players’ policies, thus finding

non-exploitable policies is crucial in mastering fighting games.

Various Difficulty Levels. FightLadder provides several kinds of scenarios: single-

player mode against one CPU player (e.g., sf_ryu_vs_ryu(cpu)), single-player mode

full game (e.g., sf_ryu_full_game), two-player mode (e.g., sf_ryu_vs_ryu), team mode

(supported in some games such as The King of Fighters). The difficulty levels are

increasing in this order, as two-player mode (no CPU) introduces additional non-

stationary (opponents can be adaptive), and team mode offers a richer strategy space.

Moreover, FightLadder supports specifying arbitrary difficulty levels of CPUs and

arbitrary characters for both the player and its opponent. This enriches the features of

our platform and the diversity of strategy space.

Computational Efficiency. FightLadder also enjoys efficient computation for its

usage, and the comparison with several other popular game environments is shown in

Table 1. The frame rate is 13 times faster than SMACv2, with one-fourth usage of the

memory. While FightLadder is less efficient than PettingZoo Atari, it provides more

game complexity. The balance of complexity and low computational cost is important

for evaluating algorithms at scale.

Fidelity and Popularity. FightLadder allows testing agents in full-length fighting

games with an interface similar to human perception, thus providing a high-fidelity

evaluation of competitive RL algorithms. Moreover, fighting games have been gaining

9

popularity since they were released, making it easier to test the learned RL agents

against human expert players.

Open-Source and Compatibility. FightLadder is designed for the broad RL research

community, so we make efforts to improve the ease of usage and make it accessible to

all potential users. It is compatible with the Gym (Brockman et al., 2016) interface so

that users can leverage off-the-shelf RL algorithms implementation.

Customization, Extension, and Flexibility. FightLadder is extremely flexible for

configuration and extension. For customization, the users can customize action spaces

(human/transformed action), reward functions (sparse/tunable shaped dense reward),

number of frames to be observed per step, as well as access to additional information to

help training. Moreover, our platform is built upon popular modern game emulators so

that it is easy to extend to other games not provided by us. Specifically, it supports Gym

Retro and MAMEToolkit, which already support a wide range of games. This extension

capability of diverse games is provided by our platform with minimal engineering efforts.

Please check our open-source project1 for more details.

5 Evaluation Metrics

Versus Built-In Game AIs. Directly competing with the built-in AIs of the games

provides a straightforward way of measuring policy performance. Typically, fighting

games offer a hierarchical structure of levels, enabling players to adjust the difficulty

setting (for example, Street Fighter features eight distinct levels). This structure allows

for the empirical evaluation of the policy against the game’s scripted AI at varying levels

of challenge. It is important to acknowledge, however, that the limitations associated

with hard-coded adversaries restrict the extent to which this metric can accurately reflect

the policy’s real capability. For brevity, we shall refer to such agents as CPU.

Elo Ratings. The skills of agents can be ranked through the FIDE rating system (Elo &

Sloan, 1978), which is an incremental learning system that increases the Elo of winners

and decreases the Elo of losers. The larger the difference in Elo between players A and

B, the higher the probability that the player with the higher Elo, A, beats the player

with the lower Elo, B. The Elo score calculation takes the following procedures:

First, the probability of player A winning is estimated with,

pA := p(πA ≻ πB) = (1.0 + 10
EloB−EloA

400)−1.

Then the Elo rating for player A as EloA will be updated with following formula:

EloA = EloA + k · (1[winner = A]− pA),

where k is a constant of update rate. The update is symmetric for player B, as well as

any other player in the ranking system.

1https://sites.google.com/view/fightladder/home

10

Versus AI Exploiters. As discussed in Section 3, exploitability (as Definition 3.3)

measures the distance of a policy to the Nash equilibrium of the game. Specifically, the

exploitability of a policy µ is measured by the win rate of its BR policy ν†(µ) against

µ, since V µ⋆,ν⋆

(s1) = 0 for symmetric zero-sum game and V
µ,†
2 (s1) = 1 · p(ν ≻

µ) + 0 · p(ν ⪯ µ) = p(ν ≻ µ) for sparse reward setting. In practice, we can use any

single-agent deep RL algorithm as an exploiter to approximately learn the BR policy

ν†(µ). For fair comparisons, we should use one consistent exploiter (same RL algorithm

with same configurations) to evaluate the exploitability of different baselines.

Versus Human Players. While Definition 3.3 is a general metric to measure ex-

ploitability, it may be limited to the capability of deep RL algorithms in usage. There-

fore, we also provide an interface for human players such that they can play with any

learned model with convenience. This feature will show the strengths and weaknesses

of agents directly and visibly, and motivate developers to improve their algorithms

to be more non-exploitable in general. Given the remarkable success of modern RL

algorithms outperforming expert human players in various video games (Mnih et al.,

2013; Vinyals et al., 2019; Berner et al., 2019), we believe that FightLadder will emerge

as a promising platform for the broad competitive MARL community and researchers

will eventually build AI agents that could beat world champions in a much richer set of

strategic games with significantly less engineering efforts.

6 FightLadder-Baselines

For the convenience of the community to evaluate existing methods and new algorithms

on FightLadder platform, we open-source the implementation of several state-of-the-art

(SOTA) competitive MARL algorithms, including independent learning (de Witt et al.,

2020), two-timescale learning (Daskalakis et al., 2020), fictitious self-play (Heinrich

et al., 2015), policy-space response oracle (Lanctot et al., 2017) and league train-

ing (Vinyals et al., 2019). Our codebase supports decentralized learning across multiple

GPUs, and it is built upon Stable-Baselines3 (Raffin et al., 2021) so that users can

leverage off-the-shelf implementations of RL algorithms. We choose proximal pol-

icy optimization (PPO) (Schulman et al., 2017) as the backbone policy optimization

algorithm in our experiments. More details of baseline algorithms refer to Appendix B.

7 Results

In this section, we provide benchmark results on a selected game in FightLadder±the

Street Fighter. We aim to answer the following questions through our benchmark: (a)

Can existing RL algorithms solve the full video game in the single-player scenario?

(b) How does the performance of state-of-the-art baseline algorithms in the two-player

competitive setting compare? and (c) Does multi-agent training help to improve the

non-exploitability?

11

0.0

0.5

1.0
W

in
 R

at
e

Level 1 (Guile) Level 2 (Ken) Level 3 (Chun-Li) Level 5 (Zangief) Level 6 (Dhalsim) Level 7 (Ryu)

0 10 20
Epoch

0.0

0.5

1.0

W
in

 R
at

e

Level 9 (E. Honda)

0 10 20
Epoch

Level 10 (Blanka)

0 10 20
Epoch

Level 11 (Balrog)

0 10 20
Epoch

Level 13 (Vega)

0 10 20
Epoch

Level 14 (Sagat)

0 10 20
Epoch

Level 15 (M. Bison)
0.0

0.5

1.0

Sc
he

du
le

 D
ist

.

0.0

0.5

1.0

Sc
he

du
le

 D
ist

.

Figure 4: The win rate curves and scheduling distribution bar plot in sf_ryu_full_game

via the proposed PPO with curriculum learning. Opponents of different characters are

marked with different levels. Levels 4, 8, and 12 are omitted as they are bonus levels

without fighting.

7.1 Single-Player Full Video Game

To answer question (a), we evaluate PPO’s performance in the scenario sf_ryu_full_game

with human action space as a feasibility check. As mentioned in Section 4, this sce-

nario requires the agent to learn a generalizable policy to compete against all different

characters with increasing difficulty levels. Curriculum learning is applied to train

the policy from easy to hard cases. Furthermore, to improve learning efficiency we

develop a curriculum scheduler for opponent sampling to match with the learner after

each epoch. More specifically, for the current learner L with policy πL, we sample its

opponent C from the entire character set C, with the following inverse-weight scheduling

distribution:

C ∼ ∆(C) ∝ 1− p(πL ≻ πC),

where p(πL ≻ πC) is the win rate of the learner against the opponent and ∆(·) is the

simplex. Intuitively, such a curriculum will encourage the agent to focus on the hardest

opponents, similarly to prioritized experience play (Schaul et al., 2015). We defer other

implementation details to Appendix C.

Figure 4 shows the performance of our proposed method during training. With 20

epochs of training (each epoch involves 10M training steps competing with opponents

sampled from the curriculum scheduler in parallel), the agent is capable of defeating

characters at each level with a win rate close to 1. In addition to beating each character

with a high probability, the trained policy can complete the full video game with over

0.6 win rate, outperforming human players with hours of playing experience. This result

shows that existing RL algorithms can already learn a well-behaved policy to solve the

full single-player video game, which provides a good starting point for exploring the

multi-agent setting.

As an additional experiment, we also test the inclusion of hard-coded special move

lists in this setting with exactly the same algorithm implementation. Although it could

be easier for the agent to learn more offensive policies, significant improvement in the

12

overall win rate is not observed. It indicates that the agents without encoded special

moves can also effectively learn policies against CPUs. Constantly playing special

moves will lead to a vulnerable situation for the agent, whereas the defensive strategy

also matters greatly in the game. Moreover, given that an experienced human player can

perform special moves easily (by executing the action sequences almost instantly), we

do not think that hard-coded special move lists will become the advantage of trained

agents over human players.

7.2 Performance of Two-Player Baseline Algorithms

To answer question (b), we evaluate five SOTA algorithms mentioned in Section 6:

independent PPO (IPPO), two-timescale IPPO (2Timescale), fictitious self-play (FSP),

policy-space response oracles (PSRO), and league training (League) in the scenario

sf_ryu_vs_ryu. IPPO and 2Timescale can be categorized into the independent learning

paradigm, while FSP, PSRO, and League can be categorized into the population-based

learning paradigm. For each algorithm, we initialize the population of agents with a

pretrained policy in sf_ryu_vs_ryu(cpu) against the most difficult CPU2. We use the

transformed actions Atrans with hard-coded special moves to unleash the full potential

for agents. As a fair comparison, we use the same codebase (FightLadder-Baselines) and

fix the hyperparameters of the backbone PPO algorithm. We train IPPO and 2Timescale

for approximately 50M steps until the Elos saturate across all three seeds, FSP and

PSRO for approximately 250M steps, and League for approximately 700M steps due to

a larger population. A slice of the league during the league training process is visualized

in Figure 5 Please refer to Appendix C for more implementation details.

For each algorithm, we report the training Elos of agents in the population during the

course of training, respectively. The results are shown in Appendix D, which reveal that

all baseline algorithms are improving their policies at the onset of training. Subsequently,

IPPO and 2Timescale gradually converge and oscillate around the peak Elos, where

FSP, PSRO, and League continue to increase their scores. This suggests that IPPO and

2Timescale may suffer from optimization issues during training and population-based

methods may be more suitable for policy learning in fighting games.

To compare different baseline algorithms, we select the top ten agents (five on

each left or right side) from each algorithm to form a new population, and compute

the test Elos for this group of agents and CPU policies. We report the highest Elos

for each algorithm in Table 2 and the distribution of these agents’ Elos in Figure 6,

where we find that League and PSRO significantly outperform other baselines, and

population-based methods deliver better results than independent learning counterparts,

which is aligned with our previous observation inspecting Elos of baselines individually.

On the other hand, we notice that CPU policies may defeat most of the agents in this

group except for a few best-performing agents, suggesting that it is still very challenging

for existing SOTA algorithms to reach an advanced or superhuman level of performance

in these fighting games. We also noticed that two sides of agents reveal asymmetric

strengths in terms of Elos in both individual evaluation for each algorithm (Appendix D

2We do not pre-train in sf_ryu_full_game as sf_ryu_vs_ryu does not require skills to compete with other

characters rather than Ryu.

13

ME
0_r
igh
t_h
_10

M

ME
0_r
igh
t

MA
0_r
igh
t_h
_20

M

MA
0_r
igh
t_h
_10

M

MA
0_r
igh
t_h
_0M

MA
0_r
igh
t

LE1
_rig

ht_
h_1

0M

LE1
_rig

ht

LE0
_rig

ht_
h_1

0M

LE0
_rig

ht

LE0_left

LE0_left_h_10M

LE0_left_h_20M

LE1_left

LE1_left_h_10M

LE1_left_h_20M

MA0_left

MA0_left_h_0M

MA0_left_h_10M

MA0_left_h_20M

ME0_left

ME0_left_h_10M

0.94 0.66 0.87 0.97 0.93 0.97

0.09 0.10 0.08

0.29 0.08 0.21

0.86 0.47 0.84 0.90 0.82 0.86

0.21 0.03 0.04

0.35 0.41 0.38

0.93 0.91 0.77 0.95 0.95 0.45 0.88 0.90

0.03 0.02 0.00 0.02

0.14 0.25 0.22 0.17

0.25 0.26 0.25 0.29

0.43 0.98 1.00 0.06

0.26 0.31 0.31

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5: The payoff matrix for each pair of agents at a certain stage of League training.

For league training, there is one main agent (MA), two league exploiters (LE0, LE1),

and one main exploiter (ME) for each side (left or right). The name of each row indicates

the agent information as Character_Side_Checkpoint. Checkpoint=h_xM

represents a historical version of agent saved at x million steps. The value indicates

the win rate of the left (row) player against the right (column) player. For instance,

ME0_right wins all MA0_left_h_xM with high probability, indicating that main

exploiters in the league can fully exploit previous main agents. Also the high win rate

of MA0_left against all right agents (except MA0_right) shows that the main agent

at current steps outperforms other agents in the league.

Figure 10-14) and overall evaluations across algorithms (Table 2). Such an imbalance

may result from various factors, for instance, optimizing instability, variance from the

population or Elos computation, etc, and can be an interesting research question for

future work.

14

0 250 500 750 1000 1250 1500 17500

1

2

3

4

5
Co

un
t

Left
IPPO
League
2Timescale
PSRO
FSP
CPU

0 250 500 750 1000 1250 1500 1750
Elo

0

2

4

6

Co
un

t

Right

Figure 6: The distribution of Elo ratings for top ten agents from each baseline.

7.3 Non-Exploitability of Trained Agents

To answer question (c), we measure the non-exploitability of baseline algorithms accord-

ing to the evaluation approaches proposed in Section 5. More specifically, we choose

models with the highest Elos from each two-player baseline algorithm respectively, and

compare their exploitability with the single-player pretrained model used for initializing

the population-based methods in Section 7.2.

The practical exploitability is calculated by setting the trained policy fixed on one

side, and deploying a PPO agent on the other side as an exploiter. The PPO exploiter

will be trained until convergence, and the success rate of the exploiter is the estimated

exploitability of the original policy, according to Definition 3.3.

Single-Agent RL Exploiters. We use PPO as the algorithm for training exploiters,

given its decent performance in both single-player and two-player scenarios shown in

previous experiments. Table 3 shows the exploitability of comparing methods evaluated

15

Table 2: Comparison of training steps and the best Elo ratings among baselines, with

CPU’s Elos as references.

Method Training Steps (Left/Right) Elo (Left/Right)

IPPO 46M / 46M 1082 / 1164

League 647M / 630M 1682 / 1503

2Timescale 51M / 46M 1080 / 919

PSRO 176M / 161M 1262 / 1517

FSP 262M / 244M 1079 / 1150

CPU N/A 1395 / 1541

Table 3: Comparison of methods’ exploitability. A lower number indicates the evaluated

policy is more robust to exploitation.

Method Exploitability (Left/Right)

IPPO 0.96 ± 0.03 / 0.91 ± 0.03

League 0.94 ± 0.05 / 0.94 ± 0.00

2Timescale 0.96 ± 0.02 / 0.90 ± 0.05

PSRO 0.97 ± 0.02 / 0.88 ± 0.05

FSP 1.00 ± 0.00 / 0.95 ± 0.01

PPO 0.99 ± 0.02 / 0.99 ± 0.01

across three seeds, from which we observe that the single-player pretrained policy via

PPO is easier to exploit and suffers from higher exploitability than almost all selected

policies from two-player baselines. Therefore, this result indicates that two-player

learning algorithms such as League and PSRO can help to improve the robustness

of learned policies. On the other hand, the PPO exploiter eventually learns to beat

policies from all baselines (with a win rate greater than 0.5), which means that none of

these algorithms can result in the exact Nash equilibrium policies, or even close to it.

Therefore, closing this gap is a challenging direction for future research.

Human Players as Exploiters. In addition to exploiting the learned models with

RL algorithms, we also attempt to exploit their policies with human effort. During

human evaluations, the evaluated models reveal some robustness to human players (e.g.,

defend when a human player attacks), but some simple strategies (e.g., defensive posture

combined with low kicks at proper timing) could still defeat them rather consistently.

Visualizations are provided in Appendix E.

Therefore, based on two exploiting experiments, we observe that existing competi-

tive MARL algorithms are found hard to learn non-exploitable strategies in competitive

fighting games like Street Fighter, thus raising a new challenge for the research commu-

nity.

16

8 Conclusion and Limitation

In this paper, we present the FightLadder platform and evaluation benchmarks as a novel

testbed for competitive MARL research. The platform supports various video action

games including the popular Street Fighter series, with flexible support for new game

integration.

We further provide experimental evaluations of present RL and MARL algorithms

in both single-player and two-player modes of one specific game Street Fighter. In the

single-player setting, we proposed a learning scheme based on curriculum learning. It

trains a general RL agent that can consistently beat CPUs across different characters. In

the two-player setting, the Elo rating and exploitability test are conducted as part of the

proposed evaluation criteria. Our implementation of league training and PSRO provides

stronger agents than FSP and IPPO in terms of Elo ratings. However, both single-agent

RL and human players are capable of exploiting all agents learned by current widely

adopted algorithms.

Our current work is limited to fully competitive two-player games. One important

challenge of MARL is its diverse nature, which includes collaborative games, com-

petitive games, two-player games, and multiplayer games, all of which have rather

different problem structures and solution concepts. The more general setting, which in-

volves more than two players and both cooperation and competition, is not yet explored

and should be an important future direction. Although FightLadder supports multiple

fighting games, our current results are mostly conducted on Street Fighter, and we are

curious to see more results on other games.

This work motivates further research in developing more efficient and effective

self-play algorithms finding non-exploitable strategies. We hope that our platform

prompts general interest and more extensive research in competitive MARL and serves

as a standard benchmark for developing practically useful self-play training paradigms.

17

Acknowledgements

This work was supported by Office of Naval Research N00014-22-1-2253, National

Science Foundation Grant NSF-IIS-2107304, and National Science Foundation Graduate

Research Fellowship Program under Grant No. DGE-2039656.

Impact Statement

This work may advance the field of game AI, thus has potentials to affect the gaming

experience for human players. The strong AI agents for popular fighting games may

attract people’s attention to get involved in these games, or make them feel that the

games can be even more challenging for human. Another positive impact is that our

study promotes the research for robust systems against adversarial attacks.

References

Andrychowicz, M., Raichuk, A., StaÂnczyk, P., Orsini, M., Girgin, S., Marinier, R.,

Hussenot, L., Geist, M., Pietquin, O., Michalski, M., et al. What matters in

on-policy reinforcement learning? a large-scale empirical study. arXiv preprint

arXiv:2006.05990, 2020a.

Andrychowicz, O. M., Baker, B., Chociej, M., Jozefowicz, R., McGrew, B., Pachocki,

J., Petron, A., Plappert, M., Powell, G., Ray, A., et al. Learning dexterous in-hand

manipulation. The International Journal of Robotics Research, 39(1):3±20, 2020b.

Baker, B., Kanitscheider, I., Markov, T., Wu, Y., Powell, G., McGrew, B., and Mordatch,

I. Emergent tool use from multi-agent autocurricula. arXiv preprint arXiv:1909.07528,

2019.

Bard, N., Foerster, J. N., Chandar, S., Burch, N., Lanctot, M., Song, H. F., Parisotto, E.,

Dumoulin, V., Moitra, S., Hughes, E., et al. The hanabi challenge: A new frontier for

ai research. Artificial Intelligence, 280:103216, 2020.

Beattie, C., Köppe, T., Duéñez-Guzmán, E. A., and Leibo, J. Z. Deepmind lab2d. arXiv

preprint arXiv:2011.07027, 2020.

Berner, C., Brockman, G., Chan, B., Cheung, V., Dębiak, P., Dennison, C., Farhi, D.,

Fischer, Q., Hashme, S., Hesse, C., et al. Dota 2 with large scale deep reinforcement

learning. arXiv preprint arXiv:1912.06680, 2019.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and

Zaremba, W. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Brohan, A., Brown, N., Carbajal, J., Chebotar, Y., Dabis, J., Finn, C., Gopalakrishnan,

K., Hausman, K., Herzog, A., Hsu, J., et al. Rt-1: Robotics transformer for real-world

control at scale. arXiv preprint arXiv:2212.06817, 2022.

18

Brown, G. W. Iterative solution of games by fictitious play. Act. Anal. Prod Allocation,

13(1):374, 1951.

Brown, N. and Sandholm, T. Superhuman ai for heads-up no-limit poker: Libratus beats

top professionals. Science, 359(6374):418±424, 2018.

Brown, N. and Sandholm, T. Superhuman ai for multiplayer poker. Science, 365(6456):

885±890, 2019.

Daskalakis, C., Foster, D. J., and Golowich, N. Independent policy gradient methods

for competitive reinforcement learning. Advances in neural information processing

systems, 33:5527±5540, 2020.

de Witt, C. S., Gupta, T., Makoviichuk, D., Makoviychuk, V., Torr, P. H., Sun, M.,

and Whiteson, S. Is independent learning all you need in the starcraft multi-agent

challenge? arXiv preprint arXiv:2011.09533, 2020.

Ding, Z., Su, D., Liu, Q., and Jin, C. A deep reinforcement learning approach for finding

non-exploitable strategies in two-player atari games. arXiv preprint arXiv:2207.08894,

2022.

Domahidi, A., Chu, E., and Boyd, S. ECOS: An SOCP solver for embedded systems.

In European Control Conference (ECC), pp. 3071±3076, 2013.

Dresher, M., Shapley, L. S., and Tucker, A. W. Advances in Game Theory.(AM-52),

Volume 52, volume 52. Princeton University Press, 2016.

Elo, A. E. and Sloan, S. The rating of chessplayers: Past and present. (No Title), 1978.

Filar, J. and Vrieze, K. Competitive Markov decision processes. Springer Science &

Business Media, 2012.

Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., and Whiteson, S. Counterfactual

multi-agent policy gradients. In Proceedings of the AAAI conference on artificial

intelligence, volume 32, 2018.

Go, S.-X., Jiang, Y., and Loke, D. K. A phase-change memristive reinforcement learning

for rapidly outperforming champion street-fighter players. Advanced Intelligent

Systems, 5(11):2300335, 2023.

Heinrich, J., Lanctot, M., and Silver, D. Fictitious self-play in extensive-form games. In

Bach, F. and Blei, D. (eds.), Proceedings of the 32nd International Conference on

Machine Learning, volume 37 of Proceedings of Machine Learning Research, pp.

805±813, Lille, France, 07±09 Jul 2015. PMLR. URL https://proceedings.

mlr.press/v37/heinrich15.html.

Hu, J. and Wellman, M. P. Nash q-learning for general-sum stochastic games. Journal

of machine learning research, 4(Nov):1039±1069, 2003.

19

Hu, J., Jiang, S., Harding, S. A., Wu, H., and Liao, S.-w. Rethinking the implementation

tricks and monotonicity constraint in cooperative multi-agent reinforcement learning.

arXiv preprint arXiv:2102.03479, 2021.

Hu, S., Zhong, Y., Gao, M., Wang, W., Dong, H., Liang, X., Li, Z., Chang, X., and

Yang, Y. Marllib: A scalable and efficient multi-agent reinforcement learning library.

Journal of Machine Learning Research, 24(315):1±23, 2023.

Khan, I., Van Nguyen, T., Dai, X., and Thawonmas, R. Darefightingice competition: A

fighting game sound design and ai competition. In 2022 IEEE Conference on Games

(CoG), pp. 478±485. IEEE, 2022.

Kurach, K., Raichuk, A., StaÂnczyk, P., Zając, M., Bachem, O., Espeholt, L., Riquelme,

C., Vincent, D., Michalski, M., Bousquet, O., et al. Google research football: A

novel reinforcement learning environment. In Proceedings of the AAAI conference

on artificial intelligence, volume 34, pp. 4501±4510, 2020.

Lanctot, M., Zambaldi, V., Gruslys, A., Lazaridou, A., Tuyls, K., Pérolat, J., Silver,

D., and Graepel, T. A unified game-theoretic approach to multiagent reinforcement

learning. Advances in neural information processing systems, 30, 2017.

Li, J., Koyamada, S., Ye, Q., Liu, G., Wang, C., Yang, R., Zhao, L., Qin, T., Liu, T.-Y.,

and Hon, H.-W. Suphx: Mastering mahjong with deep reinforcement learning. arXiv

preprint arXiv:2003.13590, 2020.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and

Wierstra, D. Continuous control with deep reinforcement learning. arXiv preprint

arXiv:1509.02971, 2015.

Lowe, R., Wu, Y. I., Tamar, A., Harb, J., Pieter Abbeel, O., and Mordatch, I. Multi-agent

actor-critic for mixed cooperative-competitive environments. Advances in neural

information processing systems, 30, 2017.

McMahan, H. B., Gordon, G. J., and Blum, A. Planning in the presence of cost functions

controlled by an adversary. In Proceedings of the 20th International Conference on

Machine Learning (ICML-03), pp. 536±543, 2003.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and

Riedmiller, M. Playing atari with deep reinforcement learning. arXiv preprint

arXiv:1312.5602, 2013.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,

Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. Human-level

control through deep reinforcement learning. nature, 518(7540):529±533, 2015.

Mohanty, S., Nygren, E., Laurent, F., Schneider, M., Scheller, C., Bhattacharya, N.,

Watson, J., Egli, A., Eichenberger, C., Baumberger, C., et al. Flatland-rl: Multi-agent

reinforcement learning on trains. arXiv preprint arXiv:2012.05893, 2020.

20

Moravvcík, M., Schmid, M., Burch, N., Lisỳ, V., Morrill, D., Bard, N., Davis, T., Waugh,

K., Johanson, M., and Bowling, M. Deepstack: Expert-level artificial intelligence in

heads-up no-limit poker. Science, 356(6337):508±513, 2017.

Mordatch, I. and Abbeel, P. Emergence of grounded compositional language in multi-

agent populations. In Proceedings of the AAAI conference on artificial intelligence,

volume 32, 2018.

Murphy, D. Hacking public memory: Understanding the multiple arcade machine

emulator. Games and Culture, 8(1):43±53, 2013.

Nichol, A., Pfau, V., Hesse, C., Klimov, O., and Schulman, J. Gotta learn fast: A new

benchmark for generalization in rl. arXiv preprint arXiv:1804.03720, 2018.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang, C.,

Agarwal, S., Slama, K., Ray, A., et al. Training language models to follow instructions

with human feedback. Advances in neural information processing systems, 35:27730±

27744, 2022.

Palmas, A. Diambra arena: a new reinforcement learning platform for research and

experimentation. arXiv preprint arXiv:2210.10595, 2022.

Pan, X., Liu, M., Zhong, F., Yang, Y., Zhu, S.-C., and Wang, Y. Mate: Benchmarking

multi-agent reinforcement learning in distributed target coverage control. Advances

in Neural Information Processing Systems, 35:27862±27879, 2022.

Papoudakis, G., Christianos, F., Schäfer, L., and Albrecht, S. V. Benchmarking multi-

agent deep reinforcement learning algorithms in cooperative tasks. arXiv preprint

arXiv:2006.07869, 2020.

Peng, B., Rashid, T., Schroeder de Witt, C., Kamienny, P.-A., Torr, P., Böhmer, W., and

Whiteson, S. Facmac: Factored multi-agent centralised policy gradients. Advances in

Neural Information Processing Systems, 34:12208±12221, 2021.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., and Dormann, N. Stable-

baselines3: Reliable reinforcement learning implementations. Journal of Machine

Learning Research, 22(268):1±8, 2021. URL http://jmlr.org/papers/

v22/20-1364.html.

Rashid, T., Samvelyan, M., De Witt, C. S., Farquhar, G., Foerster, J., and Whiteson, S.

Monotonic value function factorisation for deep multi-agent reinforcement learning.

The Journal of Machine Learning Research, 21(1):7234±7284, 2020.

Resnick, C., Eldridge, W., Ha, D., Britz, D., Foerster, J., Togelius, J., Cho, K., and

Bruna, J. Pommerman: A multi-agent playground. arXiv preprint arXiv:1809.07124,

2018.

Samvelyan, M., Rashid, T., De Witt, C. S., Farquhar, G., Nardelli, N., Rudner, T. G.,

Hung, C.-M., Torr, P. H., Foerster, J., and Whiteson, S. The starcraft multi-agent

challenge. arXiv preprint arXiv:1902.04043, 2019.

21

Sarkar, B., Talati, A., Shih, A., and Sadigh, D. Pantheonrl: A marl library for dynamic

training interactions. In Proceedings of the AAAI Conference on Artificial Intelligence,

volume 36, pp. 13221±13223, 2022.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. Prioritized experience replay. arXiv

preprint arXiv:1511.05952, 2015.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., Guez,

A., Lockhart, E., Hassabis, D., Graepel, T., et al. Mastering atari, go, chess and shogi

by planning with a learned model. Nature, 588(7839):604±609, 2020.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. Proximal policy

optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Shapley, L. S. Stochastic games. Proceedings of the national academy of sciences, 39

(10):1095±1100, 1953.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,

Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. Mastering the

game of go with deep neural networks and tree search. nature, 529(7587):484±489,

2016.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M.,

Sifre, L., Kumaran, D., Graepel, T., et al. A general reinforcement learning algorithm

that masters chess, shogi, and go through self-play. Science, 362(6419):1140±1144,

2018.

Song, Y., Wojcicki, A., Lukasiewicz, T., Wang, J., Aryan, A., Xu, Z., Xu, M., Ding,

Z., and Wu, L. Arena: A general evaluation platform and building toolkit for multi-

agent intelligence. In Proceedings of the AAAI conference on artificial intelligence,

volume 34, pp. 7253±7260, 2020.

Suarez, J., Du, Y., Zhu, C., Mordatch, I., and Isola, P. The neural mmo platform for

massively multiagent research. arXiv preprint arXiv:2110.07594, 2021.

Sukhbaatar, S., Fergus, R., et al. Learning multiagent communication with backpropa-

gation. Advances in neural information processing systems, 29, 2016.

Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W. M., Zambaldi, V., Jaderberg, M.,

Lanctot, M., Sonnerat, N., Leibo, J. Z., Tuyls, K., et al. Value-decomposition networks

for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296, 2017.

Tan, M. Multi-agent reinforcement learning: Independent vs. cooperative agents. In

Proceedings of the tenth international conference on machine learning, pp. 330±337,

1993.

Terry, J., Black, B., Grammel, N., Jayakumar, M., Hari, A., Sullivan, R., Santos, L. S.,

Dieffendahl, C., Horsch, C., Perez-Vicente, R., et al. Pettingzoo: Gym for multi-agent

reinforcement learning. Advances in Neural Information Processing Systems, 34:

15032±15043, 2021.

22

Tesauro, G. et al. Temporal difference learning and td-gammon. Communications of the

ACM, 38(3):58±68, 1995.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J.,

Choi, D. H., Powell, R., Ewalds, T., Georgiev, P., et al. Grandmaster level in starcraft

ii using multi-agent reinforcement learning. Nature, 575(7782):350±354, 2019.

Yao, Z. and Ding, Z. Learning distributed and fair policies for network load balancing

as markov potential game. Advances in Neural Information Processing Systems, 35:

28815±28828, 2022.

Yu, C., Velu, A., Vinitsky, E., Gao, J., Wang, Y., Bayen, A., and Wu, Y. The sur-

prising effectiveness of ppo in cooperative multi-agent games. Advances in Neural

Information Processing Systems, 35:24611±24624, 2022.

Zhang, H., Feng, S., Liu, C., Ding, Y., Zhu, Y., Zhou, Z., Zhang, W., Yu, Y., Jin, H., and

Li, Z. Cityflow: A multi-agent reinforcement learning environment for large scale

city traffic scenario. In The world wide web conference, pp. 3620±3624, 2019.

Zheng, L., Yang, J., Cai, H., Zhou, M., Zhang, W., Wang, J., and Yu, Y. Magent: A

many-agent reinforcement learning platform for artificial collective intelligence. In

Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.

Zhou, M., Luo, J., Villella, J., Yang, Y., Rusu, D., Miao, J., Zhang, W., Alban, M.,

Fadakar, I., Chen, Z., et al. Smarts: Scalable multi-agent reinforcement learning

training school for autonomous driving. arXiv preprint arXiv:2010.09776, 2020.

Zhou, M., Wan, Z., Wang, H., Wen, M., Wu, R., Wen, Y., Yang, Y., Yu, Y., Wang,

J., and Zhang, W. Malib: A parallel framework for population-based multi-agent

reinforcement learning. Journal of Machine Learning Research, 24(150):1±12, 2023.

23

A Details of FightLadder

A.1 Dense Reward

The shaped dense reward for the i-th agent at step t is defined as follows:

ri,t = α [λ(HP−i,t−1 − HP−i,t)− (HPi,t−1 − HPi,t) + ri,bonus] , (1)

where α is a scaling factor, HPi,t denotes agent i’s hit-point at step t and λ control the

aggressiveness of learned agents, and −i denotes the opponent agent. At the end of the

game, the agent i will receive a bonus reward ri,bonus, which is positively correlated to

HPi if it wins and negatively correlated to HP−i if it loses. By default, we choose λ = 3
in SF2, FF2, and MK, and λ = 1 in SF3 and KOF97, for the consideration of practical

performances.

A.2 Game Settings

Table 4 illustrates the observation, action, and rewards as well as other elements in the

environment for all supported games Ð Street Fighter II (SF2), Fatal Fury 2 (FF2),

Mortal Kombat (MK), Street Fighter III (SF3), and The King of Fighters ’97 (KOF97).

Table 4: Specification of supported games in FightLadder.

SF2 FF2 MK SF3 KOF97

Observation (Pixels) 100×128×3 112×128×3 112×160×3 112×192×3 112×192×3

Human Action Supported Yes Yes Yes Yes Yes

Transformed Action Supported Yes Yes Yes No No

Shaped Dense Reward Yes Yes Yes Yes Yes

Default Frames Per Step 8 8 8 3 3

Default Frames Stacked3 12 12 12 9 9

Additional Available Info
HPs, Countdown, HPs, Countdown HPs, Countdown, HPs HPs, Countdown,

Scoreboard, Positions Scoreboard Positions, Power Status

A.3 Comparison of MARL Game Platforms

Table 5 compares our FightLadder with several popular MARL game platforms mostly

focusing on competitive settings, in terms of observation space, action space, whether

baseline methods are included and the number of agents in games. For the observa-

tion space, ‘Continuous’ indicates a vector-form latent state information of the game

with continuous numerical values, and ‘Image’ indicates visual RGB information as

observations. PommerMan (Resnick et al., 2018) uses grid environments therefore its

observation only has discrete values. For the action space, most of the games only

involves discrete action values except for Arena (Song et al., 2020). For the number

of agents in these platforms, MPE provide diverse competitive settings like 1v1, 1vN ,

1v1v1 and so on. MAgent includes 1 million agents competing againts each other, and

for Neural MMO (Suarez et al., 2021) the number of agents is 256 or 1024. The team

mode in our FightLadder and Arena supports the competitive settings of two teams,

where each team includes multiple characters to be controlled by one team policy or

separate agent policies.

3We uniformly sample the stacked frames as observations to improve the computational efficiency.

24

Table 5: Comparison of popular MARL game platforms.

Env Observation Space Action Space Baselines # Agents

MPE (Mordatch & Abbeel, 2018) Continuous Discrete Yes 1v1, 1vN and 1v1v1...

MAgent (Zheng et al., 2018) Continuous+Image Discrete Yes 1 million

Arena (Song et al., 2020) Continuous+Image Continuous/Discrete Yes 1v1, NvN and team mode

Neural MMO (Suarez et al., 2021) Continuous Discrete Yes 256 and 1024

PettingZoo Atari (Terry et al., 2021) Continuous+Image Discrete No 1v1

PommerMan (Resnick et al., 2018) Discrete Discrete No 2v2

FightLadder (Ours) Continuous+Image Discrete Yes 1v1 and team mode

B Baseline Algorithms of FightLadder-Baselines

Independent Learning (IPPO). Independent learning is a straightforward extension

of single-agent RL into MARL. It decomposes the joint optimization into individual

ones for each agent while regarding all other agents as part of the environment. It

can be implemented easily by simultaneously running single-agent RL algorithms for

each player. Theoretically, this independent learning paradigm suffers from suboptimal-

ity (Tan, 1993; Foerster et al., 2018), because the environment becomes non-stationary

while other agents are updating their policies. However, recent work (de Witt et al.,

2020; Yu et al., 2022) finds that with modest hyperparameter tuning, IPPO can serve

as a strong baseline compared to other state-of-the-art algorithms in some cooperative

MARL tasks.

Two-timescale Learning (2Timescale). Two-timescale learning follows the indepen-

dent learning paradigm, but requires two players to update gradients according to the

two-timescale rule, i.e., one player uses a much smaller step size than the other one.

As a result of this modification, two-timescale learning enjoys some nice theoretical

properties Ð it is proven that under some mild assumptions, independent policy gradi-

ent algorithms satisfying two-timescale converge to a Nash equilibrium in two-player

zero-sum stochastic games (Daskalakis et al., 2020).

Population-Based Methods. The independent learning framework is only training

agents against the current version of their opponents, which may fail or converge

slowly due to the lack of diversity (Dresher et al., 2016). Population-based methods

are proposed to increase policy diversity by maintaining a pool of policies in previous

iterations, and using them as a curriculum to update the current policy. More specifically,

for t-th update, the agent µt plays with previous versions of its opponent ν̃ sampled

from the meta-strategy ρν , which is a distribution over ν0, ν1, . . . , νt−1. Algorithm 1

presents the pseudo-code for general population-based methods. With different choices

of sampling distribution, we can recover several state-of-the-art baselines:

• Fictitious Self-Play (FSP), where ρν is the uniform distribution (Heinrich et al.,

2015): Uniform(ν0, ν1, . . . , νt−1).

• Policy-Space Response Oracles (PSRO), where (µ̃, ν̃) are sampled from the

meta-strategy (ρµ, ρν) by solving Nash equilibrium of the payoff matrix game

between µ0, µ1, . . . , µt−1 and ν0, ν1, . . . , νt−1 (Lanctot et al., 2017).

25

• League Training (League), where three types of agents Ð main agents, league

exploiters, and main exploiters, are introduced into the population. Main agents

train against themselves as well as all previous versions of agents in the population;

league exploiters train against all previous agents; and main exploiters optimize

the best response of main agents. Each type of agent adopts a different sampling

distribution which is a mixture of self-play and prioritized fictitious self-play. We

refer readers to (Vinyals et al., 2019) for more implementation details.

Algorithm 1 Population-Based Methods for MGs

1: Initialize policies µ0 = {µh}, ν
0 = {νh}, h ∈ [H]

2: Initialize policy sets: µ = {µ0}, ν = {ν0}
3: Initialize meta-strategies: ρµ = [1.], ρν = [1.]
4: for t = 1, . . . , T do

5: if t%2 == 0 then

6: νt = BEST_RESPONSE(ρµ, µ)
7: ν = ν

⋃

{νt}
8: Update ρν according to specific algorithms

9: else

10: µt = BEST_RESPONSE(ρν , ν)
11: µ = µ

⋃

{µt}
12: Update ρµ according to specific algorithms

13: end if

14: end for

15: Return µ, ρµ, ν, ρν

C Experiment Details

C.1 Hyperparameters (Table 6 and 7)

C.2 Training Details

Figure 7, 8, and 9 report the payoff matrix of policies within the population for FSP,

PSRO, and League, respectively, with the value representing the win rate of the left

player against the right player. We trained all our agents on one server with 192 CPUs

and 8 A6000 GPUs.

26

Hyperparameters Value

feature extractor CNN (Mnih et al., 2015)

rollout steps for each environment 512

batch size 1024

epochs per update 4

γ 0.94

GAE λ 0.95

learning rate linear schedule from 2.5e-4 to 2.5e-6

clipping range linear schedule from 0.15 to 0.025

advantage normalization True

entropy coefficient 0.0

gradient clipping 0.5

value function coefficient 0.5

Table 6: Training hyperparameters for PPO, which is the backbone for both single-player

and two-player algorithms in the experiment.

FSP PSRO League

envs per learner 24 # envs per learner 24 # envs per learner 24

steps for BR 10M steps for BR 10M steps for BR 10M

total steps 50M total steps 250M total steps 700M

main agent 1 # main agent 1 # main agent 1

Nash solver ECOS # main exploiter 1

(Domahidi et al., 2013) # league exploiter 2

Table 7: Training hyperparameters for FSP, PSRO, and League. We omit the details

of League’s opponent scheduling here as it strictly follows the pseudocode provided

in (Vinyals et al., 2019).

D Individual Elo Results

D.1 IPPO (Figure 10)

D.2 2Timescale (Figure 11)

D.3 FSP (Figure 12)

D.4 PSRO (Figure 13)

D.5 League (Figure 14)

E Visualization of Human Exploiters

Figure 15 visualizes how human players can exploit learned models with a simple

strategy. Full videos are provided in the supplementary material.

27

FSP
0_r
igh
t_h
_0M

FSP
0_r
igh
t

FSP0_left

FSP0_left_h_0M

0.62

0.52

0.0

0.2

0.4

0.6

0.8

1.0

FSP
0_r
igh
t_h
_10

M

FSP
0_r
igh
t_h
_0M

FSP
0_r
igh
t

FSP0_left

FSP0_left_h_0M

FSP0_left_h_10M

0.91 0.99

0.00

0.11

0.0

0.2

0.4

0.6

0.8

1.0

FSP
0_r
igh
t_h
_20

M

FSP
0_r
igh
t_h
_10

M

FSP
0_r
igh
t_h
_0M

FSP
0_r
igh
t

FSP0_left

FSP0_left_h_0M

FSP0_left_h_10M

FSP0_left_h_20M

FSP0_left_h_30M

0.99 0.99 0.99

0.00

0.05

0.08

0.48

0.0

0.2

0.4

0.6

0.8

1.0

FSP
0_r
igh
t_h
_40

M

FSP
0_r
igh
t_h
_30

M

FSP
0_r
igh
t_h
_20

M

FSP
0_r
igh
t_h
_10

M

FSP
0_r
igh
t_h
_0M

FSP
0_r
igh
t

FSP0_left

FSP0_left_h_0M

FSP0_left_h_10M

FSP0_left_h_20M

FSP0_left_h_30M

FSP0_left_h_40M

FSP0_left_h_50M

0.76 0.84 0.95 0.99 1.00

0.00

0.03

0.07

0.06

0.22

0.40

0.0

0.2

0.4

0.6

0.8

1.0

FSP
0_r
igh
t_h
_60

M

FSP
0_r
igh
t_h
_50

M

FSP
0_r
igh
t_h
_40

M

FSP
0_r
igh
t_h
_30

M

FSP
0_r
igh
t_h
_20

M

FSP
0_r
igh
t_h
_10

M

FSP
0_r
igh
t_h
_0M

FSP
0_r
igh
t

FSP0_left

FSP0_left_h_0M

FSP0_left_h_10M

FSP0_left_h_20M

FSP0_left_h_30M

FSP0_left_h_40M

FSP0_left_h_50M

FSP0_left_h_60M

0.64 0.88 0.94 0.96 0.96 0.97 1.00

0.01

0.02

0.04

0.06

0.16

0.21

0.04

0.0

0.2

0.4

0.6

0.8

1.0

FSP
0_r
igh
t_h
_70

M

FSP
0_r
igh
t_h
_60

M

FSP
0_r
igh
t_h
_50

M

FSP
0_r
igh
t_h
_40

M

FSP
0_r
igh
t_h
_30

M

FSP
0_r
igh
t_h
_20

M

FSP
0_r
igh
t_h
_10

M

FSP
0_r
igh
t_h
_0M

FSP
0_r
igh
t

FSP0_left

FSP0_left_h_0M

FSP0_left_h_10M

FSP0_left_h_20M

FSP0_left_h_30M

FSP0_left_h_40M

FSP0_left_h_50M

FSP0_left_h_60M

FSP0_left_h_70M

FSP0_left_h_80M

0.96 0.97 0.94 0.97 1.00 1.00 1.00 1.00

0.00

0.02

0.03

0.02

0.11

0.19

0.09

0.04

0.50

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7: FSP details (training order from top left to bottom right): For FSP, there is one

agent for each side (left or right). The name of each row indicates the agent information

as Character_Side_Checkpoint. Checkpoint=h_xM represents a previous

version of agent saved at x million steps. The value indicates the win rate of the left

(row) player against the right (column) player.

28

PS
RO
0_r
igh
t_h
_0M

PS
RO
0_r
igh
t

PSRO0_left

PSRO0_left_h_0M

0.63

0.65 0.47

0.0

0.2

0.4

0.6

0.8

1.0

PS
RO
0_r
igh
t_h
_10

M

PS
RO
0_r
igh
t_h
_0M

PS
RO
0_r
igh
t

PSRO0_left

PSRO0_left_h_0M

PSRO0_left_h_10M

1.00 0.96

0.02 0.65 0.02

0.31 0.98 0.03

0.0

0.2

0.4

0.6

0.8

1.0

PS
RO
0_r
igh
t_h
_30

M

PS
RO
0_r
igh
t_h
_20

M

PS
RO
0_r
igh
t_h
_10

M

PS
RO
0_r
igh
t_h
_0M

PS
RO
0_r
igh
t

PSRO0_left

PSRO0_left_h_0M

PSRO0_left_h_10M

PSRO0_left_h_20M

PSRO0_left_h_30M

0.93 0.98 1.00 0.96

0.02 0.07 0.02 0.65 0.04

0.03 0.02 0.31 0.98 0.04

0.01 0.63 0.99 0.93 0.01

0.07 0.93 1.00 0.96 0.00

0.0

0.2

0.4

0.6

0.8

1.0

PS
RO
0_r
igh
t_h
_50

M

PS
RO
0_r
igh
t_h
_40

M

PS
RO
0_r
igh
t_h
_30

M

PS
RO
0_r
igh
t_h
_20

M

PS
RO
0_r
igh
t_h
_10

M

PS
RO
0_r
igh
t_h
_0M

PS
RO
0_r
igh
t

PSRO0_left

PSRO0_left_h_0M

PSRO0_left_h_10M

PSRO0_left_h_20M

PSRO0_left_h_30M

PSRO0_left_h_40M

PSRO0_left_h_50M

0.95 0.92 0.89 0.99 1.00 0.96

0.02 0.01 0.02 0.07 0.02 0.65 0.04

0.06 0.01 0.03 0.02 0.31 0.98 0.04

0.08 0.00 0.01 0.63 0.99 0.93 0.01

0.04 0.01 0.07 0.93 1.00 0.96 0.00

0.16 0.39 0.87 0.94 0.94 0.99 0.07

0.08 0.97 0.90 0.82 0.91 0.98 0.06

0.0

0.2

0.4

0.6

0.8

1.0

PS
RO
0_r
igh
t_h
_60

M

PS
RO
0_r
igh
t_h
_50

M

PS
RO
0_r
igh
t_h
_40

M

PS
RO
0_r
igh
t_h
_30

M

PS
RO
0_r
igh
t_h
_20

M

PS
RO
0_r
igh
t_h
_10

M

PS
RO
0_r
igh
t_h
_0M

PS
RO
0_r
igh
t

PSRO0_left

PSRO0_left_h_0M

PSRO0_left_h_10M

PSRO0_left_h_20M

PSRO0_left_h_30M

PSRO0_left_h_40M

PSRO0_left_h_50M

PSRO0_left_h_60M

PSRO0_left_h_70M

0.95 0.98 0.92 0.88 1.00 1.00 0.96

0.09 0.02 0.01 0.02 0.07 0.02 0.65 0.04

0.35 0.06 0.01 0.03 0.02 0.31 0.98 0.00

0.22 0.08 0.00 0.01 0.63 0.99 0.93 0.01

0.18 0.04 0.01 0.07 0.93 1.00 0.96 0.00

0.02 0.16 0.39 0.87 0.94 0.94 0.99 0.01

0.23 0.08 0.97 0.90 0.82 0.91 0.98 0.07

0.12 1.00 0.91 0.65 0.53 0.79 0.94 0.10

0.96 0.99 0.92 0.86 1.00 0.98 0.98 0.17

0.0

0.2

0.4

0.6

0.8

1.0

PS
RO
0_r
igh
t_h
_80

M

PS
RO
0_r
igh
t_h
_70

M

PS
RO
0_r
igh
t_h
_60

M

PS
RO
0_r
igh
t_h
_50

M

PS
RO
0_r
igh
t_h
_40

M

PS
RO
0_r
igh
t_h
_30

M

PS
RO
0_r
igh
t_h
_20

M

PS
RO
0_r
igh
t_h
_10

M

PS
RO
0_r
igh
t_h
_0M

PS
RO
0_r
igh
t

PSRO0_left

PSRO0_left_h_0M

PSRO0_left_h_10M

PSRO0_left_h_20M

PSRO0_left_h_30M

PSRO0_left_h_40M

PSRO0_left_h_50M

PSRO0_left_h_60M

PSRO0_left_h_70M

PSRO0_left_h_80M

0.92 0.91 0.97 0.98 0.92 0.94 1.00 1.00 0.96

0.00 0.00 0.09 0.02 0.01 0.02 0.07 0.02 0.65 0.04

0.02 0.00 0.35 0.06 0.01 0.03 0.02 0.31 0.98 0.00

0.04 0.06 0.22 0.08 0.00 0.01 0.63 0.99 0.93 0.01

0.05 0.05 0.18 0.04 0.01 0.07 0.93 1.00 0.96 0.00

0.04 0.04 0.02 0.16 0.39 0.87 0.94 0.94 0.99 0.01

0.02 0.06 0.23 0.08 0.97 0.90 0.82 0.91 0.98 0.03

0.03 0.09 0.12 1.00 0.91 0.65 0.53 0.79 0.94 0.01

0.19 0.08 0.96 0.99 0.92 0.86 1.00 0.98 0.98 0.18

0.23 0.93 0.84 0.91 0.93 0.87 0.98 0.99 1.00 0.04

0.0

0.2

0.4

0.6

0.8

1.0

Figure 8: PSRO details (training order from top left to bottom right): For PSRO, there

is one agent for each side (left or right). The name of each row indicates the agent in-

formation as Character_Side_Checkpoint. Checkpoint=h_xM represents

a previous version of agent saved at x million steps. The value indicates the win rate of

the left (row) player against the right (column) player.

29

ME
0_r
igh
t

MA
0_r
igh
t_h
_0M

MA
0_r
igh
t

LE1
_rig

ht

LE0
_rig

ht

LE0_left

LE1_left

MA0_left

MA0_left_h_0M

ME0_left

0.61

0.54

0.58 0.56 0.57

0.48 0.52 0.53

0.48

0.0

0.2

0.4

0.6

0.8

1.0

ME
0_r
igh
t_h
_10

M

ME
0_r
igh
t

MA
0_r
igh
t_h
_0M

MA
0_r
igh
t

LE1
_rig

ht

LE0
_rig

ht

LE0_left

LE0_left_h_10M

LE1_left

LE1_left_h_10M

MA0_left

MA0_left_h_0M

MA0_left_h_10M

ME0_left

ME0_left_h_10M

0.53 0.93

0.15 0.19 0.40

0.25 0.73

0.16 0.27 0.30

0.85 0.91 0.97 0.80

0.08 0.03 0.00 0.02

0.61 0.34 0.50 0.58

0.97 0.06

0.44 0.71 0.70

0.0

0.2

0.4

0.6

0.8

1.0

ME
0_r
igh
t_h
_10

M

ME
0_r
igh
t

MA
0_r
igh
t_h
_20

M

MA
0_r
igh
t_h
_10

M

MA
0_r
igh
t_h
_0M

MA
0_r
igh
t

LE1
_rig

ht_
h_1

0M

LE1
_rig

ht

LE0
_rig

ht_
h_1

0M

LE0
_rig

ht

LE0_left

LE0_left_h_10M

LE0_left_h_20M

LE1_left

LE1_left_h_10M

LE1_left_h_20M

MA0_left

MA0_left_h_0M

MA0_left_h_10M

MA0_left_h_20M

ME0_left

ME0_left_h_10M

0.94 0.66 0.87 0.97 0.93 0.97

0.09 0.10 0.08

0.29 0.08 0.21

0.86 0.47 0.84 0.90 0.82 0.86

0.21 0.03 0.04

0.35 0.41 0.38

0.93 0.91 0.77 0.95 0.95 0.45 0.88 0.90

0.03 0.02 0.00 0.02

0.14 0.25 0.22 0.17

0.25 0.26 0.25 0.29

0.43 0.98 1.00 0.06

0.26 0.31 0.31

0.0

0.2

0.4

0.6

0.8

1.0

ME
0_r
igh
t_h
_30

M

ME
0_r
igh
t_h
_10

M

ME
0_r
igh
t

MA
0_r
igh
t_h
_30

M

MA
0_r
igh
t_h
_20

M

MA
0_r
igh
t_h
_10

M

MA
0_r
igh
t_h
_0M

MA
0_r
igh
t

LE1
_rig

ht_
h_2

0M

LE1
_rig

ht_
h_1

0M

LE1
_rig

ht

LE0
_rig

ht_
h_3

0M

LE0
_rig

ht_
h_2

0M

LE0
_rig

ht_
h_1

0M

LE0
_rig

ht

LE0_left

LE0_left_h_10M

LE0_left_h_20M

LE0_left_h_30M

LE1_left

LE1_left_h_10M

LE1_left_h_20M

LE1_left_h_30M

MA0_left

MA0_left_h_0M

MA0_left_h_10M

MA0_left_h_20M

MA0_left_h_30M

ME0_left

ME0_left_h_10M

ME0_left_h_30M

0.89 0.86 0.34 0.89 0.94 0.97 0.78 0.93 0.68 0.72 0.94

0.09 0.06 0.01

0.07 0.09 0.70

0.06 0.22 0.79

0.94 0.91 0.76 0.92 0.94 0.98 0.91 0.98 0.81 0.88 0.90

0.10 0.02 0.72

0.09 0.38 0.06

0.28 0.54 0.83

0.84 0.94 0.91 0.80 0.85 0.90 0.98 0.43 0.90 0.92 0.84 0.88 0.94

0.16 0.02 0.05 0.02

0.30 0.14 0.13 0.76

0.28 0.11 0.12 0.76

0.44 0.16 0.28 0.87

0.31 0.67 0.28 0.82 0.06

0.12 0.17 0.76

0.06 0.05 0.70
0.0

0.2

0.4

0.6

0.8

1.0

ME
0_r
igh
t_h
_30

M

ME
0_r
igh
t_h
_10

M

ME
0_r
igh
t

MA
0_r
igh
t_h
_40

M

MA
0_r
igh
t_h
_30

M

MA
0_r
igh
t_h
_20

M

MA
0_r
igh
t_h
_10

M

MA
0_r
igh
t_h
_0M

MA
0_r
igh
t

LE1
_rig

ht_
h_4

0M

LE1
_rig

ht_
h_2

0M

LE1
_rig

ht_
h_1

0M

LE1
_rig

ht

LE0
_rig

ht_
h_3

0M

LE0
_rig

ht_
h_2

0M

LE0
_rig

ht_
h_1

0M

LE0
_rig

ht

LE0_left

LE0_left_h_10M

LE0_left_h_20M

LE0_left_h_30M

LE1_left

LE1_left_h_10M

LE1_left_h_20M

LE1_left_h_30M

LE1_left_h_40M

MA0_left

MA0_left_h_0M

MA0_left_h_10M

MA0_left_h_20M

MA0_left_h_30M

MA0_left_h_40M

ME0_left

ME0_left_h_10M

ME0_left_h_30M

0.96 0.91 0.61 0.56 0.78 0.91 0.99 0.66 0.87 0.93 0.84 0.87 0.98

0.05 0.10 0.19

0.06 0.05 0.15

0.06 0.11 0.14

0.94 0.96 0.50 0.91 0.96 0.94 0.99 0.61 0.95 0.92 0.92 0.90 0.92

0.05 0.11 0.23

0.09 0.27 0.24

0.14 0.26 0.31

0.17 0.31 0.37

0.95 0.94 0.91 0.81 0.87 0.93 0.97 0.98 0.51 0.75 0.93 0.94 0.88 0.84 0.94

0.13 0.02 0.03 0.14

0.17 0.13 0.15 0.31

0.12 0.09 0.15 0.25

0.27 0.17 0.34 0.36

0.32 0.29 0.63 0.43

0.53 0.65 0.87 0.91 0.99 0.06

0.10 0.26 0.34

0.13 0.06 0.22
0.0

0.2

0.4

0.6

0.8

1.0

ME
0_r
igh
t_h
_50

M

ME
0_r
igh
t_h
_30

M

ME
0_r
igh
t_h
_10

M

ME
0_r
igh
t

MA
0_r
igh
t_h
_50

M

MA
0_r
igh
t_h
_40

M

MA
0_r
igh
t_h
_30

M

MA
0_r
igh
t_h
_20

M

MA
0_r
igh
t_h
_10

M

MA
0_r
igh
t_h
_0M

MA
0_r
igh
t

LE1
_rig

ht_
h_4

0M

LE1
_rig

ht_
h_2

0M

LE1
_rig

ht_
h_1

0M

LE1
_rig

ht

LE0
_rig

ht_
h_5

0M

LE0
_rig

ht_
h_3

0M

LE0
_rig

ht_
h_2

0M

LE0
_rig

ht_
h_1

0M

LE0
_rig

ht

LE0_left

LE0_left_h_10M

LE0_left_h_20M

LE0_left_h_30M

LE0_left_h_50M

LE1_left

LE1_left_h_10M

LE1_left_h_20M

LE1_left_h_30M

LE1_left_h_40M

LE1_left_h_50M

LE1_left_h_60M

MA0_left

MA0_left_h_0M

MA0_left_h_10M

MA0_left_h_20M

MA0_left_h_30M

MA0_left_h_40M

MA0_left_h_50M

MA0_left_h_60M

ME0_left

ME0_left_h_10M

ME0_left_h_30M

ME0_left_h_50M

0.620.870.88 0.310.310.310.610.880.89 0.570.800.90 0.410.750.730.83

0.05 0.09 0.36

0.06 0.05 0.14

0.09 0.05 0.14

0.07 0.26 0.38

0.920.960.92 0.630.830.900.940.971.00 0.850.990.95 0.860.920.970.95

0.04 0.11 0.29

0.08 0.14 0.44

0.11 0.12 0.40

0.10 0.17 0.59

0.11 0.31 0.61

0.26 0.36 0.83

0.930.950.940.910.790.870.860.940.950.970.480.920.970.97 0.910.960.960.98

0.11 0.01 0.03 0.20

0.44 0.11 0.11 0.44

0.22 0.05 0.15 0.40

0.29 0.07 0.28 0.55

0.37 0.29 0.38 0.66

0.52 0.19 0.55 0.74

0.75 0.40 0.69 0.85

0.640.690.630.810.770.950.06

0.11 0.11 0.52

0.07 0.04 0.18

0.11 0.23 0.55
0.0

0.2

0.4

0.6

0.8

1.0

Figure 9: League training details (training order from top left to bottom right): For

league training, there is one main agent (MA), two league exploiters (LE0, LE1), and

one main exploiter (ME) for each side (left or right). The name of each row indicates

the agent information as Character_Side_Checkpoint. Checkpoint=h_xM

represents a previous version of agent saved at x million steps. The value indicates the

win rate of the left (row) player against the right (column) player.

30

600 800 1000 1200 1400 1600 1800
Elo

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

IPPO: Left
5 M
23 M
41 M

11 M
29 M
47 M

17 M
35 M

5 M
23 M
41 M

11 M
29 M
47 M

17 M
35 M

0 1 2 3 4 5
Steps 1e7

0

500

1000

1500

El
o

IPPO: Left

400 600 800 1000 1200 1400 1600
Elo

0

2

4

6

8

Co
un

t

IPPO: Left
Seed 1
Seed 2
Seed 3

400 600 800 1000 1200 1400 1600
Elo

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

IPPO: Right
5 M
23 M
41 M

11 M
29 M
47 M

17 M
35 M

5 M
23 M
41 M

11 M
29 M
47 M

17 M
35 M

0 1 2 3 4 5
Steps 1e7

0

500

1000

1500
El

o

IPPO: Right

400 600 800 1000 1200 1400 1600
Elo

0

2

4

6

8

Co
un

t

IPPO: Right
Seed 1
Seed 2
Seed 3

Figure 10: The Elo rating for the population of agents trained with IPPO algorithm.

The upper three plots are for left-side player and the bottom three are for the right-side

player. The Elo rating is plotted against the winning rate over matched policies (left

figures), training steps (middle figures) and the number of policies (right figures).

400 600 800 1000 1200 1400 1600
Elo

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

2Timescale: Left
5 M
29 M
53 M

13 M
37 M
61 M

21 M
45 M

5 M
29 M
53 M

13 M
37 M
61 M

21 M
45 M

0 1 2 3 4 5
Steps 1e7

0

500

1000

1500

El
o

2Timescale: Left

400 600 800 1000 1200 1400 1600
Elo

0

5

10

15

Co
un

t

2Timescale: Left
Seed 1
Seed 2
Seed 3

200 400 600 800 1000 1200 1400
Elo

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

2Timescale: Right
5 M
29 M
53 M

13 M
37 M
61 M

21 M
45 M

5 M
29 M
53 M

13 M
37 M
61 M

21 M
45 M

0 1 2 3 4 5
Steps 1e7

0

500

1000

1500

El
o

2Timescale: Right

400 600 800 1000 1200 1400 1600
Elo

0

2

4

6

8

10

Co
un

t

2Timescale: Right
Seed 1
Seed 2
Seed 3

Figure 11: The Elo rating for the population of agents trained with 2Timescale algorithm.

The upper three plots are for left-side player and the bottom three are for the right-side

player. The Elo rating is plotted against the winning rate over matched policies (left

figures), training steps (middle figures) and the number of policies (right figures).

31

400 600 800 1000 1200 1400
Elo

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

FSP: Left
5 M
104 M
203 M

38 M
137 M
236 M

71 M
170 M

5 M
104 M
203 M

38 M
137 M
236 M

71 M
170 M

0.0 0.5 1.0 1.5 2.0 2.5
Steps 1e8

0

500

1000

1500

El
o

FSP: Left

400 600 800 1000 1200 1400 1600
Elo

0

1

2

3

Co
un

t

FSP: Left
FSP

400 600 800 1000 1200 1400
Elo

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

FSP: Right
5 M
104 M
203 M

38 M
137 M
236 M

71 M
170 M

5 M
104 M
203 M

38 M
137 M
236 M

71 M
170 M

0.0 0.5 1.0 1.5 2.0 2.5
Steps 1e8

0

500

1000

1500

El
o

FSP: Right

400 600 800 1000 1200 1400 1600
Elo

0

1

2

3

Co
un

t

FSP: Right
FSP

Figure 12: The Elo rating for the population of agents trained with FSP algorithm. The

upper three plots are for left-side player and the bottom three are for the right-side player.

The Elo rating is plotted against the winning rate over matched policies (left figures),

training steps (middle figures) and the number of policies (right figures).

400 600 800 1000 1200
Elo

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

PSRO: Left
5 M
98 M
191 M

36 M
129 M
222 M

67 M
160 M

5 M
98 M
191 M

36 M
129 M
222 M

67 M
160 M

0.0 0.5 1.0 1.5 2.0
Steps 1e8

0

500

1000

1500

El
o

PSRO: Left

400 600 800 1000 1200 1400 1600
Elo

0

1

2

3

Co
un

t

PSRO: Left
PSRO

400 600 800 1000 1200 1400
Elo

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

PSRO: Right
5 M
98 M
191 M

36 M
129 M
222 M

67 M
160 M

5 M
98 M
191 M

36 M
129 M
222 M

67 M
160 M

0.0 0.5 1.0 1.5 2.0 2.5
Steps 1e8

0

500

1000

1500

El
o

PSRO: Right

400 600 800 1000 1200 1400 1600
Elo

0

2

4

6

8

Co
un

t

PSRO: Right
PSRO

Figure 13: The Elo rating for the population of agents trained with PSRO algorithm.

The upper three plots are for left-side player and the bottom three are for the right-side

player. The Elo rating is plotted against the winning rate over matched policies (left

figures), training steps (middle figures) and the number of policies (right figures).

32

600 800 1000 1200 1400
Elo

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

League: Left
5 M
227 M
449 M

116 M
338 M
560 M

5 M
227 M
449 M

116 M
338 M
560 M

0 1 2 3 4 5 6 7
Steps 1e8

0

500

1000

1500

El
o

League: Left

400 600 800 1000 1200 1400 1600
Elo

0

5

10

15

20

25

Co
un

t

League: Left
MA0
ME0
LE0
LE1

600 800 1000 1200
Elo

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

League: Right
5 M
227 M
449 M

116 M
338 M
560 M

5 M
227 M
449 M

116 M
338 M
560 M

0 1 2 3 4 5 6 7
Steps 1e8

0

500

1000

1500
El

o
League: Right

400 600 800 1000 1200 1400 1600
Elo

0

10

20

30

Co
un

t

League: Right
MA0
ME0
LE0
LE1

Figure 14: The Elo rating for the population of agents trained with League training.

The upper three plots are for left-side player and the bottom three are for the right-side

player. The Elo rating is plotted against the winning rate over matched policies (left

figures), training steps (middle figures) and the number of policies (right figures).

Figure 15: Demonstration of the exploiting strategy of one human player. The human

player (Ryu on the right in white) defends when the AI opponent (Ryu on the left in

gray) attacks, and inflicts damage with low kicks.

33

	Introduction
	Related Work
	Multi-Agent Reinforcement Learning
	FightLadder
	Scenarios
	State and Observations
	Action Space
	Rewards
	Features

	Evaluation Metrics
	FightLadder-Baselines
	Results
	Single-Player Full Video Game
	Performance of Two-Player Baseline Algorithms
	Non-Exploitability of Trained Agents

	Conclusion and Limitation
	Details of FightLadder
	Dense Reward
	Game Settings
	Comparison of MARL Game Platforms

	Baseline Algorithms of FightLadder-Baselines
	Experiment Details
	Hyperparameters (Table 6 and 7)
	Training Details

	Individual Elo Results
	IPPO (Figure 10)
	2Timescale (Figure 11)
	FSP (Figure 12)
	PSRO (Figure 13)
	League (Figure 14)

	Visualization of Human Exploiters

