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Over the past two decades, significant strides have been made in stochastic problems such as revenue-optimal
auction design and prophet inequalities, traditionally modeled with n independent random variables to
represent the values of n items. However, in many applications, this assumption of independence often
diverges from reality. Given the strong impossibility results associated with arbitrary correlations, recent
research has pivoted towards exploring these problems under models of mild dependency.

In this work, we study the optimal auction and prophet inequalities problems within the framework of
the popular graphical model of Markov Random Fields (MRFs), a choice motivated by its ability to capture
complex dependency structures. Specifically, for the problem of selling n items to a single buyer to maximize
revenue, we show that max{SRev, BRev} is an O(A)-approximation to the optimal revenue for subadditive
buyers, where A is the maximum weighted degree of the underlying MRF. This is a generalization as well as
an exponential improvement on the exp(O(A))-approximation results of Cai and Oikonomou (EC 2021) for
additive and unit-demand buyers. We also obtain a similar exponential improvement for the prophet inequality
problem, which is asymptotically optimal as we show a matching upper bound.
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1 Introduction

In several stochastic optimization problems arising in economics, item-independence assumptions
are frequently used to avoid strong negative results that exist for general distributions. While such
independence assumptions are useful for theoretical guarantees, they are not necessarily realistic
in practice. In auction design, for instance, it is likely that similar goods have values which are
positively correlated. This inspires a different research direction: stochastic problems with bounded
correlation strength. Such investigation brings theoretical results closer to practice while avoiding
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the hardness of arbitrary distributions. In this paper, we study how mild dependencies affect the
hardness of two classic stochastic problems: revenue maximizing auction design and the prophet
inequality problem.

Auction Design. Consider the problem of selling a set [n] of n items to a single buyer, whose
valuation function v : 2" — R, is private but drawn from a known distribution. Our goal is to
design an auction/mechanism that maximizes the expected revenue. In the standard setting, we
assume that the item values v({i}) are independent for each i, and that v is additive (i.e., v(S) =
Yies v({i}) for all S) or unit-demand (i.e., v(S) = max;cs v({i}) for all S). However, even with this
independence assumption, the revenue-optimal auction is complex (i.e., non-deterministic [Manelli
and Vincent, 2006, Thanassoulis, 2004], non-monotone [Hart and Reny, 2015], and intractable
to compute [Daskalakis et al., 2014]). Due to this, one line of work on this problem has focused
on finding “simple” mechanisms that are approximately optimal. First, for a unit-demand buyer,
a simple mechanism that achieves a 4-approximation of optimal revenue was found by Chawla
et al. [2010] building on the work of Chawla et al. [2007]. The case of an additive buyer was later
resolved by the landmark work of Babaioff et al. [2020], who show that the greater of the revenue
from selling all items separately (SRev) and that of selling all items in a grand bundle (BRev) is a
6-approximation of the optimal revenue. Following this result, the maximum of SRev and BRev was
also shown to be a O (1) approximation for the more general class of subadditive buyer valuations
(i.e., 0(SUT) < 0(S) +9(T)) [Rubinstein and Weinberg, 2018].

However, all the above results still require item values to be independent. If we allow the buyer’s
value on the items to be arbitrarily correlated, then getting any approximation on the optimal
revenue becomes impossible for simple mechanisms [Hart and Nisan, 2019]. Nevertheless, the
dependent setting is not entirely hopeless, as this hardness only applies for arbitrarily strong
correlations. This leaves open the possibility for simple mechanisms to perform well when item
values only have mild dependencies.

Prophet Inequality. Prophet inequalities are another important class of problems where item-
independence is traditionally assumed. In this problem, we are presented with n items of unknown
values drawn from known distributions. We are allowed to sequentially probe the values of the
items in a given order, but after probing each item, we must immediately decide to either take the
item and end the game, or to discard the item and proceed to the next. Our goal is to maximize the
expected value of the item we ultimately take.

If we assume item values to be drawn independently, then simple threshold algorithms can
achieve % of the expected maximum item value [Kleinberg and Weinberg, 2012, Samuel-Cahn, 1984].
However, if we allow the item values to have arbitrary correlations, then there exist distributions
where no algorithm can obtain better than a % fraction of the maximum [Hill and Kertz, 1992,
Immorlica et al., 2020]. Again, this motivates us to examine the problem with mild correlations to
interpolate between the extremes.

Markov Random Fields. To study stochastic problems with correlations, we use Markov Random
Fields (MRFs) to model the joint distribution over item values. Such models have been successfully
employed in various fields, ranging from statistical physics to computer vision, to model high-
dimensional distributions (see, e.g., books Edwards [2012], Jensen and Nielsen [2007], Koller and
Friedman [2009], Pearl [2009]). They represent a collection of dependent random variables as
vertices in a hypergraph, where edge weights indicate dependencies among variables. For us, MRFs
are an appealing model of correlation because (1) they can capture arbitrary distributions, and
(2) they allow us to parameterize the strength of correlations through graph statistics like the
maximum weighted degree A. For example, when A = 0, one recovers the independent-items setting,
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and when A — +oo, they can capture arbitrary distributions. By examining MRF correlations with
0 < A < oo, we can smoothly interpolate between these two extremes.

The study of stochastic problems with MRF dependencies was initiated by Cai and Oikonomou
[2021]. They gave an ¢°™) -approximate algorithm for the prophet inequality problem, and a simple
%™ _approximation for the revenue maximization problem with a single additive or unit-demand
buyer. Since poly(A) lower bounds on the approximation ratio can be shown for both the problems,
this leaves open whether the exponential dependence on A is necessary.

1.1 Our Results and Techniques

Auction Design. In the problem of selling n items to a single additive buyer with MRF valuations,
we seek to determine the best approximation of the optimal revenue achievable with simple
mechanisms. The mechanisms we focus on are separate item pricing (SRev) and grand-bundle
pricing schemes (BRev), which together achieve constant approximation in many of the previously
mentioned item-independent settings. Additionally, Cai and Oikonomou [2021] showed that under
MRF dependencies, max{SRev, BRev} achieves an e®(*)-approximation of the optimal revenue.

We improve this factor exponentially to O (A), leaving only a polynomial gap to the lower bound
of Q@ (A7) from Cai and Oikonomou [2021].

Theorem 1.1. For a single additive buyer with valuations given by an MRF with maximum weighted
degree A, the revenue of the optimal auction is at most (44A + 12) - SRev + 70(A + 1) - BRev.

Our techniques also yield results for buyers with valuations beyond additive. For a single unit-
demand buyer, we find that SRev alone is an O (A) approximation. Again, this improves on the
¢°(®) bound from Cai and Oikonomou [2021].

Theorem 1.2. For a single unit-demand buyer with valuations given by an MRF with maximum
weighted degree A, the revenue of the optimal auction is at most (44A + 14) - SRev.

Finally, we generalize Theorem 1.1 to the setting of a single subadditive buyer, i.e., a buyer whose
valuation function v satisfies v(SUT) < 0(S) +0(T) for all subsets S, T C [n]. This setting captures
the XOS valuations studied by Cai and Oikonomou [2021], who show that max{SRev, BRev}

achieves (eO(A) + ‘/Lnfy)—approximation. Here, y is a factor which depends on the Glauber dynamics

of the MRF!. Our results eliminate the dependence on y and n, improve the A dependency to
O (A), and extend beyond XOS to the larger class of subadditive valuations. We note that this
approximation ratio mirrors the O (1) factor achievable in the independent-item setting for a
subadditive buyer [Rubinstein and Weinberg, 2018].

Theorem 1.3. For a single subadditive buyer with valuations given by an MRF with maximum
weighted degree A, the revenue of the optimal auction is at most (348A + 110) - BRev + 10 - SRev.

High-level Technique. To get the above results, we adapt the approach of Babaioff et al. [2020] for
the independent-item setting. This involves decomposing the item set into a “core” set containing
low-value items and a “tail” set containing high-value items. To apply this method for dependent
items, we need two new key ingredients.

First, we develop a new “approximate marginal mechanism” lemma (Lemma 2.5) for correlated
items. This allows us to partition the item set [n] into a core set C and tail set T, and upper bound
the optimal revenue of selling items in [n] by the total value of C and the optimal revenue of
selling T. The crucial difference between Lemma 2.5 and a similar looking lemma in Rubinstein and

ISpecifically, y is the spectral gap of the Glauber dynamics — for more information see [Cai and Oikonomou, 2021]
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Weinberg [2018] is that our bound uses the unconditional revenue from selling T, but the latter
lemma would instead use the (larger) revenue from selling T conditional on the valuation function
on C. For MRF valuations, this conditioning may lose a factor of 22 5o avoiding it is necessary
to get bounds which are sub-exponential in A .

Second, to handle the MRF correlations in our core and tail bounds, we employ an exponential
bucketing technique. The key idea is that, although item values are dependent, many distributional
statistics on one item (e.g., expectation, variance, CDF, etc.) can only change by a factor of e0d)
after conditioning on any event regarding the other items. Intuitively, this allow us to guess the
“scale” of the problem up to a constant factor by guessing which of the log(e®®)) = O (A) many
buckets we fall into. This bucketing is where we lose the O (A) factor in our approximation ratios.

Prophet Inequality. For the prophet inequality problem with MRF dependencies, the prior work
of Cai and Oikonomou [2021] gives an ¢®(®) -competitive algorithm. We improve this by designing
a O (A)-competitive algorithm, and also provide an Q (A) lower bound.

Theorem 1.4. For any MRF with maximum weighted degree A, there exists a m—competitive
prophet inequality algorithm. Moreover, there exists an MRF instance for which no online algorithm is
better than ALH -competitive.

The proof of this result uses similar bucketing techniques as in the above auction design problems.
We use a single threshold algorithm where our threshold is randomly chosen from one of ® (A)
geometrically increasing levels (buckets). As long as the largest item value falls in to one of the
“buckets” between these levels, we obtain a constant fraction of the maximum value with probability
ﬁ. In addition, we can show that if the maximum is smaller than the smallest level or larger than
the largest level, then we only lose a constant factor of the expected maximum; in the former case
because the contribution to the expected maximum is very small and in the latter case because
the largest level is large enough that getting more than one realization above the largest level, and
thus missing out on the maximum, has a very small probability of occurring.

We also show in Appendix A.3 that the popular technique of designing prophet inequalities for
independent distributions via “online contention resolution schemes” (OCRS) cannot be used to
design O (A)-competitive algorithms for MRF dependencies. Specifically, in Theorem 1.5 we show
that any approach via OCRS loses an (%) factor in the competitive ratio.

Theorem 1.5. For every MREF, there exists a ( ﬁ)—selectable OCRS. Furthermore, for each A > 0,
there exists an MRF for which there is no a-selectable OCRS for o > 4e™".

1.2 Further Related Work

There is a long line of work on both revenue maximizing auction design and prophet inequalities
for independent distributions. We refer the readers to the books and surveys [Correa et al., 2019,
Hartline, 2013, Lucier, 2017, Roughgarden, 2016]. Below we discuss works that study these problems
under correlations.

Linear Correlations. A natural model for dependencies is that of linear correlations, where each
item value is a linear combination over a common set of independent variables. This model has
received attention for both auction design [Bateni et al., 2015, Chawla et al., 2010] and the prophet
inequality problem [Immorlica et al., 2020]. In particular, for the special case of the base-value
model, in which v({i}) = X + X; for independent variables Xy, X3, . . ., Xj,, constant approximations
are known for both problems. However, it is worth noting that in contrast with MRFs, linear
correlations are unable to capture arbitrary joint distributions.
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Pairwise Independence. A second model for relaxing item-independence is to only assume pair-
wise independence between item values. Under this weaker notion of independence, Caragiannis
et al. [2022] showed that constant factor approximations still exist for single-item prophet inequali-
ties and certain revenue maximization problems. Recently, Dughmi et al. [2024] extended some
of these results to multiple-item settings. They also observed a gap between prophet inequalities
and OCRS for pairwise-independent distributions. However, similar to linear correlations, pairwise
independence is unable to capture arbitrary joint distributions.

Arbitrary Correlations. While the problem of selling n items to one buyer with arbitrary corre-
lations suffers from the aforementioned impossibility results, the related problem of selling one
item to n buyers is more tractable. Even under arbitrary correlations, Ronen [2001] showed that a
“lookahead” auction obtains a constant fraction of the optimal revenue.

2 Model and a New Marginal Mechanism

In this section, we formally define Markov Random Fields and the Optimal Auction Design problem,
and then prove a new approximate marginal mechanism for correlated distributions, which will
play a central role in all our revenue maximization results.

2.1 Markov Random Field Model for Buyer Valuations
We begin with a formal definition of Markov Random Fields.

Definition 2.1. A Markov Random Field (MRF) consists of a tuple
F = ({Qi}icin)s E {Vitiern), {Velecr)

where
e Q=0 X---XxQ, is the support of the distribution.
e E C 2l is the edge set of a hypergraph.
e J; : Q; — R is a potential function on coordinate i for each i € [n].
® . : [lice Qi — Ris a potential function on hyperedge e for each e € E.

A sample from the MRF is a random vector t = (fy, ..., t,) supported on Q = Q; X --- X Q,, with a
probability function given by

Prit=s]ocexp| > yils)+ ) ve(se) |-

i€e[n] ecE

In this definition, the /. functions impose dependencies between the ¢; values. If all ¢/, functions
are identically 0, then t has a product distribution. Thus, we can bound the strength of dependencies
in t by the magnitude of the contributions from i/, terms. A standard way to quantify this dependency
is the maximum weighted degree of the MRF.

Definition 2.2. The maximum weighted degree A(F) of an MRF is given by
A(F) = max max | Z Ve (se)
edi

ie[n] seQ

When the MRF is clear from context, we will simply write A instead of A(F).

A crucial property of the parameter A is that it gives us a way to bound the change in the
probability of some event involving t; after conditioning on some event over the remaining variables
t_;. This is formally given by the following lemma from Cai and Oikonomou [2021].
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Lemma 2.3 ([Cai and Oikonomou, 2021], Lemma 2). For an MRF sample t and index i € [n], we
have for any E; € Q; andE_; € Q_;,

—4A Pr(ti eE;Nt_; € E_,') < e4A
- Pr(ti € El) . Pr(t_i (S E—i) N

Next, given an MRF, we describe how it naturally implies a model for buyer valuations.

Definition 2.4 (Buyer Valuation Distribution D). Given an MRF and a monotone set function
g: 22V 5 R (we assume Q; to be disjoint), the buyer valuation o : 21" — R, is obtained by
first sampling a (private) type vector t € Q; X - - - X Q,, from the MRF and then for a set S of items,

v(S) :==g({t; : i € S}).
We let D denote the distribution of buyer valuation v.

Thus, v is drawn implicitly from a distribution over monotone valuation functions. We use the
notation v(i) = v({i}) for i € [n].
We will focus on three special cases of buyer’s valuation:

o Additive: if v(S) = 3 ;s v(i) for all sets S C [n].
o Unit-demand: if v(S) = max;egs v(i) for all sets S C [n].
e Subadditive: if v(A U B) < v(A) +v(B) for all sets A, B C [n].

2.2 Auction Design Model

We study the problem of designing a mechanism to sell a set [n] of n items to a single buyer. The
buyer’s valuation is given by v, where v(S) denotes the value for item set S C [n], that is sampled
from a distribution D over monotone valuation functions known to the seller.

From the classic Taxation Principle [Guesnerie and Oddou, 1981, Hammond et al., 1979], any
single buyer mechanism can be represented by a menu M = {(Iy, px) : k € [|M]]} of options. Each
menu option (I, px) consists of a distribution I} over subsets of [n] offered at a price px € R,. If
the buyer chooses menu option k, they pay price pi and receive an item set S sampled from I.. We
assume that, given menu M, a buyer with valuation v always chooses the option k* that maximizes
their expect utility, i.e.,

k* = arg max { E [0(S)] —pk} .
kelm|] \S~Tk

We will therefore directly refer to a mechanism M as a menu/list of such pairs (which implicitly

includes the pair (0, 0)). The goal of the seller is to design a menu which maximizes the expected

revenue Ey-p [pi+].

We use the notation Rev(D) to denote the maximum possible revenue from any menu, where
the buyers valuation function is drawn from distribution D. It will also be convenient for us to use
the notation Rev;(D) := maxp>o {p - Pr [0({i}) = p]} to denote the optimal revenue of selling the
single item i, and to use Val(D) = E,-p[v([n])] to denote the expected buyer’s valuation on all
items.

Additionally, we define SRev(D) to be the optimal revenue from selling each item individually.
In other words, SRev(D) is the optimal revenue for a menu of the form {(S, };cspi) : S C [n]} for
some collection of prices py, ..., pn. Notice that if v is additive, then SRev(D) = };c(,) Revi(D),
but this is not necessarily true otherwise. We also define BRev(D) = max,so {p - Pr [v([n]) = p]}
to be the maximum revenue obtainable from selling the grand bundle.
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2.3 Approximate Marginal Mechanism for Subadditive Valuations

The following approximate marginal mechanism lemma for correlated distributions will be very
useful in the analysis of our mechanisms. It provides an upper bound to the optimal revenue via
the revenue and welfare of two subsets of items. We will apply it after partitioning the items into a
“core” and a “tail”.

Lemma 2.5. Suppose we have two disjoint sets of items A, B, and we are selling AU B to a single buyer
with a random monotone subadditive valuation v : 24V — R, drawn from a known distribution D.

Then, the optimal revenue is
Rev(D) < 2 (Val(D*) +Rev(DF)),
where DS denotes the distribution of v restricted to a set S of items.

Proor. Consider an optimal menu M = {(Iy, pr) : k € [|[M]]} for AU B. We construct a menu
k
My = { (K8 B) ke (an},

for B by restricting each allocation to B, and discounting prices by a factor of 2. Here, F]f is the
distribution of S N B, where S ~ TI}.

For a fixed realization of v, let k* = arg max; {Eswrk [0(S)] - pk} be the menu option the buyer
would choose from M and kj, = arg max, (Es~r. [0(SN B)] - %) be the menu option the buyer
would choose from Mp, respectively. Let S* ~ I;- and Sg ~ Fk; Then, from the optimality of k*
and k; and monotonicity of v, we have

Elo($)] - pr- > Elo(Si)] - i

> (E[o(s*mB)]—fE _ P
S* 2

>
2

E [0(S5 N B)] -

B

Pk | Pk
2

Rearranging this inequality gives

PE B [o(s) —o(s* N B)] + L2
2 S* 2

By the subadditivity of v and S* € A U B, we know that v(5*) — 0(S* N B) < v(S*NA) <

v(A). Hence, taking expectation over v, and using Val (D?) = E[v(A)], Rev(D) = Ey[pk+], and
Rev(D?) > E, [p;—B], we have

% Rev(D) < Val(D?) + Rev(D"). a]

Now that we have shown the approximate marginal mechanism lemma, we can prove the
following crude approximation bound for Rev(D), which will be very useful in all our results. Given
Lemma 2.5, its proof is not that difficult and for this reason it has been moved to Appendix A.1.

Lemma 2.6. For a single subadditive buyer with MRF valuations v(S) = g({t; : i € S}), we have

Rev(D) < 2(p + 1) - Z Rev;(D) where p = max i(;&—lzt{jg
ic[n] JSEE[S] i#j 918

Notice that for subadditive buyer valuations p < n — 1 and for unit-demand buyers p = 1.
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3 Additive Buyer Mechanisms

For an additive buyer with MRF valuations, we assume the buyer samples a private type vector
t=(t,...,t,) from an MRF. The buyer’s valuation v : 2!"] — R, is then given by

0($) = ) g(t),
ieS
where we employ the notation g(t;) = g({t;}).
3.1 SRevis O(logn + A)-approximate
We will show that SRev already gets a decent approximation to the optimal revenue.
Theorem 3.1. For selling n items to a single additive buyer with MRF valuations drawn from

distribution D, we have
Rev(D) < (12 + 16A + 2Inn) - SRev(D).

ProoF or THEOREM 3.1. For a given type vector t = (f1, ..., t,), we first partition the set of items
into the core C and the tail T, where the tail T C [n] is

T = {ie[n]:g(t;) > e* SRev(D)}

and the core is C = [n] \ T. Intuitively, the tail represents the set of items that take exceptionally
large values compared to SRev.

Additionally, since we would like to be able to condition on the tail set, we use D4 for A C [n]
to denote the conditional distribution of v on the event T = A. We also define the core and tail
components, o€ and o7, of the the valuation v as

o($) =0(SNT)= > g(t) - Lier  and  0(8) = 0(SNC) = > glt) - Lyec.
i€S i€S
We let DT denote the distribution of v7, and D£ to denote its distribution conditional on T = A.
We similarly define D¢ and Dg as the distribution of v and the distribution of v© conditional on
T = A, respectively.
Notice that from the approximate marginal mechanism Lemma 2.5, we can bound

Rev(D) < Z Pr[T = A] - Rev(Dy)
AC[n]

<2 ) Pr(T=A]- (Val(D) +Rev (D}))
ACTn)

=2Va1(DC)+2 > Pr(r=4] ~Rev(D£). 1)
Ac[n]
We seek to bound both the core and tail contributions in terms of SRev(D).
Core Contribution. First, we bound the core contribution.

Claim 3.2. The core contribution is

Val (DC) < (1+8A +1In(n)) - SRev(D).
Proor or CraiM 3.2. To bound the core contribution Val (DC), notice that

Val (DC) = Z E[g(t) - Liec] -
i€[n]
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We will bound each term of this sum separately. Let r = SRev(D) and r; = Rev;(D) for simplicity.
Notice that

resh

Elg(t) - Liec] = ‘/0 Prg(t;) - ljec = r]dr < ‘/0 Prg(t;) > 7] dr.

Notice that since r; = sup,., 7 - Pr [g(t;) > 7], we have Pr [g(t;) > 7] < min {1, r—T‘} forall T > 0.
Thus,

8A

Eg(t;) - Licc] < ri+[re LI PR (1+1n (reSA) —1n(r,-)) = ri(1+8A +1In(r/r)).

T
Summing over all i gives
Val (DC) < Z[:] ri(1+8A +1n(r/ry)) = r(l +8A - Z["] % ln(ri/r)) <r(1+8A+1In(n),
1€(n 1€|n

where the last inequality follows by noticing that — ;¢ 5 In(r;/r) corresponds to the entropy
of the distribution that picks each item i independently with probability **, which is maximized
when all terms are equal, and thus — ¥ ;c(,,) = In(r;/r) < In(n). O

Tail Contribution. Next, we bound the contribution of the tail. Because the tail is small in
expectation, most of the revenue should be generated when only one item appears in the tail.
This contribution is easily bounded by SRev. When multiple items appear, we can use the coarse
bound on Rev in terms of SRev given by Lemma 2.6 and exploit that the expected size E[|T]] is
exponentially small in A. Formally, we prove the following claim.

Claim 3.3. The tail contribution is
> Pr(I'=A]-Rev (D,{) < 5-SRev (DT) .
AcC[n]
Proor. First, we split the L.H.S. into two cases:
> Pr(T=A] Rev (Dg) < ) Pr[T=A] Rev (Dﬁ) + 3 Pr[T = {i}] -Rev (D{Ti}) .

AC[n] ij[nz] i€[n]
>

Clearly, we have Pr [T = {i}] - Rev (D{Tl.}) < Rev; (DT), so the latter summation is bounded by

Y.iRev (DT) = SRev (DT). Thus, we just need to focus on the contribution of the former summation.
From Lemma 2.6, we have

T an T 4n 2 : T 8A 2 : Rev; (D')
Rev (DA) < 2|A|€ - SRev (DA) = 2|A|€ ReV,’ (DA) < 2|A|€ m
Il
i€cA i€cA

Here, the last step comes from Lemma 2.3 as follows. Suppose i € A, and let p be the optimal price
for single item mechanism Rev; (Dg). We have

Rev;(D”) > p - Pr[g(t;) > p]
>e . p.Prigt) 2p|T\{i}=A\{i}]
=e . p-Prig(t) 2 p|T=A]-Pr[T=A|T\{i} =A\ {i}]
Pr [T = A]
Pr(T\{i}=A\{i}]’

= -Revi(Dz;) .
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Now, substituting this bound back into our sum over |A| > 2, we have

> Pr(r=4] -Rev(D}X) <2¢ 3 N4l Pr[T = A Rev, (Dj)

AC[n] AC[n] icA
|A]>2 |Al=2
26 > STIAl-Pr[T\ {i} = A\ {i}] Rev; (DT)
Tiigg icA
ey Rev,( ) DT IAIPrIT\ {i} = A\ {i}]
icln] Al
80 Z Rev; (DT) E(IT\ A} - Tyry iy 21]
i€[n]
26" " Rev; (D7) -E[2T\ {i}]
i€[n]
488 Z Rev; (DT) -E[IT]].
i€[n]

To bound E[|T]], notice that Rev;(D) > Pr[i € T] - e¥*SRev(D), since if i € T, its contribution
to SRev(D) is at least the lowest value in the tail, and thus

_ Revl(D) _
E[|T]] Zpr[l eT] <e SAZ Rev (D) - e 8,

Therefore, we have
Z Pr [T = A] - Rev (Dz) < 4-SRev (DT) ,

AC[n]

|[A]>2
so altogether we have 4, Pr [T = A] - Rev (D}) < 5- SRev (D7). ]
Combining Claim 3.3 and Claim 3.2 with (1) yields Theorem 3.1. O

3.2 max{SRev,BRev} is O(A)-approximate

To get from O (logn + A) approximation in Theorem 3.1 to O (A) approximation in Theorem 1.1,
the following Lemma 3.4 refines our core contribution bound in Claim 3.2 in terms of BRev to save
the log n factor. Together with tail contribution in Claim 3.3, this gives the proof of Theorem 1.1.

Lemma 3.4. The core contribution is

Val (DC) < (22A +1) - SRev(D) +35 (A + 1) - BRev (D) .

Proor. To get a refined bound on the core contribution, we will further split up the core. Let
Cs={ieC:9(t;) <r}
be the small elements of the core, and let
C,r=C\Cs = {i eC:r<g(t) < regA}

be the large elements. We define DS and D as the restrictions of D to C, and Cs, respectively.
Since Cs and C; partition C, we have

Val (DC ) = Val (Dcs) +Val (DC’) . @)

791



Improved Mechanisms and Prophet Inequalities for Graphical Dependencie&C 24, July 8-11, 2024, New Haven, CT, USA

We bound each of these separately.

Claim 3.5.
Val (DC") < 22A - SRev(D).

Proor. Consider the single item pricing strategy of picking a random z € {0,1,...,8A — 1}, and
selling item i for price re®. If i € Cy, then with probability 8%, item i sells for at least a % fraction of
its value. Therefore, we have

1
Rev;(D) > oA ‘B [g(ti) . ]liec,] )

Summing over i gives us that SRev(D) > g1z Val (D) > z1=Val (D). O

Claim 3.6.
Val (Dcs) < SRev(D) + 35(A + 1) - BRev (Dcs) .

ProoF. Let yi == Val (D) = E[v(Cs)]. If p < r we are done. Hence, assume that y > r.

Consider the following strategy for selling the grand bundle on C;. Pickarandomz € {-1,0,1,...,K}
and offer the bundle at price e?y, for a K to be chosen later. Notice that if 0(C;) € [e‘ly, eKy],
then this strategy obtains at least a é fraction of the value of v(Cs) with probability at least ﬁ
Therefore, we find

c k \*
< p-et+e(K +2)BRev (D ) +E [(v(Cs) _e /1) ] .
We just need to bound the contribution of the last term. From Lemma 7 of [Cai and Oikonomou,
2021], we have
Var (0(Cy)) < 2r + (e4A — 1)t (3)

Therefore,

0o

E [(U(CS) - er)+] _ /e:; Pr(v(Cs) = t]dr < </(eK—1)p Pr[o(Cs) —pu > 7]dr.

Applying Chebyshev’s inequality and bounding the variance by (3) gives

R e T

2 ESny
Next, we set K = 4A + 2. Together with the fact that y > r, we have

x \* e +1 21
E[(U(Cs)—e /1)] < e4A+2—1'H£e2—1‘

Altogether with our previous bounds, we finally obtain

1 2
(1——— - )yS e(4A+4)~BRev(DCs)
e e —1

4N +4
PGS (Dcs) <35(A+1) - BRev (Dcs)
(1 - % - ezz—l)
so Val (D) < SRev(D) +35(A + 1) - BRev (D) as desired. m
Combining the last two claims with (2) completes the proof of the lemma. O

4 Beyond Additive Valuations

In this section we study unit-demand and subadditive buyers.
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4.1 Unit-Demand Buyer Mechanisms

Recall, in the unit demand setting, the buyer samples a private MRF type vector t, and then the
valuation for a subset S of items is

v(S) = max g(t;),
ieS
where we employ the notation g(t;) = g({t;}).

Proor oF THEOREM 1.2. Using the approximate marginal mechanism Lemma 2.5, we may again
use a core-tail decomposition. We define the tail by

T = {i € [n]:g(t;) > esAHSReV(D)},
and set the core C = [n] \ T. By applying Lemma 2.5, we have
Rev(D) = 2Val (DC) +2 ) Pr[T=A] Rev (DAT) . 4)
AcC|[n]

Unlike in the additive setting, the value of the core is already bounded by O (A) - SRev(D). This
allows us to simply follow the proof structure of Theorem 3.1 without losing an extra log n term.

Claim 4.1. For a unit demand buyer,
Val (DC) < (22A + 4) - SRev(D).

Proor. Consider the following pricing strategy. Pick z € {0, 1,...,8A} uniformly at random,
and sell every item for price e - SRev(D). If max;ec g(t;) = SRev(D), then this strategy obtains
0(C)

revenue at least 2~ with probability at least =—. Therefore, we have
e 8A+1

E [0:(C)] < SRev(v;) + e(8A + 1)SRev(v;) < (22A + 4) SRev(vy). O
Claim 4.2. For a unit demand buyer,
> Pr(T'=A]Rev (Dg) < 3-SRev (DT) .
Ac[n]
ProoF oF Cramm 4.2. Notice that in the unit demand setting, we no longer have SRev(D) =
> i Rev;(D), as the buyer will not purchase more than one item. To get around this, we will show

that an approximate version of this equality holds for SRev (D), as it is rare that more than one
item appears in the tail. Our goal will be to show

SRev (DT) > Z Rev; (DT) > Z Pr [T = A] Rev (D[T‘) ,
i AC[n]

where > means that the inequality holds up to scaling by a constant factor.
For the latter inequality, we again use the decomposition

> Pr[I'=A]Rev (Dg) = > Pr(T={i}] - Rev (D{Ti}) + ) Pr[T=A4] Rev (Dj) .
AC[n] i€[n] AcC[n]

|Al>2
First, we clearly have Pr [T = {i}] - Rev (D{Tl.}) < Rev; (DT), so we only need to bound the contri-
bution of the second summation. For this, we use Lemma 2.6 for unit-demand buyers to get

> Pr(T=4] Rev (DA?) < 3 Pr[T=A]- ) 4¢*Rev; (Dﬁ)
AC[n] i€A

AC[n] c
|A|>2 |A|>2
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=4 3 N Pr(T = 4] Rey, (Dg)

ie[n] Asi
[A]>2

<4e 3 3 Pr{T\{i} =A\ {i}] - Rev; (DT)

ie[n] A>i
|A]=2

=4 3 Pr(IT\ {i}| = 1] -Rev; (DT)
i€[n]
<4e®® . Pr|T| = 1] - Z Rev; (DT) )
i€[n]
By construction, we have Pr [|T| > 1] < e~ ~!. Thus, we get
4
Z Pr [T = A] - Rev (Dg) < - ZRevi (DT) .
e &
AC[n] i
Now, we just need the bound SRev (D) > 3; Rev; (D). Consider the mechanism of placing the
optimal single-item price

pi = argmax p-Pr[g(t;) > p]
p>e®M1SRev (D)

on each item i. This separate price mechanism generates revenue

Zpi -Pr[g(t;) > pi] - Pr[i chosen | g(t;) = pi] = ZReVi(DT) - Pr[ichosen | g(t;) > pi] .

However, we have
Pr [i chosen | g(t;) = pi] = 1-Pr[|T| = 2| g(t;) = pi] = 1—-e** Pr[|T\ {i}| = 1] > 1 - *".
Therefore, we have SRev (D) > (1 - e™**"1) ¥, Rev; (D7), and we obtain

4
> Pr[I'=A]Rev (D}) <— % _  SRev (DT) < 3.SRev (DT) .
= e(1—e81)
Ccn]
[m]
Using the last two claims with (4) completes the proof of Theorem 1.2. O

4.2 Subadditive Buyer Mechanisms

For the case of a subadditive buyer, since SRev(D) may be difficult to analyze directly, we will use
the proxy SRev’ (D), which we define as

SRev’(D) = ( ma)iekn Z E [pl . :U'U(i)Zpi . l_[ ]lU(j)<Pj]'
ProePn) €55 T J#i

In other words, SRev’ (D) is the maximum expected revenue from a separate pricing mechanism
where we are only allowed to collect revenue when the buyer purchases exactly one item. This
is the same proxy used by Rubinstein and Weinberg [2018] in their analysis for a subadditive
buyer with independent items. Clearly, SRev’ (D) < SRev(D) and SRev’ (D) < }’; Rev;(D). Hence,
Theorem 1.3 is an immediate corollary of the following lemma.

Lemma 4.3. For a single subadditive buyer, we have

Rev(t) < (348A +110) - BRev(t) + 10 - SRev’ ().
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We will let t > 0 denote the cut-off between the tail and core, which we will define momentarily:
T:={i€[n]:v(i) =t} C:=[n]\T.

For each i, let q; := Pr(i € T). We choose t such that }};c(,) i = e 84=1 Notice that this gives the
bound t < e¥*2SRev’ (D) by

SRev/(D) > > t-Pr(v(i) > t & 0(j) <t, ¥j#1)
:Zt-Pr(v(i)zt)-Pr[v(j)<t, Vi#ilo(i)>t]

> 3t Pr(o(i) 2 t)~(1—Pr(3j¢i, 0(j) =t | o(i) = t))

e e )

i J

\

te—SA—Z.

\%

Lemma 4.4. We have
Z Pr(T = A) - Rev(D}) < 4 - SRev/(D).
AC|[n]

PRrOOF. Again, we separately consider when |T| = 1 and when |T| > 2.

> Pr(T=4A] Rev (DA?) = ) Pr(T=4A] Rev (Di) + 3 Pr[T'={i}] -Revyy (D{Ti})
AcC[n] [A]>2 ie[n]
< 3 Pr[T'=A]Rev (Dg) + SRev’ (DT) .
[A]>2
For the terms with |A| > 2, we can use an argument similar to that of Claim 3.3 for the additive
setting. Specifically, we let p be the optimal price in the mechanism for Rev; (Dg), and we have
Rev;(DT) > p - Pr[o(i) = p]
> e p Pr(o(i) 2 p | T\ {i} = A\ {i})
e p Pr(o(i) 2 p | T=A)-Pr(T=A|T\{i} =A\{i})
Pr(T = A)
PrT\ {i} =A\{i}
Thus, we see that Pr[T = A] - Revi(Dg) <e™Pr [T\ {i} = A\ {i}] - Rev;(D7). Using this and

Lemma 2.6 we have

> Pr(T=A] Rev (D,{) <2e™. Y Pr(T=A]-|A]- ) Revi(D})
AcC|[n] AcC[n] i€A
|A|>2 |A|>2

<2¢- 3 SVA-Pr [T\ (i) = A\ {i}] - Revi(D")
AC[n] i€eA
|A|>2

= ¢80 . Z Rev;(DT) - Z |A]-Pr[T\ {i} = A\ {i}].

i€[n]

= e_4ARevi(D£) .

Asi
|A]=2

795



Improved Mechanisms and Prophet Inequalities for Graphical Dependencie&C 24, July 8-11, 2024, New Haven, CT, USA

Now, notice that for any i € [n], we have

DUIALPr T\ (i} = A\ (i} = E[(T\ {0} + 1D - Lyny=1] < E[2-IT\{}] < 2E[IT]].
Iz?laziz
Thus, we ultimately have
Z Pr[T = A] - Rev (Dﬁ) < 4¢% - E[|T]] - Z Rev;(D7) < 2 Z Rev; (D7),
AcC[n] ie[n] i€[n]

[A]>2

where the last inequality comes from the fact that E[|T|] < e ®*~'. Finally, we can argue that
Y.:Rev; (DT) < SRev’ (DT) similarly to our argument in the unit demand setting. Letting p; be the
optimal price of i in the mechanism for Rev; (D), we have

SRev’ (D7) = 3" pi-Prlo) = pil - Pr [V # i 0(j) < p; [(0) > pi]

> Zpi “Prlo(i) = pi] - (1 = > Prfo() = py () pi])

J#i

> Y pi-Prio() = pil - (1= ™ B[ITI) = ) Rev, (D7) - (1-77)

1
> E'ZREVI' (DT) [m}

Lemma 4.5. We have
Val(D€) < (174A + 55) - BRev(DC) + SRev’ (D).

PrROOF. We may assume Val(D®) > SRev’(D), or else we are done. Let y = Val(D®). We use the
following pricing strategy for the grand bundle: select z € {-1,0, 1,..., K} uniformly at random,
where K = O(A) is chosen later, and sell the grand bundle at price pe?. By standard analysis, we
see that this obtains revenue at least eiK E []lv(C)z pe-1 - min{o(C), pek }] Additionally, we have the
bound

p < pet + B [Lycyzpet - min{o(C), pe®}| + B(0(C) - pe®)*, (5)

= (1= e < B [Lyoyspet - minfo(C), pe¥}] +E(0(C) — e, ©)

Hence, we only need to show that E(v(C) — peX)* < ¢ - i for some small constant ¢ to get our
desired result. To do this, we seek to use a concentration bound for subadditive functions over

independent items.
First, we will reduce to the independent case. Let t"d € [Tic[n)(Q: U {0}) be a random vector

with independent coordinates with marginal distributions on each tl@nd given as follows.
Pr(t}nd = a)i) = ll’lfg‘2 Pr(ti = wj | t_; = a)_i) Vi € [n], w; € Ql‘,
w_i€Q_;

Pr(tli.nd =0)=1- Z Pr(t}ml = w).

weQ;

Here, 0 is a dummy element that we introduce, for which we define g(0) = 0, i.e. so that

g(SU{0}) =¢g(S) forany S C Q.
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Claim 4.6. For a subadditive monotone function g : Q — Ry, let g(t) := g({t; : i € [n]}). Then, for
eacht > 0,

Pr(g(t) > 1) < e - Pr(g(t"™) > =),

ProoF. Let S be a random subset of [n] in which each i is included independently with probability
e *A. We use the notation g(ts) = g({t; : i € S}).

We claim that g(tind) stochastically dominates g(ts), in the sense that we can define a coupling
of t" with t and S such that i € S only when tl@nd = t;. This ensures that g(t™%) > g(ts) under the
coupling, and hence the cumulative distribution function of g(t™¢) dominates that of g(t).

The coupling we use is as follows. For i = 1,.. ., n, we iteratively sample t; from Q;, conditional
on our previous observation t, ..., tj_; = ©1,...,w;—1, and then independently decide if i € S. In
the case i € S, we choose tl@nd = t;. In the remaining case i ¢ S, we sample tl@nd with appropriate
probabilities to have the correct marginal probabilities Pr(t}“dl = w;). Note that this is possible since
Lemma 1 of [Cai and Oikonomou, 2021] gives us

Pr(tl@nd =w) > e P Pr(ti=w; | tei=we) =Pr(i € Sand t; = w; | te; = w<;).

Using this property of t"4, lets consider a uniform random map? ¢ : [n] — [e**]. Notice that
for each k, the set 07! (k) has the distribution of the random set S. Thus, for any 7 > 0 we have

Pr(g(t) > 7) < Pr(3k, g(te-1(x)) = e A7)
e Pr(g(ts) > e **7)

<
< e Pr(g(t™) > e717). O

Using this reduction, we can use the subadditive concentration theorem for product distributions
to get an approximate concentration result for MRFs. From Theorem 3.10 of [Rubinstein and
Weinberg, 2018], we have that if a is the median of g(ti“d) and L is the Lipschitz constant of g, then
Pr(g(t™) > 3a+17) < 4-277/L Letting y = E[g(t)], we have a < 2E[¢(t"®)] < 2u. Combined
with the concentration result above, this tells us

Prig(t™) > 6p+17] < 4.277/F,

Hence, for any 7y > 0, we compute

BI(g(t) - 70)'] = / Pr(g(t) > )dr

To

< e4A/ -Pr(g(t™) > e~*A1)dr

70

= eSA/ Pr(g(t™) > 7)dr
e

—aag,
(o)
< 468A/ 27"t dr
e~ ry—6p
40 — 6y

4L e
= — 8A —In(2) -
lnzeXp( n(2) L

2We assume that e*” is in integer for simplicity, as we can round up A to the nearest value for which this holds to obtain
the same asymptotic bounds.
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Now, to apply this to our setting with v(C) = g(t¢), notice that g is t-Lipschitz on the core
elements. Hence, setting 7y = e!°**°s and recalling t < e¥*? - SRev’ (D) < €32y, we have

612A+5 -6
e8A+2

468A+2

E [g(tc) — ")t < . exp (SA —1In(2) -

In2

4¢? 12043 _ 6
e
<y X (16A 71n(2) 4A)
= c—— - €X - n e
H In2 P
- 4e? 1
=H In2 128
<t
3

Thus, taking K = 16A + 5 and substituting the above into (6), we obtain

1 Jii 1
—E|1 S > > .
e(16A+5)E[ werzpet| 2 de (16A+5) — 174A +55

BRev(DC) > 78

5 Prophet Inequalities

In this section, we study the prophet inequality problem under MRF dependencies. Formally, in the
prophet inequality problem, there are n non-negative random variables (X, ..., X,) whose values
are drawn from a known joint distribution D. In the i-th step for i € [n], the online algorithm sees
X; (but X for j > i are still unknown) and has to immediately decide to accept/reject X;. The game
ends when the algorithm first accepts an element X, and the algorithm’s goal is to maximize E[X].
We say an algorithm is a-competitive if E[max; X;] < a - E[X;].

Definition 5.1. We say that a distribution D over R} has an MRF distribution if there exists an MRF
F (recall Definition 2.1) and functions g; : Q; — R, for each i € [n] such that (Xj,...,X,) ~ D,
where X; = ¢;(t;) and t is sampled from F.

Here, we will only present the O(A)-competitive algorithm for prophet inequality and leave
further discussion for the appendix. In Appendix A.2, we show that this bound is tight (up to
constant factors) for any online algorithm under MRF distributions. In Appendix A.3 we show
that the popular approach of designing prophet inequalities for product distributions via “online
contention resolution schemes” (OCRSs) cannot be used to prove Theorem 1.4. In particular, it is
impossible to obtain better than 1/exp(©(A))-selectable OCRS under MRF dependencies, hence
showing a strong separation between prophet inequalities and OCRS under MRF dependencies.

Our algorithm in the proof of Theorem 1.4 is simple: it selects a single threshold 7 chosen at
random from a geometric distribution, and accepts the first random variable above the threshold.
By carefully balancing between the chance of guessing the threshold for the maximum and the
probability that more than one random variables exceed the upper-most limit of the geometric
distribution, we obtain an O(A)-competitive algorithm.

PROOF OF THEOREM 1.4. Let M := max; X;. Without loss of generality, assume OPT := E[M] = 1.
Our strategy will be as follows: First, pick a value z € {-1,0, 1,2, ..., K} uniformly at random,
where K will be chosen later, and then take the first value X; which is at least e?. Let ALG be the
random value taken by this algorithm. Now, we upper bound the maximum as

1=E[M] <e '+ T Pr[Me el e)] e+ Tic(n E [Lxser - Xi] .
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which implies
(1-e HE[M] < 3K Pr[Me el )] e+ Sicin B [Lx;sex - Xi] -
At the same time, we can lower bound our algorithm as
E[ALG] > ZPr [Melee)nz=i-1] -+ Z Pr(z=K]E [Ly,sex - Ix_ <ex - Xi
=0 icln]

1
K+2

K
e’! ZPr [M € [ei_l,ei)] el + Z E []lXiZeK “Ax_,<eX -Xl-] .
=0 ]

i€[n

Now, we seek to show that B []].XiZeK Ax ek Xi] is atleast a constant fraction of E []lxi SeK * Xi] .
To do this, we see

=/ xi~Pr[X_,~<eK|X,~=xi]~dPr[X=x]

3 L. K _ _

—/ xi-(l—Pr[E!];tz, Xj>e |Xl-—x,-])'dPr[X,-—x,-]
x;>eK

2/ x,~-(l—e4APr[EIj¢i, Xj>eK])-dPr[Xi=x,~]
x,>€K

2/ xi'(l—e4A_K)~dPr[X,~=xi]
x;>eK

- (1 - e4A_K) E [Txzex - Xi],

where, in the penultimate step, we are using Markov’s inequality to get Pr [3 j#i X; > el ] <

]Ei—ﬁ\(/” = ¢ K. Choosing K = 4A + 1 gives

K -1 -1
1 _ P . _ e l(1-e™)
E[ALG] > K+2(€ IZPI [ME [el 1,6’)] el + (1—6 1) Z E[nXiZeK ~X,—] ) > W
t=0 i€e[n]
1
> —.
20A + 15
O
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A Omitted Proofs
A.1 Proof of Lemma 2.6
For each realization s € Q, let vg denote the buyers valuation when t = s. Let &; be the set of s € Q
such that i is the smallest index with v5(i) = max; v5(j). In other words, ¢; is the set of realizations
of t where i is the “favorite item”.

Let D, denote the distribution of v given t € &;, and let r¢ (s) denote the revenue obtained from
the optimal mechanism for Rev(Dy,) for the realization t = s. We have

Rev(D) < Z Pr[t € &]Rev (Dg,)

ie[n]
£ 3 Yerie-ston
ie[n] se&;
< et Z ZPr [t: = si] - Prti =s_i] - rg(s)
ie[n] se&;
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Fig. 1. The dependency graph of a path MRF.

= 3 Prlt € &] - Rev (D’gi),
i€[n]
where the third inequality follows from Lemma 2.3, and t" has distribution

Pr [t, = S] =Pr [ti = Si] - Pr [tfi = Sfi] s
and D} is the distribution of vy given that t” € &;. Intuitively, t’ is a copy of t where we make ] to

be independent of t’ ; with the same marginal distribution.
Using Lemma 2.5, we find

Prt € &]-Rev(Dy ) < 2Pr[t € &] - (Valy(D) +Revi(D})),

where Val_;(D) denotes E,-p[v([n] \ {i})].

First, we have

Pr [t € &] -Revi(D;i) < Rev;(D’) = Rev;(D).
Additionally, we claim
Pr[t' € &] -Val_,-(Déi) < p -Rev;(D).

To see this, consider the mechanism for selling i that samples t" ~ D’ and sets a price of max 4; vy (j).
We can consider vy (i) to be the buyer’s valuation on i, since it is independent. Then the item sells
with probability at least Pr(t’ € ;) and generates revenue at least E [maxj¢i w(j) |t € §l] >
%Val_i (Déi ), implying the claim.

Therefore, we have

Rev(D) < ¢** Z (p+1)-Rev;.
i€[n]

Putting everything together, we obtain
Rev(D) < 2(p + 1) - Z Rev; (D).

i€[n]
A.2 Every prophet inequality algorithm is Q (A)-competitive
We show that one cannot hope for a prophet inequality with a better than linear dependence on A.
Theorem A.1. Forany A > 0, there exists an MRF with maximum weighted degree A such that any
online prophet inequality algorithm is Q (A)-competitive.

Our hardness example consists of an MRF that is a path, i.e., the dependency graph looks like
that of Figure 1. In such MRFs, the value of X; depends only on the value of X;_1, for any i, and
thus, indirectly on all X; for j < i. For such MRFs, which inherently impose an ordering on the
vertices, we present a lemma regarding Markov Random Fields that will be useful in our proof.

Lemma A.2. Foranyi € [n], any probabilities {p; ., € (0,1) : © € Q;} such that ¥’ ,cq, Piw = 1
and any fixed functions {{, : e € E}, there exists a path MRF F = ({Qi}ie[n], E, {Vi}ie[n], {¢e}eeE)
where E = {{i — 1,i} | i € [n]} such that if X = (Xi, ..., X},) follows F, then

Vie[n], we€ Qi x=(x1,...,%Xn) € QX -+ XQp, Pr[Xi=w|\7’j<i, ijxj] = Pio-
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ProoF OF LEMMA A.2. Notice that Pr [X; = x; | ¥j < i, X; = x;| does not depend on the func-
tions 1, ..., ¥;_1. This allows us to choose the /; sequentially in reverse order starting from i = n
and proceeding to i = 1.

We proceed by induction. Suppose for some i, we have already fixed ¢4, . . ., /. For each w € Q;,
let ¥;(w) = z,, for some z,, we will choose later. We also adopt the notation e; :=eN{1,...,i— 1}
andes;:=eNn{i+1,...,n} for e € E. With this in mind, we have

Zui+1,,..,un €xXp (lpl(w) + Z;‘l:i+1 ‘pj (uj) + ZeeE I#e(xfki’ , u€>i))

Pr[Xl-:a)|‘v’j < I, Xj ZXJ'] =
Zw’,u,—+1,...,un €xp (lﬁi(w,) + Z;‘l=i+1 Wj (u]) + ZEEE ¢e(xe<p 0)', u€>i))

>

o Ayete

B Zw/ /L,J/ezw’ ’
where Ay = X, 4, €XP (Z;-l:m Ui(uj) + Zeep Ye(Xeo,» 00, ue>i)) for each w’ € Q;. Thus, choos-
ing z,, = log (Piw/a,) gives the desired result. O

Given the lemma, we can prove Theorem A.1.

Proor oF THEOREM A.1. Let A1, 4;,... and 0 < p < 1 be quantities to be chosen later. The
MRF we will construct is a path MRF, like the one shown in Figure 1. In other words, E =
{{i - 1,i}: i € [n]}. For each positive n, we define a MRF prophet inequality problem for Q =
Qg X -+ X Qp by setting

QO = {1},
Q; ={0,1} for1<i<n,
i—-1
Xi=gi(t;) = ti'l_[An—j for0<i<n,
j=0
—-A ifs; ;1 #s;
Vim1,i(8i—1,8i) = o P for1<i<n.
A ifs; g =s;.

Additionally, by Lemma A.2, we can choose ;(x) for i € [n] (in descending order of i) so that
Pr(t; = 0| t;-1 = 1) = p (notice that the path structure ensures that ; is independent of , . .., t;_2
given t;_1).

Let R,(,l) be the optimal reward obtainable on the above prophet inequality setup for a given n.
Moreover, let R,(,O) be the optimal reward obtainable if we instead define Qy = {0}. Notice that we
have the following recursive properties:

Rrgl) = max {1: An - ((1 _P)R;(11_)1 +PR;(10_)1)} and Rr(zO) =n- (qu(ll_)1 +(1- q)R;(qO_)1) >

q —4A | 1=p
where =e .
1-q P

We seek to choose p and A, so that the R,(ll) = ((1 —p)Rfll)l +pR,(I(1)1) for all n. If this is the case,
T -
then defining the vector R, = [R,(ll), R,(,O)] e R? gives R, = A, - [(1 p) p ] R,,_;. Hence,

q (1-9)
11, la=-p o 1 1. (e |1 (l—p—q)"[p})
e | T B H e LR P R et WA

This leads us to choose A,, = % so that R,sl) =1for all n.
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Now, let us consider quantities M,E ) and M,(lo) , which we define to be expected value of max;e [, g;(X;)

ie[n] Ji
for the prophet inequality problem above on a given n in the cases when Qy = {1} and when
Qo = {0} respectively. Our goal is to show that M,(,l) is large for some n

Similar to the recursion for R,,, we have the following recursive formula for M,, = (M,El), M,(lo))

|

n
oA
M, =R, +p2(1 — gkt u<_+1 ‘R, i

s 7
D (7)
which implies
Mrgl) - 1+pzn:(l _ q)k—l . ?=k+1 Ai
- 15 A
< _ 1-p-@F) (qg+p(1-p—-q"F)
=1+ R Chdl . 8
P-4 @+p(-p-9" q+p) ®

Notice that for A — +o0, we have ¢ = 0 and A; = 1/p for all i. Thus, M,(,l) ~ n for small p, since
each term in the sum from (7) is 1.

For finite A, we seek to approximate the phenomenon that all terms in the sum contribute about
1. However, we can only do this if n is not too large. Notice that taking n — oo gives

(1) k-1 kg +p(1=p—g*
My’ =1+p ) (1-9q) =1+p ) (1—-¢q)
> Tvat>) Y.

_ P p(1-p—q)
‘”q+p(“1—(1—+p—q><1—q>) 5

Instead, we set p = 5 so that g = 1= :fm Setting n = {logl/z_q(Zq)-‘ < 6A gives

WU N RS GRS
n = 1/y . —q )

pa (2q+ (12— q)") (2q+1)
21+1/2-Z(1—q)k_1~%
21+1/z§n](1—q>’<-1'i"qg;/q—2;f))

8(11_-4-222) Z( -9
N IOg(%) JA+1

8 T2
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A.3 Online Contention Resolution Schemes

Here we show that one cannot hope to use OCRS to obtain a prophet inequality with a polynomial
dependence on A. First, we formally introduce Online Contention Resolution Schemes.

Definition A.3 (Online Contention Resolution Scheme (OCRS) [Feldman et al., 2021]). Let 7 be a
feasibility constraint over [n]. For an online selection setting where we are given a distribution D
over [n] and a point x € Py for a polyhedral relaxation £ of I, we draw a random subset of the
elements R(x) according to D, where the marginal probability that i appears in R is x;. We call R(x)
the set of active elements. Afterwards, we observe whether each element i € [n] is active (i € R(x)),
one by one, and have to immediately and irrevocably decide whether to select an element or not
before the next element is revealed. An Online Contention Resolution Scheme 7 for P is an online
algorithm which selects a subset 7y (R(x)) € R(x) such that 1, (r(x)) € P.

In this paper we are only considering a rank-1 matroid as a feasibility constraint, and thus
P ={(x1,...,xn) = 0| 2; x; < 1}. Intuitively, we say that an OCRS is c-selectable if and only if an
active element i € R(x) can be included in the currently selected elements S C R(x) and maintain
feasibility with probability at least c.

Definition A.4 (c-selectability). Let ¢ € [0, 1]. An OCRS for P is c-selectable if and only if for any
x € P, it returns a set S such that

Pr{ieS|ieRx)] =c¢ Vi € [n].

strategy will sequentially inspect each X; and select at most one. The goal is to maximize « so that
Pr [X; selected and X; is active] > ax; for all i € [n]. Such a strategy is called a-selectable.

For each i € [n], x; denotes the marginal probability that X; is active and also that }; x; < 1. A

ProoF oF THEOREM 1.5. We first show a (ﬁ)-selectable OCRS. The algorithm is quite simple:
for each i € [n], if we reach i and X; is active, we select X; with probability q; where
3 ax;
"~ Pr[X; is active and X3, .. ., X;_; not selected] "

qi :

Clearly if q; < 1for all i, then this is a valid a-OCRS strategy as Pr [X; is active and X; is selected] =
ax;. To show that ¢g; < 1, notice that

Pr [X; is active & Xj, . .., X;_1 not selected] > e ** Pr [X; is active] - Pr [Xi, ..., X;_; not selected]

> ey, - (1 - 33 axi) >e ¥y (1—a) = e (1 - 1+i4A)xi = ax;,

where the first inequality follows from Lemma 2.3 and the third from }}; x; < 1.

For the upper bound, let p = L5, ¢ = Lz, andn+ 1= [’%J ~ ¢?A. Our MRF will again be a

1+e30°

path with E = {{i — 1,i}: i € [n]}, like in Figure 1. Let X € {0, 1}"**! be a sample from an MRF with

A ifxiq #x
Qo=1{0,1}, and Q;={0,1}, Yie1,i(Xi-1, %) = {A S for1 <i<n.

ifx,-_l = Xj.

Also, using Lemma A.2, we can choose ;(x) for i € [n] (in descending order of i) so that
Pr[X; = 1| X;_; = 0] = p. Notice that this also ensures that Pr [X; = 0 | X;_; = 1] = q. This implies

. . . ”, . 1- . .
that X is a Markov chain with transition matrix P = [ » P ) g . The stationary distribution
of this chain is p%] [Z] Finally, we also choose 1/(x) such that Pr [Xy = 1] = l%q’ so the Markov
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chain begins in its stationary distribution. This ensures that Pr [X; = 1] = 1%1 for all i, so we choose
xi =i =Pr[X;=1].
Now, an ¢-OCRS algorithm must, upon reaching X; with X; = 1, select X; with probability
qo

(p+q)Pr[X; =1and Xy, ..., X;_1 not selected]

Moreover, notice that this probability is independent of the history of values Xy, . .., X;_1 due to the
Markov property, i.e. the future values Xj,1, . .., X, are independent of Xy, ..., X;_; given X; = 1.
To determine which values of « allow for such an algorithm, define for 0 < i < n the vector y; =

T
(0) _ (1) (v) _ _ _ 1 |9 1 |9«
[yi . Y; ] by y;”’ := Pr[X; = v and Xy, ..., X; not selected] . We have y, = e [p] ~palo ]

andyi:Pyi_l—fﬁ[q:].Byinductionon Yi-1, we get
1 q] i k[qa] 1 q] i (qa q] k P9a 1])
e | H DI Ko | et D el HECET R 11 B
p+q(p ; 0 p+ql\lp 1; p+qlP ptql-1

In order for the selectability of the OCRS to be @, we must have

2

v _ 1 n(qa k Pqa
0<y, =— —g +(1- —)—)
P+‘J(q p+q P p+q

k=0
_q (1 gna 1-(1-p-q"™' pa )
p+q\  p+g p+q p+q)
i L
Using P > 0, we have
_ —hn — A\ntl _ o= (p+q)(n+1) _ L2
1 S 1-(1-p-9q) P S 1-e S 1—e /4 > 1 ’
a p+q P+q 2(p+q) 20p+q) — 4p+9q
which implies & < 4(p + q) < 4e™. O
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