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Sequential posted pricing auctions are popular because of their simplicity in practice and their tractability in

theory. A usual assumption in their study is that the Bayesian prior distributions of the buyers are known to

the seller, while in reality these priors can only be accessed from historical data. To overcome this assumption,

we study sequential posted pricing in the bandit learning model, where the seller interacts with 𝑛 buyers over

𝑇 rounds: In each round the seller posts 𝑛 prices for the 𝑛 buyers and the first buyer with a valuation higher

than the price takes the item. The only feedback that the seller receives in each round is the revenue.

Our main results obtain nearly-optimal regret bounds for single-item sequential posted pricing in the

bandit learning model. In particular, we achieve an 𝑂 (poly(𝑛)
√
𝑇 ) regret for buyers with (Myerson’s) regular

distributions and an𝑂 (poly(𝑛)𝑇 2/3) regret for buyers with general distributions, both of which are tight in the

number of rounds 𝑇 . Our result for regular distributions was previously not known even for the single-buyer

setting and relies on a new half-concavity property of the revenue function in the value space. For 𝑛 sequential

buyers, our technique is to run a generalized single-buyer algorithm for all the buyers and to carefully bound

the regret from the sub-optimal pricing of the suffix buyers.

The full version of the paper is available at https://arxiv.org/abs/2312.12794.
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1 Introduction
Sequential Posted Pricing (SPP) schemes are well-studied in mechanism design because of their

simplicity/convenience in practice and their tractability in theory. In the basic setting, a seller wants

to sell a single item to a group of buyers. The buyers arrive one-by-one and the seller presents

a take-it-or-leave-it price. The first buyer with a value higher than the posted price takes the

item by paying the price. The benefit of SPP is that it gives approximately-optimal revenue while

being “simple”. For instance, although it is known that Myerson’s mechanism [Myerson, 1981] is

optimal for selling a single item to 𝑛 buyers with regular distributions, this mechanism is often

impractical. This is because the winner’s payment is defined via “complicated” virtual valuations

and all buyer bids need to be simultaneously revealed, which is not possible in large markets. In

contrast, SPP are known to give at least 1/2-fraction of the optimal revenue for regular buyers, while

having fixed prices and buyers arriving one-by-one (see the books [Hartline, 2013, Roughgarden,

2017] for regular buyers, and [Yan, 2011] for a discussion on how ironing extends this result to

general buyers). For multi-item (multi-parameters) setting, the difference between optimal and

SPP mechanisms is even more stark. For instance, the optimal mechanism to sell 𝑛 items to a single

unit-demand bidder is known to be impossible (unless 𝑃𝑁𝑃 = 𝑃#𝑃 ) [Chen et al., 2015], but we can

use SPP to obtain 1/4-fraction of the optimal revenue [Chawla et al., 2007, 2010, 2015].

Sample Complexity. A common assumption among initial works on revenue-maximization was

that the underlying distributions of the buyers are known to the seller. This is unrealistic in many

applications since the distributions are unknown and need to be learnt from historical data. Inspired

by this, a recent line of research studies the sample complexity for different types of mechanisms,

i.e., how many samples are sufficient to learn an 𝜖-optimal mechanism. For instance, starting with

the pioneering work in [Balcan et al., 2008, Cole and Roughgarden, 2014], several papers studied

the sample complexity of Myerson’s mechanism [Devanur et al., 2016, Gonczarowski and Nisan,

2017, Huang et al., 2018, Roughgarden and Schrijvers, 2016], and finally [Guo et al., 2019] obtained

the tight sample complexity bounds for regular buyers and for [0, 1] bounded-support buyers.
Sample complexity of many other classes of mechanisms have been studied, e.g., [Balcan et al.,

2018, Jin et al., 2023] study second-price auctions, [Balcan et al., 2021, 2018] study posted-pricing

mechanisms, [Guo et al., 2021] study strongly-monotone auctions (which includes Myerson and

SPP), and [Cai and Daskalakis, 2017, Cai et al., 2022, Gonczarowski andWeinberg, 2021, Morgenstern

and Roughgarden, 2016] study the sample complexity of multi-parameter auctions.

Bandit Learning. A stronger model of learning than the sample complexity model is the well-

studied bandit learning model; see books [Bubeck and Cesa-Bianchi, 2012, Lattimore and Szepesvári,

2020]. In this model, the seller interacts with the buyers over𝑇 days. On each day, the seller proposes

a parameterized mechanism to the buyer and sees only the revenue as feedback. The goal is to

minimize the total regret, which is the difference between the total revenue achieved by the learning

algorithm and the optimal mechanism over 𝑇 days. It is stronger than sample complexity in two

aspects: Firstly, it requires the learner to continually play near-optimal mechanisms, whereas in

sample complexity the learner may lose a lot of the revenue while learning. Secondly, the feedback

in the bandit model on any day is limited to only the proposed mechanism, and not every possible

mechanism that could have been proposed.

The study of learning mechanisms with bandit feedback goes back to at least [Kleinberg and

Leighton, 2003], where the authors provide an 𝑂 (𝑇 2/3) regret bound for learning single-buyer

posted pricing mechanism. Other examples of learning auctions in this model include bandits

with knapsacks [Badanidiyuru et al., 2018, Immorlica et al., 2022], reserve price for i.i.d buyers

[Cesa-Bianchi et al., 2015], and non-anonymous reserve prices [Niazadeh et al., 2021].
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Despite a lot of work on learning SPP mechanisms and on learning auctions with bandit feedback,

learning SPP in the bandit model was unknown. We answer this question and provide near-optimal

regret bounds for SPP with 𝑛 buyers having regular or general distributions.

1.1 Model and Results
In Sequential Posted Pricing (SPP), there are 𝑛 sequential buyers with independent valuation distri-

butions D1, · · · ,D𝑛 . We make the standard normalization assumption that each distribution D𝑖 is

supported in [0, 1]. The seller plays a group of prices (𝑝1, · · · , 𝑝𝑛) ∈ [0, 1]𝑛 and then the buyers

arrive one-by-one with valuation 𝑣𝑖 ∼ D𝑖 . The first buyer with 𝑣𝑖 ≥ 𝑝𝑖 takes the item and pays the

price 𝑝𝑖 as the revenue. The goal of the seller is to play prices to maximize the expected revenue.

We define 𝑅(𝑝1, · · · , 𝑝𝑛) to be the expected revenue when playing prices (𝑝1, · · · , 𝑝𝑛), i.e.,

𝑅(𝑝1, · · · , 𝑝𝑛) :=
∑𝑛

𝑖=1 𝑝𝑖 · Pr [𝑖 gets the item] =
∑𝑛

𝑖=1 𝑝𝑖 · (1 − 𝐹𝑖 (𝑝𝑖 ))
∏𝑖−1

𝑗=1 𝐹 𝑗 (𝑝 𝑗 ),

where 𝐹𝑖 (𝑥) is the cumulative distribution function (CDF) of distribution D𝑖 . For SPP, the optimal

prices are defined as

(𝑝∗
1
, · · · , 𝑝∗𝑛) := argmax(𝑝1,· · · ,𝑝𝑛 )𝑅(𝑝1, · · · , 𝑝𝑛).

These optimal prices can be easily calculated in polynomial time using a reverse dynamic program:

price 𝑝∗𝑛 = argmax𝑝 𝑝 (1 − 𝐹𝑛 (𝑝)), and with known optimal prices 𝑝∗𝑖+1, · · · , 𝑝∗𝑛 , we can calculate

𝑝∗𝑖 = argmax

𝑝
𝑝 (1 − 𝐹𝑖 (𝑝)) + 𝐹𝑖 (𝑝) · E [revenue from 𝑖 + 1, · · · , 𝑛] .

Bandit Sequential Posted Pricing (BSPP). In many practical applications of SPP, the valuation

distributions D𝑖 are unknown, so we will study them in the bandit learning model. Consider the

following toy example to motivate the model: Suppose you want to sell an item each day for the

entire next month using SPP. For simplicity, assume that each day exactly 3 bidders arrive: one

each in the morning, afternoon, and evening. If you know the value distributions of these 3 bidders

on each day, then you can find the optimal prices (𝑝∗
1
, 𝑝∗

2
, 𝑝∗

3
) as discussed above, and play them

every day to maximize the total revenue. However, if the distributions are unknown then you need

to learn the optimal prices during the month. A major challenge is that you don’t even get to see

the true valuations of the 3 bidders who show up each day, only whether they decide to buy the

item, or not, at the played price.

Formally, BSPP is a𝑇 rounds/days repeated game where on each day 𝑡 ∈ [𝑇 ] the seller proposes a
group of 𝑛 prices (𝑝 (𝑡 )

1
, · · · , 𝑝 (𝑡 )𝑛 ). The buyers then arrive one-by-one with valuations 𝑣

(𝑡 )
𝑖
∼ D𝑖 and

the first buyer 𝑖 with valuation 𝑣
(𝑡 )
𝑖
≥ 𝑝 (𝑡 )

𝑖
takes the item. The seller receives revenue Rev

(𝑡 ) = 𝑝 (𝑡 )
𝑖

as the reward for this day and sees 𝑝
(𝑡 )
𝑖

as the feedback, or equivalently sees the identity of the

buyer that takes the item
1
. Note that none of the buyer valuations are ever revealed. If there is no

buyer with a valuation higher than their price, the seller receives reward 0. The goal of the seller is

to minimize in expectation the total regret:

Regret := 𝑇 · 𝑅(𝑝∗
1
, · · · , 𝑝∗𝑛) −

∑
𝑡 ∈[𝑇 ] Rev

(𝑡 ) .

Our first main result gives a near-optimal regret algorithm for BSPP with regular buyers.

Main Result 1 (Informal Theorem 3.1). For bandit sequential posted pricing with 𝑛 buyers having
regular distribution inside [0, 1], there exists an algorithm with 𝑂 (poly(𝑛)

√
𝑇 ) regret.

1
By adding an arbitrarily small noise to each price, the seller can retrieve buyer’s identity from the revenue.
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It should be noted that this is the first bandit learning algorithm for regular distributions with

optimal regret bound in 𝑇 , even for the single-buyer or i.i.d. buyers setting. A very recent paper

of [Leme et al., 2023b] studies “pricing query complexity” of this problem in the special case of a

single-buyer. Their model is weaker than our bandit learning model since it only gives a final regret
bound, i.e., one might incur a large regret during the 𝑇 days of learning but the final learnt prices

have a low 1-day regret. Hence, their Ω(1/𝜖2) lower bound for single-buyer query complexity

immediately implies an Ω(
√
𝑇 ) lower bound for BSPP, showing tightness of the

√
𝑇 factor in Main

Result 1. However, their single-buyer pricing query complexity upper bounds do not apply to our

stronger bandit learning model. Moreover, it’s unclear how to extend their techniques beyond a

single-buyer.

Our next result gives a near-optimal regret bound for BSPP with 𝑛 buyers having general

distributions. The authors of [Leme et al., 2023b] give an Ω(1/𝜖3) query complexity lower bound

for single-buyer setting with general distributions, implying an Ω(𝑇 2/3) regret lower bound for

BSPP with general distributions. Our result achieves a tight upper bound dependency on 𝑇 .

Main Result 2 (Informal Theorem 4.1). For bandit sequential posted pricing problem with 𝑛 buyers
having value distribution inside [0, 1], there exists an algorithm with 𝑂 (poly(𝑛)𝑇 2/3) regret.

This result generalizes the single-buyer result of [Kleinberg and Leighton, 2003] to 𝑛 sequential

buyers. Interestingly, our techniques are very different from theirs since we are in the stochastic

bandit model. Although [Kleinberg and Leighton, 2003] show an 𝑂 (𝑇 2/3) regret algorithm even

when the buyer valuations are chosen by an adversary, we observe in Section 5 that such a result is

impossible for multiple buyers since already for 2 buyers with adversarial valuations, every online

algorithm incurs Ω(𝑇 ) regret.

1.2 Techniques
Single Regular Buyer via Half-Concavity. The proof of our first main result is based on a

key observation that the revenue curve of a regular distribution is “half-concave”. Recall that a

distribution is regular if its revenue curve is concave in the quantile space. Simple examples show

that regular distributions need not be concave in the value space (e.g., exponential distributions).

Our half-concavity shows that regular distributions are still concave on one side of its maximum.

Main Result 3 (Informal Lemma 2.4). Let 𝑅(𝑝) be the revenue function of a regular distribution
supported on [0, 1] and let 𝑝∗ = argmax𝑝 𝑅(𝑝). Then, 𝑅(𝑝) is concave in [0, 𝑝∗].

Concavity is a strong property that often allows efficient learning. We show that it’s sufficient to

learn a single-peaked function even if it is only half-concave. The high-level intuition for learning

a half-concave follows from the standard recursive algorithm for learning concave functions: first,

consider a (fully) concave function 𝑅(𝑥) defined on interval [ℓ, 𝑟 ]. We set 𝑎 = 2ℓ+𝑟
3

and 𝑏 = ℓ+2𝑟
3
,

and test 𝑅(𝑎) and 𝑅(𝑏) with sufficiently many samples. There can be three cases:

• Case 1: 𝑅(𝑎) < 𝑅(𝑏). We can drop [ℓ, 𝑎] and recurse on [𝑎, 𝑟 ].
• Case 2: 𝑅(𝑎) > 𝑅(𝑏). We can drop [𝑏, 𝑟 ] and recurse on [ℓ, 𝑏].
• Case 3: 𝑅(𝑎) ≈ 𝑅(𝑏). Concavity implies that 𝑅(𝑥) is nearly a constant for all 𝑥 ∈ [ℓ, 𝑟 ], so we

are done.

Now suppose 𝑅(𝑥) is only half-concave. We can still perform a similar algorithm: the first two cases

use single-peakedness, so they remain the same. For the third case, half-concavity still guarantees

that 𝑅(𝑥) can’t be too high for 𝑥 ∈ [𝑏, 𝑟 ], so we can drop [𝑏, 𝑟 ] and recurse on [ℓ, 𝑏].
Our final algorithm and proofs combine the above Case 2 and 3; see details in Section 2.
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Generalizing Single-Buyer to Sequential Buyers. In the case of sequential buyers, our main idea

is to run the single-buyer algorithm for all𝑛 buyers. A major difference compared to the single buyer

setting is that the revenue function for this buyer becomes 𝑅(𝑝) = 𝑝 · (1 − 𝐹 (𝑝)) +𝐶 · 𝐹 (𝑝), where
𝐶 ·𝐹 (𝑝) represents the case that this buyer does not take the item and the seller receives an expected

revenue 𝐶 from the buyers after the current buyer. Therefore, the main for the generalization is to

take care of this extra 𝐶 · 𝐹 (𝑝) term. We show that for regular distributions the half-concavity still

holds for the new function 𝑅(𝑝) in the interval [𝐶, 1], along with some other nice properties in the

interval [0,𝐶]. For general distributions, we show that the extra 𝐶 · 𝐹 (𝑝) term does not make a

huge difference.

1.3 Further Related Work
Bandit Learning and Single-Buyer Posted Pricing.The bandit learningmodel is well-established

and we refer the readers to these books for classical results [Bubeck and Cesa-Bianchi, 2012, Cesa-

Bianchi and Lugosi, 2006, Lattimore and Szepesvári, 2020]. The recent book of [Slivkins, 2019] is a

great reference for work at the intersection of bandits and economics. In particular, the problem

of learning the single-buyer posted pricing mechanism with bandit feedback has a long history,

dating back to [Kleinberg and Leighton, 2003]. In their paper, the authors put forth an 𝑂 (𝑇 2/3)
regret bound for general buyer distributions and an 𝑂 (

√
𝑇 ) regret bound under a non-standard

assumption that the revenue curve is single-peaked, and its second derivative at this peak is a

strictly negative constant, independent of the parameter 𝑇 . This result is not directly comparable to

our 𝑂 (
√
𝑇 ) bound for regular distributions. This is primarily because the second derivative at the

maximum of the revenue curve for a regular distribution can range from negligibly small to zero.

Additionally, [Cesa-Bianchi et al., 2019] proposes an 𝑂 (
√
𝐾𝑇 ) regret bound, assuming the buyer’s

value resides within a discrete set with cardinality 𝐾 . This result, however, is also not directly

comparable to ours, as regular distributions inherently exhibit continuity, contrasting with the

assumption of discrete value sets.

Threshold Query Model. Recently, the threshold query structure that underpins the bandit

feedback model of the single-buyer posted pricing problem is extensively studied. In this model,

the learner queries a threshold 𝜏 and only observes 1[𝜏 < 𝑋 ∼ D]. The goal is to determine the

minimum number of queries to learn a key parameter (e.g., median, mean, or CDF) of a distribution.

We refer the readers to [Leme et al., 2023a,b, Meister and Nietert, 2021, Okoroafor et al., 2023] for

learning complexity of the threshold query model.

Sequential Posted Pricing and Prophet Inequality. Sequential posted pricing (SPP) and its

variants have been long popular, both in theory and in practice. One of the first results in their

theoretical study is that posted prices obtain 78% of the optimal revenue for selling a single item in a

large market [Blumrosen and Holenstein, 2008]. Subsequently, posted prices have been successfully

analyzed in both single-dimensional and multi-dimensional settings; see this survey [Lucier, 2017]

and book [Hartline, 2013]. A beautiful paper on the popularity of posted prices in practice is [Einav

et al., 2018].

A closely related problem to SPP is the Prophet Inequality (PI) problem from optimal stopping

theory. In both these problems a sequence of 𝑛 independent buyers arrive one-by-one. However, in

SPP we want to maximize the revenue and in PI we want to maximize the welfare. Interestingly,

for known buyer value distributions, both these problems are equivalent [Correa et al., 2019], but

this reduction requires virtual-value distributions and doesn’t work for unknown distributions. In

the bandit model, PI and SPP behave very differently. For instance, [Gatmiry et al., 2024] recently

obtained𝑂 (
√
𝑇 ) regret algorithm for PI with general distributions, whereas an Ω(𝑇 2/3) regret lower
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bound exists for SPP [Leme et al., 2023b]. Our𝑂 (
√
𝑇 ) regret results crucially rely on half-concavity

of regular distributions.

Regular Distributions and Learning. Myerson’s regularity of distributions has been greatly

studied since it was introduced in [Myerson, 1981]. In particular, it is a standard assumption in

learning theory for auctions [Cole and Roughgarden, 2014, Devanur et al., 2016, Dhangwatnotai et al.,

2015, Guo et al., 2019, Huang et al., 2018, Roughgarden and Schrijvers, 2016]. For basic properties

of regular distribution, and its important subclass of Monotone Hazard Rate distributions, see the

books [Hartline, 2013, Roughgarden, 2017]. A recent paper of [Leme et al., 2023b], which studies

pricing query complexity of the single-buyer single-item problem, proves an interesting “relative

flatness” property of regular distributions in the value space. Roughly it says that if the revenue

curve has nearly the same value at 4 different equidistant points then there cannot be a high

revenue point in between. Comparing it to our idea of half-concavity, the two properties are in

general incomparable as no one implies the other. However, we found our half-concavity to be

more intuitive and convenient to work with, since proofs based on relative flatness often lead to a

long case analysis.

2 A Single Buyer with Regular Distribution
In this section, we present an𝑂 (

√
𝑇 ) regret algorithm for BSPP in the special case of a single buyer,

where we call the problem Bandit Posted Pricing. Moreover, we focus on the case when the buyer’s

value distribution is regular, which is a standard assumption in economics [Myerson, 1981].

Definition 2.1 (Regularity). Distribution D with CDF 𝐹 (𝑥) and PDF 𝑓 (𝑥) is called regular when
𝜙 (𝑣) := 𝑣 − 1−𝐹 (𝑣)

𝑓 (𝑣) is monotone non-decreasing, or equivalently, its revenue curve 𝑅𝑞 (𝑞) is concave
in the quantile space, where

𝑅𝑞 (𝑞) := 𝑞 · 𝐹 −1 (1 − 𝑞).

In the Bandit Posted Pricing problem there is a single regular buyer with an unknown regular

value distribution D having support [0, 1] and CDF 𝐹 (𝑥). Our goal is to approach the optimal

price 𝑝∗ that maximizes the revenue function 𝑅(𝑝) := 𝑝 · (1 − 𝐹 (𝑝)) in the the following bandit

learning game over 𝑇 days: On day 𝑡 ∈ {1, . . . ,𝑇 }, we post a price 𝑝𝑡 ∈ [0, 1] and the environment

draws 𝑣𝑡 ∼ D. Our reward is 𝑝𝑡 · 1𝑣𝑡 ≥𝑝𝑡 , and the goal is to minimize in expectation the total regret:
𝑇 · 𝑅(𝑝∗) −∑𝑡 ∈[𝑇 ] 𝑝𝑡 · 1𝑣𝑡 ≥𝑝𝑡 . Our 𝑂 (

√
𝑇 ) regret algorithm for this problem uses “half-concavity”.

2.1 Half-Concavity
Our 𝑂 (

√
𝑇 ) regret algorithm works beyond regular distributions, for the class of half-concave

distributions. We first give the definition of half-concavity:

Definition 2.2 (Half-Concavity). A function 𝑅(𝑥) : R→ R is half-concave in interval [ℓ, 𝑟 ] ⊆ [0, 1]
if the following conditions hold:

(i) 𝑅(𝑥) is single-peaked in [ℓ, 𝑟 ], i.e., ∃𝑝∗ ∈ [ℓ, 𝑟 ] satisfying that 𝑅(𝑥) is non-decreasing in [ℓ, 𝑝∗]
and non-increasing in [𝑝∗, 𝑟 ].

(ii) 𝑅(𝑥) is 1-Lipschitz in [ℓ, 𝑝∗].
(iii) 𝑅(𝑥) is concave in [ℓ, 𝑝∗].

927
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Fig. 1. An example of a half-concave function, where the function is Lipschitz and concave before 𝑝∗.

The concept of half-concavity implies that a function has nice properties properties on one side

of the maximum (see Figure 1), rendering it learnable from this advantageous side. In the definition

of half-concavity, both Lipschitzness and some kind of concavity are vital to ensure learnability.

Without Lipschitzness, a function becomes unlearnable when 𝑝∗ is exceedingly close to 0 due to

the inability of accurately detecting the value of 𝑝∗. On the other hand, without concavity, simple

examples show that a regret of Ω(𝑇 2/3) is inevitable. For instance, a revenue function characterized

by multiple peaks where we can only ascertain the value of 𝑝∗ when we examine each peak

with a sufficient number of samples. We note that related works, such as [Combes and Proutière,

2014, Magureanu et al., 2014], address bandit problems with assumptions of unimodularity or

Lipschitzness. However, these works only provide instance dependent regret bounds, which are at

least 𝜔 (
√
𝑇 ) in the worst case, as they lack at least one of the key assumptions of Lipschitzness and

concavity.

Given both Lipschitzness and (half) concavity, the following theorem gives 𝑂 (
√
𝑇 ) regret.

Theorem 2.3. For Bandit Posted Pricing with a single buyer, if the revenue function 𝑅(𝑝) :=

𝑝 · (1 − 𝐹 (𝑝)) is half-concave, then there exists an algorithm with 𝑂 (
√
𝑇 log𝑇 ) regret.

The main application of Theorem 2.3 is for regular distributions due to the following lemma.

Lemma 2.4. Let 𝐹 (𝑥) be the CDF of a regular distribution with support in [0, 1], and 𝑅(𝑝) :=
𝑝 · (1 − 𝐹 (𝑝)) be the expected revenue on playing price 𝑝 . Then, 𝑅(𝑝) is half-concave in [0, 1].

Before proving this lemma, we observe the following immediate corollary.

Corollary 2.5 (Corollary of Theorem 2.3 and Lemma 2.4). For Bandit Posted Pricing with a single
buyer having regular valuation distribution, there exists an algorithm with 𝑂 (

√
𝑇 log𝑇 ) regret.

Proof of Lemma 2.4. We first provide a proof assuming the PDF 𝑓 (𝑝) is non-zero and differen-

tiable. We will prove the three properties of half-concavity one-by-one.

(i) Single-peakedness: By definition, revenue function of a regular distribution is concave in the

quantile space. Hence, it’s single-peaked in the quantile space. Suppose 𝑞∗ is the quantile that
achieves the maximum, then choosing price 𝑝∗ = 𝐹 −1 (1 − 𝑞∗) proves single-peakedness of 𝑅(𝑝).
(ii) Lipschitzness: For 0 ≤ 𝑎 ≤ 𝑏 ≤ 𝑝∗, we have

0 ≤ 𝑅(𝑏) − 𝑅(𝑎) = (𝑏 − 𝑎) − 𝐹 (𝑏) · 𝑏 + 𝐹 (𝑎) · 𝑎 ≤ 𝑏 − 𝑎,
where the first inequality follows from single-peakedness and that 𝑎 ≤ 𝑏 ≤ 𝑝∗, and the second

inequality uses 𝐹 (𝑏) ≥ 𝐹 (𝑎) ≥ 0 and that 𝑏 ≥ 𝑎 ≥ 0.
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(iii) Half-concavity: We first provide a direct proof via the monotonicity of virtual valuation 𝜙 .

Recall that 𝜙 (𝑝) := 𝑝 − 1−𝐹 (𝑝 )
𝑓 (𝑝 ) is non-decreasing for regular distribution, so we have

𝜙 ′ (𝑝) = 1 − −𝑓
2 (𝑝) − (1 − 𝐹 (𝑝)) · 𝑓 ′ (𝑝)

𝑓 2 (𝑝) ≥ 0.

Rearranging the above inequality,

2𝑓 2 (𝑝) + 𝑓 ′ (𝑝) · (1 − 𝐹 (𝑝)) ≥ 0. (1)

Consider the derivative and the second order derivative of 𝑅(𝑝) = 𝑝 · (1 − 𝐹 (𝑝)), i.e.,
𝑅′ (𝑝) = 1 − 𝐹 (𝑝) − 𝑝 · 𝑓 (𝑝) and 𝑅′′ (𝑝) = −2𝑓 (𝑝) − 𝑝 · 𝑓 ′ (𝑝).

For half-concavity, we prove that 𝑅′′ (𝑝) ≤ 0 for every 𝑝 ∈ [0, 𝑝∗]. Consider two cases:

• Case 1: 𝑓 ′ (𝑝) > 0. In this case, 𝑅′′ (𝑝) = −2𝑓 (𝑝) − 𝑝 · 𝑓 ′ (𝑝) ≤ 0 immedately holds.

• Case 2: 𝑓 ′ (𝑝) ≤ 0. In this case, we have

𝑅′′ (𝑝) = −2𝑓 (𝑝) − 𝑝 · 𝑓 ′ (𝑝)

=
1

𝑓 (𝑝) ·
(
−2𝑓 2 (𝑝) − 𝑓 (𝑝) · 𝑝 · 𝑓 ′ (𝑝)

)
≤ 1

𝑓 (𝑝) · (𝑓
′ (𝑝) · (1 − 𝐹 (𝑝)) − 𝑓 (𝑝) · 𝑝 · 𝑓 ′ (𝑝))

=
𝑓 ′ (𝑝)
𝑓 (𝑝) ·

(
1 − 𝐹 (𝑝) − 𝑝 · 𝑓 (𝑝)

)
≤ 0,

where the first inequality is from (1) and the second inequality uses 𝑓 ′ (𝑝) ≤ 0 along with the

fact that 𝑅′ (𝑝) ≥ 0 when 𝑝 ∈ [0, 𝑝∗].
The above proof requires the PDF 𝑓 (𝑝) to be non-zero and differentiable. Below we provide an

alternate proof via the concavity in the quantile space, which bypasses this assumption for 𝑓 (𝑝).
We keep both the proofs here since the reader may find one proof more instructive than the other.

An alternate proof for half-concavity. We prove half-concavity by contradiction. Assume there exist

0 ≤ 𝑎 < 𝑏 < 𝑐 ≤ 𝑝∗ satisfying 𝑐 = 𝑏 + 𝑡 (𝑏 − 𝑎) and 𝑅(𝑐) > 𝑅(𝑏) + 𝑡 ·
(
𝑅(𝑏) − 𝑅(𝑎)

)
.

Define 𝑞(𝑥) := 1 − 𝐹 (𝑥) and 𝑞 := 𝑞(𝑏) + 𝑡 ·
(
𝑞(𝑏) − 𝑞(𝑎)

)
. We first show that 𝑞 > 𝑞(𝑐): Regularity

implies that the revenue function is concave in the quantile space. Hence, for all 𝑞′ ≥ 𝑞,

𝑅(𝑞−1 (𝑞′)) ≤ 𝑅(𝑏) + 𝑞(𝑏) − 𝑞′
𝑞(𝑎) − 𝑞(𝑏) · (𝑅(𝑏) − 𝑅(𝑎)) ≤ 𝑅(𝑏) + 𝑡 · (𝑅(𝑏) − 𝑅(𝑎)) < 𝑅(𝑐) .

For every 𝑞′ ≥ 𝑞, we have 𝑞′ ≠ 𝑞(𝑐). So there must be 𝑞(𝑐) < 𝑞. This gives the desired contradiction:
𝑅(𝑐) > 𝑅(𝑏) + 𝑡 · (𝑅(𝑏) − 𝑅(𝑎))

= 𝑏 · 𝑞(𝑏) + 𝑡 ·
(
𝑏 · 𝑞(𝑏) − 𝑎 · 𝑞(𝑎)

)
≥ 𝑏 · 𝑞(𝑏) + 𝑡 ·

(
𝑏 · 𝑞(𝑏) − 𝑎 · 𝑞(𝑎)

)
− 𝑡 (𝑡 + 1) (𝑏 − 𝑎) (𝑞(𝑎) − 𝑞(𝑏))

=
(
(𝑡 + 1)𝑏 − 𝑡𝑎

)
·
(
(𝑡 + 1)𝑞(𝑏) − 𝑡𝑞(𝑎)

)
= 𝑐 · 𝑞 ≥ 𝑐 · 𝑞(𝑐) = 𝑅(𝑐). □

2.2 𝑂 (
√
𝑇 ) Regret for Half-Concave Functions: Proof of Theorem 2.3

Our algorithm relies on a subroutine that takes a parameter 𝜖 and a confidence interval [ℓ, 𝑟 ] ∋ 𝑝∗
as input, and then after𝑂 (𝜖−2) rounds it generates with high probability a new confidence interval

[ℓ ′, 𝑟 ′] that contains the optimal price 𝑝∗ and every price in [ℓ ′, 𝑟 ′] has 1-day regret bounded by 𝜖 .

Our final algorithm runs in 𝑂 (log𝑇 ) phases, where in each phase we call the sub-routine with the
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parameter 𝜖 , and 𝜖 is halved in the next phase. The sub-routine is captured by the following lemma,

which is the heart of the proof and will be proved in Section 2.3 using half-concavity of 𝑅(𝑝).

Lemma 2.6. Let 𝑅(𝑝) be a half-concave revenue function defined in [0, 1]. Given 𝜖 ≥ 1/
√
𝑇 and

[ℓ, 𝑟 ] ∋ 𝑝∗, there exists an algorithm that tests𝑂
(
𝜖−2log2𝑇

)
rounds with prices inside [ℓ, 𝑟 − 1

𝑇 100
] and

outputs an interval [ℓ ′, 𝑟 ′] ⊆ [ℓ, 𝑟 ] satisfying with probability 1 −𝑇 −5 that
• 𝑝∗ ∈ [ℓ ′, 𝑟 ′]
• 𝑅(𝑥) ≥ 𝑅(𝑝∗) − 𝜖 for any 𝑥 ∈ [ℓ ′, 𝑟 ′ − 1

𝑇 100
].

ALGORITHM 1: 𝑂 (
√
𝑇 log𝑇 ) Regret Algorithm

Input: Hidden Revenue Function 𝑅(𝑝), time horizon 𝑇

Let 𝜖1 ← 1, [ℓ1, 𝑟1] ← [0, 1], and 𝑖 ← 1.

while 𝜖𝑖 >
log𝑇√
𝑇

do
Run the algorithm described in Lemma 2.6 with 𝜖𝑖 , [ℓ𝑖 , 𝑟𝑖 ] as input, and get [ℓ′, 𝑟 ′].
Let [ℓ𝑖+1, 𝑟𝑖+1] ← [ℓ′, 𝑟 ′] and 𝜖𝑖+1 ← 1

2
𝜖𝑖 .

Let 𝑖 ← 𝑖 + 1.
end
Finish remaining rounds with any price in [ℓ𝑖 , 𝑟𝑖 −𝑇 −100].

Given Lemma 2.6, our algorithm for Theorem 2.3 is natural and has a simple proof.

Proof of Theorem 2.3. We claim that with probability at least 1−𝑇 −4, the regret of Algorithm 1

is 𝑂 (
√
𝑇 log𝑇 ). Algorithm 1 uses Lemma 2.6 for multiple times with a halving error parameter.

Assume Algorithm 1 ends with 𝑖 = 𝑘 +1, i.e., the while loop runs 𝑘 times. Since we obtain 𝜖𝑖+1 = 𝜖𝑖/2
and 𝜖𝑘 >

log𝑇√
𝑇

holds, there must be 𝑘 = 𝑂 (log𝑇 ).
For 𝑖 ∈ [𝑘], let Alg𝑖 represent the corresponding algorithm we call when using Lemma 2.6

with 𝜖𝑖 , [ℓ𝑖 , 𝑟𝑖 ] as the input. To use Lemma 2.6 we need to verify that 𝑝∗ ∈ [ℓ𝑖 , 𝑟𝑖 ] for all 𝑖 ∈ [𝑘].
The condition 𝑝∗ ∈ [ℓ1, 𝑟1] = [0, 1] clearly holds. For 𝑖 = 2, 3, · · · , 𝑘 , the condition 𝑝∗ ∈ [ℓ𝑖 , 𝑟𝑖 ] is
guaranteed by Lemma 2.6 when calling Alg𝑖−1. The failing probability of Lemma 2.6 is 𝑇 −5. By the

union bound, with probability 1 − 𝑘 ·𝑇 −5 > 1 −𝑇 −4, Lemma 2.6 always holds in Algorithm 1.

Now we prove the regret of Algorithm 1. Lemma 2.6 guarantees that 𝑅(𝑝∗) − 𝑅(𝑝) ≤ 𝜖𝑖 holds for
all 𝑝 ∈ [ℓ𝑖+1, 𝑟𝑖+1 −𝑇 −100], while when calling Alg𝑖+1, only the prices in [ℓ𝑖+1, 𝑟𝑖+1 −𝑇 −100] is tested.
Therefore, the total regret of Algorithm 1 can be bounded by

1 ·𝑂
(
𝜖−2
1

log
2𝑇

)
+ ∑𝑘

𝑖=2 𝜖𝑖−1 ·𝑂 (𝜖−2𝑖 log
2𝑇 ) + 𝑇 · 𝜖𝑘 = 𝑂 (

√
𝑇 log𝑇 ).

In this expression, the first term is the regret of Alg
1
. The second term is the sum of the regret from

Alg
2
, · · · ,Alg𝑘 . The third term is the regret for the remaining rounds.

Finally, we also need to check that Algorithm 1 uses no more than 𝑇 rounds. Lemma 2.6 sug-

gests that Alg𝑖 runs 𝑂 (𝜖−2𝑖 log
2𝑇 ) rounds. So the total number of rounds in the while loop is∑

𝑖∈[𝑘 ] 𝑂 (𝜖−2𝑖 log
2𝑇 ) = 𝑂 (𝑇 ). Therefore, Algorithm 1 is feasible. □

2.3 Main Sub-Routine: Proof of Lemma 2.6 via Half-Concavity
In this section, we present the main sub-routine of our bandit algorithm. It utilizes half-concavity to

generate a confidence interval for the optimal price 𝑝∗ in 𝑂 ( 1
𝜖2
) rounds while ensuring that every

price in the interval is 𝜖-optimal.
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Fig. 2. The two main steps of Lemma 2.6

Algorithm Overview. The algorithm contains two major steps (also see Figure 2):

• Step 1: Find an approximation 𝑝 such that 𝑅(𝑝∗) − 𝑅(𝑝) ≤ 𝜖
2
via half-concavity. This step

gives a sufficiently precise price estimate approximating 𝑝∗.
• Step 2: Given 𝑝 , construct a new confidence interval [ℓ ′, 𝑟 ′] via binary search. As 𝑅(𝑝) exhibits
a single-peak property, we can use 𝑅(𝑝) as a benchmark and implement a standard binary

search algorithm to identify the leftmost point ℓ ′ and the rightmost point that are
𝜖
2
-close to

𝑅(𝑝). These two endpoints describe the desired new confidence interval.

We note an important detail in Step 2: the Lipschitzness assumption in the range [𝑝∗, 𝑟 ] is absent.
Consequently, the binary search algorithm fails to provide a satisfactory loss guarantee for a small

tail of the new confidence interval. This introduces the non-standard error factor𝑇 −100 as discussed
in Lemma 2.6.

2.3.1 Step 1: Find 𝑝 to Approximate 𝑝∗. The first step of the sub-routine is to find 𝑝 that approximates

𝑝∗. Specifically, we want to prove the following lemma:

Lemma 2.7. Assume 𝑅(𝑝) is a half-concave revenue function defined in [0, 1]. Given interval [ℓ, 𝑟 ]
and error parameter 𝜖 > 1/

√
𝑇 , there exists an algorithm that tests 𝑂 (𝜖−2log2𝑇 ) rounds with prices

inside [ℓ, 𝑟 −𝑇 −100] and outputs 𝑝 ∈ [ℓ, 𝑟 −𝑇 −100] satisfying with probability at least 1 −𝑇 −6 that
max𝑝∈[ℓ,𝑟 ] 𝑅(𝑝) − 𝑅(𝑝) < 𝜖

2
.

When we have the assumption 𝑝∗ ∈ [ℓ, 𝑟 ] from Lemma 2.6, Lemma 2.7 implies we are able to

find 𝑝 such that 𝑅(𝑝∗) − 𝑅(𝑝) ≤ 𝜖
2
in the first step. We first give the pseudo-code of the algorithm

required by Lemma 2.7 and its high-level idea.

Algorithm 2 is a recursive algorithm that runs 𝑂 (log 1

𝛿
) rounds. In each round, the algorithm

tests the two points 𝑎, 𝑏 that divide the current interval [ℓ, 𝑟 ] into thirds. Each price is tested for

𝑂 ( 1
𝛿2
) rounds, where 𝛿 = 𝜖/100 is the scaled error parameter. A standard concentration inequality

guarantee both |𝑅(𝑎) − 𝑅(𝑎) | ≤ 𝛿 and |𝑅(𝑏) − 𝑅(𝑏) | ≤ 𝛿 hold. Then, the algorithm drops one third

of the interval according to the test results. There are two different cases (see Figure 3):

Case 1: 𝑅(𝑎) < 𝑅(𝑏) − 2𝛿 . The inequality is sufficient to show that 𝑅(𝑎) < 𝑅(𝑏). Since function
𝑅(𝑝) is single-peaked, there must be 𝑝∗ ≥ 𝑎 and the sub-interval [ℓ, 𝑎] can be dropped.

Case 2: 𝑅(𝑎) ≥ 𝑅(𝑏) − 2𝛿 . This inequality implies 𝑅(𝑏) − 𝑅(𝑎) is sufficiently small. In this case,

observe that if 𝑝∗ ∈ [𝑏, 𝑟 ], the value of 𝑅(𝑝∗) can’t be much better than 𝑅(𝑏), because the concavity
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ALGORITHM 2: Finding 𝑝
Input: Hidden Revenue Function 𝑅(𝑝), Interval [ℓ, 𝑟 ], Error Parameter 𝜖

Let 𝛿 = 𝜖
100

be the scaled error parameter, ℓ1 ← ℓ, 𝑟1 ← 𝑟 , 𝑖 = 1.

while 𝑟𝑖 − ℓ𝑖 > 𝛿 do
Let 𝑎𝑖 ← (2ℓ𝑖 + 𝑟𝑖 )/3 and 𝑏𝑖 ← (ℓ𝑖 + 2𝑟𝑖 )/3.
Test 𝐶 · 𝛿−2log𝑇 rounds with price 𝑝 = 𝑎𝑖 . Let 𝑅(𝑎𝑖 ) be the average reward.
Test 𝐶 · 𝛿−2log𝑇 rounds with price 𝑝 = 𝑏𝑖 . Let 𝑅(𝑏𝑖 ) be the average reward.
if 𝑅(𝑎𝑖 ) < 𝑅(𝑏𝑖 ) − 2𝛿 then

Let ℓ𝑖+1 ← 𝑎𝑖 , 𝑟𝑖+1 ← 𝑟𝑖
else

Let ℓ𝑖+1 ← ℓ𝑖 , 𝑟𝑖+1 ← 𝑏𝑖
end
𝑖 ← 𝑖 + 1

end
Test 𝐶 · 𝛿−2log𝑇 rounds with price 𝑝 = ℓ𝑖 . Let 𝑅(ℓ𝑖 ) be the average reward.
Let 𝑝 = argmax𝑝∈𝑃 𝑅(𝑝), where 𝑃 = {𝑝 : 𝑝 is tested}.
Output: 𝑝 .

Fig. 3. Two cases of Step 1 as discussed in Algorithm 2.

in [𝑎, 𝑝∗] guarantees that 𝑅(𝑝∗) − 𝑅(𝑏) ≤ 𝑅(𝑏) − 𝑅(𝑎). Therefore, the sub-interval [𝑏, 𝑟 ] can be

dropped because we don’t need to further test it.

Finally, the recursive algorithm stops when the length of the remaining interval is bounded by 𝛿 ,

and the Lipschitzness guarantees the final interval is good.

Now, we give the formal proof of Lemma 2.7.

Proof of Lemma 2.7. We first show that Algorithm 2 tests 𝑂 ( log
2𝑇

𝜖2
) prices in [ℓ, 𝑟 −𝑇 −100].

The main body of Algorithm 2 is a while loop that maintains an interval to be tested. Assume the

while loop stops when 𝑖 = 𝑘 + 1. Then, for 𝑖 ∈ [𝑘], the length of [ℓ𝑖+1, 𝑟𝑖+1] is two-thirds of [ℓ𝑖 , 𝑟𝑖 ],
and we have 𝑟𝑘 − ℓ𝑘 > 𝛿 . Therefore, 𝑘 = 𝑂 (log 1

𝛿
) = 𝑂 (log𝑇 ). For interval [ℓ𝑖 , 𝑟𝑖 ], two prices 𝑎𝑖 , 𝑏𝑖

are tested for 𝑂 (𝛿−2log𝑇 ) times, so in total Algorithm 2 tests 𝑂 (𝛿−2log2𝑇 ) rounds. To show every

tested price is in [ℓ, 𝑟 − 𝑇 −100], let 𝑝 be a price tested in Algorithm 2. 𝑝 ∈ [ℓ, 𝑟 ] directly follows

from the algorithm. For the inequality 𝑝 ≤ 𝑟 −𝑇 −100, observe that the largest tested price must be

𝑝 = 𝑏𝑖 for some 𝑖 ∈ [𝑘], and 𝑏𝑖 ≤ 𝑟 −𝑇 −100 is guaranteed by the fact that 𝑟𝑖 − 𝑏𝑖 ≥ 1

3
𝛿 ≫ 𝑇 −100.

It only remains to show max𝑝∈[ℓ,𝑟 ] −𝑅(𝑝) ≤ 𝜖
2
. Define 𝑝∗ℓ,𝑟 := argmax𝑝∈[ℓ,𝑟 ] 𝑅(𝑝) to be the

optimal price in [ℓ, 𝑟 ]. We will show that 𝑅(𝑝∗ℓ,𝑟 ) − 𝑅(𝑝) ≤ 6𝛿 < 𝜖
2
holds with probability 1 −𝑇 −6.

We first need the following claim, which follows from standard concentration inequalities:
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Claim 2.8. In Algorithm 2, |𝑅(𝑝) − 𝑅(𝑝) | ≤ 𝛿 simultaneously holds for every tested price 𝑝 with
probability at least 1 −𝑇 −6.

Proof. For a single tested price 𝑝 , 𝑅(𝑝) is estimated by calculating the average of 𝑁 = 𝐶 · log𝑇
𝛿2

samples. By Hoeffding’s Inequality,

Pr
[
|𝑅(𝑝) − 𝑅(𝑝) | > 𝛿

]
≤ 2 exp

(
−2𝑁𝛿2

)
= 2𝑇 −2𝐶 < 𝑇 −7.

The last inequality holds when 𝐶 is a constant greater than 4. Then, we have |𝑅(𝑝) − 𝑅(𝑝) | ≤ 𝛿
holds with probability 1 −𝑇 −7 for a single tested price 𝑝 .

Notice that Algorithm 2 can’t test more than 𝑇 prices. By the union bound, |𝑅(𝑝) − 𝑅(𝑝) | ≤ 𝛿
simultaneously holds for all tested prices with probability 1 −𝑇 −6. □

Next, we use Claim 2.8 to show 𝑅(𝑝∗ℓ,𝑟 ) − 𝑅(𝑝) ≤ 6𝛿 . We consider the following two cases:

The first case is that there exists 𝑖 ∈ [𝑘], such that 𝑝∗ℓ,𝑟 falls in [ℓ𝑖 , 𝑟𝑖 ] but not in [ℓ𝑖+1, 𝑟𝑖+1]. In this

case, there must be 𝑅(𝑎𝑖 ) ≥ 𝑅(𝑏𝑖 ) − 2𝛿 and [𝑏𝑖 , 𝑟𝑖 ] is dropped. If not, we have 𝑅(𝑎𝑖 ) ≥ 𝑅(𝑏𝑖 ) − 2𝛿
and [ℓ𝑖 , 𝑎𝑖 ] is dropped. However, the inequality 𝑅(𝑎𝑖 ) ≥ 𝑅(𝑏𝑖 ) − 2𝛿 together with Claim 2.8 gives

𝑅(𝑎𝑖 ) < 𝑅(𝑏𝑖 ). Then, the single-peakedness of 𝑅(𝑝) gives 𝑝∗ℓ,𝑟 ≥ 𝑎𝑖 , which is in contrast to the

assumption that 𝑝∗ℓ,𝑟 ∉ [ℓ𝑖+1, 𝑟𝑖+1]. Therefore, we have 𝑅(𝑎𝑖 ) ≥ 𝑅(𝑏𝑖 ) − 2𝛿 , and the assumption

𝑝∗ℓ,𝑟 ∉ [ℓ𝑖+1, 𝑟𝑖+1] implies 𝑝∗ℓ,𝑟 ∈ [𝑏𝑖 , 𝑟𝑖 ]. Then, the concavity of 𝑅(𝑝) in [𝑎𝑖 , 𝑝∗ℓ,𝑟 ] guarantees

𝑅(𝑝∗ℓ,𝑟 ) − 𝑅(𝑏𝑖 ) ≤ 𝑅(𝑏𝑖 ) − 𝑅(𝑎𝑖 ) ≤ (𝑅(𝑏𝑖 ) + 𝛿) − (𝑅(𝑎𝑖 ) − 𝛿) ≤ 4𝛿.

The second case is that the desired 𝑖 in the first case doesn’t exist. In this case, the only possibility is

that 𝑝∗ℓ,𝑟 ∈ [ℓ𝑘+1, 𝑟𝑘+1]. Then, the 1-Lipschitzness of function𝑅(𝑝) guarantees that𝑅(𝑝∗ℓ,𝑟 )−𝑅(ℓ𝑘 ) ≤ 𝛿 .
In both cases, we find a tested price 𝑝′ satisfying 𝑅(𝑝′) ≥ 𝑅(𝑝∗ℓ,𝑟 ) − 4𝛿 . Then,

𝑅(𝑝) ≥ 𝑅(𝑝) − 𝛿 ≥ 𝑅(𝑝′) − 𝛿 ≥ 𝑅(𝑝′) − 2𝛿 ≥ 𝑅(𝑝∗ℓ,𝑟 ) − 6𝛿. □

2.3.2 Step 2: Generating New Confidence Interval. Upon executing Algorithm 2, we obtain an

approximate optimal price 𝑝 . The subsequent stage of the algorithm uses 𝑅(𝑝) as a benchmark to

establish the new upper and lower bounds of the confidence interval. Given that the function 𝑅(𝑝)
is single-peaked, two independent binary search algorithms suffice to independently determine

these new upper and lower bounds, leading to the following Lemma 2.9:

Lemma 2.9. Assume 𝑅(𝑝) is a half-concave revenue function defined in [0, 1]. Given interval [ℓ, 𝑟 ] ∋
𝑝∗, error parameter 𝜖 > 1√

𝑇
, near-optimal price 𝑝 ∈ [ℓ, 𝑟 − 𝑇 −100] that satisfies 𝑅(𝑝∗) − 𝑅(𝑝) ≤ 𝜖

2
,

there exists an algorithm that tests 𝑂 (𝜖−2 log2𝑇 ) rounds with prices in [ℓ, 𝑟 − 𝑇 −100] and outputs
[ℓ ′, 𝑟 ′] ⊆ [ℓ, 𝑟 ] satisfying with probability 1 −𝑇 −6 that:
• 𝑝∗ ∈ [ℓ ′, 𝑟 ′].
• For 𝑝 ∈ [ℓ ′, 𝑟 ′ −𝑇 −100], we have 𝑅(𝑝∗) − 𝑅(𝑝) ≤ 𝜖 .

Combining Lemma 2.7 and Lemma 2.9 proves Lemma 2.6:

Proof of Lemma 2.6. We first run Algorithm 2 to get 𝑝 , and then run the algorithm described in

Lemma 2.9 with 𝑝 being part of the input. Combining Lemma 2.7 and Lemma 2.9 with union bound

guarantees that we have the desired output with success probability at least 1− 2𝑇 −6 > 1−𝑇 −5. □

It only remains to prove Lemma 2.9. We first give the following Algorithm 3, and then show

Algorithm 3 is the desired algorithm for Lemma 2.9.

We first give the following concentration bound for Algorithm 3:

We first give the following claim:
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ALGORITHM 3: Getting [ℓ′, 𝑟 ′] via Binary Search

Input: Hidden Revenue Function 𝑅(𝑝), Interval [ℓ, 𝑟 ], Error Parameter 𝜖 , Near-Optimal price 𝑝

Let 𝛿 = 𝜖
100

be the scaled error parameter.

// First binary search to determine ℓ′

Test 𝐶 · log𝑇
𝛿2

rounds with price 𝑝 = 𝑝 . Let 𝑅(𝑝) be the average reward.
Let ℓ𝑏1 ← ℓ, 𝑟𝑏1 ← 𝑝 .

while 𝑟𝑏1 − ℓ𝑏1 ≥ 𝑇 −100 do
Let𝑚 =

ℓ𝑏1+𝑟𝑏1
2

.

Test 𝐶 · log𝑇
𝛿2

rounds with price 𝑝 =𝑚. Let 𝑅(𝑚) be the average reward.
if 𝑅(𝑚) < 𝑅(𝑝) − 2𝛿 then Update 𝑟𝑏1 ←𝑚 else Update ℓ𝑏1 ←𝑚;

end
Let ℓ′ ← ℓ𝑏1
// Second binary search to determine 𝑟 ′

Test 𝐶 · log𝑇
𝛿2

rounds with price 𝑝 = 𝑟 −𝑇 −100. Let 𝑅(𝑟 −𝑇 −100) be the average reward.
if 𝑅(𝑟 −𝑇 −100) ≥ 𝑅(𝑝) − 2𝛿 then

// Special Case: original upper bound is good
Let 𝑟 ′ ← 𝑟

else
Let ℓ𝑏2 ← 𝑝, 𝑟𝑏2 ← 𝑟 −𝑇 −100.
while 𝑟𝑏2 − ℓ𝑏2 ≥ 𝑇 −100 do

Let𝑚 =
ℓ𝑏2+𝑟𝑏2

2
.

Test 𝐶 · log𝑇
𝛿2

rounds with price 𝑝 =𝑚. Let 𝑅(𝑚) be the average reward.
if 𝑅(𝑚) < 𝑅(𝑝) − 2𝛿 then Update 𝑟𝑏2 ←𝑚 else Update ℓ𝑏2 ←𝑚;

end
Let 𝑟 ′ ← 𝑟𝑏2.

end
Output: [ℓ′, 𝑟 ′].

Claim 2.10. In Algorithm 3, |𝑅(𝑝) − 𝑅(𝑝) | ≤ 𝛿 | simultaneously holds for every tested price 𝑝 with
probability at least 1 −𝑇 −6.

Proof. For a single tested price 𝑝 , 𝑅(𝑝) is estimated by calculating the average of 𝑁 = 𝐶 · log𝑇
𝛿2

samples. By Hoeffding’s Inequality,

Pr
[
|𝑅(𝑝) − 𝑅(𝑝) | > 𝛿

]
≤ 2 exp

(
−2𝑁𝛿2

)
= 2𝑇 −2𝐶 < 𝑇 −7 .

The last inequality holds when 𝐶 is a constant greater than 4. Then, we have |𝑅(𝑝) − 𝑅(𝑝) | ≤ 𝛿
holds with probability 1 −𝑇 −7 for a single tested price 𝑝 .

Notice that Algorithm 3 can’t test more than 𝑇 prices. By the union bound, |𝑅(𝑝) − 𝑅(𝑝) | ≤ 𝛿
simultaneously holds for all tested prices with probability 1 −𝑇 −6. □

Now we prove Lemma 2.9 assuming Claim 2.10 holds.

Proof of Lemma 2.9. We show Algorithm 3 satisfies the statements in Lemma 2.9. Our proof

starts from verifying Algorithm 3 runs𝑂 ( log𝑇
𝛿2
) rounds with prices in [ℓ, 𝑟−𝑇 −100]. For the number of

tested rounds, Algorithm 3 runs two standard binary searches. In one binary search, the subroutine

tests one price with 𝐶 · log𝑇
𝛿2

rounds, and the binary search stops when the length of the interval is

less than 𝑇 −100. Therefore, The total number of rounds is 𝐶 · log𝑇
𝛿2
·𝑂 (log𝑇 100) = 𝑂 ( log

2𝑇

𝜖2
). For the
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range constraint of all tested prices, Algorithm 3 directly guarantees that every tested price falls in

[ℓ, 𝑟 −𝑇 −100].
Next, we show 𝑝∗ ∈ [ℓ ′, 𝑟 ′]. We first prove 𝑝∗ ≥ ℓ ′. In Algorithm 3, the only way we update

ℓ ′ is that we observe 𝑅(𝑚) < 𝑅(𝑝) − 2𝛿 in the first binary search, and ℓ ′ is updated to at least𝑚.

This is feasible because Claim 2.10 gives 𝑅(𝑚) < 𝑅(𝑝) ≤ 𝑅(𝑝∗), and the single-peakedness of 𝑅(𝑝)
guarantees𝑚 ≤ 𝑝∗. The proof of 𝑝∗ ≤ 𝑟 ′ is symmetric.

Finally, we show 𝑅(𝑝) ≥ 𝑅(𝑝∗) − 𝜖 for all 𝑝 ∈ [ℓ ′, 𝑟 ′ −𝑇 −100]. Function 𝑅(𝑝) is single-peaked,
so it is sufficient to prove that 𝑅(𝑝) − 𝑅(ℓ ′) ≤ 5𝛿 < 𝜖

2
and 𝑅(𝑝) − 𝑅(𝑟 ′ −𝑇 −100) ≤ 5𝛿 < 𝜖

2
. Then,

combining these two inequalities with the assumption 𝑅(𝑝∗)−𝑅(𝑝) ≤ 𝜖
2
gives the desired statement.

We first prove that 𝑅(𝑝) − 𝑅(ℓ ′) ≤ 5𝛿 . The binary search subroutine guarantees that 𝑅(𝑟𝑏1) ≥
𝑅(𝑝) − 2𝛿 after the binary search loop is finished. Then, Claim 2.10 ensures that 𝑅(𝑝) −𝑅(𝑟𝑏1) ≤ 4𝛿 .

Since ℓ ′ is set to be ℓ𝑏1 > 𝑟𝑏1 −𝑇 −100, the 1-Lipschitzness of 𝑅(𝑝) in [ℓ𝑏1, 𝑝] guarantees that
𝑅(𝑝) − 𝑅(ℓ ′) = 𝑅(𝑝) − 𝑅(𝑟𝑏1) + 𝑅(𝑟𝑏1) − 𝑅(ℓ𝑏1) ≤ 4𝛿 +𝑇 −100 ≤ 5𝛿.

For the inequality 𝑅(𝑝) − 𝑅(𝑟 ′ − 𝑇 −100) ≤ 5𝛿 , a symmetric proof for the second binary search

subroutine gives 𝑅(𝑝) − 𝑅(ℓ𝑏2) ≤ 4𝛿 , while 𝑟 ′ is set to be 𝑟𝑏2 < ℓ𝑏2 +𝑇 −100. If 𝑝∗ < 𝑟 ′ −𝑇 −100, the
single-peakedness of 𝑅(𝑝) gives

𝑅(𝑟 ′ −𝑇 −100) ≥ 𝑅(ℓ𝑏2) ≥ 𝑅(𝑝) − 4𝛿.
Otherwise, the 1-Lipschitzness gives

𝑅(𝑟 ′ −𝑇 −100) ≥ 𝑅(ℓ𝑏2) − (ℓ𝑏2 − 𝑟𝑏2 +𝑇 −100) ≥ 𝑅(𝑝) − 4𝛿 −𝑇 −100 > 𝑅(𝑝) − 5𝛿. □

3 𝑛 Buyers with Regular Distributions
In this section, we provide the 𝑂 (poly(𝑛)

√
𝑇 ) regret algorithm for BSPP with 𝑛 buyers having

regular distributions. In this problem we have 𝑛 buyers with independent regular value distributions

D1, · · · ,D𝑛 . The seller posts prices 𝑝1, · · · , 𝑝𝑛 , and the first buyer with value 𝑣𝑖 ∼ D𝑖 ≥ 𝑝𝑖 gets the
item and pays 𝑝𝑖 . Our goal is to approach the optimal prices 𝑝∗

1
, · · · , 𝑝∗𝑛 that maximizes the expected

revenue 𝑅(𝑝1, · · · , 𝑝𝑛) := 𝑝𝑖 · Pr [𝑖 gets the item] via a bandit learning game over 𝑇 days: On day

𝑡 ∈ [𝑇 ] we post a price vector (𝑝 (𝑡 )
1
, · · · , 𝑝 (𝑡 )𝑛 ) and the environment draws 𝑣

(𝑡 )
1
∼ D1, · · · , 𝑣 (𝑡 )𝑛 ∼ D𝑛 .

We only observe reward Rev𝑡 =
∑

𝑖∈[𝑛] 𝑝
(𝑡 )
𝑖
· 1[𝑝 (𝑡 )

𝑖
≥ 𝑣 (𝑡 )

𝑖
∧ ∀𝑗 < 𝑖, 𝑝

(𝑡 )
𝑗

< 𝑣
(𝑡 )
𝑗
]. Our goal is to

minimize the total regret 𝑇 · 𝑅(𝑝∗
1
, · · · , 𝑝∗𝑛) −

∑
𝑡 ∈[𝑇 ] Rev𝑡 in expectation. Our main result is:

Theorem 3.1. For BSPP with 𝑛 buyers having regular distributions, there exists an algorithm with
𝑂 (𝑛2.5

√
𝑇 log𝑇 ) regret.

We defer the detailed proof of Theorem 3.1 to the full version of the paper, and provide a proof

overview in the below Section 3.1.

3.1 Proof Overview for Theorem 3.1
The main structure of our algorithm follows the structure of the single-buyer algorithm. We

maintain 𝑛 confidence intervals [ℓ1, 𝑟1], · · · , [ℓ𝑛, 𝑟𝑛] for the optimal prices 𝑝∗
1
, · · · , 𝑝∗𝑛 . The core of

the algorithm is to design a sub-routine that uses𝑂 (poly(𝑛) · 𝜖−2) rounds to update the confidence

intervals to [ℓ ′
1
, 𝑟 ′

1
], · · · , [ℓ ′𝑛, 𝑟 ′𝑛], such that playing any prices inside new confidence intervals has

regret at most 𝜖 . Then, calling this sub-routine 𝑂 (log𝑇 ) times with halving error parameter 𝜖

suffices to obtain 𝑂 (poly(𝑛)
√
𝑇 ) regret.

The core sub-routine contains two steps. The first step is to get a group of near-optimal prices

𝑝1, · · · , 𝑝𝑛 that approximate 𝑝∗
1
, · · · , 𝑝∗𝑛 . The second step is to use prices 𝑝1, · · · , 𝑝𝑛 as a benchmark

to find new upper- and lower- confidence bounds.
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Step 1: Finding 𝑝𝑖 with a Different Revenue Function. Compared to the single-buyer setting,

the revenue function for sequential buyers is different. In particular, when we want to determine 𝑝𝑖
for buyer 𝑖 with CDF 𝐹𝑖 (𝑝), the revenue function looks like

𝑅𝑖 (𝑝) = 𝑝 · (1 − 𝐹𝑖 (𝑝)) +𝐶 · 𝐹𝑖 (𝑝),
where the constant 𝐶 represents the expected revenue from the buyers 𝑖 + 1, · · · , 𝑛. Our goal is to
find a near-optimal price 𝑝𝑖 ≈ 𝑝∗𝑖 , where 𝑝∗𝑖 is the price that maximizes 𝑅𝑖 (𝑝).
The major challenge in this step is that function 𝑅𝑖 (𝑝) is not always half-concave: it is half-

concave in [𝐶, 1], while in [0,𝐶] it is increasing but not necessary concave. This prevents us from

directly applying the single-buyer algorithm. Our main idea to fix this extra issue is a case discussion

based on the value of 𝐹𝑖 (𝑝):
Case 1: 𝐹𝑖 (𝑟𝑖 ) > 0.1. In this case, the probability of skipping buyer 𝑖 is at least 0.1 when the price for

buyer 𝑖 is 𝑝 = 𝑟𝑖 . Therefore, it’s sufficient to accurately learn 𝐶 ≈ 𝐶 via posting 𝑝 = 𝑟𝑖 for buyer 𝑖 .

Furthermore, observe that 𝑅𝑖 (𝑝) ≤ 𝑅(𝐶) for 𝑝 ≤ 𝐶 , i.e.,𝐶 is a lower bound for 𝑝∗𝑖 . Therefore, running

the single-buyer algorithm in the interval [𝐶, 1] ∩ [ℓ𝑖 , 𝑟𝑖 ] is sufficient to find the approximately

optimal 𝑝𝑖 .

Case 2: 𝐹𝑖 (𝑟𝑖 ) ≤ 0.5. In this case, note that 𝑅′𝑖 (𝑝) = 1−𝐹𝑖 (𝑝) + (𝐶 −𝑝) · 𝑓𝑖 (𝑝), where 𝑓𝑖 (𝑝) = 𝐹 ′𝑖 (𝑝) is
the PDF of buyer 𝑖 . Therefore, we have 𝑅′𝑖 (𝑝) ≥ 1− 𝐹𝑖 (𝑟𝑖 ) ≥ 0.5 when 𝑝 ∈ [ℓ𝑖 , 𝑟𝑖 ] ∩ [0,𝐶], i.e., 𝑅𝑖 (𝑝)
grows sufficiently fast in the interval [0,𝐶]. Combining this observation with the Lipschitzness of

𝑅𝑖 (𝑝) and the half-concavity in [𝐶, 1], for 𝑎 < 𝑏 < 𝑝∗𝑖 , it can be shown that

𝑅𝑖 (𝑝∗𝑖 ) − 𝑅𝑖 (𝑏)
𝑝∗
𝑖
− 𝑏 ≤ 2 · 𝑅𝑖 (𝑏) − 𝑅𝑖 (𝑎)

𝑏 − 𝑎 ,

i.e., function 𝑅𝑖 (𝑝) still preserves some kind of “concavity", with an extra factor of 2. We resolve

this Case 2 by formally defining this variant of concavity as “generalized half-concavity” and give

a corresponding algorithm via modifying the single-buyer algorithm.

Finally, observe that the two cases overlap when 𝐹𝑖 (𝑟𝑖 ) ∈ (0.1, 0.5). This margin is used for

including the error from learning the value of 𝐹𝑖 (𝑟𝑖 ). Combining the two cases after learning

𝐹𝑖 (𝑟𝑖 ) ≈ 𝐹𝑖 (𝑟𝑖 ) completes Step 1 of our algorithm.

Step 2: Binary Search with Prices 𝑝1, · · · , 𝑝𝑛 . The second step of the sub-routine is to update

confidence intervals via binary searches. In this step, the main new challenge is the error from

𝑝1, · · · 𝑝𝑛 . For instance, while trying to update [ℓ𝑖 , 𝑟𝑖 ] with revenue function 𝑅𝑖 (𝑝) = 𝑝 · (1− 𝐹𝑖 (𝑝)) +
𝐶 · 𝐹𝑖 (𝑝), the constant 𝐶 comes from non-optimal prices 𝑝𝑖+1, · · · , 𝑝𝑛 . Therefore, the optimal 𝑝∗𝑖
for function 𝑅𝑖 (𝑝) does not equal to the global optimal price 𝑝∗𝑖 . If we directly apply binary search

algorithm to function 𝑅𝑖 (𝑝), since 𝑝∗𝑖 is not the peak of 𝑅𝑖 (𝑝), it’s possible that 𝑝∗𝑖 falls outside the
interval we retrieve from binary search.

To fix this issue, our main idea is to look at function 𝑅∗𝑖 (𝑝) := 𝑝 · (1 − 𝐹𝑖 (𝑝)) +𝐶∗ · 𝐹𝑖 (𝑝), where
𝐶∗ represents the revenue from the optimal prices 𝑝∗𝑖+1, · · · 𝑝∗𝑛 . Then, 𝑝∗𝑖 is now the optimal price

for 𝑅∗𝑖 (𝑝). Although function 𝑅∗𝑖 (𝑝) is not directly accessible, we use the value of 𝑅𝑖 (𝑝) to estimate

𝑅∗ (𝑝) via bounding the difference between 𝐶 and 𝐶∗. Running the binary search algorithm for this

virtual function 𝑅∗𝑖 (𝑝) completes Step 2 of our algorithm.

4 𝑛 Buyers with General Distributions

In this section, we provide the 𝑂 (poly(𝑛)𝑇 2

3 ) regret algorithm for BSPP problem with general

distributions. The setting in this section is the same as Section 3, but with no extra regularity

assumption. Our result generalizes the 𝑂 (𝑇 2/3) single-buyer result studied in [Kleinberg and

Leighton, 2003].
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Theorem 4.1. For BSPP problem with 𝑛 buyers, there is an algorithm with𝑂 (𝑛5/3𝑇 2/3
log𝑇 ) regret.

We defer the detailed proof of Theorem 4.1 to the full version of the paper. An algorithm overview

for Theorem 4.1 is provided below.

Algorithm Overview. Comparing to the regular buyers setting, one extra challenge for general

buyers setting is that the revenue function in this case is no longer single-peaked, leading to the

failure of the idea of confidence intervals. Therefore, the first step of our algorithm is to discretize

the value space: it can be shown that rounding buyers’ valuations to multiples of 𝜖 only brings

an extra 𝜖 loss. The idea of discretization was first used in [Kleinberg and Leighton, 2003] for

single buyer setting. We will show that the same idea also works for sequential buyers. For our

algorithm, we take the discretization parameter 𝜖 = 𝑛5/3𝑇 −1/3, and the accumulated regret from

the discretization step would be 𝑇 ·𝑂 (𝜖) = 𝑂 (𝑛5/3𝑇 2/3).
After discretizing the value space, it suffices to solve BSPP for general distributions with discrete

support. The main idea of our algorithm is almost identical to the algorithm for regular buyers -

we design a subroutine that shrinks the possible candidates of 𝑝∗𝑖 while keeping a low regret inside

the new set of candidates. Calling this subroutine 𝑂 (log𝑇 ) times with a halving error parameter

gives the desired algorithm. Comparing to the regular distributions setting, the idea of confidence

intervals does not work for discrete distributions, because the candidates may be discontinuous. To

fix this issue, we use 𝑛 price sets to maintain possible candidate prices.

The detailed steps of our algorithm also follows the ideas for regular distributions: we first find a

group of approximately prices 𝑝1, · · · , 𝑝𝑛 , and then use these prices as a benchmark to update the

candidate prices sets. Since the single-peakedness no longer holds for general distributions, instead

of doing binary search, we simply enumerate all remaining prices to update the candidate sets.

5 Linear Regret Lower Bound for Adversarial Valuations
We show an Ω(𝑇 ) regret lower bound for learning sequential posted pricing with adversarial buyer

values. [Kleinberg and Leighton, 2003] gave an 𝑂 (𝑇 2/3) regret upper bound for bandit sequential

posted pricing with adversarial values when there is only a single buyer. The following result shows

that it is not possible to generalize their result to multiple buyers.

Theorem 5.1. For Online Sequential Posted Pricing problem with oblivious adversarial inputs, there
exists an instance with 𝑛 = 2 buyers such that the optimal fixed-threshold strategy has total revenue
3

4
𝑇 but no online algorithm can obtain total value more than 1

2
𝑇 .

Proof. The proof follows the hardness example for Online Prophet Inequality problem in

[Gatmiry et al., 2024]. Here we restate the example for completeness.

Let 𝑠 be a binary string in {0, 1}𝑇 . Define 𝐵𝑖𝑛(𝑠) to be the binary decimal corresponding to 𝑠 . For

example, 𝐵𝑖𝑛(1000) = (0.1000)2 = 1

2
and 𝐵𝑖𝑛(0101) = (0.0101)2 = 5

16
.

At the beginning, the adversary chooses a𝑇 -bits string 𝑠 = 𝑠1𝑠2, · · · , 𝑠𝑇 uniformly at random, i.e.,

𝑠𝑖 is set to be 0 or 1 independently with probability
1

2
. In the 𝑖-th round, the value of the first buyer

will be 𝑣1 =
1

2
+ 𝜀 · 𝛼𝑖 , where 𝛼𝑖 is set to be 𝐵𝑖𝑛(𝑠1𝑠2...𝑠𝑖−1 + 0 + 1𝑇−𝑖+1), and 𝜀 is an arbitrarily small

constant that doesn’t effect the value. The value of the second buyer only depends on 𝑠𝑖 : 𝑣2 is set to

be 0 when 𝑠𝑖 = 1, while 𝑣𝑖 = 1 when 𝑠𝑖 = 0.

The key idea of this example is that we have 𝐵𝑖𝑛(𝑠) > 𝛼𝑖 when 𝑠𝑖 is 0, and 𝐵𝑖𝑛(𝑠) < 𝛼𝑖 when

𝑠𝑖 = 1. Therefore, if we set 𝑝1 = 𝐵𝑖𝑛(𝑠) and 𝑝2 = 1, we can receive 𝑣2 when 𝑣2 is 1, and otherwise 𝑣1.

Since 𝑠 is generated uniformly at random, the expected revenue is
3

4
𝑇 . However, for any online

algorithm, it only knows that the value of 𝑣2 is 0 or 1 with probability
1

2
. Therefore, it can only get

revenue
1

2
in expectation and the maximum total revenue is

1

2
𝑇 . □
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