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Over the past two decades, significant strides have been made in stochastic problems such as revenue-optimal

auction design and prophet inequalities, traditionally modeled with 𝑛 independent random variables to

represent the values of 𝑛 items. However, in many applications, this assumption of independence often

diverges from reality. Given the strong impossibility results associated with arbitrary correlations, recent

research has pivoted towards exploring these problems under models of mild dependency.

In this work, we study the optimal auction and prophet inequalities problems within the framework of

the popular graphical model of Markov Random Fields (MRFs), a choice motivated by its ability to capture

complex dependency structures. Specifically, for the problem of selling 𝑛 items to a single buyer to maximize

revenue, we show that max{SRev, BRev} is an 𝑂 (Δ)-approximation to the optimal revenue for subadditive

buyers, where Δ is the maximum weighted degree of the underlying MRF. This is a generalization as well as

an exponential improvement on the exp(𝑂 (Δ))-approximation results of Cai and Oikonomou (EC 2021) for

additive and unit-demand buyers. We also obtain a similar exponential improvement for the prophet inequality

problem, which is asymptotically optimal as we show a matching upper bound.
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1 Introduction
In several stochastic optimization problems arising in economics, item-independence assumptions

are frequently used to avoid strong negative results that exist for general distributions. While such

independence assumptions are useful for theoretical guarantees, they are not necessarily realistic

in practice. In auction design, for instance, it is likely that similar goods have values which are

positively correlated. This inspires a different research direction: stochastic problems with bounded
correlation strength. Such investigation brings theoretical results closer to practice while avoiding
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the hardness of arbitrary distributions. In this paper, we study how mild dependencies affect the

hardness of two classic stochastic problems: revenue maximizing auction design and the prophet

inequality problem.

Auction Design. Consider the problem of selling a set [𝑛] of 𝑛 items to a single buyer, whose

valuation function 𝑣 : 2[𝑛] → R+ is private but drawn from a known distribution. Our goal is to

design an auction/mechanism that maximizes the expected revenue. In the standard setting, we

assume that the item values 𝑣 ({𝑖}) are independent for each 𝑖 , and that 𝑣 is additive (i.e., 𝑣 (𝑆) =∑
𝑖∈𝑆 𝑣 ({𝑖}) for all 𝑆) or unit-demand (i.e., 𝑣 (𝑆) = max𝑖∈𝑆 𝑣 ({𝑖}) for all 𝑆). However, even with this

independence assumption, the revenue-optimal auction is complex (i.e., non-deterministic [Manelli

and Vincent, 2006, Thanassoulis, 2004], non-monotone [Hart and Reny, 2015], and intractable

to compute [Daskalakis et al., 2014]). Due to this, one line of work on this problem has focused

on finding “simple” mechanisms that are approximately optimal. First, for a unit-demand buyer,

a simple mechanism that achieves a 4-approximation of optimal revenue was found by Chawla

et al. [2010] building on the work of Chawla et al. [2007]. The case of an additive buyer was later

resolved by the landmark work of Babaioff et al. [2020], who show that the greater of the revenue

from selling all items separately (SRev) and that of selling all items in a grand bundle (BRev) is a

6-approximation of the optimal revenue. Following this result, the maximum of SRev and BRev was

also shown to be a O (1) approximation for the more general class of subadditive buyer valuations
(i.e., 𝑣 (𝑆 ∪𝑇 ) ≤ 𝑣 (𝑆) + 𝑣 (𝑇 )) [Rubinstein and Weinberg, 2018].

However, all the above results still require item values to be independent. If we allow the buyer’s

value on the items to be arbitrarily correlated, then getting any approximation on the optimal

revenue becomes impossible for simple mechanisms [Hart and Nisan, 2019]. Nevertheless, the

dependent setting is not entirely hopeless, as this hardness only applies for arbitrarily strong

correlations. This leaves open the possibility for simple mechanisms to perform well when item

values only have mild dependencies.

Prophet Inequality. Prophet inequalities are another important class of problems where item-

independence is traditionally assumed. In this problem, we are presented with 𝑛 items of unknown

values drawn from known distributions. We are allowed to sequentially probe the values of the

items in a given order, but after probing each item, we must immediately decide to either take the

item and end the game, or to discard the item and proceed to the next. Our goal is to maximize the

expected value of the item we ultimately take.

If we assume item values to be drawn independently, then simple threshold algorithms can

achieve
1

2
of the expected maximum item value [Kleinberg andWeinberg, 2012, Samuel-Cahn, 1984].

However, if we allow the item values to have arbitrary correlations, then there exist distributions

where no algorithm can obtain better than a
1

𝑛
fraction of the maximum [Hill and Kertz, 1992,

Immorlica et al., 2020]. Again, this motivates us to examine the problem with mild correlations to

interpolate between the extremes.

Markov Random Fields. To study stochastic problems with correlations, we use Markov Random
Fields (MRFs) to model the joint distribution over item values. Such models have been successfully

employed in various fields, ranging from statistical physics to computer vision, to model high-

dimensional distributions (see, e.g., books Edwards [2012], Jensen and Nielsen [2007], Koller and

Friedman [2009], Pearl [2009]). They represent a collection of dependent random variables as

vertices in a hypergraph, where edge weights indicate dependencies among variables. For us, MRFs

are an appealing model of correlation because (1) they can capture arbitrary distributions, and

(2) they allow us to parameterize the strength of correlations through graph statistics like the

maximum weighted degree Δ. For example, when Δ = 0, one recovers the independent-items setting,
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and when Δ → +∞, they can capture arbitrary distributions. By examining MRF correlations with

0 < Δ < ∞, we can smoothly interpolate between these two extremes.

The study of stochastic problems with MRF dependencies was initiated by Cai and Oikonomou

[2021]. They gave an 𝑒O(Δ)
-approximate algorithm for the prophet inequality problem, and a simple

𝑒O(Δ)
-approximation for the revenue maximization problem with a single additive or unit-demand

buyer. Since poly(Δ) lower bounds on the approximation ratio can be shown for both the problems,

this leaves open whether the exponential dependence on Δ is necessary.

1.1 Our Results and Techniques
Auction Design. In the problem of selling 𝑛 items to a single additive buyer with MRF valuations,

we seek to determine the best approximation of the optimal revenue achievable with simple

mechanisms. The mechanisms we focus on are separate item pricing (SRev) and grand-bundle

pricing schemes (BRev), which together achieve constant approximation in many of the previously

mentioned item-independent settings. Additionally, Cai and Oikonomou [2021] showed that under

MRF dependencies, max{SRev, BRev} achieves an 𝑒O(Δ)
-approximation of the optimal revenue.

We improve this factor exponentially to O (Δ), leaving only a polynomial gap to the lower bound

of Ω

(
Δ1/7)

from Cai and Oikonomou [2021].

Theorem 1.1. For a single additive buyer with valuations given by an MRF with maximum weighted
degree Δ, the revenue of the optimal auction is at most (44Δ + 12) · SRev + 70(Δ + 1) · BRev.

Our techniques also yield results for buyers with valuations beyond additive. For a single unit-

demand buyer, we find that SRev alone is an O (Δ) approximation. Again, this improves on the

𝑒O(Δ)
bound from Cai and Oikonomou [2021].

Theorem 1.2. For a single unit-demand buyer with valuations given by an MRF with maximum
weighted degree Δ, the revenue of the optimal auction is at most (44Δ + 14) · SRev.

Finally, we generalize Theorem 1.1 to the setting of a single subadditive buyer, i.e., a buyer whose

valuation function 𝑣 satisfies 𝑣 (𝑆 ∪𝑇 ) ≤ 𝑣 (𝑆) + 𝑣 (𝑇 ) for all subsets 𝑆,𝑇 ⊆ [𝑛]. This setting captures
the XOS valuations studied by Cai and Oikonomou [2021], who show that max{SRev, BRev}
achieves

(
𝑒O(Δ) + 1√

𝑛𝛾

)
-approximation. Here, 𝛾 is a factor which depends on the Glauber dynamics

of the MRF
1
. Our results eliminate the dependence on 𝛾 and 𝑛, improve the Δ dependency to

O (Δ), and extend beyond XOS to the larger class of subadditive valuations. We note that this

approximation ratio mirrors the O (1) factor achievable in the independent-item setting for a

subadditive buyer [Rubinstein and Weinberg, 2018].

Theorem 1.3. For a single subadditive buyer with valuations given by an MRF with maximum
weighted degree Δ, the revenue of the optimal auction is at most (348Δ + 110) · BRev + 10 · SRev.

High-level Technique. To get the above results, we adapt the approach of Babaioff et al. [2020] for

the independent-item setting. This involves decomposing the item set into a “core” set containing

low-value items and a “tail” set containing high-value items. To apply this method for dependent

items, we need two new key ingredients.

First, we develop a new “approximate marginal mechanism” lemma (Lemma 2.5) for correlated

items. This allows us to partition the item set [𝑛] into a core set 𝐶 and tail set 𝑇 , and upper bound

the optimal revenue of selling items in [𝑛] by the total value of 𝐶 and the optimal revenue of

selling𝑇 . The crucial difference between Lemma 2.5 and a similar looking lemma in Rubinstein and

1
Specifically, 𝛾 is the spectral gap of the Glauber dynamics – for more information see [Cai and Oikonomou, 2021]
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Weinberg [2018] is that our bound uses the unconditional revenue from selling 𝑇 , but the latter

lemma would instead use the (larger) revenue from selling 𝑇 conditional on the valuation function

on 𝐶 . For MRF valuations, this conditioning may lose a factor of 𝑒Ω(Δ)
, so avoiding it is necessary

to get bounds which are sub-exponential in Δ .

Second, to handle the MRF correlations in our core and tail bounds, we employ an exponential

bucketing technique. The key idea is that, although item values are dependent, many distributional

statistics on one item (e.g., expectation, variance, CDF, etc.) can only change by a factor of 𝑒O(Δ)

after conditioning on any event regarding the other items. Intuitively, this allow us to guess the

“scale” of the problem up to a constant factor by guessing which of the log(𝑒O(Δ) ) = O (Δ) many

buckets we fall into. This bucketing is where we lose the O (Δ) factor in our approximation ratios.

Prophet Inequality. For the prophet inequality problem with MRF dependencies, the prior work

of Cai and Oikonomou [2021] gives an 𝑒O(Δ)
-competitive algorithm. We improve this by designing

a O (Δ)-competitive algorithm, and also provide an Ω (Δ) lower bound.

Theorem 1.4. For any MRF with maximum weighted degree Δ, there exists a 1

20Δ+15 -competitive
prophet inequality algorithm. Moreover, there exists an MRF instance for which no online algorithm is
better than 2

Δ+1 -competitive.

The proof of this result uses similar bucketing techniques as in the above auction design problems.

We use a single threshold algorithm where our threshold is randomly chosen from one of Θ (Δ)
geometrically increasing levels (buckets). As long as the largest item value falls in to one of the

“buckets” between these levels, we obtain a constant fraction of the maximum value with probability

1

Θ(Δ) . In addition, we can show that if the maximum is smaller than the smallest level or larger than

the largest level, then we only lose a constant factor of the expected maximum; in the former case

because the contribution to the expected maximum is very small and in the latter case because

the largest level is large enough that getting more than one realization above the largest level, and

thus missing out on the maximum, has a very small probability of occurring.

We also show in Appendix A.3 that the popular technique of designing prophet inequalities for

independent distributions via “online contention resolution schemes” (OCRS) cannot be used to

design O (Δ)-competitive algorithms for MRF dependencies. Specifically, in Theorem 1.5 we show

that any approach via OCRS loses an 𝑒Ω(Δ)
factor in the competitive ratio.

Theorem 1.5. For every MRF, there exists a
(

1

1+𝑒4Δ

)
-selectable OCRS. Furthermore, for each Δ > 0,

there exists an MRF for which there is no 𝛼-selectable OCRS for 𝛼 ≥ 4𝑒−Δ.

1.2 Further Related Work
There is a long line of work on both revenue maximizing auction design and prophet inequalities

for independent distributions. We refer the readers to the books and surveys [Correa et al., 2019,

Hartline, 2013, Lucier, 2017, Roughgarden, 2016]. Below we discuss works that study these problems

under correlations.

Linear Correlations. A natural model for dependencies is that of linear correlations, where each
item value is a linear combination over a common set of independent variables. This model has

received attention for both auction design [Bateni et al., 2015, Chawla et al., 2010] and the prophet

inequality problem [Immorlica et al., 2020]. In particular, for the special case of the base-value
model, in which 𝑣 ({𝑖}) = 𝑋0 +𝑋𝑖 for independent variables 𝑋0, 𝑋1, . . . , 𝑋𝑛 , constant approximations

are known for both problems. However, it is worth noting that in contrast with MRFs, linear

correlations are unable to capture arbitrary joint distributions.

785



Improved Mechanisms and Prophet Inequalities for Graphical DependenciesEC ’24, July 8–11, 2024, New Haven, CT, USA

Pairwise Independence. A second model for relaxing item-independence is to only assume pair-

wise independence between item values. Under this weaker notion of independence, Caragiannis

et al. [2022] showed that constant factor approximations still exist for single-item prophet inequali-

ties and certain revenue maximization problems. Recently, Dughmi et al. [2024] extended some

of these results to multiple-item settings. They also observed a gap between prophet inequalities

and OCRS for pairwise-independent distributions. However, similar to linear correlations, pairwise

independence is unable to capture arbitrary joint distributions.

Arbitrary Correlations.While the problem of selling 𝑛 items to one buyer with arbitrary corre-

lations suffers from the aforementioned impossibility results, the related problem of selling one

item to 𝑛 buyers is more tractable. Even under arbitrary correlations, Ronen [2001] showed that a

“lookahead” auction obtains a constant fraction of the optimal revenue.

2 Model and a New Marginal Mechanism
In this section, we formally define Markov Random Fields and the Optimal Auction Design problem,

and then prove a new approximate marginal mechanism for correlated distributions, which will

play a central role in all our revenue maximization results.

2.1 Markov Random Field Model for Buyer Valuations
We begin with a formal definition of Markov Random Fields.

Definition 2.1. A Markov Random Field (MRF) consists of a tuple

F = ({Ω𝑖 }𝑖∈[𝑛], 𝐸, {𝜓𝑖 }𝑖∈[𝑛], {𝜓𝑒 }𝑒∈𝐸),

where

• Ω = Ω1 × · · · × Ω𝑛 is the support of the distribution.
• 𝐸 ⊆ 2

[𝑛]
is the edge set of a hypergraph.

• 𝜓𝑖 : Ω𝑖 → R is a potential function on coordinate 𝑖 for each 𝑖 ∈ [𝑛].
• 𝜓𝑒 :

∏
𝑖∈𝑒 Ω𝑖 → R is a potential function on hyperedge 𝑒 for each 𝑒 ∈ 𝐸.

A sample from the MRF is a random vector t = (𝑡1, . . . , 𝑡𝑛) supported on Ω = Ω1 × · · · × Ω𝑛 with a

probability function given by

Pr [t = s] ∝ exp
©­«
∑︁
𝑖∈[𝑛]

𝜓𝑖 (𝑠𝑖 ) +
∑︁
𝑒∈𝐸

𝜓𝑒 (s𝑒 )ª®¬ .
In this definition, the𝜓𝑒 functions impose dependencies between the 𝑡𝑖 values. If all𝜓𝑒 functions

are identically 0, then t has a product distribution. Thus, we can bound the strength of dependencies

in t by themagnitude of the contributions from𝜓𝑒 terms. A standardway to quantify this dependency

is the maximum weighted degree of the MRF.

Definition 2.2. The maximum weighted degree Δ(F ) of an MRF is given by

Δ(F ) = max

𝑖∈[𝑛]
max

s∈Ω

���∑︁
𝑒∋𝑖

𝜓𝑒 (s𝑒 )
���.

When the MRF is clear from context, we will simply write Δ instead of Δ(F ).

A crucial property of the parameter Δ is that it gives us a way to bound the change in the

probability of some event involving 𝑡𝑖 after conditioning on some event over the remaining variables

t−𝑖 . This is formally given by the following lemma from Cai and Oikonomou [2021].
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Lemma 2.3 ([Cai and Oikonomou, 2021], Lemma 2). For an MRF sample t and index 𝑖 ∈ [𝑛], we
have for any 𝐸𝑖 ⊆ Ω𝑖 and 𝐸−𝑖 ⊆ Ω−𝑖 ,

𝑒−4Δ ≤ Pr(𝑡𝑖 ∈ 𝐸𝑖 ∧ t−𝑖 ∈ 𝐸−𝑖 )
Pr(𝑡𝑖 ∈ 𝐸𝑖 ) · Pr(t−𝑖 ∈ 𝐸−𝑖 )

≤ 𝑒4Δ .

Next, given an MRF, we describe how it naturally implies a model for buyer valuations.

Definition 2.4 (Buyer Valuation Distribution 𝐷). Given an MRF and a monotone set function

𝑔 : 2
Ω1∪···∪Ω𝑛 → R+ (we assume Ω𝑖 to be disjoint), the buyer valuation 𝑣 : 2

[𝑛] → R+ is obtained by
first sampling a (private) type vector t ∈ Ω1 × · · · × Ω𝑛 from the MRF and then for a set 𝑆 of items,

𝑣 (𝑆) B 𝑔({𝑡𝑖 : 𝑖 ∈ 𝑆}).

We let 𝐷 denote the distribution of buyer valuation 𝑣 .

Thus, 𝑣 is drawn implicitly from a distribution over monotone valuation functions. We use the

notation 𝑣 (𝑖) = 𝑣 ({𝑖}) for 𝑖 ∈ [𝑛].
We will focus on three special cases of buyer’s valuation:

• Additive: if 𝑣 (𝑆) = ∑
𝑖∈𝑆 𝑣 (𝑖) for all sets 𝑆 ⊆ [𝑛].

• Unit-demand: if 𝑣 (𝑆) = max𝑖∈𝑆 𝑣 (𝑖) for all sets 𝑆 ⊆ [𝑛].
• Subadditive: if 𝑣 (𝐴 ∪ 𝐵) ≤ 𝑣 (𝐴) + 𝑣 (𝐵) for all sets 𝐴, 𝐵 ⊆ [𝑛].

2.2 Auction Design Model
We study the problem of designing a mechanism to sell a set [𝑛] of 𝑛 items to a single buyer. The

buyer’s valuation is given by 𝑣 , where 𝑣 (𝑆) denotes the value for item set 𝑆 ⊆ [𝑛], that is sampled

from a distribution 𝐷 over monotone valuation functions known to the seller.

From the classic Taxation Principle [Guesnerie and Oddou, 1981, Hammond et al., 1979], any

single buyer mechanism can be represented by a menu𝑀 = {(Γ𝑘 , 𝑝𝑘 ) : 𝑘 ∈ [|𝑀 |]} of options. Each
menu option (Γ𝑘 , 𝑝𝑘 ) consists of a distribution Γ𝑘 over subsets of [𝑛] offered at a price 𝑝𝑘 ∈ R+. If
the buyer chooses menu option 𝑘 , they pay price 𝑝𝑘 and receive an item set 𝑆 sampled from Γ𝑘 . We

assume that, given menu𝑀 , a buyer with valuation 𝑣 always chooses the option 𝑘∗ that maximizes

their expect utility, i.e.,

𝑘∗ = argmax

𝑘∈[ |𝑀 | ]

{
E

𝑆∼Γ𝑘
[𝑣 (𝑆)] − 𝑝𝑘

}
.

We will therefore directly refer to a mechanism𝑀 as a menu/list of such pairs (which implicitly

includes the pair (∅, 0)). The goal of the seller is to design a menu which maximizes the expected

revenue E𝑣∼𝐷 [𝑝𝑘∗ ].
We use the notation Rev(𝐷) to denote the maximum possible revenue from any menu, where

the buyers valuation function is drawn from distribution 𝐷 . It will also be convenient for us to use

the notation Rev𝑖 (𝐷) := max𝑝>0 {𝑝 · Pr [𝑣 ({𝑖}) ≥ 𝑝]} to denote the optimal revenue of selling the

single item 𝑖 , and to use Val(𝐷) = E𝑣∼𝐷 [𝑣 ( [𝑛])] to denote the expected buyer’s valuation on all

items.

Additionally, we define SRev(𝐷) to be the optimal revenue from selling each item individually.

In other words, SRev(𝐷) is the optimal revenue for a menu of the form {(𝑆,∑𝑖∈𝑆 𝑝𝑖 ) : 𝑆 ⊆ [𝑛]} for
some collection of prices 𝑝1, . . . , 𝑝𝑛 . Notice that if 𝑣 is additive, then SRev(𝐷) = ∑

𝑖∈[𝑛] Rev𝑖 (𝐷),
but this is not necessarily true otherwise. We also define BRev(𝐷) = max𝑝>0 {𝑝 · Pr [𝑣 ( [𝑛]) ≥ 𝑝]}
to be the maximum revenue obtainable from selling the grand bundle.
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2.3 Approximate Marginal Mechanism for Subadditive Valuations
The following approximate marginal mechanism lemma for correlated distributions will be very

useful in the analysis of our mechanisms. It provides an upper bound to the optimal revenue via

the revenue and welfare of two subsets of items. We will apply it after partitioning the items into a

“core” and a “tail”.

Lemma 2.5. Suppose we have two disjoint sets of items𝐴, 𝐵, and we are selling𝐴∪𝐵 to a single buyer
with a random monotone subadditive valuation 𝑣 : 2𝐴∪𝐵 → R+ drawn from a known distribution 𝐷 .
Then, the optimal revenue is

Rev(𝐷) ≤ 2

(
Val

(
𝐷𝐴

)
+ Rev

(
𝐷𝐵

) )
,

where 𝐷𝑆 denotes the distribution of 𝑣 restricted to a set 𝑆 of items.

Proof. Consider an optimal menu𝑀 = {(Γ𝑘 , 𝑝𝑘 ) : 𝑘 ∈ [|𝑀 |]} for 𝐴 ∪ 𝐵. We construct a menu

𝑀𝐵 :=

{(
Γ𝐵
𝑘
,
𝑝𝑘

2

)
: 𝑘 ∈ [|𝑀 |]

}
,

for 𝐵 by restricting each allocation to 𝐵, and discounting prices by a factor of 2. Here, Γ𝐵
𝑘
is the

distribution of 𝑆 ∩ 𝐵, where 𝑆 ∼ Γ𝑘 .
For a fixed realization of 𝑣 , let 𝑘∗ = argmax𝑘

{
E𝑆∼Γ𝑘 [𝑣 (𝑆)] − 𝑝𝑘

}
be the menu option the buyer

would choose from 𝑀 and 𝑘∗
𝐵
= argmax𝑘

(
E𝑆∼Γ𝑘 [𝑣 (𝑆 ∩ 𝐵)] −

𝑝𝑘
2

)
be the menu option the buyer

would choose from 𝑀𝐵 , respectively. Let 𝑆
∗ ∼ Γ𝑘∗ and 𝑆

∗
𝐵
∼ Γ𝑘∗

𝐵
. Then, from the optimality of 𝑘∗

and 𝑘∗
𝐵
and monotonicity of 𝑣 , we have

E
𝑆∗
[𝑣 (𝑆∗)] − 𝑝𝑘∗ ≥ E

𝑆∗
𝐵

[𝑣 (𝑆∗𝐵)] − 𝑝𝑘∗𝐵

≥
(
E
𝑆∗
𝐵

[𝑣 (𝑆∗𝐵 ∩ 𝐵)] −
𝑝𝑘∗

𝐵

2

)
−
𝑝𝑘∗

𝐵

2

≥
(
E
𝑆∗
[𝑣 (𝑆∗ ∩ 𝐵)] − 𝑝𝑘∗

2

)
−
𝑝𝑘∗

𝐵

2

.

Rearranging this inequality gives

𝑝𝑘∗

2

≤ E
𝑆∗
[𝑣 (𝑆∗) − 𝑣 (𝑆∗ ∩ 𝐵)] +

𝑝𝑘∗
𝐵

2

.

By the subadditivity of 𝑣 and 𝑆∗ ⊆ 𝐴 ∪ 𝐵, we know that 𝑣 (𝑆∗) − 𝑣 (𝑆∗ ∩ 𝐵) ≤ 𝑣 (𝑆∗ ∩ 𝐴) ≤
𝑣 (𝐴). Hence, taking expectation over 𝑣 , and using Val

(
𝐷𝐴

)
= E[𝑣 (𝐴)], Rev(𝐷) = E𝑣 [𝑝𝑘∗ ], and

Rev(𝐷𝐵) ≥ E𝑣
[ 𝑝𝑘∗

𝐵

2

]
, we have

1

2

Rev(𝐷) ≤ Val

(
𝐷𝐴

)
+ Rev

(
𝐷𝐵

)
. □

Now that we have shown the approximate marginal mechanism lemma, we can prove the

following crude approximation bound for Rev(𝐷), which will be very useful in all our results. Given

Lemma 2.5, its proof is not that difficult and for this reason it has been moved to Appendix A.1.

Lemma 2.6. For a single subadditive buyer with MRF valuations 𝑣 (𝑆) = 𝑔({𝑡𝑖 : 𝑖 ∈ 𝑆}), we have

Rev(𝐷) ≤ 2(𝜌 + 1)𝑒4Δ ·
∑︁
𝑖∈[𝑛]

Rev𝑖 (𝐷) where 𝜌 = max

𝑗∈[𝑛]
s∈Ω

𝑔({𝑠𝑖 : 𝑖 ≠ 𝑗})
max𝑖≠𝑗 𝑔({𝑠𝑖 })

.

Notice that for subadditive buyer valuations 𝜌 ≤ 𝑛 − 1 and for unit-demand buyers 𝜌 = 1.
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3 Additive Buyer Mechanisms
For an additive buyer with MRF valuations, we assume the buyer samples a private type vector

t = (𝑡1, . . . , 𝑡𝑛) from an MRF. The buyer’s valuation 𝑣 : 2[𝑛] → R+ is then given by

𝑣 (𝑆) B
∑︁
𝑖∈𝑆

𝑔(𝑡𝑖 ),

where we employ the notation 𝑔(𝑡𝑖 ) = 𝑔({𝑡𝑖 }).

3.1 SRev is 𝑂 (log𝑛 + Δ)-approximate
We will show that SRev already gets a decent approximation to the optimal revenue.

Theorem 3.1. For selling 𝑛 items to a single additive buyer with MRF valuations drawn from
distribution 𝐷 , we have

Rev(𝐷) ≤ (12 + 16Δ + 2 ln𝑛) · SRev(𝐷).

Proof of Theorem 3.1. For a given type vector t = (𝑡1, . . . , 𝑡𝑛), we first partition the set of items

into the core 𝐶 and the tail 𝑇 , where the tail 𝑇 ⊆ [𝑛] is
𝑇 B

{
𝑖 ∈ [𝑛] : 𝑔(𝑡𝑖 ) ≥ 𝑒8ΔSRev(𝐷)

}
and the core is 𝐶 B [𝑛] \𝑇 . Intuitively, the tail represents the set of items that take exceptionally

large values compared to SRev.

Additionally, since we would like to be able to condition on the tail set, we use 𝐷𝐴 for 𝐴 ⊆ [𝑛]
to denote the conditional distribution of 𝑣 on the event 𝑇 = 𝐴. We also define the core and tail

components, 𝑣𝐶 and 𝑣𝑇 , of the the valuation 𝑣 as

𝑣𝑇 (𝑆) B 𝑣 (𝑆 ∩𝑇 ) =
∑︁
𝑖∈𝑆

𝑔(𝑡𝑖 ) · 1𝑖∈𝑇 and 𝑣𝐶 (𝑆) B 𝑣 (𝑆 ∩𝐶) =
∑︁
𝑖∈𝑆

𝑔(𝑡𝑖 ) · 1𝑖∈𝐶 .

We let 𝐷𝑇 denote the distribution of 𝑣𝑇 , and 𝐷𝑇
𝐴
to denote its distribution conditional on 𝑇 = 𝐴.

We similarly define 𝐷𝐶 and 𝐷𝐶
𝐴
as the distribution of 𝑣𝐶 and the distribution of 𝑣𝐶 conditional on

𝑇 = 𝐴, respectively.

Notice that from the approximate marginal mechanism Lemma 2.5, we can bound

Rev(𝐷) ≤
∑︁
𝐴⊆[𝑛]

Pr [𝑇 = 𝐴] · Rev(𝐷𝐴)

≤ 2

∑︁
𝐴⊆[𝑛]

Pr [𝑇 = 𝐴] ·
(
Val

(
𝐷𝐶𝐴

)
+ Rev

(
𝐷𝑇𝐴

))
= 2Val

(
𝐷𝐶

)
+ 2

∑︁
𝐴⊆[𝑛]

Pr [𝑇 = 𝐴] · Rev
(
𝐷𝑇𝐴

)
. (1)

We seek to bound both the core and tail contributions in terms of SRev(𝐷).
Core Contribution. First, we bound the core contribution.

Claim 3.2. The core contribution is

Val

(
𝐷𝐶

)
≤ (1 + 8Δ + ln(𝑛)) · SRev(𝐷).

Proof of Claim 3.2. To bound the core contribution Val

(
𝐷𝐶

)
, notice that

Val

(
𝐷𝐶

)
=

∑︁
𝑖∈[𝑛]
E [𝑔(𝑡𝑖 ) · 1𝑖∈𝐶 ] .
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We will bound each term of this sum separately. Let 𝑟 = SRev(𝐷) and 𝑟𝑖 = Rev𝑖 (𝐷) for simplicity.

Notice that

E [𝑔(𝑡𝑖 ) · 1𝑖∈𝐶 ] =
∫ ∞

0

Pr [𝑔(𝑡𝑖 ) · 1𝑖∈𝐶 ≥ 𝜏] 𝑑𝜏 ≤
∫ 𝑟𝑒8Δ

0

Pr [𝑔(𝑡𝑖 ) ≥ 𝜏] 𝑑𝜏 .

Notice that since 𝑟𝑖 = sup𝜏≥0 𝜏 · Pr [𝑔(𝑡𝑖 ) ≥ 𝜏], we have Pr [𝑔(𝑡𝑖 ) ≥ 𝜏] ≤ min

{
1,
𝑟𝑖
𝜏

}
for all 𝜏 > 0.

Thus,

E [𝑔(𝑡𝑖 ) · 1𝑖∈𝐶 ] ≤ 𝑟𝑖 +
∫ 𝑟𝑒8Δ

𝑟𝑖

𝑟𝑖

𝜏
𝑑𝜏 = 𝑟𝑖

(
1 + ln

(
𝑟𝑒8Δ

)
− ln(𝑟𝑖 )

)
= 𝑟𝑖 (1 + 8Δ + ln(𝑟/𝑟𝑖 )).

Summing over all 𝑖 gives

Val

(
𝐷𝐶

)
≤

∑︁
𝑖∈[𝑛]

𝑟𝑖 (1 + 8Δ + ln(𝑟/𝑟𝑖 )) = 𝑟
(
1 + 8Δ −

∑︁
𝑖∈[𝑛]

𝑟𝑖

𝑟
ln(𝑟𝑖/𝑟 )

)
≤ 𝑟 (1 + 8Δ + ln(𝑛)) ,

where the last inequality follows by noticing that −∑
𝑖∈[𝑛]

𝑟𝑖
𝑟
ln(𝑟𝑖/𝑟 ) corresponds to the entropy

of the distribution that picks each item 𝑖 independently with probability
𝑟𝑖
𝑟
, which is maximized

when all terms are equal, and thus −∑
𝑖∈[𝑛]

𝑟𝑖
𝑟
ln(𝑟𝑖/𝑟 ) ≤ ln(𝑛). □

Tail Contribution. Next, we bound the contribution of the tail. Because the tail is small in

expectation, most of the revenue should be generated when only one item appears in the tail.

This contribution is easily bounded by SRev. When multiple items appear, we can use the coarse

bound on Rev in terms of SRev given by Lemma 2.6 and exploit that the expected size E[|𝑇 |] is
exponentially small in Δ. Formally, we prove the following claim.

Claim 3.3. The tail contribution is∑︁
𝐴⊆[𝑛]

Pr [𝑇 = 𝐴] · Rev
(
𝐷𝑇𝐴

)
≤ 5 · SRev

(
𝐷𝑇

)
.

Proof. First, we split the L.H.S. into two cases:∑︁
𝐴⊆[𝑛]

Pr [𝑇 = 𝐴] · Rev
(
𝐷𝑇𝐴

)
≤

∑︁
𝐴⊆[𝑛]
|𝐴 | ≥2

Pr [𝑇 = 𝐴] · Rev
(
𝐷𝑇𝐴

)
+

∑︁
𝑖∈[𝑛]

Pr [𝑇 = {𝑖}] · Rev
(
𝐷𝑇{𝑖 }

)
.

Clearly, we have Pr [𝑇 = {𝑖}] · Rev
(
𝐷𝑇{𝑖 }

)
≤ Rev𝑖

(
𝐷𝑇

)
, so the latter summation is bounded by∑

𝑖 Rev
(
𝐷𝑇𝑖

)
= SRev

(
𝐷𝑇

)
. Thus, we just need to focus on the contribution of the former summation.

From Lemma 2.6, we have

Rev

(
𝐷𝑇𝐴

)
≤ 2|𝐴|𝑒4Δ · SRev

(
𝐷𝑇𝐴

)
= 2|𝐴|𝑒4Δ

∑︁
𝑖∈𝐴

Rev𝑖

(
𝐷𝑇𝐴

)
≤ 2|𝐴|𝑒8Δ

∑︁
𝑖∈𝐴

Rev𝑖

(
𝐷𝑇

)
Pr [𝑖 ∈ 𝑇 ] .

Here, the last step comes from Lemma 2.3 as follows. Suppose 𝑖 ∈ 𝐴, and let 𝑝 be the optimal price

for single item mechanism Rev𝑖 (𝐷𝑇𝐴). We have

Rev𝑖 (𝐷𝑇 ) ≥ 𝑝 · Pr [𝑔(𝑡𝑖 ) ≥ 𝑝]
≥ 𝑒−4Δ · 𝑝 · Pr [𝑔(𝑡𝑖 ) ≥ 𝑝 | 𝑇 \ {𝑖} = 𝐴 \ {𝑖}]
= 𝑒−4Δ · 𝑝 · Pr [𝑔(𝑡𝑖 ) ≥ 𝑝 | 𝑇 = 𝐴] · Pr [𝑇 = 𝐴 | 𝑇 \ {𝑖} = 𝐴 \ {𝑖}]

= 𝑒−4Δ · Rev𝑖 (𝐷𝑇𝐴) ·
Pr [𝑇 = 𝐴]

Pr [𝑇 \ {𝑖} = 𝐴 \ {𝑖}] .

790



EC ’24, July 8–11, 2024, New Haven, CT, USA Vasilis Livanos, Kalen Patton, and Sahil Singla

Now, substituting this bound back into our sum over |𝐴| ≥ 2, we have∑︁
𝐴⊆[𝑛]
|𝐴 | ≥2

Pr [𝑇 = 𝐴] · Rev
(
𝐷𝑇𝐴

)
≤ 2𝑒4Δ

∑︁
𝐴⊆[𝑛]
|𝐴 | ≥2

∑︁
𝑖∈𝐴

|𝐴| · Pr [𝑇 = 𝐴] · Rev𝑖
(
𝐷𝑇𝐴

)
≤ 2𝑒8Δ

∑︁
𝐴⊆[𝑛]
|𝐴 | ≥2

∑︁
𝑖∈𝐴

|𝐴| · Pr [𝑇 \ {𝑖} = 𝐴 \ {𝑖}] · Rev𝑖
(
𝐷𝑇

)
= 2𝑒8Δ

∑︁
𝑖∈[𝑛]

Rev𝑖

(
𝐷𝑇

) ∑︁
𝐴∋𝑖
|𝐴 | ≥2

|𝐴| · Pr [𝑇 \ {𝑖} = 𝐴 \ {𝑖}]

= 2𝑒8Δ
∑︁
𝑖∈[𝑛]

Rev𝑖

(
𝐷𝑇

)
· E

[
|𝑇 \ {𝑖}| · 1 |𝑇 \{𝑖 } |≥1

]
≤ 2𝑒8Δ

∑︁
𝑖∈[𝑛]

Rev𝑖

(
𝐷𝑇

)
· E [2|𝑇 \ {𝑖}|]

≤ 4𝑒8Δ
∑︁
𝑖∈[𝑛]

Rev𝑖

(
𝐷𝑇

)
· E[|𝑇 |] .

To bound E[|𝑇 |], notice that Rev𝑖 (𝐷) ≥ Pr [𝑖 ∈ 𝑇 ] · 𝑒8ΔSRev(𝐷), since if 𝑖 ∈ 𝑇 , its contribution
to SRev(𝐷) is at least the lowest value in the tail, and thus

E[|𝑇 |] =
∑︁
𝑖

Pr [𝑖 ∈ 𝑇 ] ≤ 𝑒−8Δ
∑︁
𝑖

Rev𝑖 (𝐷)
SRev(𝐷) = 𝑒−8Δ .

Therefore, we have ∑︁
𝐴⊆[𝑛]
|𝐴 | ≥2

Pr [𝑇 = 𝐴] · Rev
(
𝐷𝑇𝐴

)
≤ 4 · SRev

(
𝐷𝑇

)
,

so altogether we have

∑
𝐴⊆[𝑛] Pr [𝑇 = 𝐴] · Rev

(
𝐷𝑇
𝐴

)
≤ 5 · SRev

(
𝐷𝑇

)
. □

Combining Claim 3.3 and Claim 3.2 with (1) yields Theorem 3.1. □

3.2 max{SRev, BRev} is 𝑂 (Δ)-approximate
To get from O (log𝑛 + Δ) approximation in Theorem 3.1 to O (Δ) approximation in Theorem 1.1,

the following Lemma 3.4 refines our core contribution bound in Claim 3.2 in terms of BRev to save

the log𝑛 factor. Together with tail contribution in Claim 3.3, this gives the proof of Theorem 1.1.

Lemma 3.4. The core contribution is

Val

(
𝐷𝐶

)
≤ (22Δ + 1) · SRev(𝐷) + 35 (Δ + 1) · BRev (𝐷) .

Proof. To get a refined bound on the core contribution, we will further split up the core. Let

𝐶𝑠 B {𝑖 ∈ 𝐶 : 𝑔(𝑡𝑖 ) ≤ 𝑟 }
be the small elements of the core, and let

𝐶ℓ B 𝐶 \𝐶𝑠 =
{
𝑖 ∈ 𝐶 : 𝑟 < 𝑔(𝑡𝑖 ) < 𝑟𝑒8Δ

}
be the large elements. We define 𝐷𝐶ℓ and 𝐷𝐶𝑠 as the restrictions of 𝐷 to 𝐶ℓ and 𝐶𝑠 , respectively.

Since 𝐶𝑠 and 𝐶ℓ partition 𝐶 , we have

Val

(
𝐷𝐶

)
= Val

(
𝐷𝐶𝑠

)
+ Val

(
𝐷𝐶ℓ

)
. (2)
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We bound each of these separately.

Claim 3.5.
Val

(
𝐷𝐶ℓ

)
≤ 22Δ · SRev(𝐷).

Proof. Consider the single item pricing strategy of picking a random 𝑧 ∈ {0, 1, . . . , 8Δ − 1}, and
selling item 𝑖 for price 𝑟𝑒𝑧 . If 𝑖 ∈ 𝐶ℓ , then with probability

1

8Δ , item 𝑖 sells for at least a 1

𝑒
fraction of

its value. Therefore, we have

Rev𝑖 (𝐷) ≥
1

8𝑒Δ
· E

[
𝑔(𝑡𝑖 ) · 1𝑖∈𝐶ℓ

]
.

Summing over 𝑖 gives us that SRev(𝐷) ≥ 1

8𝑒ΔVal
(
𝐷𝐶ℓ

)
≥ 1

22ΔVal
(
𝐷𝐶ℓ

)
. □

Claim 3.6.
Val

(
𝐷𝐶𝑠

)
≤ SRev(𝐷) + 35(Δ + 1) · BRev

(
𝐷𝐶𝑠

)
.

Proof. Let 𝜇 B Val

(
𝐷𝐶𝑠

)
= E[𝑣 (𝐶𝑠 )] . If 𝜇 ≤ 𝑟 we are done. Hence, assume that 𝜇 > 𝑟 .

Consider the following strategy for selling the grand bundle on𝐶𝑠 . Pick a random 𝑧 ∈ {−1, 0, 1, . . . , 𝐾}
and offer the bundle at price 𝑒𝑧𝜇, for a 𝐾 to be chosen later. Notice that if 𝑣 (𝐶𝑠 ) ∈

[
𝑒−1𝜇, 𝑒𝐾 𝜇

]
,

then this strategy obtains at least a
1

𝑒
fraction of the value of 𝑣 (𝐶𝑠 ) with probability at least

1

𝐾+2 .
Therefore, we find

𝜇 ≤ 𝜇 · 𝑒−1 + 𝑒 (𝐾 + 2)BRev
(
𝐷𝐶𝑠

)
+ E

[(
𝑣 (𝐶𝑠 ) − 𝑒𝐾 𝜇

)+]
.

We just need to bound the contribution of the last term. From Lemma 7 of [Cai and Oikonomou,

2021], we have

Var (𝑣 (𝐶𝑠 )) ≤ 2𝑟 2 +
(
𝑒4Δ − 1

)
𝜇2 . (3)

Therefore,

E
[(
𝑣 (𝐶𝑠 ) − 𝑒𝐾 𝜇

)+]
=

∫ ∞

𝑒𝐾 𝜇

Pr [𝑣 (𝐶𝑠 ) ≥ 𝜏] 𝑑𝜏 ≤
∫ ∞

(𝑒𝐾 −1)𝜇
Pr [𝑣 (𝐶𝑠 ) − 𝜇 ≥ 𝜏] 𝑑𝜏 .

Applying Chebyshev’s inequality and bounding the variance by (3) gives

E
[(
𝑣 (𝐶𝑠 ) − 𝑒𝐾 𝜇

)+]
≤

∫ ∞

(𝑒𝐾 −1)𝜇
2𝑟 2 + (𝑒4Δ − 1)𝜇2

𝜏2
𝑑𝜏 =

2𝑟 2 + (𝑒4Δ − 1)𝜇2(
𝑒𝐾 − 1

)
𝜇

.

Next, we set 𝐾 = 4Δ + 2. Together with the fact that 𝜇 > 𝑟 , we have

E
[(
𝑣 (𝐶𝑠 ) − 𝑒𝐾 𝜇

)+]
≤ 𝑒4Δ + 1

𝑒4Δ+2 − 1

· 𝜇 ≤ 2𝜇

𝑒2 − 1

.

Altogether with our previous bounds, we finally obtain(
1 − 1

𝑒
− 2

𝑒2 − 1

)
𝜇 ≤ 𝑒 (4Δ + 4) · BRev

(
𝐷𝐶𝑠

)
𝜇 ≤ 𝑒 (4Δ + 4)(

1 − 1

𝑒
− 2

𝑒2−1

) · BRev
(
𝐷𝐶𝑠

)
≤ 35(Δ + 1) · BRev

(
𝐷𝐶𝑠

)
so Val

(
𝐷𝐶𝑠

)
≤ SRev(𝐷) + 35(Δ + 1) · BRev

(
𝐷𝐶𝑠

)
as desired. □

Combining the last two claims with (2) completes the proof of the lemma. □

4 Beyond Additive Valuations
In this section we study unit-demand and subadditive buyers.
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4.1 Unit-Demand Buyer Mechanisms
Recall, in the unit demand setting, the buyer samples a private MRF type vector t, and then the

valuation for a subset 𝑆 of items is

𝑣 (𝑆) = max

𝑖∈𝑆
𝑔(𝑡𝑖 ),

where we employ the notation 𝑔(𝑡𝑖 ) = 𝑔({𝑡𝑖 }).

Proof of Theorem 1.2. Using the approximate marginal mechanism Lemma 2.5, we may again

use a core-tail decomposition. We define the tail by

𝑇 B
{
𝑖 ∈ [𝑛] : 𝑔(𝑡𝑖 ) ≥ 𝑒8Δ+1SRev(𝐷)

}
,

and set the core 𝐶 B [𝑛] \𝑇 . By applying Lemma 2.5, we have

Rev(𝐷) = 2Val

(
𝐷𝐶

)
+ 2

∑︁
𝐴⊆[𝑛]

Pr [𝑇 = 𝐴] · Rev
(
𝐷𝑇𝐴

)
. (4)

Unlike in the additive setting, the value of the core is already bounded by O (Δ) · SRev(𝐷). This
allows us to simply follow the proof structure of Theorem 3.1 without losing an extra log𝑛 term.

Claim 4.1. For a unit demand buyer,

Val

(
𝐷𝐶

)
≤ (22Δ + 4) · SRev(𝐷).

Proof. Consider the following pricing strategy. Pick 𝑧 ∈ {0, 1, . . . , 8Δ} uniformly at random,

and sell every item for price 𝑒𝑧 · SRev(𝐷). If max𝑖∈𝐶 𝑔(𝑡𝑖 ) ≥ SRev(𝐷), then this strategy obtains

revenue at least
𝑣 (𝐶 )
𝑒

with probability at least
1

8Δ+1 . Therefore, we have

E [𝑣t (𝐶)] ≤ SRev(𝑣t) + 𝑒 (8Δ + 1)SRev(𝑣t) ≤ (22Δ + 4) SRev(𝑣t). □

Claim 4.2. For a unit demand buyer,∑︁
𝐴⊆[𝑛]

Pr [𝑇 = 𝐴] · Rev
(
𝐷𝑇𝐴

)
≤ 3 · SRev

(
𝐷𝑇

)
.

Proof of Claim 4.2. Notice that in the unit demand setting, we no longer have SRev(𝐷) =∑
𝑖 Rev𝑖 (𝐷), as the buyer will not purchase more than one item. To get around this, we will show

that an approximate version of this equality holds for SRev

(
𝐷𝑇

)
, as it is rare that more than one

item appears in the tail. Our goal will be to show

SRev

(
𝐷𝑇

)
≳

∑︁
𝑖

Rev𝑖

(
𝐷𝑇

)
≳

∑︁
𝐴⊆[𝑛]

Pr [𝑇 = 𝐴] Rev
(
𝐷𝑇𝐴

)
,

where ≳ means that the inequality holds up to scaling by a constant factor.

For the latter inequality, we again use the decomposition∑︁
𝐴⊆[𝑛]

Pr [𝑇 = 𝐴] · Rev
(
𝐷𝑇𝐴

)
=

∑︁
𝑖∈[𝑛]

Pr [𝑇 = {𝑖}] · Rev
(
𝐷𝑇{𝑖 }

)
+

∑︁
𝐴⊆[𝑛]
|𝐴 | ≥2

Pr [𝑇 = 𝐴] · Rev
(
𝐷𝑇𝐴

)
.

First, we clearly have Pr [𝑇 = {𝑖}] · Rev
(
𝐷𝑇{𝑖 }

)
≤ Rev𝑖

(
𝐷𝑇

)
, so we only need to bound the contri-

bution of the second summation. For this, we use Lemma 2.6 for unit-demand buyers to get∑︁
𝐴⊆[𝑛]
|𝐴 | ≥2

Pr [𝑇 = 𝐴] · Rev
(
𝐷𝑇𝐴

)
≤

∑︁
𝐴⊆[𝑛]
|𝐴 | ≥2

Pr [𝑇 = 𝐴] ·
∑︁
𝑖∈𝐴

4𝑒4ΔRev𝑖

(
𝐷𝑇𝐴

)
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= 4𝑒4Δ
∑︁
𝑖∈[𝑛]

∑︁
𝐴∋𝑖
|𝐴 | ≥2

Pr [𝑇 = 𝐴] · Rev𝑖
(
𝐷𝑇𝐴

)
≤ 4𝑒8Δ

∑︁
𝑖∈[𝑛]

∑︁
𝐴∋𝑖
|𝐴 | ≥2

Pr [𝑇 \ {𝑖} = 𝐴 \ {𝑖}] · Rev𝑖
(
𝐷𝑇

)
= 4𝑒8Δ

∑︁
𝑖∈[𝑛]

Pr [|𝑇 \ {𝑖}| ≥ 1] · Rev𝑖
(
𝐷𝑇

)
≤ 4𝑒8Δ · Pr [|𝑇 | ≥ 1] ·

∑︁
𝑖∈[𝑛]

Rev𝑖

(
𝐷𝑇

)
.

By construction, we have Pr [|𝑇 | ≥ 1] ≤ 𝑒−8Δ−1. Thus, we get∑︁
𝐴⊆[𝑛]

Pr [𝑇 = 𝐴] · Rev
(
𝐷𝑇𝐴

)
≤ 4

𝑒

∑︁
𝑖

Rev𝑖

(
𝐷𝑇

)
.

Now, we just need the bound SRev

(
𝐷𝑇

)
≳

∑
𝑖 Rev𝑖

(
𝐷𝑇

)
. Consider the mechanism of placing the

optimal single-item price

𝑝𝑖 B argmax

𝑝≥𝑒8Δ+1SRev(𝐷 )
𝑝 · Pr [𝑔(𝑡𝑖 ) ≥ 𝑝]

on each item 𝑖 . This separate price mechanism generates revenue∑︁
𝑖

𝑝𝑖 · Pr [𝑔(𝑡𝑖 ) ≥ 𝑝𝑖 ] · Pr [𝑖 chosen | 𝑔(𝑡𝑖 ) ≥ 𝑝𝑖 ] =
∑︁
𝑖

Rev𝑖 (𝐷𝑇 ) · Pr [𝑖 chosen | 𝑔(𝑡𝑖 ) ≥ 𝑝𝑖 ] .

However, we have

Pr [𝑖 chosen | 𝑔(𝑡𝑖 ) ≥ 𝑝𝑖 ] ≥ 1 − Pr [|𝑇 | ≥ 2 | 𝑔(𝑡𝑖 ) ≥ 𝑝𝑖 ] ≥ 1 − 𝑒4Δ Pr [|𝑇 \ {𝑖}| ≥ 1] ≥ 1 − 𝑒−4Δ−1 .
Therefore, we have SRev

(
𝐷𝑇

)
≥

(
1 − 𝑒−4Δ−1

) ∑
𝑖 Rev𝑖

(
𝐷𝑇

)
, and we obtain∑︁

𝐴⊆[𝑛]
Pr [𝑇 = 𝐴] · Rev

(
𝐷𝑇𝐴

)
≤ 4

𝑒
(
1 − 𝑒−8Δ−1

) SRev (
𝐷𝑇

)
< 3 · SRev

(
𝐷𝑇

)
.

□

Using the last two claims with (4) completes the proof of Theorem 1.2. □

4.2 Subadditive Buyer Mechanisms
For the case of a subadditive buyer, since SRev(𝐷) may be difficult to analyze directly, we will use

the proxy SRev
′ (𝐷), which we define as

SRev
′ (𝐷) = max

(𝑝1,...,𝑝𝑛 ) ∈R𝑛+

∑︁
𝑖∈[𝑛]
E

[
𝑝𝑖 · 1𝑣 (𝑖 )≥𝑝𝑖 ·

∏
𝑗≠𝑖

1𝑣 ( 𝑗 )<𝑝 𝑗

]
.

In other words, SRev
′ (𝐷) is the maximum expected revenue from a separate pricing mechanism

where we are only allowed to collect revenue when the buyer purchases exactly one item. This

is the same proxy used by Rubinstein and Weinberg [2018] in their analysis for a subadditive

buyer with independent items. Clearly, SRev
′ (𝐷) ≤ SRev(𝐷) and SRev

′ (𝐷) ≤ ∑
𝑖 Rev𝑖 (𝐷). Hence,

Theorem 1.3 is an immediate corollary of the following lemma.

Lemma 4.3. For a single subadditive buyer, we have

Rev(t) ≤ (348Δ + 110) · BRev(t) + 10 · SRev′ (t).
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We will let 𝑡 > 0 denote the cut-off between the tail and core, which we will define momentarily:

𝑇 := {𝑖 ∈ [𝑛] : 𝑣 (𝑖) ≥ 𝑡}, 𝐶 := [𝑛] \𝑇 .

For each 𝑖 , let 𝑞𝑖 := Pr(𝑖 ∈ 𝑇 ). We choose 𝑡 such that

∑
𝑖∈[𝑛] 𝑞𝑖 = 𝑒

−8Δ−1
. Notice that this gives the

bound 𝑡 ≤ 𝑒8Δ+2SRev′ (𝐷) by

SRev
′ (𝐷) ≥

∑︁
𝑖

𝑡 · Pr(𝑣 (𝑖) ≥ 𝑡 & 𝑣 ( 𝑗) < 𝑡, ∀𝑗 ≠ 𝑖)

=
∑︁
𝑖

𝑡 · Pr(𝑣 (𝑖) ≥ 𝑡) · Pr [𝑣 ( 𝑗) < 𝑡, ∀𝑗 ≠ 𝑖 | 𝑣 (𝑖) ≥ 𝑡]

≥
∑︁
𝑖

𝑡 · Pr(𝑣 (𝑖) ≥ 𝑡) ·
(
1 − Pr(∃ 𝑗 ≠ 𝑖, 𝑣 ( 𝑗) ≥ 𝑡 | 𝑣 (𝑖) ≥ 𝑡)

)
≥ 𝑡 ·

(∑︁
𝑖

𝑞𝑖

) (
1 − 𝑒4Δ

∑︁
𝑗

𝑞 𝑗

)
≥ 𝑡𝑒−8Δ−2 .

Lemma 4.4. We have ∑︁
𝐴⊆[𝑛]

Pr(𝑇 = 𝐴) · Rev(𝐷𝑇𝐴) ≤ 4 · SRev′ (𝐷).

Proof. Again, we separately consider when |𝑇 | = 1 and when |𝑇 | ≥ 2.∑︁
𝐴⊆[𝑛]

Pr [𝑇 = 𝐴] · Rev
(
𝐷𝑇𝐴

)
=

∑︁
|𝐴 | ≥2

Pr [𝑇 = 𝐴] · Rev
(
𝐷𝑇𝐴

)
+

∑︁
𝑖∈[𝑛]

Pr [𝑇 = {𝑖}] · Rev{𝑖 }
(
𝐷𝑇{𝑖 }

)
≤

∑︁
|𝐴 | ≥2

Pr [𝑇 = 𝐴] · Rev
(
𝐷𝑇𝐴

)
+ SRev

′
(
𝐷𝑇

)
.

For the terms with |𝐴| ≥ 2, we can use an argument similar to that of Claim 3.3 for the additive

setting. Specifically, we let 𝑝 be the optimal price in the mechanism for Rev𝑖 (𝐷𝑇𝐴), and we have

Rev𝑖 (𝐷𝑇 ) ≥ 𝑝 · Pr [𝑣 (𝑖) ≥ 𝑝]
≥ 𝑒−4Δ · 𝑝 · Pr(𝑣 (𝑖) ≥ 𝑝 | 𝑇 \ {𝑖} = 𝐴 \ {𝑖})
= 𝑒−4Δ · 𝑝 · Pr(𝑣 (𝑖) ≥ 𝑝 | 𝑇 = 𝐴) · Pr(𝑇 = 𝐴 | 𝑇 \ {𝑖} = 𝐴 \ {𝑖})

= 𝑒−4ΔRev𝑖 (𝐷𝑇𝐴) ·
Pr(𝑇 = 𝐴)

Pr𝑇 \ {𝑖} = 𝐴 \ {𝑖} .

Thus, we see that Pr[𝑇 = 𝐴] · Rev𝑖 (𝐷𝑇𝐴) ≤ 𝑒
4Δ

Pr [𝑇 \ {𝑖} = 𝐴 \ {𝑖}] · Rev𝑖 (𝐷𝑇 ). Using this and
Lemma 2.6 we have∑︁

𝐴⊆[𝑛]
|𝐴 | ≥2

Pr [𝑇 = 𝐴] · Rev
(
𝐷𝑇𝐴

)
≤ 2𝑒4Δ ·

∑︁
𝐴⊆[𝑛]
|𝐴 | ≥2

Pr [𝑇 = 𝐴] · |𝐴| ·
∑︁
𝑖∈𝐴

Rev𝑖 (𝐷𝑇𝐴)

≤ 2𝑒8Δ ·
∑︁
𝐴⊆[𝑛]
|𝐴 | ≥2

∑︁
𝑖∈𝐴

|𝐴| · Pr [𝑇 \ {𝑖} = 𝐴 \ {𝑖}] · Rev𝑖 (𝐷𝑇 )

= 2𝑒8Δ ·
∑︁
𝑖∈[𝑛]

Rev𝑖 (𝐷𝑇 ) ·
∑︁
𝐴∋𝑖
|𝐴 | ≥2

|𝐴| · Pr [𝑇 \ {𝑖} = 𝐴 \ {𝑖}] .
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Now, notice that for any 𝑖 ∈ [𝑛], we have∑︁
𝐴∋𝑖
|𝐴 | ≥2

|𝐴| · Pr [𝑇 \ {𝑖} = 𝐴 \ {𝑖}] = E
[
( |𝑇 \ {𝑖}| + 1) · 1 |𝑇 \{𝑖 } |≥1

]
≤ E [2 · |𝑇 \ {𝑖}|] ≤ 2E[|𝑇 |] .

Thus, we ultimately have∑︁
𝐴⊆[𝑛]
|𝐴 | ≥2

Pr [𝑇 = 𝐴] · Rev
(
𝐷𝑇𝐴

)
≤ 4𝑒8Δ · E[|𝑇 |] ·

∑︁
𝑖∈[𝑛]

Rev𝑖 (𝐷𝑇 ) < 2

∑︁
𝑖∈[𝑛]

Rev𝑖 (𝐷𝑇 ),

where the last inequality comes from the fact that E[|𝑇 |] ≤ 𝑒−8Δ−1. Finally, we can argue that∑
𝑖 Rev𝑖

(
𝐷𝑇

)
≲ SRev

′ (𝐷𝑇 ) similarly to our argument in the unit demand setting. Letting 𝑝𝑖 be the

optimal price of 𝑖 in the mechanism for Rev𝑖

(
𝐷𝑇

)
, we have

SRev
′
(
𝐷𝑇

)
≥

∑︁
𝑖

𝑝𝑖 · Pr [𝑣 (𝑖) ≥ 𝑝𝑖 ] · Pr
[
∀𝑗 ≠ 𝑖, 𝑣 ( 𝑗) < 𝑝 𝑗

�� 𝑣 (𝑖) ≥ 𝑝𝑖
]

≥
∑︁
𝑖

𝑝𝑖 · Pr [𝑣 (𝑖) ≥ 𝑝𝑖 ] ·
(
1 −

∑︁
𝑗≠𝑖

Pr

[
𝑣 ( 𝑗) ≥ 𝑝 𝑗

�� 𝑣 (𝑖) ≥ 𝑝𝑖
] )

≥
∑︁
𝑖

𝑝𝑖 · Pr [𝑣 (𝑖) ≥ 𝑝𝑖 ] ·
(
1 − 𝑒4Δ E[|𝑇 |]

)
≥

∑︁
𝑖

Rev𝑖

(
𝐷𝑇

)
·
(
1 − 𝑒−4Δ−1

)
≥ 1

2

·
∑︁
𝑖

Rev𝑖

(
𝐷𝑇

)
. □

Lemma 4.5. We have

Val(𝐷𝐶 ) ≤ (174Δ + 55) · BRev(𝐷𝐶 ) + SRev
′ (𝐷).

Proof. We may assume Val(𝐷𝐶 ) ≥ SRev
′ (𝐷), or else we are done. Let 𝜇 = Val(𝐷𝐶 ). We use the

following pricing strategy for the grand bundle: select 𝑧 ∈ {−1, 0, 1, . . . , 𝐾} uniformly at random,

where 𝐾 = 𝑂 (Δ) is chosen later, and sell the grand bundle at price 𝜇𝑒𝑧 . By standard analysis, we

see that this obtains revenue at least
1

𝑒𝐾 E
[
1𝑣 (𝐶 )≥𝜇𝑒−1 ·min{𝑣 (𝐶), 𝜇𝑒𝐾 }

]
. Additionally, we have the

bound

𝜇 ≤ 𝜇𝑒−1 + E
[
1𝑣 (𝐶 )≥𝜇𝑒−1 ·min{𝑣 (𝐶), 𝜇𝑒𝐾 }

]
+ E(𝑣 (𝐶) − 𝜇𝑒𝐾 )+, (5)

=⇒ (1 − 𝑒−1)𝜇 ≤ E
[
1𝑣 (𝐶 )≥𝜇𝑒−1 ·min{𝑣 (𝐶), 𝜇𝑒𝐾 }

]
+ E(𝑣 (𝐶) − 𝜇𝑒𝐾 )+ . (6)

Hence, we only need to show that E(𝑣 (𝐶) − 𝜇𝑒𝐾 )+ ≤ 𝑐 · 𝜇 for some small constant 𝑐 to get our

desired result. To do this, we seek to use a concentration bound for subadditive functions over

independent items.

First, we will reduce to the independent case. Let tind ∈ ∏
𝑖∈[𝑛] (Ω𝑖 ∪ {0}) be a random vector

with independent coordinates with marginal distributions on each 𝑡 ind𝑖 given as follows.

Pr(𝑡 ind𝑖 = 𝜔𝑖 ) = inf

𝜔−𝑖 ∈Ω−𝑖
Pr(𝑡𝑖 = 𝜔𝑖 | t−𝑖 = 𝜔−𝑖 ) ∀𝑖 ∈ [𝑛], 𝜔𝑖 ∈ Ω𝑖 ,

Pr(𝑡 ind𝑖 = 0) = 1 −
∑︁
𝜔∈Ω𝑖

Pr(𝑡 ind𝑖 = 𝜔).

Here, 0 is a dummy element that we introduce, for which we define 𝑔(0) = 0, i.e. so that

𝑔(𝑆 ∪ {0}) = 𝑔(𝑆) for any 𝑆 ⊆ Ω.
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Claim 4.6. For a subadditive monotone function 𝑔 : Ω → R+, let 𝑔(t) := 𝑔({𝑡𝑖 : 𝑖 ∈ [𝑛]}). Then, for
each 𝜏 > 0,

Pr(𝑔(t) ≥ 𝜏) ≤ 𝑒4Δ · Pr(𝑔(tind) ≥ 𝑒−4Δ𝜏).

Proof. Let 𝑆 be a random subset of [𝑛] in which each 𝑖 is included independently with probability
𝑒−4Δ. We use the notation 𝑔(t𝑆 ) = 𝑔({𝑡𝑖 : 𝑖 ∈ 𝑆}).
We claim that 𝑔(tind) stochastically dominates 𝑔(t𝑆 ), in the sense that we can define a coupling

of tind with t and 𝑆 such that 𝑖 ∈ 𝑆 only when 𝑡 ind𝑖 = 𝑡𝑖 . This ensures that 𝑔(tind) ≥ 𝑔(t𝑆 ) under the
coupling, and hence the cumulative distribution function of 𝑔(tind) dominates that of 𝑔(t).
The coupling we use is as follows. For 𝑖 = 1, . . . , 𝑛, we iteratively sample 𝑡𝑖 from Ω𝑖 , conditional

on our previous observation 𝑡1, . . . , 𝑡𝑖−1 = 𝜔1, . . . , 𝜔𝑖−1, and then independently decide if 𝑖 ∈ 𝑆 . In
the case 𝑖 ∈ 𝑆 , we choose 𝑡 ind𝑖 = 𝑡𝑖 . In the remaining case 𝑖 ∉ 𝑆 , we sample 𝑡 ind𝑖 with appropriate

probabilities to have the correct marginal probabilities Pr(𝑡 ind𝑖 = 𝜔𝑖 ). Note that this is possible since
Lemma 1 of [Cai and Oikonomou, 2021] gives us

Pr(𝑡 ind𝑖 = 𝜔𝑖 ) ≥ 𝑒−4Δ Pr(𝑡𝑖 = 𝜔𝑖 | t<𝑖 = 𝜔<𝑖 ) = Pr(𝑖 ∈ 𝑆 and 𝑡𝑖 = 𝜔𝑖 | t<𝑖 = 𝜔<𝑖 ).

Using this property of tind, lets consider a uniform random map
2 𝜎 : [𝑛] → [𝑒4Δ]. Notice that

for each 𝑘 , the set 𝜎−1 (𝑘) has the distribution of the random set 𝑆 . Thus, for any 𝜏 > 0 we have

Pr(𝑔(t) ≥ 𝜏) ≤ Pr(∃𝑘, 𝑔(t𝜎−1 (𝑘 ) ) ≥ 𝑒−4Δ𝜏)
≤ 𝑒4Δ Pr(𝑔(t𝑆 ) ≥ 𝑒−4Δ𝜏)
≤ 𝑒4Δ Pr(𝑔(tind) ≥ 𝑒−4Δ𝜏). □

Using this reduction, we can use the subadditive concentration theorem for product distributions

to get an approximate concentration result for MRFs. From Theorem 3.10 of [Rubinstein and

Weinberg, 2018], we have that if 𝑎 is the median of 𝑔(tind) and 𝐿 is the Lipschitz constant of 𝑔, then

Pr(𝑔(tind) ≥ 3𝑎 + 𝜏) ≤ 4 · 2−𝜏/𝐿 . Letting 𝜇 = E[𝑔(t)], we have 𝑎 ≤ 2E[𝑔(tind)] ≤ 2𝜇. Combined

with the concentration result above, this tells us

Pr[𝑔(tind) ≥ 6𝜇 + 𝜏] ≤ 4 · 2−𝜏/𝐿 .

Hence, for any 𝜏0 > 0, we compute

E[(𝑔(t) − 𝜏0)+] =
∫ ∞

𝜏0

Pr(𝑔(t) ≥ 𝜏)𝑑𝜏

≤ 𝑒4Δ
∫ ∞

𝜏0

· Pr(𝑔(tind) ≥ 𝑒−4Δ𝜏)𝑑𝜏

= 𝑒8Δ
∫ ∞

𝑒−4Δ𝜏0

Pr(𝑔(tind) ≥ 𝜏)𝑑𝜏

≤ 4𝑒8Δ
∫ ∞

𝑒−4Δ𝜏0−6𝜇
2
−𝜏/𝐿𝑑𝜏

=
4𝐿

ln 2

exp

(
8Δ − ln(2) · 𝑒

−4Δ𝜏0 − 6𝜇

𝐿

)
.

2
We assume that 𝑒4Δ is in integer for simplicity, as we can round up Δ to the nearest value for which this holds to obtain

the same asymptotic bounds.
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Now, to apply this to our setting with 𝑣 (𝐶) = 𝑔(t𝐶 ), notice that 𝑔 is 𝑡-Lipschitz on the core

elements. Hence, setting 𝜏0 = 𝑒
16Δ+5𝜇 and recalling 𝑡 ≤ 𝑒8Δ+2 · SRev′ (𝐷) ≤ 𝑒8Δ+2𝜇, we have

E
[
𝑔(t𝐶 ) − 𝑒16Δ+5𝜇)+

]
≤ 4𝑒8Δ+2𝜇

ln 2

· exp
(
8Δ − ln(2) · 𝑒

12Δ+5 − 6

𝑒8Δ+2

)
≤ 𝜇 · 4𝑒

2

ln 2

· exp
(
16Δ − ln(2) ·

𝑒12Δ+3 − 6

𝑒2

𝑒8Δ

)
≤ 𝜇 · 4𝑒

2

ln 2

· exp
(
16Δ − 7 ln(2) · 𝑒4Δ

)
≤ 𝜇 · 4𝑒

2

ln 2

· 1

128

≤ 𝜇

3

.

Thus, taking 𝐾 = 16Δ + 5 and substituting the above into (6), we obtain

BRev(𝐷𝐶 ) ≥ 1

𝑒 (16Δ + 5) E
[
1𝑣 (𝐶 )≥𝜇𝑒−1

]
≥ 𝜇

4𝑒 (16Δ + 5) ≥ 1

174Δ + 55

· 𝜇.

□

5 Prophet Inequalities
In this section, we study the prophet inequality problem under MRF dependencies. Formally, in the

prophet inequality problem, there are 𝑛 non-negative random variables (𝑋1, . . . , 𝑋𝑛) whose values
are drawn from a known joint distribution 𝐷 . In the 𝑖-th step for 𝑖 ∈ [𝑛], the online algorithm sees

𝑋𝑖 (but 𝑋 𝑗 for 𝑗 > 𝑖 are still unknown) and has to immediately decide to accept/reject 𝑋𝑖 . The game

ends when the algorithm first accepts an element 𝑋𝜏 and the algorithm’s goal is to maximize E[𝑋𝜏 ].
We say an algorithm is 𝛼-competitive if E[max𝑖 𝑋𝑖 ] ≤ 𝛼 · E[𝑋𝜏 ].

Definition 5.1. We say that a distribution𝐷 over R𝑛+ has an MRF distribution if there exists an MRF

F (recall Definition 2.1) and functions 𝑔𝑖 : Ω𝑖 → R+ for each 𝑖 ∈ [𝑛] such that (𝑋1, . . . , 𝑋𝑛) ∼ 𝐷 ,

where 𝑋𝑖 = 𝑔𝑖 (𝑡𝑖 ) and t is sampled from F .

Here, we will only present the 𝑂 (Δ)-competitive algorithm for prophet inequality and leave

further discussion for the appendix. In Appendix A.2, we show that this bound is tight (up to

constant factors) for any online algorithm under MRF distributions. In Appendix A.3 we show

that the popular approach of designing prophet inequalities for product distributions via “online

contention resolution schemes” (OCRSs) cannot be used to prove Theorem 1.4. In particular, it is

impossible to obtain better than 1/exp(Θ(Δ))-selectable OCRS under MRF dependencies, hence

showing a strong separation between prophet inequalities and OCRS under MRF dependencies.

Our algorithm in the proof of Theorem 1.4 is simple: it selects a single threshold 𝜏 chosen at

random from a geometric distribution, and accepts the first random variable above the threshold.

By carefully balancing between the chance of guessing the threshold for the maximum and the

probability that more than one random variables exceed the upper-most limit of the geometric

distribution, we obtain an 𝑂 (Δ)-competitive algorithm.

Proof of Theorem 1.4. Let𝑀 := max𝑖 𝑋𝑖 . Without loss of generality, assume OPT := E[𝑀] = 1.

Our strategy will be as follows: First, pick a value 𝑧 ∈ {−1, 0, 1, 2, . . . , 𝐾} uniformly at random,

where 𝐾 will be chosen later, and then take the first value 𝑋𝑖 which is at least 𝑒𝑧 . Let ALG be the

random value taken by this algorithm. Now, we upper bound the maximum as

1 = E[𝑀] ≤ 𝑒−1 + ∑𝐾
𝑖=0 Pr

[
𝑀 ∈ [𝑒𝑖−1, 𝑒𝑖 )

]
· 𝑒𝑖 + ∑

𝑖∈[𝑛] E
[
1𝑋𝑖≥𝑒𝐾 · 𝑋𝑖

]
,
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which implies

(1 − 𝑒−1) E[𝑀] ≤ ∑𝐾
𝑡=0 Pr

[
𝑀 ∈ [𝑒𝑖−1, 𝑒𝑖 )

]
· 𝑒𝑖 + ∑

𝑖∈[𝑛] E
[
1𝑋𝑖≥𝑒𝐾 · 𝑋𝑖

]
.

At the same time, we can lower bound our algorithm as

E[ALG] ≥
𝐾∑︁
𝑡=0

Pr

[
𝑀 ∈ [𝑒𝑖−1, 𝑒𝑖 ) ∧ 𝑧 = 𝑖 − 1

]
· 𝑒𝑖−1 +

∑︁
𝑖∈[𝑛]

Pr [𝑧 = 𝐾] E
[
1𝑋𝑖≥𝑒𝐾 · 1X−𝑖<𝑒𝐾 · 𝑋𝑖

]
=

1

𝐾 + 2

©­«𝑒−1
𝐾∑︁
𝑡=0

Pr

[
𝑀 ∈ [𝑒𝑖−1, 𝑒𝑖 )

]
· 𝑒𝑖 +

∑︁
𝑖∈[𝑛]
E

[
1𝑋𝑖≥𝑒𝐾 · 1X−𝑖<𝑒𝐾 · 𝑋𝑖

]ª®¬ .
Now,we seek to show thatE

[
1𝑋𝑖≥𝑒𝐾 · 1X−𝑖<𝑒𝐾 · 𝑋𝑖

]
is at least a constant fraction ofE

[
1𝑋𝑖≥𝑒𝐾 · 𝑋𝑖

]
.

To do this, we see

E
[
1𝑋𝑖≥𝑒𝐾 · 1X−𝑖<𝑒𝐾 · 𝑋𝑖

]
=

∫
𝑥𝑖≥𝑒𝐾
x−𝑖<𝑒𝐾

𝑥𝑖 · 𝑑 Pr [X = x]

=

∫
𝑥𝑖≥𝑒𝐾

𝑥𝑖 · Pr
[
X−𝑖 < 𝑒

𝐾
�� 𝑋𝑖 = 𝑥𝑖 ] · 𝑑 Pr [X = x]

=

∫
𝑥𝑖≥𝑒𝐾

𝑥𝑖 ·
(
1 − Pr

[
∃ 𝑗 ≠ 𝑖, 𝑋 𝑗 > 𝑒𝐾

�� 𝑋𝑖 = 𝑥𝑖 ] ) · 𝑑 Pr [𝑋𝑖 = 𝑥𝑖 ]
≥

∫
𝑥𝑖≥𝑒𝐾

𝑥𝑖 ·
(
1 − 𝑒4Δ Pr

[
∃ 𝑗 ≠ 𝑖, 𝑋 𝑗 > 𝑒𝐾

] )
· 𝑑 Pr [𝑋𝑖 = 𝑥𝑖 ]

≥
∫
𝑥𝑖≥𝑒𝐾

𝑥𝑖 ·
(
1 − 𝑒4Δ−𝐾

)
· 𝑑 Pr [𝑋𝑖 = 𝑥𝑖 ]

=

(
1 − 𝑒4Δ−𝐾

)
E

[
1𝑋𝑖≥𝑒𝐾 · 𝑋𝑖

]
,

where, in the penultimate step, we are using Markov’s inequality to get Pr

[
∃ 𝑗 ≠ 𝑖, 𝑋 𝑗 > 𝑒𝐾

]
≤

E[𝑀 ]
𝑒𝐾

= 𝑒−𝐾 . Choosing 𝐾 = 4Δ + 1 gives

E[ALG] ≥
1

𝐾 + 2

(
𝑒−1

𝐾∑︁
𝑡=0

Pr

[
𝑀 ∈ [𝑒𝑖−1, 𝑒𝑖 )

]
· 𝑒𝑖 +

(
1 − 𝑒−1

) ∑︁
𝑖∈[𝑛]
E

[
1𝑋𝑖≥𝑒𝐾 · 𝑋𝑖

] )
≥ 𝑒−1 (1 − 𝑒−1)

4Δ + 3

≥ 1

20Δ + 15

.

□
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A Omitted Proofs
A.1 Proof of Lemma 2.6
For each realization s ∈ Ω, let 𝑣s denote the buyers valuation when t = s. Let 𝜉𝑖 be the set of s ∈ Ω
such that 𝑖 is the smallest index with 𝑣s (𝑖) = max𝑗 𝑣s ( 𝑗). In other words, 𝜉𝑖 is the set of realizations

of t where 𝑖 is the “favorite item”.

Let 𝐷𝜉𝑖 denote the distribution of 𝑣 given t ∈ 𝜉𝑖 , and let 𝑟𝜉𝑖 (s) denote the revenue obtained from

the optimal mechanism for Rev(𝐷𝜉𝑖 ) for the realization t = s. We have

Rev(𝐷) ≤
∑︁
𝑖∈[𝑛]

Pr [t ∈ 𝜉𝑖 ] Rev
(
𝐷𝜉𝑖

)
≤

∑︁
𝑖∈[𝑛]

∑︁
s∈𝜉𝑖

Pr [t = s] · 𝑟𝜉𝑖 (s)

≤ 𝑒4Δ
∑︁
𝑖∈[𝑛]

∑︁
s∈𝜉𝑖

Pr [𝑡𝑖 = 𝑠𝑖 ] · Pr [t−𝑖 = s−𝑖 ] · 𝑟𝜉𝑖 (s)
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Fig. 1. The dependency graph of a path MRF.

= 𝑒4Δ
∑︁
𝑖∈[𝑛]

Pr [t′ ∈ 𝜉𝑖 ] · Rev
(
𝐷 ′
𝜉𝑖

)
,

where the third inequality follows from Lemma 2.3, and t′ has distribution

Pr [t′ = s] = Pr [𝑡𝑖 = 𝑠𝑖 ] · Pr [t−𝑖 = s−𝑖 ] ,
and 𝐷 ′

𝜉𝑖
is the distribution of 𝑣t′ given that t′ ∈ 𝜉𝑖 . Intuitively, t′ is a copy of t where we make 𝑡 ′𝑖 to

be independent of t′−𝑖 with the same marginal distribution.

Using Lemma 2.5, we find

Pr [t′ ∈ 𝜉𝑖 ] · Rev
(
𝐷 ′
𝜉𝑖

)
≤ 2 Pr [t′ ∈ 𝜉𝑖 ] ·

(
Val−𝑖 (𝐷 ′

𝜉𝑖
) + Rev𝑖 (𝐷 ′

𝜉𝑖
)
)
,

where Val−𝑖 (𝐷) denotes E𝑣∼𝐷 [𝑣 ( [𝑛] \ {𝑖})].
First, we have

Pr [t′ ∈ 𝜉𝑖 ] · Rev𝑖 (𝐷 ′
𝜉𝑖
) ≤ Rev𝑖 (𝐷 ′) = Rev𝑖 (𝐷).

Additionally, we claim

Pr [t′ ∈ 𝜉𝑖 ] · Val−𝑖 (𝐷 ′
𝜉𝑖
) ≤ 𝜌 · Rev𝑖 (𝐷).

To see this, consider the mechanism for selling 𝑖 that samples t′ ∼ 𝐷 ′
and sets a price ofmax𝑗≠𝑖 𝑣t′ ( 𝑗).

We can consider 𝑣t′ (𝑖) to be the buyer’s valuation on 𝑖 , since it is independent. Then the item sells

with probability at least Pr(t′ ∈ 𝜉𝑖 ) and generates revenue at least E
[
max𝑗≠𝑖 𝑣t′ ( 𝑗) | t′ ∈ 𝜉𝑖

]
≥

1

𝜌
Val−𝑖 (𝐷 ′

𝜉𝑖
), implying the claim.

Therefore, we have

Rev(𝐷) ≤ 𝑒4Δ
∑︁
𝑖∈[𝑛]

(𝜌 + 1) · Rev𝑖 .

Putting everything together, we obtain

Rev(𝐷) ≤ 2(𝜌 + 1)𝑒4Δ ·
∑︁
𝑖∈[𝑛]

Rev𝑖 (𝐷).

A.2 Every prophet inequality algorithm is Ω (Δ)-competitive
We show that one cannot hope for a prophet inequality with a better than linear dependence on Δ.

Theorem A.1. For any Δ > 0, there exists an MRF with maximum weighted degree Δ such that any
online prophet inequality algorithm is Ω (Δ)-competitive.

Our hardness example consists of an MRF that is a path, i.e., the dependency graph looks like

that of Figure 1. In such MRFs, the value of 𝑋𝑖 depends only on the value of 𝑋𝑖−1, for any 𝑖 , and
thus, indirectly on all 𝑋 𝑗 for 𝑗 < 𝑖 . For such MRFs, which inherently impose an ordering on the

vertices, we present a lemma regarding Markov Random Fields that will be useful in our proof.

Lemma A.2. For any 𝑖 ∈ [𝑛], any probabilities {𝑝𝑖,𝜔 ∈ (0, 1) : 𝜔 ∈ Ω𝑖 } such that
∑
𝜔∈Ω𝑖 𝑝𝑖,𝜔 = 1

and any fixed functions {𝜓𝑒 : 𝑒 ∈ 𝐸}, there exists a path MRF F =
(
{Ω𝑖 }𝑖∈[𝑛], 𝐸, {𝜓𝑖 }𝑖∈[𝑛], {𝜓𝑒 }𝑒∈𝐸

)
where 𝐸 = {{𝑖 − 1, 𝑖} | 𝑖 ∈ [𝑛]} such that if X = (𝑋1, . . . , 𝑋𝑛) follows F , then

∀𝑖 ∈ [𝑛], 𝜔 ∈ Ω𝑖 , x = (𝑥1, . . . , 𝑥𝑛) ∈ Ω1 × · · · × Ω𝑛, Pr

[
𝑋𝑖 = 𝜔

�� ∀𝑗 < 𝑖, 𝑋 𝑗 = 𝑥 𝑗 ] = 𝑝𝑖,𝜔 .
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Proof of Lemma A.2. Notice that Pr

[
𝑋𝑖 = 𝑥𝑖

�� ∀𝑗 < 𝑖, 𝑋 𝑗 = 𝑥 𝑗 ] does not depend on the func-

tions𝜓1, . . . ,𝜓𝑖−1. This allows us to choose the𝜓𝑖 sequentially in reverse order starting from 𝑖 = 𝑛

and proceeding to 𝑖 = 1.

We proceed by induction. Suppose for some 𝑖 , we have already fixed𝜓𝑖+1, . . . ,𝜓𝑛 . For each𝜔 ∈ Ω𝑖 ,
let𝜓𝑖 (𝜔) = 𝑧𝜔 for some 𝑧𝜔 we will choose later. We also adopt the notation 𝑒<𝑖 := 𝑒 ∩ {1, . . . , 𝑖 − 1}
and 𝑒>𝑖 := 𝑒 ∩ {𝑖 + 1, . . . , 𝑛} for 𝑒 ∈ 𝐸. With this in mind, we have

Pr

[
𝑋𝑖 = 𝜔

�� ∀𝑗 < 𝑖, 𝑋 𝑗 = 𝑥 𝑗 ] = ∑
𝑢𝑖+1,...,𝑢𝑛 exp

(
𝜓𝑖 (𝜔) +

∑𝑛
𝑗=𝑖+1𝜓 𝑗 (𝑢 𝑗 ) +

∑
𝑒∈𝐸 𝜓𝑒 (𝑥𝑒<𝑖 , 𝜔,𝑢𝑒>𝑖 )

)
∑
𝜔 ′,𝑢𝑖+1,...,𝑢𝑛 exp

(
𝜓𝑖 (𝜔 ′) + ∑𝑛

𝑗=𝑖+1𝜓 𝑗 (𝑢 𝑗 ) +
∑
𝑒∈𝐸 𝜓𝑒 (𝑥𝑒<𝑖 , 𝜔 ′, 𝑢𝑒>𝑖 )

) ,
=

𝜆𝜔𝑒
𝑧𝜔∑

𝜔 ′ 𝜆𝜔 ′𝑒𝑧𝜔′
,

where 𝜆𝜔 ′ =
∑
𝑢𝑖+1,...,𝑢𝑛 exp

(∑𝑛
𝑗=𝑖+1𝜓 𝑗 (𝑢 𝑗 ) +

∑
𝑒∈𝐸 𝜓𝑒 (𝑥𝑒<𝑖 , 𝜔 ′, 𝑢𝑒>𝑖 )

)
for each 𝜔 ′ ∈ Ω𝑖 . Thus, choos-

ing 𝑧𝜔 = log (𝑝𝑖,𝜔/𝜆𝜔) gives the desired result. □

Given the lemma, we can prove Theorem A.1.

Proof of Theorem A.1. Let 𝜆1, 𝜆2, . . . and 0 < 𝑝 < 1 be quantities to be chosen later. The

MRF we will construct is a path MRF, like the one shown in Figure 1. In other words, 𝐸 =

{{𝑖 − 1, 𝑖} : 𝑖 ∈ [𝑛]}. For each positive 𝑛, we define a MRF prophet inequality problem for Ω =

Ω0 × · · · × Ω𝑛 by setting

Ω0 := {1},
Ω𝑖 := {0, 1} for 1 ≤ 𝑖 ≤ 𝑛,

𝑋𝑖 = 𝑔𝑖 (𝑡𝑖 ) := 𝑡𝑖 ·
𝑖−1∏
𝑗=0

𝜆𝑛− 𝑗 for 0 ≤ 𝑖 ≤ 𝑛,

𝜓𝑖−1,𝑖 (𝑠𝑖−1, 𝑠𝑖 ) =
{
−Δ if 𝑠𝑖−1 ≠ 𝑠𝑖
Δ if 𝑠𝑖−1 = 𝑠𝑖 .

. for 1 ≤ 𝑖 ≤ 𝑛.

Additionally, by Lemma A.2, we can choose 𝜓𝑖 (𝑥) for 𝑖 ∈ [𝑛] (in descending order of 𝑖) so that

Pr(𝑡𝑖 = 0 | 𝑡𝑖−1 = 1) = 𝑝 (notice that the path structure ensures that 𝑡𝑖 is independent of 𝑡0, . . . , 𝑡𝑖−2
given 𝑡𝑖−1).

Let 𝑅
(1)
𝑛 be the optimal reward obtainable on the above prophet inequality setup for a given 𝑛.

Moreover, let 𝑅
(0)
𝑛 be the optimal reward obtainable if we instead define Ω0 = {0}. Notice that we

have the following recursive properties:

𝑅
(1)
𝑛 = max

{
1, 𝜆𝑛 ·

(
(1 − 𝑝)𝑅 (1)

𝑛−1 + 𝑝𝑅
(0)
𝑛−1

)}
and 𝑅

(0)
𝑛 = 𝜆𝑛 ·

(
𝑞𝑅

(1)
𝑛−1 + (1 − 𝑞)𝑅 (0)

𝑛−1

)
,

where
𝑞

1−𝑞 = 𝑒−4Δ · 1−𝑝
𝑝

We seek to choose 𝑝 and 𝜆𝑛 so that the 𝑅
(1)
𝑛 = 𝜆𝑛 ·

(
(1−𝑝)𝑅 (1)

𝑛−1 +𝑝𝑅
(0)
𝑛−1

)
for all 𝑛. If this is the case,

then defining the vector 𝑅𝑛 =

[
𝑅
(1)
𝑛 , 𝑅

(0)
𝑛

]𝑇
∈ R2 gives 𝑅𝑛 = 𝜆𝑛 ·

[
(1 − 𝑝) 𝑝

𝑞 (1 − 𝑞)

]
𝑅𝑛−1 . Hence,

𝑅𝑛 =

𝑛∏
𝑖=1

𝜆𝑖 ·
[
(1 − 𝑝) 𝑝

𝑞 (1 − 𝑞)

]𝑛 [
1

0

]
=

𝑛∏
𝑖=1

𝜆𝑖 ·
(
𝑞

𝑝 + 𝑞

[
1

1

]
+ (1 − 𝑝 − 𝑞)𝑛

𝑝 + 𝑞

[
𝑝

−𝑞

] )
.

This leads us to choose 𝜆𝑛 =
𝑞+𝑝 (1−𝑝−𝑞)𝑛−1
𝑞+𝑝 (1−𝑝−𝑞)𝑛 so that 𝑅

(1)
𝑛 = 1 for all 𝑛.
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Now, let us consider quantities𝑀
(1)
𝑛 and𝑀

(0)
𝑛 , whichwe define to be expected value ofmax𝑖∈[𝑛] 𝑔𝑖 (𝑋𝑖 )

for the prophet inequality problem above on a given 𝑛 in the cases when Ω0 = {1} and when

Ω0 = {0} respectively. Our goal is to show that𝑀
(1)
𝑛 is large for some 𝑛.

Similar to the recursion for 𝑅𝑛 , we have the following recursive formula for𝑀𝑛 =

(
𝑀

(1)
𝑛 , 𝑀

(0)
𝑛

)
.

𝑀𝑛 = 𝜆𝑛 ·
[
(1 − 𝑝) 𝑝

𝑞 (1 − 𝑞)

]
𝑀𝑛−1 + 𝑝 (1 − 𝑞)𝑛−1

[
1

0

]
,

𝑀𝑛 = 𝑅𝑛 + 𝑝
𝑛∑︁
𝑘=1

(1 − 𝑞)𝑘−1 ·
∏𝑛
𝑖=𝑘+1 𝜆𝑖∏𝑛−𝑘
𝑖=1 𝜆𝑖

· 𝑅𝑛−𝑘 , (7)

which implies

𝑀
(1)
𝑛 = 1 + 𝑝

𝑛∑︁
𝑘=1

(1 − 𝑞)𝑘−1 ·
∏𝑛
𝑖=𝑘+1 𝜆𝑖∏𝑛−𝑘
𝑖=1 𝜆𝑖

= 1 + 𝑝
𝑛∑︁
𝑘=1

(1 − 𝑞)𝑘−1 ·
(
𝑞 + 𝑝 (1 − 𝑝 − 𝑞)𝑘

) (
𝑞 + 𝑝 (1 − 𝑝 − 𝑞)𝑛−𝑘

)
(𝑞 + 𝑝 (1 − 𝑝 − 𝑞)𝑛) (𝑞 + 𝑝) . (8)

Notice that for Δ → +∞, we have 𝑞 = 0 and 𝜆𝑖 = 1/𝑝 for all 𝑖 . Thus, 𝑀 (1)
𝑛 ≈ 𝑛 for small 𝑝 , since

each term in the sum from (7) is 1.

For finite Δ, we seek to approximate the phenomenon that all terms in the sum contribute about

1. However, we can only do this if 𝑛 is not too large. Notice that taking 𝑛 → ∞ gives

𝑀
(1)
∞ = 1 + 𝑝

∞∑︁
𝑘=1

(1 − 𝑞)𝑘−1 · 1∏𝑘
𝑖=1 𝜆𝑖

= 1 + 𝑝
∞∑︁
𝑘=0

(1 − 𝑞)𝑘 𝑞 + 𝑝 (1 − 𝑝 − 𝑞)
𝑘+1

𝑞 + 𝑝

= 1 + 𝑝

𝑞 + 𝑝

(
1 + 𝑝 (1 − 𝑝 − 𝑞)

1 − (1 − +𝑝 − 𝑞) (1 − 𝑞)

)
≤ 3.

Instead, we set 𝑝 = 1

2
so that 𝑞 = 𝑒−4Δ

1+𝑒−4Δ . Setting 𝑛 =

⌈
log

1/2−𝑞 (2𝑞)
⌉
≤ 6Δ gives

𝑀
(1)
𝑛 = 1 + 1/2 ·

𝑛∑︁
𝑘=1

(1 − 𝑞)𝑘−1 ·

(
2𝑞 + (1/2 − 𝑞)𝑘

) (
2𝑞 + (1/2 − 𝑞)𝑛−𝑘

)
(2𝑞 + (1/2 − 𝑞)𝑛) (2𝑞 + 1)

≥ 1 + 1/2 ·
𝑛∑︁
𝑘=1

(1 − 𝑞)𝑘−1 · (1/2 − 𝑞)𝑛

4𝑞(2𝑞 + 1)

≥ 1 + 1/2 ·
𝑛∑︁
𝑘=1

(1 − 𝑞)𝑘−1 · 2𝑞 (
1/2 − 𝑞)

4𝑞(2𝑞 + 1)

≥ 1 + 1 − 2𝑞

8(1 + 2𝑞)

𝑛∑︁
𝑘=1

(1 − 𝑞)𝑘−1

≥ 1 + (𝑛 − 1) · (1 − 2𝑞) (1 − 𝑞𝑛)
8(1 + 2𝑞)

≥
log

(
64

𝑞

)
8

≥ Δ + 1

2

. □
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A.3 Online Contention Resolution Schemes
Here we show that one cannot hope to use OCRS to obtain a prophet inequality with a polynomial

dependence on Δ. First, we formally introduce Online Contention Resolution Schemes.

Definition A.3 (Online Contention Resolution Scheme (OCRS) [Feldman et al., 2021]). Let I be a

feasibility constraint over [𝑛]. For an online selection setting where we are given a distribution D
over [𝑛] and a point x ∈ PI for a polyhedral relaxation PI of I, we draw a random subset of the

elements 𝑅(x) according toD, where the marginal probability that 𝑖 appears in 𝑅 is 𝑥𝑖 . We call 𝑅(x)
the set of active elements. Afterwards, we observe whether each element 𝑖 ∈ [𝑛] is active (𝑖 ∈ 𝑅(x)),
one by one, and have to immediately and irrevocably decide whether to select an element or not

before the next element is revealed. An Online Contention Resolution Scheme 𝜋 for P is an online

algorithm which selects a subset 𝜋x (𝑅(x)) ⊆ 𝑅(x) such that 1𝜋x (𝑅 (x) ) ∈ P.

In this paper we are only considering a rank-1 matroid as a feasibility constraint, and thus

P = {(𝑥1, . . . , 𝑥𝑛) ≥ 0 | ∑𝑖 𝑥𝑖 ≤ 1}. Intuitively, we say that an OCRS is 𝑐-selectable if and only if an

active element 𝑖 ∈ 𝑅(x) can be included in the currently selected elements 𝑆 ⊆ 𝑅(x) and maintain

feasibility with probability at least 𝑐 .

Definition A.4 (𝑐-selectability). Let 𝑐 ∈ [0, 1]. An OCRS for P is 𝑐-selectable if and only if for any

x ∈ P, it returns a set 𝑆 such that

Pr [𝑖 ∈ 𝑆 | 𝑖 ∈ 𝑅(x)] ≥ 𝑐, ∀𝑖 ∈ [𝑛] .

For each 𝑖 ∈ [𝑛], 𝑥𝑖 denotes the marginal probability that 𝑋𝑖 is active and also that

∑
𝑖 𝑥𝑖 ≤ 1. A

strategy will sequentially inspect each 𝑋𝑖 and select at most one. The goal is to maximize 𝛼 so that

Pr [𝑋𝑖 selected and 𝑋𝑖 is active] ≥ 𝛼𝑥𝑖 for all 𝑖 ∈ [𝑛]. Such a strategy is called 𝛼-selectable.

Proof of Theorem 1.5. We first show a

(
1

1+𝑒4Δ

)
-selectable OCRS. The algorithm is quite simple:

for each 𝑖 ∈ [𝑛], if we reach 𝑖 and 𝑋𝑖 is active, we select 𝑋𝑖 with probability 𝑞𝑖 where

𝑞𝑖 :=
𝛼𝑥𝑖

Pr [𝑋𝑖 is active and 𝑋1, . . . , 𝑋𝑖−1 not selected]
.

Clearly if𝑞𝑖 ≤ 1 for all 𝑖 , then this is a valid 𝛼-OCRS strategy as Pr [𝑋𝑖 is active and 𝑋𝑖 is selected] =
𝛼𝑥𝑖 . To show that 𝑞𝑖 ≤ 1, notice that

Pr [𝑋𝑖 is active & 𝑋1, . . . , 𝑋𝑖−1 not selected] ≥ 𝑒−4Δ Pr [𝑋𝑖 is active] · Pr [𝑋1, . . . , 𝑋𝑖−1 not selected]

≥ 𝑒−4Δ𝑥𝑖 ·
(
1 − ∑𝑖−1

𝑗=1 𝛼𝑥𝑖

)
≥ 𝑒−4Δ𝑥𝑖 · (1 − 𝛼) = 𝑒−4Δ

(
1 − 1

1+𝑒4Δ

)
𝑥𝑖 = 𝛼𝑥𝑖 ,

where the first inequality follows from Lemma 2.3 and the third from

∑
𝑖 𝑥𝑖 ≤ 1.

For the upper bound, let 𝑝 = 1

1+𝑒Δ , 𝑞 = 1

1+𝑒3Δ , and 𝑛 + 1 =

⌊
𝑝+𝑞
𝑞

⌋
≈ 𝑒2Δ. Our MRF will again be a

path with 𝐸 = {{𝑖 − 1, 𝑖} : 𝑖 ∈ [𝑛]}, like in Figure 1. Let X ∈ {0, 1}𝑛+1 be a sample from an MRF with

Ω0 = {0, 1} , and Ω𝑖 = {0, 1} , 𝜓𝑖−1,𝑖 (𝑥𝑖−1, 𝑥𝑖 ) =
{
−Δ if 𝑥𝑖−1 ≠ 𝑥𝑖
Δ if 𝑥𝑖−1 = 𝑥𝑖 .

, for 1 ≤ 𝑖 ≤ 𝑛.

Also, using Lemma A.2, we can choose 𝜓𝑖 (𝑥) for 𝑖 ∈ [𝑛] (in descending order of 𝑖) so that

Pr [𝑋𝑖 = 1 | 𝑋𝑖−1 = 0] = 𝑝 . Notice that this also ensures that Pr [𝑋𝑖 = 0 | 𝑋𝑖−1 = 1] = 𝑞. This implies

that X is a Markov chain with transition matrix 𝑃 =

[
1 − 𝑝 𝑞

𝑝 1 − 𝑞

]
. The stationary distribution

of this chain is
1

𝑝+𝑞

[
𝑞

𝑝

]
. Finally, we also choose𝜓0 (𝑥) such that Pr [𝑋0 = 1] = 𝑞

𝑝+𝑞 , so the Markov

804



EC ’24, July 8–11, 2024, New Haven, CT, USA Vasilis Livanos, Kalen Patton, and Sahil Singla

chain begins in its stationary distribution. This ensures that Pr [𝑋𝑖 = 1] = 𝑞

𝑝+𝑞 for all 𝑖 , so we choose

𝑥𝑖 =
𝑞

𝑝+𝑞 = Pr [𝑋𝑖 = 1].
Now, an 𝛼-OCRS algorithm must, upon reaching 𝑋𝑖 with 𝑋𝑖 = 1, select 𝑋𝑖 with probability

𝑞𝛼

(𝑝 + 𝑞) Pr [𝑋𝑖 = 1 and 𝑋0, . . . , 𝑋𝑖−1 not selected]
.

Moreover, notice that this probability is independent of the history of values 𝑋0, . . . , 𝑋𝑖−1 due to the
Markov property, i.e. the future values 𝑋𝑖+1, . . . , 𝑋𝑛 are independent of 𝑋0, . . . , 𝑋𝑖−1 given 𝑋𝑖 = 1.

To determine which values of 𝛼 allow for such an algorithm, define for 0 ≤ 𝑖 ≤ 𝑛 the vector 𝑦𝑖 =[
𝑦
(0)
𝑖
, 𝑦

(1)
𝑖

]𝑇
by 𝑦

(𝑣)
𝑖

:= Pr [𝑋𝑖 = 𝑣 and 𝑋0, . . . , 𝑋𝑖 not selected] . We have 𝑦0 = 1

𝑝+𝑞

[
𝑞

𝑝

]
− 1

𝑝+𝑞

[
𝑞𝛼

0

]
and 𝑦𝑖 = 𝑃𝑦𝑖−1 − 1

𝑝+𝑞

[
𝑞𝛼

0

]
. By induction on 𝑦𝑖−1, we get

𝑦𝑖 =
1

𝑝 + 𝑞

([
𝑞

𝑝

]
−

𝑖∑︁
𝑘=0

𝑃𝑘
[
𝑞𝛼

0

])
=

1

𝑝 + 𝑞

([
𝑞

𝑝

]
−

𝑖∑︁
𝑘=0

(
𝑞𝛼

𝑝 + 𝑞

[
𝑞

𝑝

]
+ (1 − 𝑝 − 𝑞)𝑘 𝑝𝑞𝛼

𝑝 + 𝑞

[
1

−1

] ))
.

In order for the selectability of the OCRS to be 𝛼 , we must have

0 ≤ 𝑦 (1)
𝑛 =

1

𝑝 + 𝑞

(
𝑞 −

𝑛∑︁
𝑘=0

(
𝑞2𝛼

𝑝 + 𝑞 + (1 − 𝑝 − 𝑞)𝑘 𝑝𝑞𝛼
𝑝 + 𝑞

))
=

𝑞

𝑝 + 𝑞

(
1 − 𝑞𝑛𝛼

𝑝 + 𝑞 − 1 − (1 − 𝑝 − 𝑞)𝑛+1
𝑝 + 𝑞 · 𝑝𝛼

𝑝 + 𝑞

)
.

Using
𝑞𝑛

𝑝+𝑞 ≥ 0, we have

1

𝛼
≥ 1 − (1 − 𝑝 − 𝑞)𝑛+1

𝑝 + 𝑞 · 𝑝

𝑝 + 𝑞 ≥ 1 − 𝑒−(𝑝+𝑞) (𝑛+1)

2(𝑝 + 𝑞) ≥ 1 − 𝑒−1/2𝑞

2(𝑝 + 𝑞) ≥ 1

4(𝑝 + 𝑞) ,

which implies 𝛼 ≤ 4(𝑝 + 𝑞) ≤ 4𝑒−Δ. □
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