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Abstract—Recently there have been efforts to solve difficult
computation problems harnessing or drawing inspiration from
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that are useful only for a class of problems, involve complex
data converter circuits (ADCs/DACs), are unreliable compared
to the rest of the CMOS SoC due to the use of process-variation
sensitive/specific embedded memory technologies.

In this paper, we present an all-digital Ising architecture
realized using repurposing of L1 cache of a CPU. It relies on
processing in-memory technology implemented in SRAM. SACHI
solves the reliability problems of prior works such as BRIM,
eliminates the need for ADCs/DACs, and provides Ising compute
acceleration with minor hardware overhead over a CPU pipeline.
The novelty of the proposed approach consists of (i) tightly
coupled interfacing of the accelerator to the CPU, (ii) reuse/
repurposing of existing hardware to provide acceleration, (iii)
ability to achieve higher parallelism than earlier Ising designs due
to reuse-aware compute, and (iv) improved performance/energy
for a wide variety of large-sized high precision real-life opti-
mization problems using novel compute/mapping strategies. In
comparison to BRIM, the proposed all-digital Ising accelerator
achieves (i) 36x, 160x, 286x, 300x better performance, (ii) 72x,
79x, 80x, and 75x improved energy, (iii) reuse of 4x, 32x, 200x,
and 4000x is observed for asset allocation, molecular dynamics,
image segmentation, and traveling salesman respectively.

I. INTRODUCTION

Recently, there has been a surge in research focused on
solving combinatorial optimization problems (COPs) by draw-
ing inspiration from nature’s principles or harnessing natural
phenomena. A significant illustration of such an approach is
the utilization of Ising machines [3] [7], which hold great
promise in tackling NP-complete optimization problems. Ising
machines [1], [23] have emerged as a promising frontier,
offering innovative approaches that leverage the principles of
statistical mechanics to represent and solve these optimization
problems efficiently. These are well-suited for optimization
problems [11], particularly those involving minimizing energy
in physical systems, such as max-cut, asset allocation, graph
partitioning, traveling salesman, etc. These differ from clas-
sical machines, as classical machines are versatile and can
handle a wide range of computational tasks, from scientific
simulations/data analysis to general-purpose computing. Ising
machines use concepts of spins and interaction coefficients
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Fig. 1. Ising machines provide higher accuracy and lower solution
time. (i) Top - Solution accuracy under iso-performance condition, and
(ii) Bottom - execution time normalized to Ising under iso-accuracy,
comparing Genetic Algorithm (GA) and Ising for a) traveling salesman,
and b) image segmentation problems.

(IC) to represent and solve optimization problems efficiently
[16]. They encode variables and constants as spins and ICs,
respectively. They utilize the Hamiltonian energy function as a
heuristic to find optimal solutions to COPs. For instance, Ising
machines can achieve more accurate solutions in less time
compared to other heuristic-based optimization algorithms,
like genetic algorithms. Fig.1 illustrates the solution accuracy
of genetic algorithms (GA) [14] and Ising machines for
traveling salesman and image segmentation problems in the
top two figures. Ising machines are seen to provide greater
than 99% accuracy whereas genetic algorithms achieve less
than 95% accuracy. In iso-accuracy scenarios, the solution time
for Ising is 2x-6x smaller than GA.

From an architectural standpoint, the distinctions in the rep-
resentation of spins and ICs give rise to different Ising machine
implementations, which have been realized using physical [23]
or iterative models [35]. The traditional realization of Ising
machines captures the dynamics of the physical Ising model
by using qubits [9] [8], coupled oscillators [34] [33], and
optical annealers [20] [12]. An excellent summary of three
and a half generations of Ising machines is provided in [23];
hence we avoid a detailed description here. The major chal-
lenge of these approaches is the need for cryogenic operating
temperature in qubits, increased power requirement in coupled
oscillators, and high area requirement in optical annealers.
Another approach involves the usage of CMOS-based Von-
Neumann-like iterative Ising machines [36], which perform
iterative updates to the spins to achieve the approximate
ground state solution. However, the issue is that in a real-life
application consisting of many variables, extensive energy is
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Fig. 2. COP workload mapping to Ising Machine - Image segmentation
example for 4*3 image with the edges showing interaction coefficient as
a difference between pixel values. Spin of +1 indicated by green) and -1
by orange. Spins are randomly initialized and Ising machine converges
to a segmented image.

spent on the data movement of variables. In order to reduce the
data movement costs, computing in/near memory (CIM/CNM)
based Ising machines are being investigated. The advantage of
CIM designs is that modern high-density, inexpensive on-chip
memory is repurposed to map large-sized COP onto them for
performing efficient in-memory compute.

The prevailing challenges with the existing state-of-the-art
accelerators, whether in the physical approach (BRIM) [1]
or the iterative approach (Ising-CIM) [35], are multi-faceted.
These are dedicated domain-specific accelerators optimized for
only a specific subset of COPs, and do not support different
resolutions for efficient compute. Furthermore, their reliance
on analog data converters or blocks render them susceptible
to process variations, causing reliability issues. In addition,
the lack of reuse in them leads to increased data movement,
further exacerbating energy/performance concerns.

The major contributions of the paper are:

o Architecting an all-digital Ising machine that repurposes
the L1 cache hardware for in-memory compute, and
presenting an accelerator that is tightly coupled to the
CPU pipeline, thereby minimizing extra hardware
A reuse-aware computing strategy along with multiple
data-stationary PIM designs that leverage the compute
strategy to perform less redundant compute, achieving
high parallelism and energy efficiency
A tuple mapping strategy is proposed to abstract the
incoming graph structure, that makes SACHI scalable to
any graph used to represent large-size real-life COPs
A mixed encoding scheme to enable SACHI to be recon-
figurable to any precision upto 32-bit for in/near-memory
compute, without the usage of DACs/ADCs
Evaluation of SACHI using several real-world complex
COPs indicate that SACHI offers 160x/36x/286x/300x
better performance and 79x/72x/80x/75x better en-
ergy over BRIM for molecular dynamics/asset allo-
cation/image segmentation/traveling salesman problems.
Furthermore, SACHI offers a speedup of 90x and energy
improvement of 75x over Ising-CIM.

II. BACKGROUND
A. Mapping COP onto Ising Model

The Ising model [28] [4], originating from statistical me-
chanics, is used to study the alignment of spin orientations
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Property BRIM Ising-CIM SACHI
Dedicated Yes Yes No, repurpose L1
accelerator cache
Ising machine Physical Iterative Iterative
Architecture Coupled oscillator | In-memory Near-memory
ADC/DAC Yes No No
Problem size/ 1000 nodes/ Any size/ Scalable to any size/
Ising graph all graphs King’s Graph all graphs
Max. Compute Signed 4-bit Unsigned 2-bit | Reconfigurable,
resolution upto signed 32-bit
Reuse No - 1 compute for every bit High reuse using

fetched from memory reuse-aware compute
Memory array No Yes No
modifications

Fig. 3. SACHI in comparison to to state of the art Ising architectures
BRIM and Ising-CIM - SACHI is a repurposable, scalable, reconfigurable
near-memory architecture with no modifications to the memory array,
no ADCs/DACs, achieving better reuse/energy as compared to prior Ising
accelerators like BRIM [1], Ising-CIM [35]

(either up-spin or down-spin) in a magnetic material under
the presence of external perturbations. Individual spins inter-
act with one another and flip their orientations, so that the
collection of spins in a magnetic material reach a minimum
ensemble energy state (called the ‘ground state’) [35]. The
spins and ICs represent the variables and the relationship
between these variables, respectively, in a COP. The minimum
ensemble energy state represents the optimal solution to COP.
For image segmentation [13], IC identifies the edge value
between 2 neighboring pixels (spins) by finding the difference
between them, with the mapping onto Ising model (see Fig.2).
For traveling salesman [6], IC represents the distance between
the 2 cities (spins). For asset allocation, which investigates the
feasibility of splitting a net worth of USD X Million valued
across N assets (spins) among people, IC is the value of each
asset allocated. The optimal solution to COPs for iterative
Ising model is obtained by minimizing Hamiltonian energy
[10], a function of pair-wise coupling among those spins, given

as:
H=— Z Jijoioj — Z hioy
ij i

where J;; represents the ICs, o; represents the target spin
(for which the update is being performed), o. represents the
neighboring spins of oj, h; represents the external field, with
i, j representing a pair of nodes in a graph. The minimization
of H carried out by a divide and conquer update of each spin,
based on its interaction with its neighbors [25] results in:

ey

Hy =Y —Jj*xoi—h )
The spin update is carried out based on the sign of H,:
-1, if H, >0
o= +1, H, <0 3)

+1/-1 H,=0
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Optimization Typical Graph  [Resolution for| Size of | Size of a) 4*4 activation CNN convolution Reuse table
Problem (COP) | problem size | connectivity | 1K spins (R) | R-bit COP | 8-bit COP A11|A12 | A13|A14 wii|A11|A13|A31[|A33
Image 1000-1M Densely . Fitsin L1 | Exceeds wi1|wi2
segmentation pixels connected 6-bit cache L1 size A21|A22 | A23 | A24 @ W12|A12|A14 |A32 | A34
Asset 100-1000 Sparsely 7-bit Fitsin L1 | Exceeds A31|A32|A33|A34 W21|w22 w21| A21|A23| Aa1 | Aa3
allocation assets connected cache L1 size 2%2 filter
Molecular 100K-1M King’s Abit Fits in L1 | Fits in L1 A4l (A42 | A43 | Ad4 W22 | A22 ( A24 | A42 | Ad4
dynamics atoms (8-neighbor) cache cache b Ising Ho compute
R tabl C ==(J,,*0,) =(),,*0,) -
Traveling 10-30K Fully . Exceeds | Exceeds ) puse tnbie ¢}  Hoy== {1l —{he' %)
salesman cities connected 5-bit L1size | L1size Yl oy oy Usa>03)— (g™ 0g) 174" 07)
A Redundant compute
24| 03 | 04
Fig. 4. - Real-life COPs have a wide range of problem sizes with Il o5 |0, 1
varied graph connectivity, varied minimum resolution (4-7 bits) to achieve B !
90% accuracy under iso-performance condition. Using a fixed 8-bit 74|97 | %4 !
IC for all COPs results in additional data movement cost because Jgq| Ts | 04 !

8-bit COP overflows when placed in 64KB L1 cache while lower
resolution (4-7bit) compute fits inside the L1 cache, motivating a
reconfigurable, scalable compute architecture.

The local spin update might result in H being trapped in
a local minimum. Simulated annealing is then performed to
achieve the global minima by probabilistic spin-flips.

B. Prior Generations of Ising Machines

Ising machines are realized using physical or iterative
models. Physical machines use various technologies, such as
quantum annealers [19], optical annealers [20], ring oscillator-
based coupled oscillators [34] [32], resistive-coupled oscilla-
tors [1] [23] for computation. Quantum annealers encode spins
with qubits and ICs with qubit-qubit coupling, but they require
cryogenic operation, leading to cooling costs. Optical anneal-
ers utilizing light polarization/phase for encoding spins/ICs
face challenges with increased area and susceptibility to noise.
The ring oscillator approach utilizes multiple inverter stages
to encode spins. These are again exclusively used for solving
COPs and face scalability challenges due to the area overhead
caused by using multiple inverter stages to represent a single
spin state. In the resistive coupled oscillator approach (BRIM),
spins are stored in capacitors, and resistances are programmed
according to ICs (disadvantages in Sec.IIl). We would like
to mention that the philosophy of physical Ising machine is
completely different from that of iterative Ising machines. The
main reason for comparing with BRIM is that it is the only
prior work in this domain familiar to architects.

Iterative machines, like Hitachi’s Ising machine [36] and
digital annealers in CIM-Spin [25], use dedicated logic for
accelerating Ising compute. However, these approaches suffer
from drawbacks, including high data movement (because of
Von-Neumann architecture), limited scalability, dedicated ac-
celeration, reduced energy efficiency, and acceleration specific
to only certain set of COPs. To address data movement issues,
Ising-CIM [35] utilizes embedded DRAM [27] [22] [17] to
perform computations in memory (disadvantages in Sec.III).

III. DESIGN GOALS AND MOTIVATION

SACHI is motivated by the weaknesses of prior Ising
machines along with an overview of how SACHI overcomes
these issues. Earlier architectures need data converters like
DACs/ADCs and need specific technologies and/or program-
ming steps coupled to the devices. For instance, ZIV diodes
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Fig. 5. a) CNNs offer reuse, as the same weight is shared across multiple
activations. b) However, Ising compute for H, natively offers no reuse
as each Jj; is uniquely mapped between o; and oj. ¢) Memory array
mapping for existing PIM design (Ising-CIM) [35] shows that although
the last 2 columns are computed, they are redundant. This is because
J14 does not interact with o; and o3 implying that Jj4*0; and Jy4*o3
are redundant. This redundant compute results in energy degradation.
The cause for this degradation is primarily because of the unnecessary
discharge of bit cells associated with the redundant compute.

and programmable resistances are required in BRIM, ana-
log charge-sharing with a modified embedded DRAM mem-
ory array is required in Ising-CIM. SACHI creates an all-
digital architecture with standard components (no specific
devices/technology requirements), and can be easily integrated
into CMOS SoC. Fig.3 summarizes the main features of state-
of-the-art Ising machines compared to SACHIL.

1) Repurposability: Domain-specific ~ dedicated
accelerators like BRIM/Ising-CIM require frequent CPU-
accelerator interaction causing performance/energy overhead.
BRIM/Ising-CIM are dedicated because of the difficulty in
integrating (i) coupled oscillators made of ZIV diodes and
(i1) modified embedded DRAM array into the CPU pipeline.

Instead of a dedicated accelerator, SACHI repurposes the L1
cache when needed, reusing SRAM for in-memory compute
with minimal CPU-friendly digital logic.

2) Scalability: Ising-CIM is explicitly designed for King’s
graph, without any restriction on the size of COP (detailed
in Sec.IV.B). BRIM cannot be scaled for solving large-sized
COPs but makes no assumption about the underlying graph.
BRIM’s scalability is hindered due to the following factors: (i)
The number of programmable switches/diodes needed for node
interactions scales as O(n?), where n is the number of nodes.
(i) Ensuring that the capacitance to encode spins does not
discharge is crucial to prevent inadvertent spin-flips. Discharge
is likely to happen with large problem size.

SACHI addresses the need to scale to large real-life COPs
with diverse connectivity (Fig.4), with its unique tuple map-
ping, tuple-rep property, and storage-array-based updates.

3) Reconfigurability: The compute precision/resolution (R)
of Ising-CIM/BRIM is restricted to 2-bit/4-bit. Ising-CIM’s
restriction arises due to the data mapping that can support
only upto 2-bits. BRIM’s limitations arise from (i) Challenges
in obtaining accurate resistances for higher IC values and
the requirement of a configurable DAC for multi-bit R. (ii)
Obtaining an 8-bit design involves representing 256 values in
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SACHI compute initiates Initial ‘rUpdated
SACHI near-L1 logic request IC/spin 1C/spins
‘ DRAM | Number of " L1 cache
L2 cache = controller Arows accessed Near-L1 logic
SACHI storage array
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L t

4

Fig. 6. Overview of SACHI- SACHI’s compute array is mapped onto L1
cache, storage array onto L2 cache with minimal near-L1 logic (0.3% of
CPU area), enabling easy integration into CPU pipeline. DRAM controller
prefetches requests based on the number of uncomputed rows in compute
array to minimize data movement cost between DRAM and storage array.

1V range, requiring an infeasibly small voltage resolution for
DAC of 1V/256=3mV

SACHI addresses the need to support higher R using
mixed-encoding scheme that reduces dot-product into XNOR,
enabling high-precision PIM compute without DAC/ADCs.
However, a larger R requires more memory space. For 1K
spins, achieving 90% accuracy requires a minimum R of 4-
7 bits, depending on the COP as shown in Fig.4. SACHI’s
PIM/near-memory compute makes no assumptions about R
and can be reconfigured for any R, without accuracy loss.

4) Reuse: Reuse for a variable is defined as the number
of required computes performed for a variable that is mapped
onto (i) a row of compute array in PIM-designs like Ising-
CIM, SACHI (ii) a row of coupled oscillator nodes/array in
BRIM. BRIM/Ising-CIM offer no reuse.

BRIM has no reuse because every IC mapped onto the
coupled oscillator array using ZIV diodes is used in only 1
required compute. Reuse in PIMs is dependent on the algo-
rithm and efficient mapping. For example, CNNs inherently
exhibit reuse > 1 due to shared weights across activations in
a layer, making them suitable for a weight-stationary approach
(Fig. 5a). In contrast, the Ising model for computing H,
(eqn.2) does not naturally offer reuse since each pair of
spins and ICs in the graph has a unique mapping. Fig. 5b)
shows that each J;; is uniquely mapped between o; and oj,
making reuse equal to 1. Fig.5¢) explains the increased energy
requirement due to redundant compute. With o, 0,, 03 stored
in compute array, and J;4 mapped onto a row of compute
array, the only required output is Jj4*c;. However, there
are 2 additional redundant computes (Jj4*0,, Ji4*03). The
reason for redundant compute is because J;4 does not interact
with o, and o3. These redundant computes further result in
energy overhead due to the unnecessary discharge of bitcells
associated with redundant compute. Mathematically, an IC
tuple (IC[S] = <IC1, IC2..ICn> ; n>1) needs to be formed for
each spin, with reuse equal to the number of elements in the
formed IC tuple. A design satisfies ”IC criterion”, if reuse is
> 1. Existing PIM design (Ising-CIM) does not satisfy the IC
criterion, implying no parallelism across a row of the compute
array row.

SACHI uses a reuse-aware data-stationary compute strategy
to improve reuse across all elements in a row of compute array,
improving parallelism and energy efficiency.
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Fig. 7. Illustration of tuple mapping strategy - a) Storage array orga-
nized as tuples, with each consisting of the connected spins and ICs for a
given spin. Ising compute operates at the abstraction level of these tuples,
thereby not requiring visibility of the incoming graph helping achieve
scalability to any graph type. b) Tuple-rep ensures 1:1 mapping between
a storage array tuple and a compute tile row, enabling the partitioning of
the graph into sub-graphs, with each sub-graph computed independently
in different tiles without any control overhead

IV. THE SACHI ARCHITECTURE

We describe the SACHI architecture, which combines el-
ements of re-purposability, scalability, reconfigurability, and
reuse-aware data-stationary near-memory compute, to realize
a high-performance, energy-efficient Ising machine.

A. Repurposable architecture

SACHI repurposes modern-day CPU SoC components to
accelerate Ising Hamiltonian computation (H,) with minimal
area overhead. The components used include DRAM, L2
cache, CPU, and a repurposed L1 cache, utilizing 8T SRAM
bitcells (Fig.6). The storage array is mapped onto L2 cache,
while the compute array is mapped onto L1 cache, with
additional near L1 peripheral logic occupying only 0.3% of
AMD’s Zen3 CPU area. The data flow in SACHI is as follows:
For spins and ICs that fit on-chip, DRAM is accessed once at
the beginning to fill the storage arrays, and no further re-access
is needed. The storage array (L2 cache) acts as a buffer for
storing the initial Ising graph transferred from DRAM, while
the compute array (L1 cache) performs H, computations using
the spins/ICs from the storage array and writes the updated
spins back onto the storage array. In cases where variables and
ICs do not fit on-chip, multiple rounds of computations are
required to optimize large graphs, necessitating rewriting of
the compute and storage arrays. To optimize this long latency
operation, we use a prefetching approach that anticipates po-
tential accesses. CIM accesses have structured and predictable
address patterns, unlike regular memory access. We access the
rows in the compute array top-to-bottom in successive cycles,
and a counter in the DRAM controller tracks the number
of remaining rows to be accessed. When the count reaches
a threshold (meeting DRAM-to-storage + storage-to-compute
array data movement latency), a prefetch request is initiated
to ensure the timely arrival of DRAM-requested data.

B. Scalability using tuple mapping

1) Scalability to all graphs: SACHI operates on the in-
coming graph at the abstraction level of tuples, enabling H,
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Fig. 8. Scalability to any graph size - a) Ising-CIM approach: duplicate
edge cells (dark brown) onto adjacent CIM arrays. 1 indicates updated
spin value computed in the array. 2 indicates writeback of the same
updated spin value for non-edge cells. 3 indicates the broadcast of updated
spin value in the case of edge cells (duplication) to adjacent CIM arrays.
This approach minimizes interaction between compute arrays to only
edge cells, but uses King’s Graph properties to accomplish this and is
performance-inefficient b) SACHI approach: store the adjacency matrix
and buffer the updated spins of relevant tuples by reading the adjacency
matrix. 1 indicates updated spin value computed in the array. 2 indicates
read of the adjacency matrix. 3 indicates update of relevant tuples in
storage array. This is graph-type agnostic and performance-efficient
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compute to be incognizant of the graph connectivity. This
unique feature enables SACHI to perform Ising computations
for all graphs, irrespective of their connectivity. Fig.7a) illus-
trates our tuple mapping strategy. Each row in the storage array
is a tuple for a particular spin, consisting of the neighboring
spin states, the connecting ICs, and the external magnetic field
(Fig.7a) Furthermore, the same IC/spin is present in more
than one row, called the ’tuple-rep” property (Fig.7b). For
instance, Ji, is an entry present in the tuples of both o and o5.
This enables the compute for H,; and H,2 to be independent
of each other by ensuring 1:1 mapping between a tuple in
the storage array, and a row in the compute array, enabling
partitioning of large graphs into subgraphs. If not for tuple-
rep (J;» was present only in o’s tuple), H, compute for o,
introduces an interdependency of rereading the storage array
for obtaining J;» from the tuple corresponding to o, causing
performance bottlenecks with control overhead.

2) Scalability to any graph size: To efficiently solve large
COPs, reducing inter-CPU core interactions is crucial. For PIM
designs, this involves minimizing interactions between sub-
arrays of compute array, while being graph-type agnostic, and
extending the same philosophy to reduce inter-core interac-
tions. Firstly, unlike deep-neural networks, where the output of
one layer feeds as input to another, requiring data movement,
Ising model does not incur any “layerwise” data movement.
The only required minimal data movement is for spin-updates.
Therefore, the algorithm inherently requires fewer inter-array
interactions. In Ising-CIM, when graphs are partitioned, spins
on the edge of the partition are duplicated across 2 adjacent
CIM arrays. Non-edge cells perform local spin updates in
eDRAM (2 in Fig.8a) based on the computed updated spin
value (1 in Fig.8a). Edge cells undergo a local read-modify-
write(update) based on the broadcasted updated spin value
from adjacent CIM arrays (3 in Fig.8a). Although only edge
cells necessitate interaction between adjacent arrays, this ap-
proach has several drawbacks. Execution time is dependent on
a)cycles per iteration (CPI) and b)number of iterations (IT).
With respect to CPI, the local update in Ising-CIM hinders
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Mixed encoding Mixed encoding enables multiplication via in-
(enc.) scheme memory XNOR compute
1-bit | Reconfigurable |SXNORIC (SXNORIC)+1 [ Spin(S)*IC
spin | R-bit IC enc. (In-memory (near-memory result for
(S) (R=9,3 shown) XNOR) addition) Ho compute
enc. | R=9 R=3|R=9 |R=3|R=9 R=3 |R=9 |R=3
0 9’h087 3'h3 [9'h178 | 3’'h4 |[9'h179 3'h5 [9'h179 | 3'h5
0 9’h179 3’'h5 [9’h086 |3’h2 [9’h087 3’h3 | 9’h087 | 3’'h3
1 9’h087 3’h3 [9’h087 | 3’h3 |[9’h088 3’'h4 | 9’h087 | 3’'h3
1 9’h179 3’h5 [9'h179 | 3'h5 |[9’h07A 3'hé |9’h179 | 3’'h5
Fig. 9. SACHI’s reconfigurability achieved using mixed encoding

scheme, with -1/+1 spins stored as 0/1, ICs encoded in 2’s complement
form to enable in-memory XNOR for dot product between Jj; and o;
without DAC/ADC (unlike BRIM). (S XNOR IC)/((S XNOR IC)+1) is
computed to enable multi-bit signed IC dot product (unlike Ising-CIM).
9-bit J;;= 135 (9’h087), -135 (9’h179) and 3-bit J;= 3 (3’h3), -3 (3’h5)
product with oj=1 (0),-1 (1) is shown

Ising compute performance, making each compute a 2-cycle
operation (1 each for compute and update), because of read-
write conflict. SACHI overcomes this, making compute 1-
cycle operation, as the data movement from compute-storage
array is overlapped with useful compute in compute array.
Furthermore, there is no read-write conflict, as the write
happens to a separate array. Therefore, Ising-CIM has 2x CPI
compared to SACHI. With respect to IT, local update leads
to performance gain only in large-sized COPs. For instance,
in localized King’s Graph, there is a minor performance gain
of 0.1x, as opposed to 1.8x in a complete graph for 1M spin
configuration. The gain is with respect to performing storage
array based update, similar to SACHI. Therefore, in Ising-
CIM, it is beneficial to retain the original values and reap
benefits from improved CPI. In SACHI, this happens naturally
for COPs that require re-write to compute array. A portion of
the storage array stores the adjacency matrix, and is read (2 in
Fig.8b) to identify the relevant tuples containing the incoming
spin, allowing updates to the storage array (3 in Fig.8b) only
for the relevant tuples. This ensures that when the compute
array is re-written, few tuples already have the updated spin
values Therefore, SACHI provides the ideal middle-ground
mimic-ing local update behavior for fast convergence, when
necessary, while providing improved performance due to 1-
cycle compute+update operation.

3) Scalability to any graph size: To efficiently solve large
COPs, reducing inter-CPU core interactions is crucial. For PIM
designs, this involves minimizing interactions between sub-
arrays of compute array, while being graph-type agnostic, and
extending the same philosophy to reduce inter-core interac-
tions. Firstly, unlike deep-neural networks, where the output of
one layer feeds as input to another, requiring data movement,
Ising model does not incur any “layerwise” data movement.
The only required minimal data movement is for spin-updates.
Therefore, the algorithm inherently requires fewer inter-array
interactions. In Ising-CIM, when graphs are partitioned, spins
on the edge of the partition are duplicated across 2 adjacent
CIM arrays. Non-edge cells perform local spin updates using
the local write drivers in eDRAM (2 in Fig.8a) based on the
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computed updated spin value (1 in Fig.8a). Edge cells undergo
a local read-modify-write based on the broadcasted updated
spin value from adjacent CIM arrays (3 in Fig.8a). Although
only edge cells necessitate interaction between adjacent arrays,
this approach has several drawbacks. Firstly, the local update
for non-edge cells causes the loss of the original spin value
before completing an iteration. While this approach is scalable
to large-sized King’s Graph due to King’s Graph’s localized
interaction nature, wherein the original spin value is not used
again in the same iteration, it cannot be extended to other
complex graphs with non-local interaction where the original
spin value is reused sometime later. Secondly, the read-modify-
write operation hinders Ising compute performance, making
each compute a 2-cycle operation (1 each for compute and
update). SACHI enables scalability by repurposing the storage
array for writing the computed updated spin values (1 in
Fig.8b), ensuring that the original spin value remains intact
in the compute array, without requiring interaction between
compute arrays. A portion of the storage array stores the adja-
cency matrix for connectivity information. While H, compute
is incognizant of graph connectivity, the update needs to be
aware of the connectivity. This matrix is read (2 in Fig.8b)
to identify the relevant tuples containing the incoming spin,
allowing updates to the storage array (3 in Fig.8b) only for the
relevant tuples. Furthermore, data movement latency between
storage and compute arrays is hidden by performing useful
compute in the compute arrays.

C. Reconfigurability using mixed encoding scheme

1) Mixed-encoding: SACHI wuses a mixed-encoding
scheme, wherein +1/-1 spins are encoded as 1/0 and ICs
are represented using 2’s complement form to enable PIM
dot-product for signed multi-bit ICs without DAC/ADC. The
dot product (Fig.9) between J;; and o; for eqn.2 is simplified
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as an XNOR operation, leveraging the binary nature of spins,
enabling PIM without any array modifications:

Jij*Uj_{

2) In/near-L1 compute: The XNOR operation is per-
formed by activating multiple rows simultaneously of the
compute array. To accomplish this, L1 cache, typically made of
an 8T SRAM bitcell (unchanged from what is used in modern-
day CPUs for L1 caches [30]) with decoupled read and write
ports (RWL, RBL, WWL, WBL - read/write word/bit lines) is
employed. [26] (Fig. 10a). This bitcell operates in two modes:
(1) regular read/write mode and (ii) Ising compute mode.
In the regular mode, data is written/read using WBL/RBL
by enabling WWL/RWL, respectively. RWL is repurposed
for computation during Ising compute mode. Logical AND
between input (J) and stored value (S) is achieved by driving
RWL, with J. For XNOR (S AND J) OR (S° AND J’)
operation, S’ is stored in a different bitcell in the same column,
and RWL, is driven with J* (Fig.10a). RBL discharges when
either (S AND J) or (S’ AND J’) is high, indicating an XNOR
value of 1 (Fig. 10b). RBL retains its precharged value when
both (S AND J) and (S’ AND JI’) are low, indicating an XNOR
value of 0 (Fig. 10c). The oscilloscope capture for a prototype
in TSMC 65nm technology process shows RBL discharge for
a single column of SRAM array (size 100¥100) (Fig. 10d,e).
The waveform for a selected bitcell storing ’1” is summarized
as: Phases 1/3 - Precharge: An active low precharge signal
charges the RBL to 1V. Phase 2 - Compute: A short RWL pulse
indicates the incoming value (1°). Since both the storage node
and the incoming RWL are °1°, RBL discharges, resulting in
XNOR value of 0 (Fig. 10b illustrates the discharge path). Dot
product accumulation is performed using full adders situated
near memory. This enables (i) parallel execution of PIM

JinNORO'j7
JinNORO'j —+ 17

O’j>0

0 <0 @
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XNOR and accumulation, and (ii) enhanced accuracy due to
the reduced susceptibility to process variations in the digital
full adder. Accurate in/near-L1 design without assumptions
about R makes SACHI support any R-bit compute.

D. Reuse-aware data stationary compute

We propose near-memory architectures that progressively
achieve higher reuse: (i) spin stationary (SACHI (nj,)),
(SACHI(np)), (i) IC stationary (SACHI(n,)), (iii) Mixed
stationary (SACHI(n3)). (Fig.10f) illustrates an overview of
the three methods with King’s graph.

1) SACHI(n;,) = Spin stationary design: This design in-
volves storing spins (o) onto the compute array and mapping
ICs onto RWL in a bit-serial manner. This approach, illustrated
in Fig. 11 allows sharing a J;; bit across a row of bitcells in
the compute array, which is organized as tiles and filled in
order (successive spins in the same tile) without interleaving.

The compute is as follows: (i) In phase 1, the sharing of Jj;
across a row of spins leads to redundant XNOR computes. The
read-out of redundant dot products is blocked by disabling the
bit select of each column (Fig. 11a.1), giving a throughput of
1 XNOR compute every cycle. As you will see, the hardware
requirements are influenced by the order of XNOR compute.
In SACHI(nj,), XNOR of r" bit of all the neighboring
spins is performed before computing XNOR of (r+1)" bit
(Fig. 11a.1). This compute order necessitates a storage buffer
(called XNOR queue) to store XNOR of individual bits in
phase 2(Fig. 11b.1). The minimum size of the queue equals
(number of neighboring spins * (resolution of J;+1). In phase
3 (Fig. 1lc), the computed XNOR values generate partial
products by shifting and adding individual bits. Additionally,
a decision is made based on oj to choose between XNOR and
(XNOR + 1) after XNOR’ing all the bits of J;j with o;. In
phase 4, the full adder, which is initialized to the external
magnetic field, accumulates the partial dot products for each
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spin (Fig. 11d). In phase 5 (Fig. 11e), the computed sum is
negated to obtain H, and is passed through annealer.

The time to compute H, for an R-bit IC with N neighbors
for a specific spin is in O(R*N). Notably, N cycles are required
to fill one column in the XNOR queue, repeated (R-1) times
to fill (R-1) columns, and 1 cycle is needed to obtain the first
R-bit value with shift and add. This results in ((R-1)*N+1)
cycles before phase 3 becomes active (Fig.11f). During this
time, phases 3-5 are idle, referred to as “idle time”. The reuse
is 1, as every J;; bit fetched from the storage array is used in
1 XNOR compute, not satisfying the IC criterion.

2) SACHI(nj,) = Optimized SACHI(ny,): SACHI(n;,)
can be improved in terms of (i) effective resource utilization
by minimizing the “idle time” (ii) reducing the overhead of
XNOR queue and (iii) better interleaving of tiles.

To tackle the first two issues, we modify the order of XNOR
computes to achieve a directed throughput, allowing earlier
activation of phases 3-5. Additionally, we store adjacent rows
of the storage array in adjacent tiles to improve interleaving.

The compute involves mapping RWL onto successive bits
of a specific J;; in consecutive cycles to perform XNOR during
phase 1. This differs from SACHI(n;,), where this mapping
is delayed by N cycles. In other words, all bits of a particular
J;j are XNOR-computed before moving on to the next Jj,
e.g. XNORg,[0-2] is followed by XNORj;[0-2]. This order is
evident as the bitline select of column 0 is turned ON three
times (Fig. 11a.2), reducing the XNOR queue size to 1 row
with R columns (Fig. 11b.2) in phase 2. Phases 3-5 are same
as SACHI(n;,). Additionally, phase 3 is initiated earlier than
SACHI(ny,) since J;; bits are computed earlier to shift and add.

The compute time for H, is in O(R*N). However, the idle
time is reduced from (R-1)*(N) to R cycles SACHI(n;;) does
not satisfy the IC criterion, as reuse is 1 (as every J;; bit fetched
is used only in 1 compute).
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Fig. 12. SACHI(n,): IC stationary design performing XNOR across all
Jij bits in a single cycle in Phase 1, improving maximum reuse to the
resolution of Ji; (3 columns highlighted for 3-bit J;;), eliminating XNOR
queue in Phase 2. The decision logic, full adder, and simulated annealing
logic are shifted by a cycle compared to SACHI(n;)

3) SACHI(n;) = Interaction Coefficient stationary design:

SACHI(n;,p) suffer from (i) low SRAM throughput (ii) low
reuse/performance (iii) XNOR queue overhead. To address
these issues, SACHI(n;) computes multiple XNOR operations
in parallel by storing ICs (J;) onto compute array and
mapping spins onto RWL. For every i row’s RWL mapped
to a spin, [i+num spins]® row’s RWL is mapped to the
inverted spin value for XNOR compute.

The compute illustrated in Fig. 12 proceeds as follows:
In phase 1, multiple bitline selects are turned ON to read
the computed data from multiple columns so that all bits
of a particular XNOR partial product between J;j and S; are
obtained in 1 cycle. Thus, the throughput of the SRAM array
is improved from 1 in SACHI(nj,,) to R in SACHI(n,),
thereby eliminating the XNOR queue. In phase 2, the decision
between XNOR and XNOR+1 is taken based on the target
spin. In phase 3, full adder accumulates the partial dot
products.

H, compute time is reduced from O(N*R) in SACHI(n;) to
O(N) in SACHI(n;) and the reuse is equal to resolution (R) of
SACHI(n;,p), as a single spin is shared by multiple bit-cells,
thus satisfying the IC criterion.

4) SACHI(n3) = Mixed stationary design: Although
SACHI(n;) offers improved reuse and performance, the
unique mapping between 2 spins for a particular IC and the
way H, is computed using eqn.2 limits the reuse to R.

To further increase reuse, we propose a reuse-aware mixed
stationary strategy, based on a few observations. (i) The spins
are always binary-valued. (ii) The dot product between J;; and
oj is resolved as the dot product between J;; and o, if o and
oi are the same. If the spins are the same, the reuse-aware
equation resolves to eqn.2, and inversion of XNOR output if
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Fig. 13. SACHI(n3): Mixed stationary design making use of reuse-aware
compute to perform XNOR across all J;; bits and neighbors of target spin
in a single cycle in Phase 1, improving maximum reuse to (neighbors)*(Jj;
resolution) (entire memory array highlighted). The decision logic and
adder in Phase 3 are modified to support high throughput

the spins differ. The binary nature of spins makes equality
checking of oj and o; an XNOR operation, which can be
computed in parallel with XNOR of J;; and o;. This can be
summarized as:

JinNORO'i7 o >0& UiXNORO'j =1
JinNORO'i—i-]., o <O&JiXNORO'j =1
Jij*aj = (5)
JinORUi, (o5 >0&0'1XNORO'J' =0
JinORUi+1, O’i<0&0'iXNOR0'j:0

o is mapped onto RWL; J;; and o are stored in the compute
array, making it a mixed stationary design. o is shared across
a complete row with no requirement of bitline select, reading
all columns, decreasing the column circuitry’s complexity.
Consider a 4-spin network with a target spin (o) connected to
spins 07.4. ICs are stored in a row within the compute array,
and the required computes are Jjp*0,, Ji3*03, and Jjs*oy4.
From a memory design perspective, if we store J», J3, and
Ji4 in a row, we can perform Jj,*0i, Ji3¥0; , Jia¥0oj, as all
elements in a row share the same WL (mapped to o;). In the
reuse-aware architecture, we map o; to be o, enabling us to
compute all dot product operations concurrently. However,
it’s crucial to verify whether o(c;) is the same as o,, 03, 04
to get the correct H, value.

The compute as illustrated in Fig. 13 proceeds as follows:
In phase 1, the throughput of the SRAM array is as high as
(N*R), as all XNOR computations of o; are done in parallel.
This high throughput enables compute without the usage of
XNOR queue. Phase 2 performs shift and add logic for
computing the XNOR dot products followed by the decision
logic to select between the 4 options in eq.5 to compute the
reuse aware equation of H,. In phase 3, adder performs the
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Fig. 14. Software support - FIST in x86 with different secondary
opcodes to indicate movement from DRAM to storage/compute array.
New XNORM instruction with SRC1 = the storage array address that
is mapped onto RWL, SRC2 = the compute array address, BIT = Jj;
resolution and DEST = register for storing XNOR

accumulation of partial dot products at once, to support the
high throughput.

The time to compute H, is independent of R and N,
implying O(1) compute and the target spin is used across the
entire row, satisfying IC criterion with reuse of N*R.

E. Software support

The overhead in terms of additional compiler support is
minimal for SACHI, as CPU assembly instructions can be
repurposed to support SACHI because of the repurposable
nature of SACHI. For instance, FIST (integer store), in x86
64-bit ISA, has a primary opcode (PO) of 0xDB without
using a secondary opcode (SO). SO is used to indicate
SACHI requests. A secondary opcode of 0x00 refers to DRAM
write, 0x01 for DRAM to storage array write, 0x10 for
transfer from storage to compute array. XNORM instruction
(XNORM DEST,[SRC1],[SRC2], BIT), where SRCIl= the
address mapped onto RWL, SRC2= address of compute array,
BIT = J;; resolution, is added to perform PIM XNOR, followed
by near-memory reuse-aware compute (Fig.14).

V. EXPERIMENTAL METHODOLOGY

1) Configuration: SACHI configuration incorporating (i) a
compute array consisting of 16 tiles, each tile (size 10KB)
capable of storing 100 spins and 8-bit ICs, (ii) a storage array
(size 160KB) with 2 read ports (iii) digital peripheral logic
sufficient to support compute array throughput is used for
the experiments. The power/performance (PP) estimation takes
into account data movement from the storage-compute array,
in-memory compute and digital logic.

2) Benchmarks: Experiments use the following bench-
marks, with the size of variables from 500-1M. We use the
Ising formulation in [11] to model these benchmarks. In
all these benchmarks, we formulate the problem as H, = -
YJi*o; or H = -XJ*0;*0;. This enables compute in all Ising
machines, that can support dot-product of J;; and ;. Therefore,
no benchmark-dependent configuration of Ising machines is
required, as long as the Ising machines are generic enough
to compute the underlying graphs. These machines compute
H, for all workloads, assuming a certain type of graph and
initialized spins/ICs associated with the different workloads.

a) Asset allocation: Given m assets with $80M value,
divide the assets (J;; represents value) equally between 2
people. This is provided as an example of number partitioning
in [11]. This problem can be formulated as checking if H, =
YJ;*0o; is zero. Here, oj=+1/-1 helps distinguish between the
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2 people, Jj; signifies the value of each asset. This is a sparsely
connected graph of number of spins equal to m.

b) Image segmentation: Given a densely connected image
of m*n pixels, this benchmark identifies the max cut that
splits the image into foreground and background (spin +1/-
1), with J;; (edge weight) indicating the difference in pixel
values between neighbors. H, formulation is the same as that
of formulation given for max cut in [1] [11]

¢) Traveling salesman: Given a network of connected cities
(spins), shown as a complete graph, this problem finds a route
with total distance lesser than W between 2 given cities. The
decision version of traveling salesman mentioned in [11] is
used. This problem checks if H = X J; * 0 * 0; < W between
the 2 cities. J;; is the distance, o; & o; = 1, implies a route
between the two cities. This is achieved by solving H, = -X
Jij * oj and checking if the associated H is lesser than W.

d) Molecular dynamics: Given a set of atoms in a molecule
connected as King’s graph, this identifies the atomic spin states
in the lowest energy configuration.This is to show readers
that Jj; in ferro-magnetism in eqn.1 is the force of attraction
between 2 neighboring atoms [3].

3) SRAM/Data movement Power/Perf (PP) estimation:
SRAM data array with peripheral circuits are designed using
Cadence Virtuoso and the device parameters are modeled using
FreePDK 45nm technology [24]. In-memory XNOR compute
energy is measured when RWL is turned ON, and RBL is
discharged. To measure RWL energy (pJ/bit), RWL under-
driven approach [18] [21] with RWL capacitance of 50fF is
used. To calculate the discharge energy of RBL (pl/bit), 35fF
RBL capacitance [18] is assumed for the SRAM array of
100 rows/columns (to match the size of a compute tile) for
SRAM operating voltage of 1V. The compute latency of the
SRAM array is found to be 2ns. The data movement energy for
mapping RWL onto compute array is 1pJ/bit, assuming that
the data movement energy is ~800x the addition energy [15],
with 100ns latency for storage to compute array movement.
Furthermore, for applications whose storage requirement is
greater than compute array size, (i) energy costs include data
movement from DRAM to the storage array, SRAM write,
and DRAM controller logic for prefetch (ii) performance cost
includes SRAM write latency.

4) Digital logic PP estimation: Synthesis of digital cir-
cuits using Synopsis RTL Design Compiler is used to quantify
power/energy having a cycle time of 5ns for 45nm technology
node and operating voltage of 1V. We have assumed a clock
cycle time of 5ns solely because of the slower standard-cell
logic gates in 45nm technology node used for simulations.
45nm PDK was chosen because it is open-sourced. With
performance scaling, as (technology node) as mentioned in
[2], the cycle time of SACHI can match modern CPUs.

5) BRIM/Ising-CIM Comparison: To understand trade-
offs between proposed and existing designs, factors include
(a) storing input variables and ICs onto DRAM (neces-
sary for BRIM/Ising-CIM/SACHI), (b) loading variables onto
storage/compute arrays from DRAM (necessary for Ising-
CIM/SACHI), data movement from DRAM to coupled oscil-
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lator (necessary for BRIM) and (c)Ising compute. Across all
designs, loading (both into DRAM(a) and from DRAM(b))
involves data movement at 64B per cycle, and the number
of cycles depends on COP size. For example, a COP with
100 spins King’s Graph, 8-bit J;j, requires ~13 cycles for
storage onto DRAM, with a fixed loading energy cost of
1pJ/bit. The technology used is 45nm, cycle time of 5ns, and
digital logic synthesis in 45nm to ensure a fair comparison
across designs. BRIM evaluation considers Ising compute
using a coupled oscillator, and associated digital logic/DAC.
H compute in coupled oscillator+DAC takes 4-13 cycles per
iteration. In the best case (used for comparison with SACHI),
1 cycle is needed for each of memory array read, DAC,
and compute using coupling oscillator topology and annealing
control. However, considering additional cycles for precharge,
write into the memory array, along with a sequential DAC,
a total of 13 cycles are needed for H compute. Typically,
physical Ising machines can compute multiple spins in parallel.
However, in BRIM, this is limited by 2 factors: i) The
presence of storage capacitor introduces delays in capturing
voltage changes, restricting spin initially at *0’ to undergo fast
transition from 0’ to *1°. This is especially when input voltage
transitions from its neighboring spins are abrupt, which is most
likely the case. ii) Leakage through unconnected paths (spins
that are unconnected to each other-similar to an unconnected
cell in the case of DRAM), from passive capacitor is especially
important when the node voltage is close to the trip-point
of the ZIV diode. The power for coupled oscillator logic
is 250mW for 2000 spins (100 neighbors per spin) and is
proportional to the number of spins and neighbors. For a single
8-bit DAC, the power is ~0.004mW, and there are 16 banks
(1 DAC per bank) with associated digital logic consisting of
16:1 8-bit multiplexers (to map DAC outputs onto coupling
units)/(16*8) flops per bank (storing the output of DAC). In
contrast, SACHI has no DAC/associated digital logic, saving
on performance and power. Ising-CIM compute involves
XNOR compute in eDRAM, and annealing control. XNOR
compute requires 3 cycles each for computing the updated spin
values and performing the update, scaling with the number
of spins and neighbors due to lack of parallelism. XNOR in
eDRAM requires 1.2x power compared to 8T SRAM due to
increased operating voltage. Annealing power is the same for
all designs.

VI. RESULTS

1) Comparison with BRIM: BRIM is compared with
SACHI using all benchmarks, assuming 1K spins and 4-bit
interaction coefficients in (Fig.15).

a) Performance: SACHI(n3) performs ~36x better, for
asset allocation as shown in Fig.15b. For large COPs like trav-
eling salesman with high graph connectivity, SACHI(n3) per-
forms ~300x better including the loading effect, as SACHI(n3)
offers high parallelism across neighbors per node, while BRIM
does not. In benchmarks with lesser graph connectivity and
loading overhead, like image segmentation and molecular
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a) Design’s applicability Reuse

Problem BRIM Ising-CIM SACHI | SACHI vs BRIM | SACHI vs Ising-CIM
Asset all Yes No Yes ax N/A
Image segmentation Yes No Yes 200x N/A
Traveling salesman Yes No Yes 4000x N/A

Yes Yes 32x 64x

4bit J; 1k spins

Molecular Dynamics Yes
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Fig. 15. SACHI comparison with BRIM and Ising-CIM for reuse and
designs applicability to different COPs. SACHI comparison with BRIM -
b) Number of cycles c) total energy to solve COP including loading
SACHI comparison with Ising-CIM - e) Number of cycles f) total energy
to solve COP including loading

dynamics, SACHI(n3) performs ~286x, ~160x better as the
opportunity for parallelism across neighbors is less.

b) Energy: SACHI(n3) improves energy by ~72x for
asset allocation, ~80x for image segmentation, and ~79x for
molecular dynamics as shown in Fig.15c. The need for greater
data transfer for traveling salesman results in a slight reduction
in energy efficiency (although still has 75x improvement). This
is because the Ising graph’s fully connected nature necessitates
retrieval of more spins/ICs from DRAM/L2 into L1 cache.
This increased data transfer incurs additional power consump-
tion leading to a greater overall energy demand. The increased
data movement requirement in traveling salesman leads to
slightly degraded energy, but still ~75x energy improvement
(Fig.15¢).

The major reason for SACHI’s superior performance is its
increased reuse. In BRIM, reuse is 1, as one IC fetched from
memory is used in 1 H compute in the coupling units in BRIM.
The reuse in SACHI(n3) is ~200x for image segmentation,
~4000x for travelling salesman, ~32x for molecular dynamics
(tabulated in Fig.15a).

2) Comparison with Ising-CIM: Ising-CIM is limited to
King’s Graph with 2-bit unsigned ICs. Hence we restrict our
comparison to 2-bit molecular dynamics COP.

a) Performance: SACHI(n3;) performs ~70x/~80x better
for 500/1M atoms (including loading) (Fig.15d). This is be-
cause of the parallelism across neighbors and J;; resolution in
SACHI(n3), while Ising-CIM does not have such parallelism.

b) Energy: SACHI(n;,)/SACHI(n;;) have the same en-
ergy because the increased performance in SACHI(ny) is
compensated by decreased power in SACHI(n;,). The energy
improvement in SACHI(n3) for 500/1M spins is ~40x/~75x
respectively (Fig.15e) because of the increased voltage require-
ment for eEDRAM and reduced performance in Ising-CIM.
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The maximum reuse is 1 in Ising-CIM, as every bit of IC is
used only in 1 H, compute performed in the eEDRAM compute
array. This leads to SACHI(n3) providing ~16x more reuse in
molecular dynamics (Fig.15a tabulates the reuse factors).

3) Comparison with Other Optimized Solvers: SACHI’s
performance in comparison to solutions implemented using
Genetic Algorithm (GA), Particle Swarm Optimization
(PSO), and dedicated Optimized Solvers is of interest.
GA/PSO is implemented on an Intel i5-8265U CPU running
at 3.9GHz. For the GA implementation, GAlib [31] is
used. The solution quality is measured by comparing GA’s
accuracy to SACHI’s 100% accuracy. GA’s accuracy is lower,
as shown in (Fig.16a). This could be attributed to GA’s
global-only search for selecting the best candidates in each
generation. In contrast, Ising/PSO performs updates based on
neighbors, resulting in faster convergence (Fig.16b). In PSO,
the selection criterion considers personal best (pbest) and
global best (gbest) for all candidates, where pbest is compared
against gbest at the end of each iteration to update the fitness.
The comparison with dedicated optimized solvers/algorithms
(OPTSolv) for benchmarks such as Concorde solver for
traveling salesman, Ford-Fulkerson network flow for image
segmentation, LAMMPS [29] for molecular dynamics, is
also presented in Fig.16. SACHI outperforms these solvers
by 27-34x because of parallelism across N and R from
reuse-aware near-memory compute.

4) Scalability: SACHI is highly scalable for graphs with
diverse connectivity, accommodating various sizes without
limitations. Fig.17 illustrates its performance as CPI (clock
cycles per Hamiltonian iteration) for spin counts ranging from
500 to 1M, showcasing the impact of compute array overflow
in each scenario. For instance, in the case of (a) 500 spins:
Spins fit inside the compute array for all SACHI designs, (b)
200K spins: Spins fit inside the compute array for all SACHI
designs except SACHI(n3), (c) 300K spins: Spins do not fit
inside the compute array for SACHI(n;) and SACHI(n3), (d)
IM spins: Spins do not fit inside the compute array for all
SACHI designs. A few noteworthy points are as follows: (i)
SACHI(n3) demonstrates the highest performance across all
workloads due to the parallel compute of all spin neighbors
and IC bits. (ii)) SACHI(n;) and SACHI(n3) share the same
CPI (as there is 1 neighbor/spin), except for 200K spins in
asset allocation where SACHI(n,) outperforms SACHI(n3) due
to SRAM write latency, as SACHI(n3) has a filled compute
array and needs rewriting for the next round of compute. (iii)
SACHI(n;,) shows moderate performance due to inefficient
load balancing among compute tiles with adjacent spins in
the same tile. SACHI(n},) resolves this issue by re-organizing
neighboring spins across different tiles. (iv) Traveling sales-
man benchmark has the highest CPI, primarily due to the
high connectivity of the underlying complete graph, affect-
ing SACHI(n;) and SACHI(n;) designs, whose performance
depends on the number of neighbors per spin. (v) For many
COPs, 1M spins are large enough, but for image segmentation,
2M pixels (HD video) and 8M pixels (UHD video) cases were
studied. They take 10° and 2#10'° CPI, respectively.
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5) Reconfigurability: Reconfigurability is shown by using
SACHI for different Jj; resolutions, configured based on COP.
Fig.18a-d shows the sensitivity of CPI for 1M spins and
J;j resolution from 2 to 8 bits. SACHI(n;) and SACHI(n3)
show no change in CPI, as the performance is independent
of J;j resolution. SACHI(n;,), SACHI(n;,) show performance
improvement with reduced resolution, as there are fewer in-
memory XNOR computes.

6) Time to solution/Solution quality: The time to solution
depends on the number of iterations needed to converge at
a solution, CPI, and the clock period. The solution conver-
gence is reached when the Hamiltonian energy (H) remains
unchanged, and simulated annealing cannot further reduce
the energy. Fig. 19a) illustrates the H change with iteration
number for 1M assets in the asset allocation COP. Simulated
annealing’s contribution to the overall execution time is less
than 1%, enhancing accuracy by 0.8%. It is implemented by
probabilistically flipping based on the Metropolis acceptance
criterion [35], comparing likelihood against a predefined value
within the annealer block (Sec.4). The number of iterations
across SACHI designs is the same, as they all arrive at the
same H at the end of each iteration. The execution/annealing
time is the highest for traveling salesman COP because of the
high degree of graph connectivity. Asset allocation requires
the fewest iterations, followed by molecular dynamics, owing
to limited graph connectivity (Fig.19b). To assess the accuracy
loss due to resolution reduction, the change in the number of
iterations needed to converge at a solution with J;; resolution
is observed. An 8-bit J;; resolution strikes the best balance
between reduced memory footprint requirement and loss in
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Fig. 17. Scalability - Cycles Per Hamiltonian iteration (I) with increasing
variable size for a) Asset allocation b) Image segmentation c¢) Traveling
salesman and d) Molecular dynamics COPs showing SACHI’s scalability
to different large variable count COPs
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accuracy. Reducing the resolution below 8-bit (e.g., 4-bit)
leads to a sharp increase in the number of iterations (Fig.19c).
For 32-bit resolution, the number of iterations is the lowest,
as accurate compute decreases the chances of being trapped in
locally optimal solutions and reduces the need for simulated
annealing iterations.Fig.19d) shows the solution accuracy for
lower J;; resolutions once the 32-bit J;; has converged at
the solution. While 4-bit reduces accuracy below 90%, 8-bit
retains accuracy with a smaller memory footprint than 32-bit.

VII. DISCUSSION

1) Impact on conventional workloads: SACHI does not
detrimentally affect other workloads. The L1 datapath is split
as (a) fill into L1 from L2 and (b) read from L1. The fill
datapath does not get impacted at all. The read from L1 cache
is not affected because (i) we do not make modifications to the
memory array for PIM (L1 caches in modern processors are
already 8T) (ii) although there is an additional 2:1 multiplexer
delay in the L1 controller/periphery to choose between normal
and compute mode of L1 cache, that can be easily retimed
and absorbed by synthesis tools. Furthermore, the additional
near-memory peripheral logic does not intervene in normal
operation as this is a separate datapath.

2) Impact of increased L1/L2 cache size: In our simula-
tions, we have assumed L1/L2 cache sizes of 10KB/160KB
because SRAM bit-cell parameters are designed in Virtuoso
for the same memory capacity. However, in modern CPUs,
the typical L1 cache ranges from 64KB to 256KB, while
L2 cache spans from 1MB to 8MB. By increasing the cache
size, SACHI’s performance can be further enhanced due to
several factors: (i) increased parallelism across neighbors (N)
and resolution (R) can be achieved (ii) higher resolution for
ICs improves solution time and accuracy. (iii) the larger L1
cache can better accommodate large-sized COPs such as the
traveling salesman problem. Experiments show that for the
traveling salesman problem with 1M spins, a 64KB/1MB
cache offers 5x/8x better performance/energy compared to the
10KB/160KB configuration. These improvements lead to 16x
performance/20x energy improvement for the 256KB/8MB
cache with 1M spins. It is noteworthy that performance does
not degrade for any benchmark. Though increasing cache
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size leads to a slight rise in power due to larger RBL/RWL
capacitance in larger arrays, this is outweighed by the higher
performance, resulting in overall energy gain.

3) Additional software details: We assume that the cache
operates in a single mode at a time, either compute/normal
mode. The mode switch can be achieved by programming a
special-purpose register. Additionally, ongoing work includes
(i) developing a CUDA-like library/API to program SACHI
as part of a complete program, (ii) extending the library to
support Ising formulation of COPs, similar to the OpenQASM
framework [5], and (iii) enabling the interruption of SACHI,
storing contexts, ASIDs, and minimal payload in TLBs to fa-
cilitate rapid page translation during a context switch between
modes (but these are outside the scope of this paper).

VIII. CONCLUSION

We presented SACHI, an iterative-compute based all-
digital Ising architecture that employs reuse-aware stationarity
schemes for Ising spins and interaction coefficients. It com-
bines elements of re-purposability, scalability, reconfigurabil-
ity, and reuse-aware data-stationary near-memory compute to
achieve 160x/90x better performance, and improved energy of
79x/75x with better reuse of 32x/16x for molecular dynam-
ics COP over BRIM/Ising-CIM, and 27x-34x over dedicated
optimized solvers for different COPs.
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