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We consider machine learning techniques associated with the application of a boosted decision tree
(BDT) to searches at the Large Hadron Collider (LHC) for pair-produced lepton partners which decay to
leptons and invisible particles. This scenario can arise in the minimal supersymmetric Standard Model
(MSSM), but can be realized in many other extensions of the Standard Model (SM). We focus on the case
of intermediate mass splitting (∼30 GeV) between the dark matter (DM) and the scalar. For these mass
splittings, the LHC has made little improvement over LEP due to large electroweak backgrounds. We find
that the use of machine learning techniques can push the LHC well past discovery sensitivity for a
benchmark model with a lepton partner mass of ∼110 GeV, for an integrated luminosity of 300 fb−1, with
a signal-to-background ratio of ∼0.3. The LHC could exclude models with a lepton partner mass as large as
∼160 GeV with the same luminosity. The use of machine learning techniques in searches for scalar lepton
partners at the LHC could thus definitively probe the parameter space of the MSSM in which scalar muon
mediated interactions between SM muons and Majorana singlet DM can both deplete the relic density
through dark matter annihilation and satisfy the recently measured anomalous magnetic moment of the
muon. We identify several machine learning techniques which can be useful in other LHC searches
involving large and complex backgrounds.
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I. INTRODUCTION

A wide variety of scenarios for physics beyond the
Standard Model (BSM) have been probed experimentally
with the Large Hadron Collider (LHC). However, as no
conclusive evidence of BSM physics has been found yet,
focus has turned to scenarios and signatures which are more
difficult to probe. One particularly difficult scenario is the
pair production of scalar lepton partners of SM fermions
(l̃�), each of which decays to a lepton and an invisible

particle (l̃ → lX) with a ∼30 GeV mass splitting. This
scenario can arise in the minimal supersymmetric standard
model (MSSM) [1,2], as well as in other BSMmodels [2,3]
often specifically motivated by the need for a viable dark
matter candidate and by recent measurements of the
anomalous magnetic moment of the muon. This scenario
is difficult to probe at the LHC because there is a large SM
background from the production of electroweak gauge
bosons, decaying to leptons and neutrinos. As a result,
current LHC constraints [4,5] on this scenario show little
improvement over LEP [6]. Although a variety of new
analysis strategies have been proposed, there is no clear-cut
strategy for effectively separating signal from background
in models with these moderately compressed particle
spectra. In this work, we investigate the possibility of
using machine learning algorithms to more effectively pick
out signal from background.
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The standard signature of scalar lepton partner pair
production at the LHC is ll plus missing transverse energy
ET (MET). However, if the mass splitting is≲60 GeV, then
the lepton and invisible particles are both soft, and it is
difficult to see this signature above the electroweak back-
ground [7]. One strategy used to evade the difficulty of soft
particles is to search for events in which one or more hard
jets are also emitted (pp → l̃�l̃þ jets). This jet provides a
transverse kick to the l̃�l̃ system, yielding harder leptons
and larger MET. Even so, distinguishing signal events
from the large electroweak background requires additional
techniques. If the mass splitting is small (≲20 GeV), then
the electroweak background can be rejected because the
neutrinos produced by W decay typically carry larger
MET than carried by the X arising from l̃ decay [8]. The
efficacy of this search strategy has been enhanced by recent
experimental developments, resulting in lower energy
thresholds for lepton identification [9]. However, searches
at the LHC are still challenging for intermediate mass
splittings in the range of ∼20–50 GeV.

Theoretical work has shown that progress can be made
for mass splittings in the ∼20–50 GeV range, using a
variety of kinematic variables involving the energies of the
leptons, jets, and MET, as well as their angular correlations
with each other [10]. But the progress is incremental; even
applying these strategies, a model withMl̃ ¼ 160 GeV and
Ml̃ −MX ¼ 30 GeV would be well out of reach of LHC
with 300 fb−1 luminosity [10]. Moreover, there is no clean
set of simple cuts which one can apply to maximize
sensitivity, based on an a priori principle. Instead, one
sequentially applies cuts to many kinematic variables, with
each cut (and the order of cuts) being determined largely by
trial and error. This is the type of setting in which one might
expect machine learning algorithms to greatly improve
search sensitivity, by determining the optimal set of cuts to
impose on a large number of kinematic variables which can
exhibit strong (nonlinear) correlations. Additionally, one
might hope that it would be possible to work backward
after an optimal set of cuts is found to determine the
underlying principle(s) responsible for the efficacy of those
cuts. We will see that both of these intuitions are true.
In this work, we consider a benchmark point which is

allowed by current constraints (cf. discussion in Sec. III)
where the scalar lepton is a partner to the left-handed muon,
with Ml̃ ¼ 110 GeV, Ml̃ −Mχ ¼ 30 GeV. We use a
boosted decision tree (BDT) [11,12] to classify events as
signal or background, finding that a cut based on the BDT
classifier can increase the LHC sensitivity to ≳5σ while
maintaining a signal-to-background ratio of ∼0.3 with
300 fb−1 of data. We identify kinematic variables that
dominantly contribute to the signal sensitivity and plot the
residual distribution as applicable.
Importantly, we find that direct application of a BDT

algorithm to simulated data is not sufficient. Essentially,
because some SM background processes have very large

rates, application of a BDT algorithm to an uncurated
data sample will succeed at removing the largest back-
grounds, while leaving subleading backgrounds that, in
turn, can limit sensitivity. Instead, we adopt a strategy in
which some initial precuts are imposed (in addition to the
basic cuts which define the event topology) to reduce
leading backgrounds with easily identified characteristics,
leaving the BDT free to focus subsequently on more
challenging features of the residual leading and subdomi-
nant backgrounds.
In a similar vein, we find that generation of the training

sample used by the BDT also requires special care, because
the most difficult backgrounds to remove lie in regions of
phase space with relatively small cross section (though
larger than the signal). If these regions of phase space are
not adequately sampled by simulation, then the BDT can
become overly focused on the details of a few particular
events in the training sample. To avoid this problem, we
simulate in kinematic tranches, significantly enhancing the
fraction of computational time devoted to kinematic
regions having smaller cross sections but larger pass rates
for standard cuts.
In previous studies, a variety of machine learning

techniques have been proposed and implemented for
analyses of LHC data in which the BSM signal is
particularly challenging to differentiate from the SM
background. Following an early proposal for the use of
BDTs and neural networks (NNs) in searches for fer-
mionic partners of SM electroweak gauge bosons [13], the
pair production of such fermionic partners has been
constrained in a BDT analysis of ðllþMETÞ final states
at the LHC [4]. For boosted topologies, both BDTand NN
analyses have been shown to enhance the sensitivity of
LHC searches to dark matter models with extended Higgs
sectors [14]. Analyses of monojet plus missing energy
signatures at LHC in several simplified dark matter
models with mediators of different spins has demonstrated
that NNs are able to efficiently determine if there is a BSM
signal within a given dataset when trained on two-dimen-
sional histograms combining information from different
kinematic variables [15,16].
In addition to supervised learning applications, less

supervised techniques have been proposed for BSM
searches at LHC. Weakly supervised techniques have been
shown to increase the sensitivity of monojet plus missing
energy searches to strongly interacting dark matter models
with anomalous jet dynamics [17] and self-supervised
contrastive learning has been proposed for anomaly detec-
tion searches in dijet events [18]. Complementing these
largely model-agnostic techniques, adversarial NNs have
also been suggested as an unsupervised approach to
improve the invariant mass reconstruction of BSM gauge
bosons decaying to leptons and neutrinos [19].
In this work, we favor an application of supervised

learning strategies using a BDT due to the relatively
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straightforward manner in which the algorithm classifies
signal and background events, facilitating a clear interpre-
tation of results. We will focus not only on the search
sensitivity which is achieved by application of a BDT, but
also on what the BDT teaches us regarding the underlying
search strategy, and on improved techniques for applying
machine learning to general LHC searches with large and
complex backgrounds.
The search strategy we propose is relevant for a variety

of phenomenologically motivated extensions of the SM.
For example, charged mediator models with a Majorana
SM-singlet dark matter candidate and scalar muon partners
mediating interactions with the SM can both satisfy the
dark matter relic density and account for the anomalous
magnetic moment of the muon [20]. With the coupling of
the dark matter to the muon and its scalar partner fixed by
the SM hypercharge coupling, as in the MSSM, the relic
density in such models can be depleted by scalar mediated
dark matter annihilation for lepton partner masses Ml̃ ≲
150 GeV [1] and by co-annihilation processes involving
the scalars forMl̃ ≲ 1 TeV [2]. For simplified models with
dark matter-scalar-lepton couplings larger than in the
MSSM, both production mechanisms can yield the
observed dark matter relic density for scalar masses Ml̃ ≳
1 TeV [2,3]. Charged mediator models with the most
massive scalar muon partners mentioned above are virtually
impossible to detect at LHC due to the falling production
cross sections at higher scalar masses. However, there are
large regions of unconstrained parameter space which are
challenging but feasible to probe for LHC searches with the
improved sensitivity of analyses using machine learning
techniques such as a BDT.
The plan of this paper is as follows. In Sec. II, we

describe our approach and motivation for using a BDT. We
outline the scalar muon partner signal and associated
backgrounds, along with a summary of previously imple-
mented and proposed analyses using cut-and-count strat-
egies, in Sec. III. The details of the event simulation,
selected observables, BDT training, and results of our
analysis are described in Sec. IV. We discuss the conven-
tional wisdom which can be gained from our study and
applied to others in Sec. V, before summarizing our
findings and briefly discussing future work in Sec. VI.

II. BACKGROUND AND MOTIVATION FOR
USING A BDT

By its nature, known physics is necessarily more
prevalent or more readily visible to conventional exper-
imental techniques than unknown physics, while unknown
physics and the opportunity to extend our understanding of
fundamental particles and interactions are of greater basic
interest. Accordingly, the problem of how one efficiently
suppresses known backgrounds in order to enhance the
prospective visibility of new processes is of great interest.
In a prior study [10], we attempted to systematically

separate the signal associated with the production of
lepton-partners in intermediate mass gap scenarios from
competing SM backgrounds via an iterative process
involving the plotting of distributions in relevant kinematic
observables and the manual application of event selection
cuts. This approach proved effective, although there are a
number of ways in which it is potentially suboptimal.
First, it was observed that this process is extremely

sensitive to the order in which the cuts are applied, since a
variety of useful secondary and tertiary event selections
remain obscured until a majority of foreground debris is
removed by primary selections. A corollary of this state-
ment is that the possible sequencing of cuts explodes
combinatorially, and it is very difficult to be certain that a
given sequence of cuts is in any sense optimal. Likewise,
there is a great danger that early event selections can be
applied too aggressively, precluding more surgically tar-
geted cuts down the line. This is part of a larger problem,
that any by-hand procedure is intrinsically ad hoc and one-
off, while simultaneously remaining extremely labor-inten-
sive. Finally, there is a risk of biasing the analysis in the
limit of low statistics, which always ultimately applies as
selections become increasingly strict, since cuts are typi-
cally engineered and validated with respect to the same
collection of events.
Machine learning offers substantial promise for alleviat-

ing negative outcomes associated with each of these
objections. Specifically, it can much more thoroughly
and efficiently scan the space of available discriminants,
while delivering results that are more stable and more
reproducible, using a generalizable approach that has
increased cross-applicability, and which requires less
investment of human capital into repetitive and automatable
tasks. Additionally, leading machine learning algorithms
offer built-in protection against over fitting. For example,
the learning rate can be turned down such that the like-
lihood of over-applying an early selection and losing
sensitivity to future gains is reduced. Likewise, the training
and testing samples can be readily isolated, reducing the
risk of learning random features of the presented sample
that are not replicated in the larger ensemble. Also, the
separation between training and testing can typically be
“folded” in multiple ways, allowing for cross-validation via
replication of the analysis, which helps to quantify the
stability of results against statistical fluctuations. Much
greater complexity and refinement of the discriminant is
available in a machine learning context relative to manual
approaches. Additionally, the assignment of a continuous
event-by-event classification likelihood represents a much
richer category of information than the discretization
implicit to a more basic cut-and-count approach.
However, a pressing concern associated with machine

learning is that one often sacrifices the ability to investigate
what was learned, and to develop intuition regarding the
nature of the signal and background separation. This is a
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key reason that we favor the use of supervised learning with
a BDT rather deep learning approaches utilizing more
complex algorithms such as NNs.1 In particular, the input to
a BDT is a simple list of numerical data associated with
each event, together with an event weight and a known
classification in the case of the training sample. The BDT
goes through a process that is similar to the design of a
manual event selection profile in many regards, but it is
strictly systematic, mathematically rigorous, and reproduc-
ible. At each stage of training, the optimal discriminant and
splitting value is ascertained according to a well-defined
loss function; subsequently, each branch of this “tree” can
elect its own best choice for the next splitting, and so on.
Likewise, the classification score assigned to each terminal
leaf of the tree is selected by extremization of the same
functional, in the effort to optimally reconcile feature-based
predictions with corresponding truth labels. The capacity to
differentially select supplementary discriminants for pre-
viously separated populations adds a level of flexibility and
refinement that is quite challenging to implement by hand.
A number of such trees are successively generated in the

“boosting” process, wherein events are reweighted to
emphasize the correction of prior missorts in subsequent
refinements of the training. By combining a long sequence
of relatively shallow trees, a strong discriminant is built
from the conjunction of many “weak learners.” Adjustable
“regularization” factors built into the training objective may
be tuned to veto branchings that would add complexity
without meaningfully reducing the classification loss, and
to slow the rate of learning to limit the danger of over
fitting. Training may also be halted prior to completion of
the specified maximal tree count if real-time validation
against the testing sample indicates an onset of diminishing
returns via a plateau in the loss function. Collectively, these
measures help to mitigate the so-called “bias-variance”
problem, i.e., the problem of over training on features that
are not widely generalizable. Ultimately, the final classi-
fication score assigned to a given event represents the sum
over its leaf scores for all trees. This unbounded value y is
typically mapped onto the bounded range pðyÞ∈ f0; 1g via
application of the sigmoid “logistic” function, or similar.
Crucially, the process by which the classification scores are
assigned is entirely tractable, and one may output the full
set of constructed decision trees if so desired, including the
splitting features and values, as well as the selected leaf
scores. In addition, a summary report of the “importance”
of each feature to the training is readily available, and it is
possible to iteratively reduce the dimensionality of the
provided feature space using this information, selectively

eliminating redundant (highly correlated) and indiscrimi-
nant features.
Rareness of the targeted new physics processes, and

likewise, of the most competing SM backgrounds (in the
tail regions of the background distributions), implies that it is
generally computationally impossible to work with simu-
lated events in their naturally occurring proportions. The
solution is to keep track of per-event weights, i.e., partial
cross sections linked to each event that represent the extent
of the final-state phase space for which they are a working
proxy. Evenwithin a category of final state particles, e.g., top
quark pair production or dibosons plus jets, events repre-
senting the higher-energy hard scatterings that are generally
of greater interest after an application of selection cuts are
generally power-suppressed relative to their softer low-
energy counterparts. Accordingly, it becomes very computa-
tionally inefficient to simulate enormous quantities of events
that are dominated by softer scatterings that will mostly be
discarded in order to emphasize harder events in the
distribution tails. This can likewise be handled by separating
each simulation category into disjoint tranches that are
binned in some relevant process scale such as the scalar
sum over transverse momentum pT. A significant quantity
of rarer events can be generated at lower cost in this way,
allowing the analysis to maintain a more uniform level of
statistical representation across the phase space. The rare
events then simply carry smaller per-event weights, which
can be fed into the machine learning in order to direct its
attention appropriately toward the most proportionally
relevant features at a given stage of the training.
Although more sophisticated types of deep learning such

as neural networks (NNs) can potentially outperform BDTs
in the classification of signal and background events,
previous studies suggest the performance of NNs and
BDTs are comparable. In a studyof boosted event topologies
relevant for dark matter models with extended Higgs sectors
[14], BDT and NN implementations yield similar increases
in sensitivity relative to a cut-based analysis. A comparison
between deepNNs andBDTs inRef. [13] demonstrates only
marginally better performance by NNs in an analysis of
scalar lepton pair production, without the boost from a hard
jet. A similar comparison in searches for fermionic partners
of electroweak gauge bosons shows a more significant
improvement in performance by deep NNs compared to
BDTs, which is attributed to the lack of high-level kinematic
variables, whose larger discriminating power is necessary
for an optimal BDT analysis. A dedicated study of NNs
implemented for the pair production of scalar leptons in
boosted event topologies at LHC is thus an interesting
possibility for future work.

III. CHARACTERIZING SIGNAL AND LEADING
BACKGROUNDS

For our analysis, we focus on a model in which the
scalar lepton l̃ is the partner of the left-handed muon, with

1While deep NNs are typically considered to be less inherently
interpretable than a BDT, there has been significant recent work
on both algorithm-agnostic and NN-specific methods to evaluate
the explainability of deep learning algorithms (for a recent
overview, see Ref. [21]).
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Ml̃ ¼ 110 GeV and Ml̃ −MX ¼ 30 GeV (l ¼ μ). We
assume X is a stable SM-singlet Majorana fermion.
This scenario is thus realized in the MSSM, where l̃ is
a left-handed smuon, X is a bino-like lightest super-
symmetric particle (LSP), and other SUSY particles are
relatively heavy. However, this scenario can also be
realized in a variety of other phenomenologically well-
motivated BSM models. The event topology we are
interested in is pp → llþMETþ jets. This topology
can be produced by signal events in which proton
collisions result in l̃�l̃ pair production, with each new
scalar decaying via l̃ → lX, with one or more jets. We
simulate the signal process using the MSSM_SLHA2 [22]
model distributed with MadGraph [23]. Model parameters
are generated consistently using the SUSY-hit [24] pack-
age, with benchmark smuon and neutralino masses taking
the values indicated previously. In addition to initial-state
radiation, jets can also be produced as part of the hard
scattering, and we simulate the signal process inclusively,
with 0, 1, or 2 final-state jets (with matching). Two
example Feynman diagrams (from MadGraph) are shown
in Fig. 1.
This region of parameter space is still allowed

by analyses of 139 fb−1 of ATLAS data [4,8], which
did not utilize machine learning techniques. Indeed,
for a mass splitting of 30 GeV, the tightest constraint
is still from LEP [6], which rules out the region of
parameter space with Ml̃ ≲ 97 GeV for right-handed
smuons.2 A scenario with similar phenomenology is
explored in Ref. [25].
The leading SM backgrounds to this signal arise from

processes in which the charged leptons are produced from

the decay of on-shell weak gauge bosons, with missing
energy arising either from neutrinos or jet mismeasurement.
The main such processes are

(i) pp → Zj, with Z → τ̄τ;ll. If Z decays to τ̄τ, then
the τs decay to l, l and neutrinos, while if Z decays
to ll, then MET arises from mismeasurement of the
jet energy;

(ii) pp → t̄t, with t → bW, and theWs decaying to l, l
and neutrinos;

(iii) pp → ZZ;WþW−, with the massive gauge boson
decays producing l, l and neutrinos;

(iv) pp → τ̄τj, with the τs decaying to l, l and
neutrinos;

(v) pp → WZ, with the massive gauge boson decays
producing a neutrino and three charged leptons, with
one charged lepton missed.

Of these background processes, the rate for pp → Zj
dominates by roughly two orders of magnitude over the
nearest competitor. But the rates for all of these processes
are much larger than for pp → l̃�l̃. Thus, to obtain
significant improvements in sensitivity and signal-to-back-
ground ratio, it is necessary to strongly reject the dominant
background, while still retaining strong rejection of the
subleading backgrounds.
Because pp → Zj events largely yield a Z near rest,

the neutrinos produced from the products of the Z → τ̄τ
decay process tend to have low energy. As a result, a
requirement of minimum missing energy is successful in
reducing this background. The requirement of a minimum
missing energy also reduces the background arising from
pp → Zj, with Z → ll, since the likelihood that MET
arises from jet mismeasurement falls with increasing
MET. pp → Zj events can also be distinguished by the
kinematic variables built from the lepton and jet
momenta, including the dilepton invariant mass (Mll)
and the ditau invariant mass (Mττ), which will be
described further in the next section. The utility of the
Mττ variable arises from the fact that, in the Z → τ̄τ
process, the τs are boosted. As a result, the neutrinos
produced by τ-decay are largely collinear with the

FIG. 1. Two example Feynman diagrams representing signal production with an associated jet.

2LEP searches did not attempt to constrain left-handed
smuons due to the relatively heavy masses expected in concrete
realizations of the MSSM. Since LEP had sufficient luminosity
for the right-handed smuon searches to be kinematically limited
by the center-of-mass energy of the beamline, the constraints
on left-handed smuon masses are expected to be similar due
to the larger cross sections relative to right-handed smuon
production.
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charged leptons, allowing one to reconstruct the mass of
the parent particle using transverse momentum conser-
vation. The difficulty lies not so much in removing the Z-
related background, but in doing so without compromis-
ing one’s ability to distinguish signal from the remaining
backgrounds. In [10], the cut-and-count strategy for
reducing Z-related backgrounds focused at the level of
primary selections on:

(i) Rejecting events with Mll within MZ � 10 GeV,
(ii) Rejecting events with Mττ < 125 GeV, and
(iii) Rejecting events with MET < 125 GeV.

Additional kinematic variables can be used to
discriminate between signal and W- and top-related
backgrounds, based on the energy and angular distribu-
tion of the decay processes. In [10], a total of seven
secondary and tertiary cuts were applied in sequence to
define a signal region. We will see that a BDT analysis
can provide substantial improvement relative to that
approach.

IV. SIMULATION AND BDT ANALYSIS

A. Event simulation

Monte Carlo training samples were generated for
the

ffiffiffi
s

p ¼ 13 TeV LHC3 using MadGraph/MadEvent [23],
with showering and hadronization in PYTHIA8 [26],
and detector simulation in DELPHES [27]. We consider
events in which one finds a μþμ− pair, exactly one hard
central jet (PT ≥ 30 GeV, jηj < 2.5), zero b-tagged jets,
MET (≥ 30 GeV), and no hadronic τ decays.4 We refer to
these defining event selections as the “topology cuts”,
and they correspond to the primary event selections
described Ref. [10]. They are distinguished from the
further “precuts” to be itemized subsequently, which are
also applied manually, and prior to the main BDT
analysis.
We consider six major background processes: μ̄μjjj,

τ̄τjjj, t̄tjj, WWjj, ZZjj, WZjj. Events are simulated
inclusively, with up to two or three additional jets, depend-
ing on the process (as summarized in Table I). Specifically,
we combine processes with zero up to the specified
maximal number of hard isolated jets j at the Feynman
diagram level (in MadGraph), and perform jet matching

(including the simulation of initial state radiation and
related effects) in conjunction with PYTHIA8.5 Note that Z þ
jets backgrounds are already included in the μ̄μjjj and
τ̄τjjj classes, which also include lepton production through
off-shell Z� and photon γ� mediators. We do not directly
simulate the production of tW, whose final state is quite
similar to that of tt̄. At production level, the inclusive tt̄þ
jets [29] background dominates by more than an order of
magnitude over that of tW þ jets [30], although that rate is
offset to some extent by an extra opportunity for a b-jet
veto. One significant challenge to the inclusive simulation
of tW backgrounds is that they are quite difficult to
disentangle from double counting with tt̄. The cross
sections for signal and background events with the stipu-
lated topology are given in the middle column of Table I.
Note that cross sections for the individual background
processes vary widely, with all being larger than the signal.
We tranche the simulation of each final state into non-

overlapping bins of phase space in order to ensure
statistically reliable population of the kinematic tails. For
direct dilepton production (including τ̄τjjj), we break the
simulation runs up according to the generator-level PT of
the leading lepton. For the case of t̄tjj, we tranche on PT of
the top quark. To accomplish this, it is necessary to
asymmetrically decay the t̄ directly in MadGraph, since
generator-level cuts would otherwise be applied to both
the particle and antiparticle.6 The t is decayed subsequently

TABLE I. Table of residual cross sections for the listed
processes to have the correct topology (middle column) and to
pass the precuts (right column). The top row is the signal process,
while the remaining rows are the leading backgrounds.

Process σ ðfbÞ (topology cuts) σ ðfbÞ (precuts)
l̃�l̃ 12.3 1.38
μ̄μjjj 12500 3.19
τ̄τjjj 596 14.6
t̄tjj 66.8 5.49
ZZjj 26.6 0.234
ZWjj 46.9 0.355
WWjj 72.6 5.44

3Additional data collected by ATLAS and CMS up to and
beyond L ¼ 300 fb−1 will be at higher center-of-mass energy,ffiffiffi
s

p ≲ 14 TeV. We consider
ffiffiffi
s

p ¼ 13 TeV for ease of comparison
to previous analyses and note that the production cross sections for
all relevant signal and background processes vary by ≲10%
between

ffiffiffi
s

p ¼ 13 TeV and
ffiffiffi
s

p ¼ 14 TeV. All processes are
calculated at tree-level since, as discussed in Ref. [10], K-factors
which account for higher order corrections have little impact on
the projected sensitivity.

4We assume, following [4,28], that the effects of pile-up can be
reduced by requiring that, for jets with pT < 60 GeV, a sufficient
fraction of the tracks associated with the jet point back to the
primary vertex, as identified by the jet vertex tagger.

5For example, the μ̄μjjj process card includes the instructions
generate p p > l+ l-, add process p p > l+ l- j, add
process p p > l+ l- j j, and add process p p > l+ l- j
j j. These processes are simulated by MadGraph and are reliable
for hard, well-separated partonic constituents. Showering is
performed by PYTHIA8, and is reliable in the complementary
limit of soft and/or collinear radiation (where it may generate any
number of partonic states). The matching procedure allows each
approach to handle its realm of specialization while partitioning
the phase space to avoid double counting.

6The associated process card instructions are generate p p
> t t, t > w- j, add process p p > t t j, t > w- j, and
add process p p > t t j j, t > w- j.
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in PYTHIA, as usual. For ZWjj, we tranche on PT of the Z-
boson. The same tranching is applied to ZZjj production,
after decaying one of the two Z-bosons leptonically. For
WWjj, we require at least one of the W-bosons to decay
leptonically, and again tranche on the leading (or only)
leptonic PT. The signal model is forced to decay to a final
state including a di-muon pair and tranched on PT of the
leading muon. Several bins of increasing width were
simulated for each of these final state discriminants, in
order to represent soft, intermediate, and hard multi-TeV
scattering processes. Specifically, the numerical boundaries
selected for this study were 50, 100, 150, 200, 300, 400,
500, 750, 1000, 1500, 2000, 3000, and 4000 GeV. In this
manner, events were generated with a smooth distribution
of per-event weights spanning around 6-8 orders of
magnitude. We verified explicitly that the associated
production cross sections summed over tranches are con-
sistent with those obtained by a single joint simulation. In
total, after jet matching but prior to the application of
topology cuts, more than 300 million candidate background
events were generated, along with over five million events
for the signal benchmark. After precuts, the number of
surviving event samples passed to the BDT for further
analysis is reduced to around a half million signal events
and around 200,000 background events. The corresponding
cross sections are indicated in the last column of Table I.

B. Kinematic variables

We provide the BDTwith 27 variables that are consistent
with the final state topology of an opposite-sign, same-
flavor dilepton, a hard (non-b) monojet, and MET. This set
includes a variety of sophisticated “high level” observables
which are known to be effective against various compo-
nents of the SM background, as well as a number of more
basic kinematic inputs referencing the dilepton pair (l1,
l2), the hard jet j, and/or the MET. The most difficult task
of the BDT is to distinguish the decay process l̃ → lX
from the background processes which involve W-boson
decay W → lν. We thus include several discriminants that
are specifically constructed to emphasize differences in the
mass or spin of the parent particle or invisible particle. The
set of computed observables is summarized in Table II. For
a more detailed discussion on why some of these variables
are relevant to unearth the underlying physics of the
compressed spectra topology, we refer the reader to
Ref. [10]. We do not make any effort to remove degen-
eracies in the feature set since the BDT is intrinsically
resilient to such correlations. Event analysis, including
application of selection cuts and the computation of
observables, is performed with the AEACuS [31,32]
package.
Several of the itemized variables require further descrip-

tion. In particular, cos θ�l1l2
[33,34] is equal to the cosine of

the polar scattering angle in the frame where the pseudor-
apidities of the leptons are equal and opposite. It is

designed to reflect the fact that the angular distribution
of intermediary particles with respect to the beam axis in
the parton center-of-mass frame is determined by their spin,
and that the lepton angular distribution should reflect this
heritage. Much of the practical utility of the cos θ�l1l2
variable hinges upon its resiliency against longitudinal
boosts of the partonic system. This feature is apparent in the
definition cos θ�l1l2 ≡ tanh ðΔηl1l2=2Þ, where Δηl1l2 is the
pseudorapidity difference between the two leptons. TheW-
boson associated backgrounds have a distribution in this

TABLE II. Observables delivered to the BDT.

Invariant masses
Mll Dilepton system mass
Mj Jet mass

Mass-like constructions

M0
T2 Massless invisible hypothesis

M100
T2 Massive invisible hypothesis

Mττ Ditau mass

Transverse scales
ET Missing transverse energy
HT Scalar sum of hadronic PT

Meff Sum of ET and HT

Transverse momentum values

Pl1
T

Leading lepton

Pl2
T

Subleading lepton

Pj
T

Jet

Scale ratios

ðM100
T2 − 100Þ ÷M0

T2 Ratio of excess mass

Pl1
T ÷ ET

Leading lepton to MET

Pl2
T ÷ ET

Subleading lepton to MET

Pj
T ÷ ET Jet to MET

Azimuthal angular separations
Δϕl1ET

Leading lepton to MET

Δϕl2ET
Subleading lepton to MET

ΔϕjET
Jet to MET

Δϕl1l2
Dilepton system

Δϕl1j Leading lepton to jet

Δϕl2j Subleading lepton to jet

Rapidity separations
cos θ� Dilepton system
tanh jΔηl1jj Leading lepton to jet

tanh jΔηl2jj Subleading lepton to jet

Rapidity values
ηl1

Leading lepton

ηl2
Subleading lepton

ηj Jet
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variable that is almost flat up to a value around 0.8,
whereas distributions for the scalar-mediated signal mod-
els more sharply peak at zero, suggesting a clear region of
preference, as discussed in Ref. [10]. We construct
analogous variables for other differences in pseudorapid-
ity, as applicable.
The MT2 [35–37] variable, which was used similarly in

Ref. [38], corresponds to the minimal mass of a pair-
produced parent which could consistently decay into the
visible dilepton system and the observed missing transverse
momentum vector sum under a specific hypothesis for the
mass of the invisible species. We compute two versions of
this variable, M0

T2 and M100
T2 , corresponding respectively to

a massless hypothesis and a 100 GeV hypothesis. The
former is consistent with the MET arising from neutrinos,
and the latter is consistent with a dark matter candidate in
the neighborhood of our benchmark model.
Finally, the ditau mass variable Mττ [39] attempts to

reconstruct the invariant mass of a ττ pair that has decayed
leptonically under the hypothesis that the MET is asso-
ciated with two pair of neutrinos that are emitted collinearly
with each of the observed leptons. Momentum conservation
in the transverse plane is then sufficient to reconstruct the
energy of each neutrino pair, which in turn determines the
momentum of each hypothetical τ and allows one to
reconstruct the invariant mass of the pair. This quantity
may be expressed in closed form [10] as

M2
ττ ≡ −M2

l1l2

ðPl1
T × Pj

TÞ · ðPl2
T × Pj

TÞ
jPl1

T × Pl2
T j2 ; ð1Þ

where M2
l1l2

is the invariant squared mass of the visible
lepton system. One may confirm that M2

ττ ¼ M2
Z if the

neutrinos are collinear with the charged leptons produced by
τ-decay, with the τs arising from the process Zj → τ̄τj (see
Appendix B for details). Note thatM2

ττ > 0 if either −Pj
T or

Pj
T lies between Pl1

T and Pl2
T , and is negative if neither

do. This makes the ditau mass a good kinematic variable
for more generally distinguishing event topology, in addi-
tion to rejecting events that involve the process
Z → τ̄τ → llþ 4ν. We defineMττ ≡ sign½M2

ττ� ×
ffiffiffiffiffiffiffiffiffiffiffi
jM2

ττj
p

.

C. Training

Since it is challenging to generate enough simulation
data to represent LHC data in natural proportions, simu-
lated events are weighted based on the cross section of that
background class as described previously. Imbalances in
the proportional representation of applicable backgrounds
lead to another difficulty in a BDT analysis: training
samples are often dominated by backgrounds which are
easily rejected by intuitively straightforward cuts, such as a
dilepton mass cut around the Z-mass. The BDT may thus
learn very well how to reject a large set of background
events for which a BDT was not really needed, since a

simple cut would have done just as well. On the other hand,
the BDT may fail to adequately learn how to discriminate
more difficult subleading backgrounds, which may like-
wise be undersampled. Even if undersampling is mitigated
by procedures similar to those described in the prior
subsection, training may be dominated by a small subset
of events carrying large per-event weights.
To address this issue, we impose a series of cuts, in

addition to those which define the event topology, to cull
data before the curated data is analyzed by the BDT. These
event selections are applied to the training dataset and also
the test dataset, uniformly. The goal of these initial precuts
is to ensure that the surviving background event classes
have roughly similar size, with a magnitude which is no
more than ∼Oð10–100Þ larger than the signal. Essentially,
these cuts have done the “easy work,” allowing the BDT to
focus on the hard work. Moreover, these cuts provide an
initial reduction in background based on principles which
are known ab initio, allowing us to determine which
kinematic variables the BDT uses to remove the more
difficult backgrounds.
The precuts we use are7:
(i) Veto events with Mμμ ∈ 91� 10 GeV. This cut

dramatically reduces the WZj, ZZj and μþμ−j
backgrounds by removing events in which the
μþμ− pair arise from Z-decay.

(ii) Require MET > 110 GeV. This cut reduces back-
grounds, such as μþμ−j, in which MET arises from
jet mismeasurement. In addition, this cut also serves
the dual purpose of acting as a trigger [41].

(iii) Require cos θ�μμ < 0.5. This cut is effective in
reducing the WWj background, because it prefer-
entially selects events in which the parent of the
muon is spin-0, rather than spin 1.

The cross sections for signal and background events which
pass these precuts are given in the right column of Table I.
After these precuts, the data is better suited for delivery to
the BDT for training on the discrimination of signal from
background, and better outcomes are achieved. In particu-
lar, the maximal signal-to-background ratio is approxi-
mately doubled using this approach, and the window for
optimization of the classification score is significantly
broadened, implying improved stability of the result.
Our BDT analysis and the generation of associated

graphics are done with the MINOS [31,32] package, which
calls XGBoost [42] and MATPLOTLIB [43] on the back end.We
train the BDT on 2=3 of the simulated event sample,
reserving 1=3 for validation of outcomes on a statistically
independent sample. We rotate the portion of data reserved
for validation in order to characterize statistical variations

7While several analyses of LHC data (e.g., [4,30,40]) have
utilized a similar window cut on the invariant mass of the dilepton
system around the mass of the Z-boson prior to implementing a
BDT analysis, a more comprehensive investigation of precuts in
such analyses has not been explored in previous studies.
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between each such data “fold.” We configure the BDT to
build up to 50 trees with amaximal depth of 5 levels per tree.
Early stopping is enabled to halt training if the loss function
is not improved over the course of the five most recent
training epochs, i.e., by the generation of the five most
recent trees.
As described in Ref. [42], the loss function for the

individual trees of the ensemble is regularized by the
quadratic sum of the weights on each leaf multiplied by
an “L2” regularization hyperparameter, which we fix as
λ ¼ 0.01. The minimum loss reduction for new splittings in
a tree is set to γ ¼ 0. The contribution of each new tree
added to the aggregated prediction of the ensemble is
scaled by the learning rate, which we set to η ¼ 0.5. XGBoost
hyperparameters were scanned manually around the values
used in the study. One criterion for selection was stability of
the results, which do not exhibit strong sensitivity to small
variations of these parameters.
We find that certain of the hyperparameters employed by

XGBoost have extensive (rather than intensive) scaling with
the total sample weight. As such, we find that hyper-
parameter selections and training outcomes will be less
sensitive to variations of the sample size if one normalizes
the overall weight to unity in the training. We do this
separately for each of the signal and background classes in
order to balance the training datasets. Physical per-sample
weights are used to interpret the results of training.
Any event analyzed by the BDT is given a continuous

decimal score between 0 and 1,with 1 beingmost signal-like
and 0 being most background-like. In Fig. 2, we plot the
cross section for signal (orange) and background (as labeled)
events to be classified with a score greater than a given
threshold. Two similar plots made with a different choice of
the training and evaluation samples are given inAppendixA.
The far left of the plot (where the signal threshold is zero)
corresponds to the case where the BDT results are ignored,

and yield the cross section for the signal and each back-
ground to pass the precuts. The cross section for signal
events to pass the precuts is∼1.3 fb, indicating that, with an
integrated luminosity of ∼300 fb−1, ∼400 signal events are
expected to pass the precuts and be analyzed by theBDT. For
each of the six backgrounds analyzed, the cross section for
events to pass the precuts is in all cases ≲20 fb, with the
largest cross section being for the τ̄τjjj background. In
particular, note that the ZZjj and WZjj backgrounds have
been effectively eliminated by the precuts; the analysis of the
BDTis largely irrelevant for those backgrounds, asS=B ≫ 1
even before the BDT score is included.
We classify an event as signal-like if its score exceeds a

given a threshold, and as background-like if otherwise.
Although more complicated methods which do not involve
a binary assignment of signal-like or background-like
status are possible [44–47], and likely will provide better
sensitivity, we will find that this simple method is sufficient
to already provide substantial improvement in sensitivity.
Moreover, the use of a simple binary assignment will
facilitate one of our primary goals, which is understanding
the physics considerations which underlie the discrimina-
tion of signal from the various backgrounds.

D. Results

Although the τ̄τjjj background is the largest after the
precuts, the BDT has little difficulty in discriminating this
background from signal. For this background, as well as
lljjj, the BDT can effectively suppress the background
with little loss in signal cross section (see Fig. 2, for a signal
classification threshold≳0.4). The greatest difficulty which
the BDT finds is in discriminating the t̄tjj and WWjj
backgrounds from signal. We may thus expect that the
competition between signal and the t̄tjj and WWjj back-
grounds will dominate our sensitivity (and associated signal
to background ratio).
We see similarly from Fig. 3 that the BDT provides a

strong ability to discriminate signal from all backgrounds,
though this discriminating power is weakest for the t̄tjj and
WWjj backgrounds. For the t̄tjj and WWjj cases,
although the BDT analysis exhibits good discriminating
power, the large magnitude of these backgrounds relative to
the signal cross section implies that, at best, the ratio of
signal-to-background is Oð1Þ. This level of discrimination
arises only when the signal classification threshold is high
enough (see Fig. 2) that only ≲150 signal or background
events are selected.
We thus see that optimal performance of the BDT implies

a reduction of background down to an event rate comparable
to signal, with only a factor of ∼3 reduction of the signal
event rate. With ∼150 signal events and ∼3 times as many
background events, one would expect that a sensitivity of
≳6σ could be obtained with an ∼0.3 signal to background
ratio. This intuition is confirmed by the results of Fig. 4, in
which we present the number of signal events S (blue), the

FIG. 2. Plot illustrating the residual cross section for signal and
background (as labeled) as a function of the BDT classification
score after precuts. Corresponding plots for additional folds of
training and evaluation samples can be found in Appendix A.
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signal-to-background ratio (S ÷ ð1þ BÞ, orange), and the
signal significance (σA, green)

8 as a function of the signal
classification threshold, assuming an integrated luminosity of
300 fb−1.Note that shaded regions showsharp featureswhich
arise when the number of simulated events which exceed the
signal classification threshold is small, and can thus vary
dramatically as the threshold increases. These sharp features
arise when S is small and do not represent reliable estimates,
as theymaybeartifacts of the size of the simulated dataset.We
instead focus on the solid curves, which represent an
interpolation of the boundary of the shaded regions which
smooths out these sharp features. In Appendix A, the two
supplementary plots present analyses with different choices
of the sample used for training and evaluation.All three panels
are roughly consistent, indicating that our result is robust to
variations in the training set. In particular, for a signal
classification threshold of ∼0.9, we find that a scenario with
Ml̃ ¼ 110 GeV, MX ¼ 80 GeV can be detected with ≳6σ
significance and a signal-to-background ratio of ∼0.3, with
S ∼ 100. This represents a marked improvement over the
results obtained from the cut-based approach used in [10], in
whichonly3.0σ sensitivity (with a signal-to-background ratio
of 0.2) could be obtained with the same luminosity (see
Table III).9 Moreover, we see that using the cuts imposed in

[10] as precuts, with subsequent signal classification by a
BDT, does not provide significantly improved sensitivity.
Evidently the cut-based approach used in this earlier analysis
results in too a large reduction in the number of signal events
for optimal signal classification.
It is important to include the effects of systematic

uncertainties on the sensitivity of this search. We do not
provide a quantitative estimate, as the systematic uncer-
tainties need not be Gaussian. We instead use a qualitative
assessment: provided the signal-to-background ratio is
substantially larger than the estimated systematic uncer-
tainties, one expects that an underestimated background
cannot duplicate the effects of a signal discovered with high
statistical significance. An estimate by ATLAS of the
background of a slepton search suggests systematic uncer-
tainties at the level of ∼17% [4,8]. As the signal-to-
background ratio obtained in this analysis is substantially
larger than this (S=B ∼ 0.3), one expects to be able to detect
the presence of signal with sufficient luminosity.
Since the main work of the BDT (beyond the precuts,

whose intuition we understand) is in rejecting the t̄tjj and
WWjj backgrounds, we can ask which kinematic variables
the BDT used in that analysis. These results are shown in
Fig. 5 which indicate which kinematic variables dominate
the “total gain”10 when a BDT is trained only against a
single background. This figure thus gives an indication of
which variables are most useful in discriminating signal
from a particular background. In particular, the most

FIG. 4. The number of signal events (S, blue), signal-to-back-
ground ration (S ÷ ð1þ BÞ, orange) and signal significance (σA,
green) as a function of the signal classification threshold. Each
curve represents an interpolation which smooths out the sharp
features in the shaded region, which arise from small event
numbers. Corresponding plots for additional folds of training and
evaluation samples can be found in Appendix A.

FIG. 3. Density plot representing the separation of signal from
each background (as labeled) by the boosted decision tree after
precuts. For visual clarity, the densities are separately normalized
such that the joint background density is not equivalent to the sum
of the individual background densities. Corresponding plots for
additional folds of training and evaluation samples can be found
in Appendix A.

8We use the Asimov formula σA¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½ðSþBÞlnð1þS=BÞ−S�p

for the signal significance, which reduces to ∼S=
ffiffiffiffi
B

p
for S=B ≪

1 [48].
9The signal sensitivity estimated in [10] is reported as 4.4σ

with a signal-to-background ratio of 0.3. In this work, we have
improved the background modeling and statistics, resulting in a
lower signal significance and signal-to-background ratio when
implementing the same series of cuts proposed for intermediate
mass gaps.

10This measure of relative importance compares the summed
reduction in the loss function that is attributable to leaf splittings
associated with each available feature. It is sensitive to how often
a feature is used across nodes, how many events pass through
each such node, and the weights carried by those events.
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important kinematic variable for rejecting the ttjj and
WWjj backgrounds is M100

T2 , which is defined, as in
Ref. [35], as the minimal mass of a parent particle under
the assumption that the parent particles are pair produced
and each decays to a lepton and an invisible particle with a
mass of 100 GeV. Note that this variable was also used in
the slepton search analysis presented in Ref. [4], though
with a different purpose.

The distributions of M100
T2 for signal and t̄tjj and WWjj

background events (after precuts) are given in Fig. 6. We
can see from these distributions that M100

T2 contributes
significant ability to discriminate between signal and
background. In particular, background events are biased
toward higher values ofM100

T2 , since for background events,
the invisible particles are neutrinos which are much lighter
than the ansatz of 100 GeV.

FIG. 5. Plots indicating the relative importance of various kinematic features to the separation of signal from background by the
boosted decision tree after level 1 pre-selections, respectively (left-to-right then top-to-bottom) for lljjj, ττjjj, tt̄jj, ZZjj, WZjj, and
WWjj. Note that, in each panel, results are shown for a BDTwhich is trained only with signal and the particular background process in
question.
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However, these distributions do not provide a clear sense
of howM100

T2 is correlated with other variables, which is the
type of information one would expect to be learned by a
BDT. To consider this question, we assume that the only
relevant background processes are ttjj and WWjj. That is,
we ignore the WZjj and ZZjj background classes (which
are essentially eliminated by the precuts) and the μμjjj and
ττjjj background classes (which are easily eliminated by
the BDT). After the precuts, we see from Fig. 3 that we are
left with ∼400 signal events, and ∼3300 background,
roughly evenly split between ttjj and WWjj. We then
consider a simple cut in which we accept only events with
M100

T2 < 130 GeV. This cut admits almost all signal events,
but reduces each class of background events by roughly
1=3. This simple cut-and-count analysis would yield a

signal-to-background ratio of S=B ∼ 0.18, with a signal
significance of ∼8.5σ. Indeed, we see that a 1=3 reduction
in background, with a small reduction in signal, is roughly
what the BDT achieves with a signal classification thresh-
old set at ∼0.6 (see Fig. 2), yielding approximately the
significance and signal-to-background ratio we estimated
with a cut-and-count analysis (see Fig. 4). The deeper
correlations found by the BDT (at least in regard to the ttjj
and WWjj backgrounds) lead to an improvement in the
signal-to-background ratio of roughly a factor of 2 as the
signal classification threshold is raised to > 0.9. Note that
this improvement in the signal-to-background ratio is
essential for overcoming systematic uncertainties, as
described above.
Since the imposition of a simple cut such as M100

T2 <
130 GeV seems to replicate at least part of the BDT
analysis, one might ask if imposing this as a precut could
improve the performance of the BDT, by allowing it to
focus on less obvious correlations. To test this possibility,
we ran a second analysis in which M100

T2 < 130 GeV was
imposed as a additional precut. The results are fairly
similar to analysis without this additional precut (see
Table III). It appears that, because the ttjj and WWjj
backgrounds are not excessively large compared to the
other backgrounds and are within an order of magnitude
of the signal, after applying the precuts described in
Sec. IV C, the BDT was not overly focused on reducing
them, and thus did not gain significantly in performance
when the ttjj and WWjj backgrounds were reduced
through an additional precut.

E. Other benchmarks

Until now, we have considered a single benchmark
parameter point: Ml̃ ¼ 110 GeV, MX ¼ 80 GeV. Here

TABLE III. Summary of results for our benchmark mass spectrum (i.e., Ml̃ ¼ 110 GeV and Ml̃ −MX ¼ 30 GeV)
after implementing different event selections. For each set of precuts, we show the number of signal events, the signal to
background ratio and the signal sensitivity both before and after application of the BDT. When only considering the precuts, we
average the respective metrics between the 3 folds of the data. In contrast, the respective BDT signal score thresholds
are optimized to show as broad a range of σA possible between the different folds while maintaining S ÷ ð1þ BÞ ≥ 0.15. The
first event selection summarizes the results of the event selection with precuts described in Sec. IV C. The second event
selection adds a precut on M100

T2 and the third event selection implements precuts corresponding to that which is implemented
for the intermediate mass gap scenarios in previous work [10]. Note the average number of events after precuts between all 3
folds of the data in this final event selection is smaller that the upper end of the range of numbers of signal events after
application of the BDT because of the variation between folds at a signal score threshold of 0.00, which is equivalent to only
applying the precuts.

This work This workþM100
T2 < 130 GeV Intermediate mass gaps in [10]

Event selection Precuts BDT Precuts BDT Precuts BDT

BDT signal threshold � � � 0.47–0.90 � � � 0.34–0.88 � � � 0.00–0.71
Events at L ¼ 300 fb−1 413 107–386 405 121–387 48 26–51
S ÷ ð1þ BÞ 0.05 0.15–0.36 0.06 0.15–0.31 0.20 0.18–0.35
σA 4.4 5.8–8.2 4.8 5.6–8.2 3.0 2.5–3.7

FIG. 6. The distribution of M100
T2 for events passing the precuts

for signal (orange), as well as the combined ttjj and WWjj
backgrounds (blue).
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we consider the sensitivity of an LHC search with
300 fb−1 integrated luminosity to models with different
choices for the masses. In Table IV, we consider Ml̃¼
110;160;300 GeV, with Ml̃−MX¼30;40;50;60 GeV. In
each case, we either use BDT trained against the original
benchmark model, or against the model to be analyzed (in
all cases, the original precuts are used). For each analysis,
we present an optimal range for the signal classification
thresholds, and the range of the number of signal events,
signal to background ratio, and signal significance as one
varies the signal classification threshold within its optimal
range. We only present results for S ÷ ð1þ BÞ ≥ 0.15, in
order to ensure that the analysis is robust against likely
systematic uncertainties [4,8].
For cases with Ml̃ ¼ 110 GeV and larger mass gaps,

Ml̃ −MX > 30 GeV, we see that the BDT trained on the
benchmark spectrum, Ml̃ ¼ 110GeV and Ml̃ −MX ¼
30 GeV, maintains robust sensitivity to scalar muon
production even with some degradation as the mass
gaps become larger. Alternatively, when training the
BDT individually for each benchmark, we see that the
sensitivity is enhanced at larger mass splittings due to
the improved separation of signal from background in the
kinematic distributions. Although mass gaps Ml̃ −MX ¼
50; 60 GeV are currently excluded forMl̃ ¼ 110 GeV, the
signal significancewe project for the BDTanalysis of these
cases is considerably larger than in the most stringent LHC
constraints from Ref. [4], which exclude mass splittings of
∼50 GeVat∼2σ. Similar dependencies of the sensitivity in

the BDT analysis on the mass splitting can be seen for
Ml̃ ¼ 160 GeV, however the BDT trained on the bench-
mark mass spectrum is only sensitive to the scenario with
the same mass splitting ofMl̃ −MX ¼ 30 GeV. When the
BDT is retrained for each mass spectrum, we see the BDT
could be sensitive to the full range of mass splittings from
30GeV to 60 GeV, none of which are currently constrained
by LHC searches.
For Ml̃ ¼ 300 GeV, we never find S ÷ ð1þ BÞ much

larger than 0.15, implying that a BDT search using these
precuts might be difficult even at higher luminosity. But it
is worth noting that, for such a large lepton partner mass,
the cross section for signal events to pass the precuts is
much smaller than each of the backgrounds, with the total
background well over two orders of magnitude larger than
the signal, after imposing the precuts. The precuts were
imposed precisely to eliminate this hierarchy, and we see
that the precuts chosen to be adequate for Ml̃ ¼ 110 GeV
do not achieve this purpose if the lepton partner mass is
much heavier.
Better prospects would likely lie in developing more

aggressive precuts to study this higher mass range (likely
using higher luminosity). But training a BDT after the
imposition of more aggressive precuts would require a
much larger sample of simulated events. The difficulty lies
in ensuring that the training dataset adequately samples the
tails of the kinematic distributions, where it may be most
difficult to distinguish signal events from background
events. As one imposes more aggressive precuts, one will

TABLE IV. Summary of results for a variety of different mass spectra. For each combination of scalar mass Ml̃ and mass splitting
ΔM ¼ Ml̃ −MX, we show (from top to bottom) the optimal signal score threshold for the BDT, the number of signal events expected at
L ¼ 300 fb−1, S ÷ ð1þ BÞ and σA. For each case, we test the BDT trained on the benchmark spectrum (i.e., Ml̃ ¼ 110 GeV and
ΔM ¼ 30 GeV) and the BDT retrained specifically for each spectrum. The respective BDT signal score thresholds are optimized to
show as broad a range of σA possible while maintaining S ÷ ð1þ BÞ ≥ 0.15.

Ml̃ ¼ 110 GeV Ml̃ ¼ 160 GeV Ml̃ ¼ 300 GeV

Benchmark Retrained Benchmark Retrained Benchmark Retrained

ΔM ¼ 30 GeV 0.47–0.90 � � � 0.91–0.92 0.90–0.94 � � � � � �
107–386 � � � 33–55 13–43 � � � � � �
0.15–0.36 � � � 0.18–0.32 0.15–0.39 < 0.15 < 0.15
5.8–8.2 � � � 2.5–3.1 1.8–2.9 � � � � � �

ΔM ¼ 40 GeV 0.47–0.91 0.23–0.87 � � � 0.90–0.92 � � � � � �
68–375 163–496 � � � 24–49 � � � � � �

0.15–0.36 0.15–0.35 < 0.15 0.15–0.25 < 0.15 < 0.15
4.2–7.9 6.7–9.1 � � � 1.9–3.0 � � � � � �

ΔM ¼ 50 GeV 0.59–0.90 0.13–0.88 � � � 0.79–0.93 � � � � � �
67–320 172–575 � � � 38–156 � � � � � �

0.15–0.23 0.15–0.42 < 0.15 0.15–0.35 < 0.15 < 0.15
3.7–7.3 7.6–10.7 � � � 3.0–5.4 � � � � � �

ΔM ¼ 60 GeV 0.62–0.90 0.05–0.90 � � � 0.54–0.96 � � � 0.96
60–295 252–691 � � � 21–273 � � � 14–16

0.15–0.21 0.15–1.01 < 0.15 0.15–1.16 < 0.15 0.15–0.26
3.3–6.9 9.9–14.9 � � � 3.6–7.9 � � � 1.5–1.9
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find that fewer events in the training sample will pass the
precuts. As a result, one may find that at the tails of the
kinematic distributions, training is dominated by only a few
events, leading to unreliable BDT performance which is
biased by the idiosyncracies of the training dataset. To
apply precuts designed for much higher luminosities while
avoiding this difficulty, one should generate a much more
extensive set of simulated data. Although that is beyond the
scope of this work, it would be an interesting topic of
future study.

F. Restricted training

In this subsection we assess the question of how much
classification power remains if one restricts the set of
available variables for training. Specifically, we start from
the precuts described in Sec. IV C, while passing only a
portion of the variables in Table II to the BDT. Specifically,
we test restricted training for just the most effective
variables (as indicated by averaging feature importance
to total gain over the three folds for training of signal
against the joint background) and also for a selection of
“low-level” variables (including ET, HT, the transverse
momentum values, as well as the azimuthal and rapidity
separation variables).
Figure 7 illustrates the feature importance (for fold 1)

with joint training against all backgrounds after the
application of precuts. We use these results (including
folds 2 and 3) to select the top performing variables
for restricted training. The top performing variables for
joint training after precuts are all high-level variables
associated with reconstructed masses (or lower mass
bounds), namely M100

T2 , M0
T2, and Mll, in that order.

These three features account for more than half of the
total gain, and are important across all three training

folds. By contrast, no other feature has an average
importance above about 6%, and more variability is
observed across the folds. For these reasons, we include
just these three features in the restricted training for top-
performing variables. This has the added benefit of
precluding any direct overlap with the restricted training
on low-level features.
We find that the best results are indeed obtained using

the full ensemble of both high- and low-level observables.
The peak signal-to-background ratio (using the interpo-
lated measure) is reduced by about 40% for each of the
restricted trainings relative to the case of training on all
variables. In terms of statistical significance, the high-
level variables almost match the performance of the full
set, whereas the low-level observables give up about 40%
in this regard as well. Since the success of this analysis
hinges critically on elevating the signal-to-background
ratio above the systematic uncertainty noise floor, it
becomes all the more important to supplement the
top-performing high-level observables with the larger
number of weaker correlations provided by the low-level
observables.

V. CONVENTIONAL WISDOM FOR BDTS

There are several lessons that have been learned during
the course of this study that would seem to represent a type
of conventional wisdom which is substantially transferable
in other similar applications.
The approach described in Sec. II works reasonably

well “out of the box,” but we have observed that it is
possible to achieve significantly better separation
between signal and background using a hybrid technique
that involves significant human input in conjunction
with training of the BDT. By contrast, the emerging
understanding in the deep-learning community is that
one should generally just “get out of the way” and let the
training proceed with minimal supervision and data
curation. However, that intuition is apparently less
applicable in the context of more basic types of machine
learning applications such as boosted decision trees.
The upside is that this additional investment of
effort comes with a very substantially expanded and
auditable inventory of precisely what and how the
machine was learning, while still typically accessing a
level of feature separation that meaningfully exceeds
what is available with manual feature selections after
maximal effort.
In a similar vein, the BDT seems to take maximal

advantage of high-level features that have been con-
structed to efficiently encode physics features that
are expected to be relevant. Again, by contrast, deep-
learning approaches are known to work exceptionally well
on raw low-level data, and extensive human curation is
generally not necessary, or may even be detrimental. This
is because a neural network of sufficient complexity can

FIG. 7. Plot indicating the relative importance of various
kinematic features to the separation of signal from the joint
(all source) background. This training occurs application of the
Sec. IV C precuts.
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essentially mimic any mathematical transformation,
and training will drive the development of this function
in an optimized way. By contrast, shallow decision
trees are always splitting on single features, and they
tend to operate most effectively when the available
features are preconfigured to very densely encode the
most relevant parameterization of available information.
For example, we generally find that reconstructed masses
and composite constructions likeMT2 or cos θ� pack much
more punch than isolated kinematic features. Even simple
operations, like taking differences or ratios of scales or
angular coordinates that are expected to have more
discriminating power as relative values than absolute
values can increase efficiency.
Additionally, a very deep layer of background will be

quite difficult for the BDT to “see through,” and it is
helpful to remove “obvious” backgrounds prior to engag-
ing the BDT. Along these lines, it is often the case that the
most dominant backgrounds can be the simplest to defeat,
and it seems that this should always be done up front when
it is possible. For example, the cross section of single Z
events is extremely large, and its magnitude will typically
overwhelm any search for final states that feature oppo-
site-sign same-flavor dileptons. However, the vast major-
ity of these dilepton events will cluster around the
resonant Z mass, and the residual cross section can be
reduced dramatically with a simple window cut exclusion.
Of course, the BDT can learn such a cut on its own.
However, it seems to become “exhausted” in the process,
and it becomes much harder for it to see the more subtle
separations which are subsequently critical to achieving a
successfully refined training if the dominant fraction of
the input event weights are telling the BDT to pay
attention to the mass window as a first priority. Not only
should “obvious” discriminants be applied as manual
precuts, it is advisable that the hardness of these cuts
be selected so that the residual cross section associated
with each type of background are brought approximately
into parity.
On a related note, for practical reasons described

previously, the starting cross section of signal events is
always much smaller than that of relevant backgrounds.
We find that the behavior of the BDT will be much more
uniform and predictable if one separately normalizes the
sum of signal and background weights to unity prior to
training. This is because several of the hyperparameters
associated with the BDT implementation, in particular
those associated with regulation of the objective, have
extensive (rather than intensive) scaling properties. This
normalization helps to ensure that intuition developed
regarding useful settings of these parameters has
improved cross-applicability to other contexts. In fact,
useful hyperparameter values generically tend to be
“order one” in this normalization. Of course, one must
then rescale back to physical cross sections when making

predictions for rates in a real world experimental
environment.
Since we are only really interested here in classification

of categories that are somewhat difficult to separate by
elementary means, the BDTwill presumably need to access
rather narrow and subtle features in order to train success-
fully. Likewise, since we are only really interested in
enhancing the visibility of extremely rare processes, it is
necessary to filter away the vast majority of competing
background processes. These realities would appear to
usher in a fundamental dilemma common to all relevant
classification problems in collider physics. This is that the
training is only successful in the regime where it has
become statistically limited, and therefore less reliable. In
other words, “harder cuts” leave fewer events, and it
becomes successively more difficult to validate that the
selected cuts are generalizable. This concern must be
balanced against the priorities identified previously, such
that any precuts will not preclude effective training.
Specifically, there must be a statistically significant sam-
pling of events on hand for the BDT to process. Of course,
if it is possible to reduce all relevant background via manual
selections, then it may not be necessary to further employ
machine learning at all. However, overly aggressive precuts
can additionally prevent the BDT from acting in a more
surgical manner, and potentially achieving comparable
background reductions while retaining a greater density
of signal. Although the BDT is technically classifying
rather than cutting, the same dilemma ultimately applies to
its training process as well, and one often in practice
contemplates an effective selection cut on some threshold
of the resulting classification score.

VI. CONCLUSION

We have considered the LHC sensitivity to a scenario of
scalar lepton partner pair-production, with each partner
decaying to a muon and an invisible particle with an
intermediate mass splitting (Ml̃ −MX ∼ 30 GeV). This is a
scenario for which current LHC sensitivity has not
exceeded LEP, owing to the large electroweak background.
We have used an analysis based on a boosted decision tree
(BDT), and have found that with 300 fb−1 luminosity, the
LHC could achieve ≳5σ sensitivity to currently allowed
models (Ml̃ ∼ 110 GeV), with a signal to background ratio
≳0.3. The BDT analysis could also exclude spectra with
larger mass gaps Ml̃ −MX ∼ 50 GeV and the same scalar
mass with a significance ≳4 times larger than the most
recent LHC analysis [4]. With the same luminosity, LHC
could exclude models withMl̃ as large as 160 GeV. But for
a larger mass splitting (∼60 GeV), the LHC could provide
> 5σ evidence for models with Ml̃ ∼ 160 GeV (also
allowed by analyses of current data). The projected
sensitivity of cut-based analyses in previous theoretical
studies suggested that LHC could only be sensitive to
models with mass splittings ∼30–60 GeV for scalar masses
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not much large than ∼110 GeV [10]. Thus, a BDT analysis
in scalar lepton partner searches could definitively probe
realizations of the MSSM in which scalar muons with
Ml̃ ≲ 150 GeV [1] mediate interactions that can both
deplete the relic density through dark matter annihilation
and account for the anomalous magnetic moment of
the muon.
The most difficult backgrounds to discriminate are t̄t and

WW þ jets. The kinematic variable relied on most heavily
by the BDT in discriminating signal from these background
is M100

T2 . Nevertheless, the BDT makes good use of less
obvious variables to simultaneously suppress the μμþ jets
and ττ þ jets backgrounds while further reducing t̄t and
WW þ jets, producing an optimal signal-to-background
ratio which is a factor of ∼6 better than one would get
by simply imposing an additional cut on M100

T2 .
In performing this analysis, we have learned several

lessons regarding the application of BDTs to LHC analyses
which may be applied to other searches. In particular, we
found that the BDT is much more effective if obvious
precuts are applied which reduce each surviving back-
ground to roughly equal event numbers, so that the BDT is
not overly dominated by any one background class.
Essentially, there is little gained by having a BDT relearn
things we already know. On the other hand, while the
imposition of precuts which reduce very large backgrounds
improves the BDT performance, the application of even
obvious precuts which have the effect of removing back-
grounds which are only comparable to the signal has little
effect on the BDT’s performance.
There any many avenues open for further study. In

particular, it would be interesting to explore the optimal
tradeoff between using precuts to reduce backgrounds
before the application of a BDT, as opposed to simply
allowing a BDT to analyze as large a dataset as possible. It
would also be interesting to investigate other approaches to
the problem of backgrounds with widely disparate cross
sections, such as changes to the BDT hyperparameters.
We have found that it is difficult to properly train a BDT

if the most difficult backgrounds to remove are swamped
by larger (though more tractable) backgrounds. The essen-
tial problem is that the simulation data which one uses for
training are necessarily only a fraction of the vast LHC
dataset. A subleading background may be undersampled,
leading a BDT to focus its training on quirks of the training
set, rather than robust features. But this is a more general
danger which could prove challenging for similar appli-
cations of other machine learning techniques. It is difficult
to ensure that the toughest backgrounds are sufficiently
well sampled in simulation if one has not already charac-
terized the backgrounds which are easy or difficult to
discriminate. It would be interesting to explore the impor-
tance of sufficient background sampling in the training of
deep learning algorithms such as neural networks.

Our analysis has in a sense been optimized for the
intermediate mass gap range, as we have trained the BDT
with a single BSM model with mass splitting of 30 GeV.
Unsurprisingly, a BDT trained on only this BSM model
does far worse at identifying the presence of new physics if
the mass splitting is either significantly larger or smaller,
because of the changes to the underlying features of the
kinematic distributions which drive this sensitivity (see, for
example [10]). It would be interesting to train a BDTwith a
range of mass splittings, to determine the trade-off between
efficiency and generality of the analysis. In connection with
this question, it would also be interesting to consider
alternative choices in the training procedure. For example,
one could consider training BDTs separately to distinguish
signal from each of the leading backgrounds, with the
individual scores combined to yield an overall signal
classifier. In this work, we used a signal classifier threshold
to make a binary classification of an event as either signal
or background, but it would be interesting to consider
alternative approaches.
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APPENDIX A: ADDITIONAL VALIDATION
FOLDS

Plots representing additional validation folds with differ-
ent selections of the events used for training and evaluation
are provided here. Figure 8 shows the residual signal and
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FIG. 8. Same as Fig. 2, but for different choices of training and evaluation samples. Plots illustrating the residual cross section for
signal and background (as labeled) as a function of the BDT classification score after precuts.

FIG. 9. Same as Fig. 3, but for different choices of training and evaluation samples. Density plots representing the separation of signal
from each background (as labeled) by the boosted decision tree after precuts. For visual clarity, the densities are separately normalized
such that the joint background density is not equivalent to the sum of the individual background densities.

FIG. 10. Same as Fig. 4, but for different choices of training and evaluation samples. The number of signal events (S, blue), signal-to-
background ration (S ÷ ð1þ BÞ, orange) and signal significance (σA, green) as a function of the signal classification threshold. Each
curve represents an interpolation which smooths out the sharp features in the shaded region, which arise from small simulated event
numbers.

MACHINE LEARNING TECHNIQUES FOR INTERMEDIATE MASS … PHYS. REV. D 109, 075018 (2024)

075018-17



background cross-section as a function of the classification
score threshold. Figure 9 shows the probability density
distribution of the classification score for signal and
background samples. Figure 10 shows the evolution of
the signal event count, signal to background ratio, and
signal significance as a function of the classification score
threshold.

APPENDIX B: Mττ

In the process pp → Zj → jτ̄τ the final state has two
boosted τs with ðPτ1þPτ2Þ2¼M2

Z, and  Pτ1
T þ  Pτ2

T þ  Pj
T ¼ 0.

If each τ decays leptonically, with all products emitted in
the approximately forward direction, then the observable
particles will be two leptons, l1;2, satisfying  Pτi

T ¼
ð1þ ξiÞ  Pli

T , where ξi is the ratio of momentum carried
by the pair of nearly collinear neutrinos to that of the
visible lepton. Since the  Pj;l1;l2

T are observable, conserva-
tion of transverse momentum gives two equations for

two unknowns: ð1þ ξ1Þ  Pl1
T þ ð1þ ξ2Þ  Pl2

T þ  Pj
T ¼ 0.

One generally expects that one can solve for ξ1;2, allowing
one to reconstruct the mass of the parent Z-boson using
M2

Z ¼ ð1þ ξ1Þð1þ ξ2ÞM2
ll, where Mll is the dilepton

invariant mass. Specifically, following the discussion
in [10], we demonstrate here that Mττ from Eq. (1) does
indeed reconstruct the Z-boson mass under these circum-
stances. Note that the conservation law implies  Pτ1

T ×  Pj
T ¼

−  Pτ2
T ×  Pj

T ¼−  Pτ1
T ×  Pτ2

T . From this, we have the following:

M2
ττ ¼ −M2

ll
ð  Pl1

T ×  Pj
TÞ · ð  Pl2

T ×  Pj
TÞ

j  Pl1
T ×  Pl2

T j2

¼ −M2
llð1þ ξ1Þð1þ ξ2Þ

ð  Pτ1
T ×  Pj

TÞ · ð  Pτ2
T ×  Pj

TÞ
j  Pτ1

T ×  Pτ2
T j2

¼ M2
llð1þ ξ1Þð1þ ξ2Þ

ð  Pτ1
T ×  Pτ2

T Þ · ð  Pτ1
T ×  Pτ2

T Þ
j  Pτ1

T ×  Pτ2
T j2

¼ M2
llð1þ ξ1Þð1þ ξ2Þ ¼ M2
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