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Abstract—Mobile sensing and data analytics usually take a 

substantial amount of energy, which limits the durability of the 

wearable devices. Especially, when deep learning is applied for 

data mining, the energy need is even more hungry. In this study, 

we take a special interest in wearable biomechanical data 

analytics, and propose to leverage data mining to tackle this 

challenge. More specifically, we leverage deep learning to mine 

the spatial variability of motion sensors embedded in mobile 

devices placed on the forearm and upper arm. In addition to 

compare the sensor locations, we further compare six different 

channels of each sensor location, thereby making twelve 

different configurations. Ultimately, we determine the optimal 

sensor location and the optimal sensor channel, which indicates 

the minimized data processing need in the real-world 

applications. The results indicate that the upper arm location 

and Y-axis of the accelerometer is the optimal configuration. 

This study will advance the field of maximizing energy efficiency 

of mobile biomechanical monitors, towards continuous data-

driven precision medicine.  
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I. INTRODUCTION  

Many devices like the smart phones, watches, and wrist 
bands are now supporting the biomechanical data tracking [1]. 
The applications span a variety of possibilities, such as the 
daily activity detection, the step counting, and physical 
movement difficulties. In the studied on physical movement 
detection, the sensors were usually placed placed on the arm 
or the chest, or other locations [2]. It is obvious that different 
sensor locations may have diverse impacts on the data 
acquired. Especially, considering the different moving 
patterns of each body location, the obtained data may be 
highly diverse. Besides, the accelerometer and gyroscope both 
have three channels, which reflect acceleration in three 
directions and angular rate in three directions, respectively.  

In addition to select out optimal and minimum system 
configuration for energy efficiency maximization, 
understanding the difference among different sensor locations 
and further the difference among different signal channels, is 
also very promising for high physical activity detection 
performance and for physician to get insights on how 

biomechanical dynamics differ under different system 
configurations [3].  

Therefore, to fill this gap, we leverage deep learning to 
mine the spatial variability of motion sensors placed on the 
forearm and upper arm. In addition to compare the sensor 
locations, we further compare six different channels of each 
sensor location, thereby making twelve different 
configurations. Ultimately, we will determine the optimal 
sensor location and the optimal sensor channel, which 
indicates the minimized data processing need and maximized 
energy efficiency. 

We next in section II provide the technical details, and in 
section III demonstrate the experimental results. In section IV, 
the conclusion is finally made. 

II. METHODS 

A. System Diagram 

As shown in Fig. 1, the deep learning algorithm based on 
CNN has been designed and developed for mining the spatial 
variability. Each combination of the sensor location and 
sensor channel is evaluated independently with the algorithm, 
and the final detection accuracy is used for optimal 
configuration determination.  

B. Spatial Variability Mining 

To the best of our knowledge, this is the first study to 
thoroughly study, evaluate, and quantize the biomechanical 
spatial variability. 

The proposed convolution neural network in Fig. 1 
consists of several convolutional layers for pattern abstraction. 
The maxpooling layers reduce the dimension for further 
pattern abstraction. The fully connected layers, or called dense 
layers, yield the final detection results. There are six activity 
types evaluated in this study, so the output layer has six 
neurons, and each corresponds to one category.  

C. Experimental Setup 

The really-world biomechanical data [4] has been used for 
the evaluation, with two- to ten-minute recordings from fifteen 
subjects who performed six activities including climbing 
down/upstairs, lying, running, walking, and jumping.   

III. RESULTS 

The results are given in this section, and the optimal sensor 
and channel configuration is determined by the 
comprehensive study.  
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A. Maximizing Energy Efficiency  

Fig. 2 shows the thorough comparison of the forearm and 
upper arm locations, and the six channels of signals for each 
location, acquired by the accelerometer and gyroscope.  

We can observe that the upper arm location and the Y-axis 
of the accelerometer is the optimal configuration, with the 
highest activity type detection accuracy. Further, generally, 
the signal channels of the accelerometer have higher accuracy 
than those of the gyroscope, indicating that more informative 
dynamics are encoded in the former one.  

We therefore have demonstrated that it is promising to 
only use a single chancel for robust activity type detection. 
The accuracy is up to 92.1%, with maximized energy 
efficiency.  

B. Further Investigations 

In future, we will further study more spatial locations, and 
more combinations of the different sensor channels or sensors 
for required tradeoffs between performance and energy 
consumption.  

IV. CONCLUSION 

In this study, we have thoroughly studied the spatial 
variability of biomechanical mobile devices, thereby 
determining the optimal sensor and channel configuration 
with minimum data processing load and maximum energy 
efficiency. We have demonstrated that the upper arm location 
and Y-axis of the accelerometer is the optimal configuration. 
This study will advance the field of maximizing energy 

efficiency of mobile biomechanical monitors, towards 
continuous data-driven precision medicine. 
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