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Abstract—In online combinatorial allocations/auctions, n bid-
ders sequentially arrive, each with a combinatorial valuation
(such as submodular/XOS) over subsets of m indivisible items.
The aim is to immediately allocate a subset of the remaining
items to maximize the total welfare, defined as the sum of bidder
valuations. A long line of work has studied this problem when the
bidder valuations come from known independent distributions. In
particular, for submodular/XOS valuations, we know 2-competitive
algorithms/mechanisms that set a fixed price for each item and
the arriving bidders take their favorite subset of the remaining
items given these prices. However, these algorithms traditionally
presume the availability of the underlying distributions as part of
the input to the algorithm. Contrary to this assumption, practical
scenarios often require the learning of distributions, a task
complicated by limited sample availability. This paper investigates
the feasibility of achieving O(1)-competitive algorithms under
the realistic constraint of having access to only a limited number
of samples from the underlying bidder distributions.

Our first main contribution shows that a mere single sample
from each bidder distribution is sufficient to yield an O(1)-
competitive algorithm for submodular/XOS valuations. This
result leverages a novel extension of the secretary-style analysis,
employing the sample to have the algorithm compete against
itself. Although online, this first approach does not provide
an online truthful mechanism. Our second main contribution
shows that a polynomial number of samples suffices to yield a
(2+¢)-competitive online truthful mechanism for submodular/XOS
valuations and any constant ¢ > 0. This result is based on a
generalization of the median-based algorithm for the single-item
prophet inequality problem to combinatorial settings with multiple
items.

Index Terms—Online algorithms, prophet inequality, posted-
price mechanisms

[. INTRODUCTION

Online combinatorial allocation is a fundamental problem in
stochastic optimization, capturing a wide variety of resource
allocation problems. In such problems, requests arrive online
for a common pool of indivisible items/resources. Each request
1 can be assigned some combination of items/resources. The
satisfaction of the request is modeled by a valuation function v;
(e.g. unit-demand, submodular, or XOS), drawn independently
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from some probability distribution D;, quantifying the value
of different combinations. A decision-maker must immediately
and irrevocably allocate to each request a subset of the available
items/resources, while maximizing the total sum of valuations.
The challenge is that allocation decisions must be made
online without perfect foreknowledge of future requests. Such
online allocation problems capture wide-ranging applications,
from cloud computation scheduling to e-commerce, and have
attracted substantial attention from the theory community [e.g.,
1, 2, 3, 4].

Importantly, the performance achievable by the decision-
maker depends crucially on how much information they have
about the request distributions D;. If nothing is known (i.e., the
distributions are adversarial) then no bounded approximation
to the offline optimal solution is possible even for allocating a
single item. On the other end of the spectrum, when valuations
are drawn independently from known distributions (the so-
called prophet setting), sweeping positive results are possible.
For example, in a celebrated result, Feldman, Gravin, and Lucier
[1] have shown that when the valuations v; are submodular
(or even XOS), it is possible to achieve a (tight) factor 2-
approximation against the expected offline optimum.

In the prophet setting, many known solutions for online
combinatorial allocation have the additional desirable property
of being truthful, meaning that a self-interested requester (or
bidder) can obtain no benefit by strategically manipulating their
reported valuation v;. This is a non-trivial property even when
the distributions are fully known in advance, since classical
solutions from economics such as the VCG auctions [5, 6, 7]
do not work for online bidders. The result of Feldman, Gravin,
and Lucier [1], for example, achieves truthfulness by taking the
form of a “posted-price mechanism.” This type of mechanism
uses the advance knowledge of the valuation distributions to
compute fixed item prices, and achieves truthfulness by letting
each arriving bidder buy a utility-maximizing bundle of items.

The two extremes discussed so far, no information about the
distributions or full information, are respectively too pessimistic
and overly optimistic. Indeed, in real-world scenarios, one
would expect to have some (but not perfect) distributional
knowledge through observational data. Motivated by this,
Azar, Kleinberg, and Weinberg [8] suggest taking a sample
complexity perspective and seek guarantees that apply when the
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underlying distributions are known only through a limited num-
ber of samples. This has led to a sequence of efforts [9, 10, 11]
expanding sample-based prophet inequalities for allocation
problems, but fairly little was known about general submodular
(and, more generally, XOS) valuations. To address this gap,
we ask:

For submodular (or even XOS) valuations, how
many samples from the distributions suffice to obtain
constant-competitive online allocations? How many
samples are needed if we additionally require the
algorithm to be truthful?

Given existing work that solves the online allocation problem
for known distributions, a natural approach involves first
learning the distribution, followed by algorithm creation tailored
to the learned distribution. Yet, given the inherent imperfection
in distribution learning, this strategy often culminates in
suboptimal performance. Indeed, our investigation indicates that
prevailing posted-price mechanisms are intrinsically reliant on
precise knowledge of distributions. This dependency, in essence,
stems from the need to learn the “mean” of certain random
variables, a feat unattainable with a limited sample set unless
we adopt stringent assumptions, such as bounded support for
valuations.

An alternative approach, which is rooted in the realm of Data-
Driven Algorithm Design [12], proposes bypassing distribution
learning and instead directly learning algorithms from samples.
This approach, especially when applied to online settings with
combinatorial assignments, introduces significant complexities
even when we set aside truthfulness and concentrate solely on
constructing an online allocation algorithm to optimize welfare.

In response to the above questions, our contributions are
twofold:

1) Online Combinatorial Allocation: In the non-strategic
setting with request valuations that are submodular (or
even XOS), we establish that even a single sample from
each distribution suffices to obtain an O(1)-competitive
online allocation algorithm. This presents as significant
advancement, given that prior single-sample results were
limited to specific submodular valuations like unit-
demand or budget-additive [10, 11].

2) Posted-Price Mechanisms: We prove that, given bidder
valuations that are submodular (or more generally XOS),
a polynomial number of samples can effectively inform
the choice of fixed item prices that yield (2 + e)-
competitive posted-price mechanisms for any constant
€ > 0. Given the intrinsic unlearnability of a random
variable’s “mean”, this achievement is anchored in
pioneering a “median” pricing strategy for combinatorial
settings—potentially a topic of independent interest. Prior
to this work, it was only known how to obtain truthful,
constant-factor approximations with poly-many samples
under stringent assumptions on the distributions, such as
boundedness [1].

A. Median Pricing and Secretary-Style Analysis for Single Item

To build intuition for our results, we examine the scenario
of a single-item allocation/auction, analogous to the single-
choice prophet inequality problem [13, 14]. Here, we encounter
n bidders arriving sequentially, each with a valuation v; for
the item drawn from an independent distribution. We need
to design an online algorithm to maximize the value of the
bidder who receives the item. A well-known strategy achieves
a 2-competitive ratio by assigning the item to the first bidder
whose valuation exceeds half the expected maximum value
[15]. The posted-price mechanisms introduced by Feldman,
Gravin, and Lucier [1] extend this mean-based philosophy to
the multi-item, combinatorial auction framework.

However, the landscape changes when we possess only
samples of the bidders’ valuation distributions. Learning the
mean of such distributions is infeasible with a sample-based
approach, particularly for distributions with small, yet pivotal
probabilities. For instance, consider an instance with n = 2
bidders where v; = 1 w.p. 1 and vo = 1/e w.p. 4 and is 0
otherwise, where ¢, are small unknown constants. We need
at least ~ 1/0 samples to see a non-zero ve; however, €,0
could be arbitrarily small, so we cannot (approximately) learn
E[max{vy,v2}] for this distribution.

Nonetheless, even with limited samples, achieving O(1)-
competitive algorithms is plausible through two principal meth-
ods, both circumventing the need to ascertain the distribution
means and instead focusing on constant probability selection
of bids.

Secretary-Style Pricing. One methodology is to select a
threshold based on the maximum value among a single sample
from each bidder’s distribution [e.g., 8, 9]. The reason this
algorithm is O(1)-competitive is due to a Secretary-Style
argument: among all samples and real values, with constant
probability, the maximum is among the real values and the
second-highest is among the samples. Although it has a
simple analysis for single-item, the difficulty of extending
this to combinatorial valuations is unclear since there is no
natural notion of “maximum” and “second-highest” due to
item dependencies. Our single-sample O(1)-competitive online
combinatorial allocation algorithms are based on generalizing
this secretary-style approach.

Median Pricing. Alternatively, we could pivot from mean
to median valuation estimations. A classic result of Samuel-
Cahn [16] shows that selecting the first bidder with value
above the median 7 is 2-competitive, i.e., 7 is the solution to
P[maxv; > 7| = 1/2. With a finite sample set, a threshold
7 can be inferred, which aligns the maximum valuation
probability within an acceptable e range of the ideal half,
thus yielding a 2 + O(e) competitive algorithm. However, the
challenge in extending median-based approaches to combina-
torial auctions is that it’s not obvious how to define median
for combinatorial valuations due to item dependencies. Our
polynomial-sample O(1)-competitive posted-price mechanism
for online combinatorial auctions is based on generalizing this
median pricing approach.
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B. Online Combinatorial Allocation

Our first result extends existing single-sample methodologies
for the online allocation problem (such as the one for a single
item discussed above) all the way to submodular (and even
XOS) valuations. Note that a single sample from the product
distribution over bidder valuations corresponds to drawing
one sample from each of the bidder’s (independent) valuation
distributions.

Theorem 1.1. Given a single sample from any product
distribution over submodular (or even XOS) bidder valuations,
there exists an O(1)-competitive online algorithm for the
combinatorial allocation problem.

We actually prove an even stronger result, showing that
the same guarantee can be obtained in the Game of Googol
model, introduced in [17], with £k = 1 sample per buyer
(Theorem III.1). In this model, an adversary inscribes k + 1
valuation functions on k£ + 1 facets of a die for each buyer. The
die is then tossed, revealing %k valuation functions to the online
algorithm, while the (k 4 1)-st—the true valuation—remains
hidden. The algorithm must then make online allocations that
are competitive with the best possible allocation in expectation
over the die rolls. Any guarantee made in this model naturally
extends to the independent samples model. Moreover, via a
reduction from [11], this framework implies the first O(1)-
competitive “order-oblivious” secretary algorithm for XOS
combinatorial auctions: here, after receiving a constant fraction
of the online elements, chosen uniformly at random, as a
sample, the leftover elements arrive in adversarial order.

Corollary 1.2. There exists an O(1)-competitive order-
oblivious secretary algorithm for the combinatorial allocation
problem with submodular (and even XOS) buyers.

Before describing our techniques, we discuss why simple
approaches don’t work. We outline the hardness examples here
and discuss them in detail in Section C.

Limitations of Prior Approaches. Probably the most natural
idea, inspired from single-item analysis, is to set the largest
observed value in sample S as a threshold, i.e., item j’s price
equals max;cgv;(j). This fails when a single unit-demand
buyer has a large value for every item but has only a small
contribution to the optimum welfare. A second idea would
be to compute the offline optimum allocation for the sample,
then price each item according to its “supporting price” under
that allocation.! This doesn’t work (even for deterministic
valuations) since a unit-demand buyer that contributes most of
the welfare might now purchase a suboptimal item at such a
high price.

Motivated by balanced pricing [1, 2], a third idea is to instead
compute an offline optimal allocation on the single sample, and
then set each item’s price to be half of its supporting price. This
also does not work. Suppose n = m and consider a distribution
D over profiles of unit-demand valuations, such that player n

'For unit-demand buyers, the supporting price of an item j allocated to
agent ¢ is v;(j). See Section II for the general definition.

has value 1 for one of the items (uniformly at random), and
value € < 1/n for the remaining items. Each other player has
value ¢ for every item. Then this pricing approach will result
in price 1/2 for one of the items (uniformly at random), say
item j, and price €/2 for all other items. On the real valuation,
the optimal allocation has value 1 + O(ne) but unless j = i,
player n will receive no items, so the total value obtained will
be O(ne).

Given the limitations of prior approaches, we take a totally
different approach by first considering a simplified setting
where items can be reallocated to the current bidder.

Greedy with Reallocations. Consider a simplified setting in
which we are permitted to reassign items previously allocated
to the i-th bidder. This relaxation substantially simplifies the
problem, allowing a straightforward constant approximation
bidder-wise greedy algorithm, known since at least [18]. Here,
each i-th bidder may claim any item but must compensate
for the value lost by the item’s prior owner. In essence, the
i-th bidder encounters item prices p(*), with each item’s price
reflecting its current contribution to the welfare as determined
by its supporting XOS valuation, and may acquire any item
(including previously allocated) by remunerating this price.
This approach is effective because any highly-valued item can
always be repurchased, ensuring that either the current or the
previous bidder holds significant valuation for it.

Two-Samples Algorithm. Implementing the buyer-wise greedy
strategy online without the luxury of reallocating items poses
the principal challenge. Let’s approach this by presuming the
availability of two samples from each distribution. We start by
using the first sample to establish item prices, employing the
buyer-wise greedy algorithm on this sample to set the prices
p® that the i-th real bidder faces. The underlying thought is
that the ‘marginal’ value ascribed by both the i-th sample and
the real i-th bidder should be analogous, since they face the
same prices and are drawn from the same distribution. However,
this alone does not preclude the possibility of item reallocation.
Ideally, we wish to allocate the i-th bidder a subset of these
items that are unlikely to be reassigned subsequently.

Competing with Yourself: Secretary-Style Argument. Our
foremost insight is the conceptualization of the algorithm
as competing against itself. While still utilizing the first
sample to set item prices p*) for the i-th bidder, we observe
the price dynamics on the second sample with reallocations.
Specifically, we determine which bidder secures each item j
post-reallocations in the second sample, and use the supporting
value of this bidder to set a ‘base price’ b; for every item j. As
the actual ¢-th bidder arrives, they aim to select their optimal
bundle B; based on the initial sample prices p(?) (assuming
full item availability), yet we only assign them a subset of these
items that surpass the base prices b; and remain unclaimed.
The intuition is that since the algorithm on the second-sample
and the real-sample are facing the same prices, a secretary-style
argument should imply that with constant probability only the
max-bidder for an item j will be allocated the item.
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Max vs. Sum. Although utilizing the second-sample to set base
prices averts reallocation, it poses a risk of diminishing welfare
relative to the buyer-wise greedy model. More precisely, our
Lemma III1.6 only implies that the expected contribution of any
item j to the welfare of the algorithm is at least a constant
fraction of the maximum of the max j-bid in the real valuations
and in the second sample.. Conversely, we only know that the
sum of the j-bids in the real valuations and the second sample is
at least a constant fraction of the buyer-wise greedy algorithm.
Our key technical contribution, encapsulated in Lemma II1.7,
demonstrates that rounding prices to powers-of-two allows
the max and the sum of bids to be comparable. The lemma’s
proof employs a carefully constructed Martingale argument
to circumvent dependencies that might emerge between the
samples and actual valuations, such as those arising from base
pricing.

Finally, we extend this proof to single sample by observing
that any k-sample result can be turned into a single sample
result by losing only an O(k) term (Theorem III.10).

C. Posted-Price Mechanisms

Our second main result addresses the design of truthful
posted-price mechanisms using only sample access to bidder
distributions. As mentioned earlier, posted-price mechanisms
are highly desirable due to their practical appeal. Existing
posted-price mechanism designs depend on mean-based pricing,
which is untenable to implement with unknown and potentially
unbounded distributions. Our single-sample approach from the
previous section is inherently non-truthful since it provisionally
assigns a utility-maximizing set of items to a bidder assuming
all items are available, but ultimately only assigns them a
subset of the items that are still available.

We bypass these issues by establishing a median-based pric-
ing system for combinatorial settings. In the single-item case,
the median price 7 satisfies the condition Plmaxv; > 7] = 1/2.
In combinatorial settings, we will likewise seek prices such that
each item sells with probability 1/2. We then use median-based
pricing to design posted-price mechanisms from samples.

Theorem 1.3. Given polynomially many samples from any
product distribution over submodular (or even XOS) bidder
valuations and a constant € > 0, there exists a (2 + €)-
competitive truthful posted-price mechanism for online combi-
natorial auctions.

We note that the approximation factor in this theorem is
nearly tight. This is because even when considering the sale
of a single item with known product distributions, online
combinatorial auctions capture single item prophet inequality,
where the tight competitive ratio is 2.

An important subtlety in posted-price mechanisms is the
handling of agent indifferences. Even with a single item, if
the value distributions have atoms, the exact probability of
sale may vary based on an agent’s decision-making when the
price matches her valuation. To navigate the complexities tied
to these tie-breaking scenarios, we initially consider generic
valuation distributions. This term refers to a generalization of

the atomless condition, ensuring that for any specified price
vector p, occurrences of indifference are extremely unlikely.
This assumption is practical and realistic, as all distributions
become generic with the introduction of even minimal noise.
Nonetheless, we later extend our results to include general
distributions. For the sake of clarity, we will temporarily set
aside the issue of tie-breaking.

Combinatorial Median Prices. The median price in single-
item sales ensures that the item is sold exactly half the time,
and unsold for the remainder. We extend this concept to define
a median price vector p for combinatorial settings such that
using p in a posted-price mechanism ensures every item j is
sold with a probability of exactly one-half. The existence of
such a median price vector is not immediately apparent, but
in Section IV-A we apply the Kakutani fixed-point theorem
to affirm that median price vectors always exist. The reason
median prices are interesting is because they possess several
amazing properties that we describe next.

Posted-Pricing with Median Prices. The first nice property
of median prices that we discover is that they yield a
posted-price mechanism that is O(1)-competitive for auctions
with submodular (and even XOS) buyers. This result greatly
generalizes the classical Optimal Stopping Theory result of
Samuel-Cahn [16] for the case of a single-item. The high-level
intuition why median prices help is that they ensure any item
7 will be available (not sold before) for its optimal bidder
with at least 1/2 probability. Thus, if item j’s median price is
low then bidder ¢ can easily purchase it to imply good welfare.
Else, when j’s median price is very high, we can again use
the median-price property that j gets sold with at least 1/2 a
probability, so the revenue (and hence welfare) from j should
be large. The adaptation of this intuitive understanding to a
formal proof requires careful consideration; e.g., since the
bidders are stochastic, the optimal bidder ¢ for any fixed item
7 is a random bidder and we cannot directly apply the above
proof argument.

Learning Median Prices. Another beneficial characteristic
of median prices is their learnability in combinatorial auction
settings with submodular/XOS valuations. We establish that a
polynomial number of samples are sufficient to simultaneously
approximate the sale probability for each item associated with
every price vector p within a small margin of +e. This proof
employs uniform convergence principles and involves bounding
the VC dimension for learning the performance of all price
vectors. Our argument for bounding the VC dimension builds
on the techniques of [19, 20]. Consequently, we demonstrate
that the median prices based on empirical data closely estimate
those for the underlying unknown distributions.

Finally, we shift our focus to the computational aspects
of implementing posted-price mechanisms with combinatorial
median prices. To illustrate the usefulness of our approach,
we present efficient fully polytime algorithms for unit-demand
bidders.
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D. Further Related Work

Prophet Inequality and Combinatorial Extensions. Our
work and questions are closely related to the literature on
prophet inequalities. The classic prophet inequality problem
corresponds to online combinatorial auction with a single item
(i.e., m = 1). Prophet inequalities were greatly studied in the
Optimal Stopping community in the late 70s early 80s, and
the basic prophet inequality problem was solved by Krengel
and Sucheston (who also credit Garling) [13, 14] by giving a
tight 2-approximation. Later, Samuel-Cahn [16] showed that
this optimal guarantee can be obtained with simple price-based
algorithms.

Pioneering work in Computer Science by [21] and [22]
demonstrated the usefulness of the prophet inequality paradigm
for algorithmic mechanism design. The connection motivated
extensions of the prophet inequality paradigm to combinatorial
settings such as matroids [15, 23] or combinatorial auctions [1,
2]. These extensions also established the two main frameworks
for proving prophet inequalities, namely online contention
resolution [23] and balanced pricing [15, 1, 2].

Most relevant to our work is the aforementioned work of [1],
who give a tight 2-approximation for combinatorial auctions
with XOS buyers. This algorithm is based on static item
prices, and is therefore truthful. The same approach yields
a O(logm) approximation for subadditive buyers. Two recent
breakthroughs for combinatorial auctions with subadditive
buyers, first improved this bound to O(loglogm) [3], and
then to O(1) [4].

Very recently, [24] introduced a general approach for turning
any prophet inequality algorithm into a pricing-based truthful
mechanism. For combinatorial auctions, given a non-truthful
algorithm as input, this implies a bundle-pricing algorithm
(instead of item pricing). This reduction requires a polynomial
number of samples in the size of outcome space, which is
exponential in m for combinatorial auctions.

Prophet Inequalities with Few Samples. The study of prophet
inequalities from samples was pioneered in [8]. Their main
result is an approximation-factor preserving reduction from
single-sample prophet inequalities to order-oblivious secretary
problems. See the book chapter [25] for further discussion on
order-oblivious secretary algorithms. Using this, [8] obtain
constant-sample O(1)-competitive prophet inequalities for
several (restricted) matroid settings and for constant-degree
bipartite matching with edge arrivals. They also obtain a
4-competitive single-sample algorithm for the single choice
problem. An e-competitive secretary algorithm for the online
combinatorial allocation problem with XOS buyers was given
in [26]. However, prior to Corollary 1.2, no order-oblivious
secretary algorithm was known for this problem.

Starting with [27] and [9] a significant amount of work
has examined the single-choice/single-item prophet inequality
problem with samples. Key findings of this line of work include
that the factor-2 single-choice prophet inequality can be attained
with only a single sample per buyer (even in the stronger Game
of Googol model) [9], while a constant number of samples

suffice to get arbitrarily close to the worst-case approximation
guarantees for the iid version, the random order, and free order
variant of the problem [9, 28, 29].

In independent work, [30] introduced the competitive analy-
sis with a sample framework. In this framework, an adversary
first writes down m = h +n numbers. Afterwards, a randomly
chosen subset of size h of these numbers is revealed to the
algorithm, who then either observes the remaining n numbers
in adversarial order or in random order. The goal is to be
competitive with the expected maximum value in this second
set of numbers. For the case where h/n > 1, they give a
tight 2-approximation for the adversarial order version of the
problem. For the case where the actual values arrive in random
order they give a (e + 1)/e approximation.

Closely related to our work, [11] study the single-sample
problem for combinatorial settings. They present a general
framework for deriving single sample results from greedy
algorithms and obtain O(1)-competitive prophet inequalities
for matchings with vertex or edge arrivals. Beyond this, they
obtain improved single-sample constant-factor guarantees for a
variety of (restricted) matroids and for combinatorial auctions
with budget additive bidders. Budget-additive valuations are a
strict subclass of submodular valuations, which are themselves
a strict subclass of XOS valuations. In another closely related
independent paper, [10] (also see the arXiv version for improved
bounds) show O(1)-competitive algorithms across a range of
the aforementioned settings.

For the general case of online combinatorial auctions with
XOS buyers, an O(1)-approximation up to an additive error
term of e can be obtained with poly(n,m,1/¢) samples [1,
2]. This multiplicative/additive approximation guarantee turns
into a purely multiplicative guarantee only under stringent
boundedness assumptions. In addition, a non-truthful purely
multiplicative constant-factor approximation for XOS bidders
with O(n) samples per bidder was known (e.g., [4]). The
bounds of [31, 32] for XOS bidders arriving in a random
order can be interpreted as giving a truthful poly(loglogm)-
approximation with a single sample. However, it’s unclear how
to extend them to an O(1)-approximation, even with more
more samples. Finally, [33] study prophet inequalities and
posted-pricing when we are given distributions that are close
to the actual distributions (in some metric).

II. PRELIMINARIES

Online Combinatorial Auctions. We have a set of buyers [n],
a set of items [m], and valuation functions v; : 2™ — R,
that assign each buyer ¢ € [n] a value for each subset of
items. We assume that the valuation functions are normalized,
so that v;(@) = 0 for all ¢ € [n], and monotone increasing,
i.e., for every i € [n], S,T C [m] with S C T it holds that
v;(S) < wv;(T). We write v = (v1,v2,...,v,) for a valuation
profile. We further assume that each valuation function v; is
independently drawn from an according, unknown distribution
D;, and call the tuple of all D; distribution D.

An assignment of the items to the buyers is a collection of
sets A; C [m] such that A; N A; = for all ¢,j € [n] with
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i # j. We write A for the tuple of A; with i € [n], and A for
all possible allocations. The (social) welfare of an assignment
is Zze[n] 1)1(141)

Our goal is to find a welfare-maximizing assignment of items
to buyers, when items are available offline but buyers arrive
online in some (previously known, but adversarially chosen)
order. We assume for convenience that buyer ¢ will arrive at
time ¢, for i € [n].

Competitive Ratio. Our focus in this work is on online
algorithms ALG for this problem that have sample access to D.
For this we will assume that ALG receives k sample valuation
functions for each buyer i € [n], sampled independently from

D;. We will typically refer to these as s}, s?,..., sf, and use

v; for the actual valuation function. (We will also sometimes
write S}, 52,...,SF and V; to emphasize that these are random
variables.)

Let’s denote by ALG,(v;s', ..., s*) the allocation to buyer
i € [n] on input v = (v1,v9,...,v,) and samples s’ =
(v§,...,v%) for £ € [k]. We say that ALG is a-competitive if,
for all distributions D, it holds that

E {Zvi(ALGi(v;sl,...,sk))}

v~D,(sl,....sk)~Dk

The existence of such an online algorithm ALG establishes an
«a-competitive k-sample prophet inequality (or a-competitive
kSPI).

Game of Googol. We will also employ a somewhat stronger
model, the Game of Googol with a (k+ 1)-faceted dice. In this
model an adversary, for each buyer i € [n], writes down k + 1
valuation functions v}, v2,...,v5"1, and then these valuation
functions are assigned to S}, S?,...,SF and V; uniformly at
random. The Sf are the samples, and V; is the actual valuation.
The goal is then to show that for any possible choice of the

adversary,

Rz 2 4

i€[n]

E Zvi(ALGi(V;Sl,...,Sk)} >a E

All other aspects of the problem, including the fixed (worst-
case) arrival order, remain untouched. We refer to such a result
as an a-competitive pointwise k-sample prophet inequality (or
an a-competitive P-kSPI). Observe that the existence of an
a-competitive P-kSPI implies an a-competitive £SPI (simply
because instead of choosing the valuations adversarially, we
could also have drawn them from distributions D).

Classes of Valuations. All our valuation functions v : 2™ —
R, are monotone, i.e., for any item bundles A C B C [m],
we have v(A) < v(B). We mostly focus on XOS valuation
functions [34], but also briefly touch upon the subclasses of

submodular and unit-demand valuations:
« XOS valuations: Valuation function v : 20" — R,
is XOS if there exist a collection of additive functions

{ap : 2" — R, }o—1 & such that for each bundle of
items B C [m] it holds that v(B) = maxs=1,. _j a¢(B) =
maxe=1,...k ) ;ep @(Jf)-
For an XOS valuation function v we refer to the additive
function that defines v on the set of items B C [m] as
the additive supporting function of v on B. Let’s denote
this function by ap. Note that this function satisfies
Y jep a(j) < v(B') for all bundles B’ C [m], and
> jep a(j) =v(B') for B' = B. We will also require
that ap(j) = 0 for j & B.
o Submodular valuations: A valuation function v : 2(™ —
R, is submodular if for any two item bundles A C B C
[m] and any item j € [m]\ B, we have v(AUj)—v(4) >
v(BUj) —v(B).
¢ Unit-demand valuations: A unit-demand valuation func-
tion v : 2™ — R is such that for each bundle of items
B C [m], we have v(B) = max;jep v(j).
We will denote the contribution of item j to the value of
a bundle of items B C [m] given valuation function v as
a;(v, B), and define this to be the value assigned to j by the
additive supporting function of v on B.

Prices, Utilities, and Demand. For a vector of item prices
P = (p1,...,Pm) € R} and a set of items M C [m], we write
D(v,p, M) for the set of bundles B C M that maximizes the
utility u”(B,p) = v(B) — X ;cp pj- We refer to D(v,p, M)
as the demand at valuation v given prices p when the set of
available items is M. We use the shorthand D(v,p) when
M = [m], or when M is clear from the context. (Note that we
can always simulate that some item j € [m] is not available
by setting p; high enough.)

Oracle Access. Since any explicit description of a XOS
valuation function v : 2[™ — R, would have size that is
exponential in m, we consider three types of oracle access:

o Value oracle: A value oracle takes as input a valuation
function v and a bundle of items B C [m], and returns
v(B).

o Demand oracle: A demand oracle takes as input a
valuation function v and a vector of item prices p =
(p1,---,pm) € R, and returns a bundle of items
B € D(v,p).

« XOS oracle (only defined for XOS valuation functions):
A XOS oracle takes as input a valuation function v and
a bundle of items B C [m], and returns the additive
supporting function of v on B.

Posted-Price Mechanisms and Truthfulness. We say that an
online algorithm is a posted-price algorithm if for each buyer
i € [n], it proceeds as follows: Let M; C [m] be the set of
items that are still available when buyer ¢ arrives. The algorithm
defines a vector of prices p’ = (pi, ... 7pin) € R, and lets
buyer ¢ choose a bundle of items B C M, that maximizes their
utility, i.e., a set B € D(v;, p?, M;).

Posted-price algorithms where the vector of prices p’ that
bidder 7 sees does not depend on buyer 7’s valuation v; (but
may depend on the valuations v; of buyers i’ < i, as well
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as on the distributions D = (Dy, ..., D,,) of all buyers) are
known to be dominant strategy incentive compatible (DSIC)
— or truthful [e.g., 1]. Hence, they are also called sequential
posted-price mechanisms.

ITI. ONLINE COMBINATORIAL ALLOCATION WITH A
SINGLE SAMPLE

In this section we design O(1)-competitive algorithms for
online combinatorial auctions with XOS buyers, given a single
sample from the distributions of the bidders. We will in fact
show a slightly stronger result, namely that this can be achieved
in the Game of Googol model. Le., our algorithm is a pointwise
O(1)-SPL

Theorem IIL.1 (Restatement of Theorem 1.1). The problem
of online combinatorial auctions with XOS buyers admits a
pointwise 576-competitive single-sample prophet inequality.

We remark that we did not try to optimize the constant
factor in Theorem I.1, and instead focused on the simplicity
of exposition. Next, we first give an O(1)-competitive result
assuming we have access to two samples, and later we modify
this algorithm to a single sample algorithm.

A. Buyer-Wise Greedy

We start with defining a key ingredient of our prophet
inequality, the buyer-wise greedy algorithm (due to Dobzinski,
Nisan, and Schapira [18]). This algorithm simply assigns every
new buyer their demand set when the prices are given by the
items’ current contributions to the overall solution.

Buyer-Wise Greedy Algorithm. We define G(v), for valuation
profile v, as the assignment (and interchangeably, its value)
determined as follows:
o For all i € [n], define p = (", ..., p{) to be the
prices faced by the i-th buyer.
Set p§1> =0 for all j € [m].
o For each buyer i = 1,...,n: (i.e., arriving in the fixed
adversarial order)
1) Assign i the bundle A; = d;(p?) €
D(vs, p™, [m]), i.e., some demand set at prices p*),

with ties broken in an arbitrary but consistent manner.

(Re-assigning items in Ay N A; from buyers i’ < ¢
to buyer ¢.) '
2) Raise prices by setting pglﬂ) = a;(vs, A;) for all
JEM o
. it i )
(Keeping p =p; forall j & A;)

i

The following lemma of [18] shows that the value attained by
the buyer-wise greedy algorithm G(v) is a 2-approximation to

OPT(v). For completeness, we provide a proof in Appendix A.

Lemma IIL.2 (Dobzinski, Nisan, and Schapira [18]). For any
XOS v, the output of the buyer-wise greedy algorithm G(v) is
a 2-approximation to the offline optimum OPT(v).

Powers-of-Two Prices. We modify the above procedure by
making prices increase in an exponential fashion. Concretely,
let

P={2" | kez}.

Now, in the above greedy procedure G(v), we will raise the
prices of items in the demand set A; to the closest power of
two higher than a;(v;, A;). That is, in Step 2 of the algorithm’s
main loop, rather than setting pgiﬂ) = a;(v;, 4;), we instead
set p§i+1) =min{p € P: p > a;(v;, Al)}A for all j € A;. Call
the outcome of this modified procedure G(v).

Lemma IIL3. For any XOS v, the output of the modified
buyer-wise greedy algorithm G(v) where prices increase as
powers of two is a 3-approximation to the offline optimum

OPT(v).

The proof of Lemma III.3 is a simple variation on the
argument of [18] and appears in Section A.

Decoupling Allocation and Pricing. We conclude by observing
that we can decouple allocation and pricing as follows. Suppose
that we have two valuations f}, 2 for each buyer i € [n] and
that these are assigned to samples s and valuations r by tossing
an independent fair coin for each buyer. Let p() be the prices
in the modified buyer-wise greedy run on s, and let buyer i
buy the set of items A; that maximizes r;(4;) — > cp, pg-l).
Note how this decouples allocation from pricing: while s is
used to set and update prices, r is used to make allocation
decisions.

Analogously to Lemma III.3 we can now show the following
lemma. Note that unlike Lemma III.3, however, the following
lemma does not yet imply the existence of an O(1)-approximate
allocation.

Lemma IIL4. Consider any pair of XOS valuations f}, f?
for each buyer i € [n] that are assigned independently and
uniformly at random to s, r. Then, for the modified buyer-wise

greedy algorithm, it holds E {Zie[n] rL(BL)} > LE[OPT(s)].

The proof (which appears in Section A) exploits the way that
s and r are generated, to argue that in expectation allocations
and prices align. So that the approximation guarantee can be
established in a similar way as that in Lemma IIL.3.

B. Two Samples Algorithm and Proof Overview

We are now ready to prove the following theorem, which
claims existence of an online procedure that attains the
guarantee in Theorem III.1 with two samples per buyer.

Theorem IIL.S. The problem of online combinatorial auctions
with XOS buyers admits a pointwise 192-competitive 2-sample
prophet inequality.

Recall what proving a statement like this entails: We need
to consider a setting where an adversary writes down three
valuation profiles v!,v2 v3. Then, for each buyer i € [n]
independently, the valuation functions vil, 1}?, Uf’ are assigned
uniformly at random to samples s, s’ and actual valuations
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r. The goal is to show that there is an online algorithm ALG
whose expected value when receiving samples s,s’ and actual
valuations r is a O(1)-approximation to the expected offline
optimum OPT on the actual valuations r

Consider the following online procedure:

Two Samples Algorithm. Given two samples s and s’, and
arriving bidders with valuations r:

1) Run the modified buyer-wise greedy algorithm G on the
sample s. For each buyer i € [n], let p(*) denote the
prices set by this algorithm on input s.; (i.e., on input
s, but only considering the first ¢ — 1 buyers).

(We emphasize that these prices increase by powers of
2, this will be crucial for the max vs. sum argument in
our analysis.)

2) For each buyer ¢ € [n] with valuation s € s’, determine
their demand bundle A’ given prices p®. Define base
price b; for any item j € [m] to be the largest
contribution of j to any bundle A} with respect to s;.
That is, b; := max;.jeca; a;(s;, A}).

(Note that these base prices are not powers of 2. In
fact, we need all supporting prices to be distinct for a
secretary-style argument.)

3) For each arriving buyer ¢ € [n] with valuation r; € r:

« Compute their demand set B; given the prices p(*).
o Assign them the still-available part of B, N {j €
[m] | a;(ri, Bi) > bj}.
Let us call the resulting allocation (and interchangeably, its
value) ALG.

Our goal is to now prove that ALG for any fixed valuation
profiles v, v2 v® in expectation over the coin tosses that
lead to s,s’,r is a constant-factor approximation to the offline
optimum. Below, for an item j € [m] assigned to buyer i € [n]
in ALG, we use the shorthand ALG; = a;(r;, B;) to denote
item j’s contribution to the algorithm’s welfare. (Note that we
define ALG; with respect to the additive supporting function
for bundle B;, so technically this is a lower bound on item j’s
contribution to the welfare.)

Proof Overview: Our proof is broken into two lemmas.

The first lemma shows that the expected contribution of
any item j to the algorithm’s welfare is at least a constant
fraction of j’s contribution to the max-bundle in r and s’. It
is similar in spirit to arguments that appeared in [8] and [9]
for the single-choice problem.

Lemma IIL6. For any item j € [m],

1
> .
E[ALG;] > 1 E {max (Zr?gg a;(ri, B;), 1117121}4{’ a;(s

si,40)]-

Our second lemma shows that the contributions of any item
j to any demand bundle in the actual valuations r or the second
sample s’ are dominated by just the largest of them (up to a
constant factor). This lemma and its proof is our key technical

innovation.

Lemma IIL7. For any item j € [m),

E

i JEB; i jeA”

>3i E Z aj(m?Bi)—&— Z

i jEB; i1 jEA]

max( max a;(r;, B;), max aj(s;,A;)>
i

a;(s;, Aj)

Together, the lemmas yield the constant competitive ratio,
by summing up over all items 7 and using the fact that the
demand bundles are determined in exactly the same way as
those in the modified buyer-wise greedy algorithm (which is a
const. approx.).

Proof of Theorem III.5. Summing over all items j € [m] in
Lemma III.6 and Lemma II1.7 implies

> E[ALG)]

JE[m]
1 Y
> 128 Z E Z a; TZ,BZ)+‘Z a;(sj, Aj)
JE[m] i:jEB; i:jEA]
_ 1 . 1Al
= B[S (B 4 sl4D)

i€[n]

Note that in expectation the RHS is at least the sum of the
expected welfare of G(r;s) and G(s';s). Hence, Lemma 1114
implies that the RHS is at least {55 E [OPT(r)], which
proves the theorem. O

C. Proof of Lemma I11.6: Secretary-Style Argument

In this proof we will assume no ties in the additive supporting
valuations, which can be ensured by adding noise. We prove
the lemma for any fixed sample s, and in expectation over the
assignment of the remamlng two valuation functions v}, v? for
each buyer ¢ € [n] to s’ and r.

First fix sample s, which fixes all prices p(”). Note that
this also fixes the demand bundles B;(s<;, v¥) for all i € [n]
with respect to prices p(*) (set by s;) and valuations v¥ for
k € {1,2}. It also defines

i = max (nglggl a;(vF, Bi(s<i, f))) .
Below we will show that with probability at least i (where
the probability is over the assignment of v}, v? for i € [n] to
s’,r), the contribution of j to the algorithm, ALG;, is at least
a;nax

Call the valuation that realizes a'**, given it occurs at step

*, simply v¥**. Now we determine whether v;3?* belongs to
s’ or to r with a fair independent coin flip, therefore it will
be in r with probability 1/2. Consider now the second-highest
j-bid a3". Either, it also belongs to buyer i*, in which case if
a™ € r, it will belong to s” with probability 1. Or, it belongs
to some other buyer ¢ # ¢*, in which case another independent
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fair coin decides its belonging, and it will end up in s’ with
probability 1/2. All in all,

Prla € rand a}" € 5] >

=

Assume indeed both is the case. Then, a2"d

;¢ will determine the
cutoff/final price b; of j, by definition. Also, by definition,
among all r-buyers attempting to obtain j, only ¢* will be
successful. Therefore, we actually obtain value a}*** for j.
This yields E [ALG;] > ia;‘lax, where the expectation is over
the coin tosses that decide for each buyer ¢ € [n] the assignment

of v}, v} to 8, r, respectively.

D. Proof of Lemma 1I1.7: Handling Max vs. Sum

We first compare the largest contribution of item j in r with
the final price of item j as determined by s. Afterwards, we
compare this final price to the sum of the j-bids in r.

Claim IIL8.
1 n
E{I?ea’é “J‘(%Bi)} > ZEM +1>]
i.e., we expect the largest j-bid in r to be not (too much)

smaller than the greedy price of j in s, after all n s-buyers
have been considered.

Proof. To prove the claim, it suffices to show:
Vr>0: 2. P[Q max a;(ri, Bi) > T}
it JEB;
> ]P’[ max pﬁi) > T:|. (@))
i€{l,...,n+1}

This is because
E| i B)| = [ P (13, Bi) = 7]d
max aj(ri, B) / B[ max oy > 7ar

1

1 [ _
— ]P)[ (2) > }d
4 /T=0 i€{11.,1.1».a,}r§+1}pﬂ ZTar

1 .
*E[ (_1)}
4 ie{lril..a,)éﬂ} Pj |

\%

where the inequality uses Inequality (1).

To prove Inequality (1), suppose we have already decided the
samples s’. We still need to determine the random assignment of
the remaining two valuations v}, v2 for each buyer i € [n] to r
and s, respectively. The decision tree for this stochastic process
is a perfect binary tree with n+1 levels. In level ¢ we toss a fair
coin and the two children at level ¢ + 1 correspond to the two
possible assignments r; = v}, s} = v? resp. r; = v2, s} = v}.
Note that there are 2" root-leave paths, and that these are in
one-to-one correspondence with the realizations of the coin
tosses.

We will now color (a subset of the vertices) in a top-down
manner. Consider a node at level . At this node we have
already fixed r.; and s.;. We now decide the membership of
v}, v2. Whenever one of v}, v? has has item j in their demand

[REE A 1) 7

bundle, we color the two children of the current node and all
of its descendants

« yellow, if, after the coin flip,
Zmaxizgi;je[;l, aj (Ti/, le) Z T. ,
o red, if, after the coin flip, max;/—1,. ;41 pg-z ) >T.

Note that a node can remain uncolored, may have only one
of the two colors, or both.

The rationale is: We color a node yellow (resp. red) when it
becomes clear that on any root-leave path that passes through
this node condition 2max;. jep, a;(r;, B;) > T (or condition
Max;e (1, n41} pg-z) > 7) is met.

To establish Inequality (1) it thus suffices to argue that the
number of yellow leaves is at least 1/2 of the number of red
leaves. To this end, first consider a node at level 7 that is not
yet colored. The only way one of its children (and with them
the respective subtrees) can become red is when at least one
of v}, v2 has a j-bid of at least 7/2. If both valuations have a
j-bid of at least 7/2, then both children (and their descendants)
will have both colors. If only one of them has such a bid, then
one subtree will be yellow and the other will be red.

So far this argument leads to the same number of yellow
and red leaves. However, it is also possible that a node that is
already colored gains a second color. Specifically, a node that
is already yellow but not yet red can have one or both of its
subtrees be colored red. If so, in the worst-case, (almost) all
yellow leaves are also red.

Together this shows that the total number of red leaves is
at most twice the number of yellow leaves, as claimed. This
completes the proof. O

Claim IIL.9.
(m+n] o 1
E[pj ] > 4E[EZ[] aj(ri,Bi)}’

i.e., we expect the the final greedy price of item j with prices
set by s to be not (too much) smaller then the sum of the
j-bids in r.

Proof. The proof of this claim is based on a Martingale
approach. Let

X, = E
i/ <i: jEBy

Then, it suffices to show that E[X, ;1] < 0. Since X, =
0, to prove the claim it suffices to show that the sequence
Xo,X1,...,X,41 forms a supermartingale, i.e.,

@)
a;(ry, B’i’ — 4. max s
i ) i'e{1,...,i} Pj

]E[Xi _ Xi_l\Xl,...,X,-_l} <o.

To prove this, consider the random step where we decide
between 7; and s;. Either, none of the two j-bids exceed the
current price, in which case X; = X,;_;. Otherwise, at least
one j-bid exists in the current step, the highest such bid b is
associated with r or s with the same probability. If it ends up
in s, price p](-lﬂ) will at least be twice of py), and be at least

the bid value b afterwards. Hence, p; increases by at least b/2.
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On the other hand, the sum always increases by at most b.
This gives a supermartingale with a factor of 4. O

Combining Claim III.8 and Claim IIL.9, we obtain
1
]E|: ‘max U,j(?“i, Bz):| > 7E|: Z aj(r,;, B7):| .

1:jEB; - 16 h
i€[n]

Since a; (s}, A;) are identically distributed as a;(r;, B;), we
similarly get

1
E| (s, AD)] = B[ 3 ay(sl, 4D
11?2%7 a](sz 7.) =16 Zaj(sw 7,)
i€[n]
Summing these two equations completes the proof of
Lemma III.7.

E. Extending to a Single Sample Algorithm

We round up the proof of Theorem III.1 by showing that
we can turn any pointwise k-sample prophet inequality into a
pointwise single-sample prophet inequality, only using a O(k)
term in the approximation guarantee.

Theorem IIL.10. For any a-competitive pointwise k-SPI with
the objective of maximizing the sum over valuations of chosen
elements in the single online steps, there exists an a(k + 1)-
competitive pointwise 1-SPI.

Proof. As input to the Game of Googol with £k = 1 we are
given two valuations f!, f? for each buyer i € [n]. For each
buyer ¢ € [n], there is an independent fair coin toss to decide
sample s; and actual valuation r;. The algorithm sees all the
s; at the outset, while it can observe the r; only one-by-one
in an online fashion.

We will show how to construct from this an input to the
Game of Googol with k& > 1. Recall that we need to construct,
for each buyer, k samples 57,...,5" and one actual valuation
Ti.

Here’s a first attempt at this: We take s; and k zero
functions, and assign them uniformly at random to 5},..., 5%
and 7;. We feed 3},...,5" and 7; into the algorithm ALG
for the Game of Googol with £ > 1. Then, the expected
optimum in the resulting instance with k samples is a (k + 1)-
approximation to that of the original instance of our 1-sample
game: consider any buyer ¢’s allocated bundle in the optimal
solution on s, and their valuation OPT;(s) for it. With
probability 1/(k + 1) (independently), s; will be allocated
to 7, implying E [OPT(r)] > Z5E[OPT(s)] (and the same
holds for the OPT(§;), I € [k]).

There is one issue with this construction though: This is
completely ignoring the actual valuations 7;. To make the
construction useful in the online setting, whenever the coin
flips were such that 7; = s;, we will substitute s; with r;.
While in general, the input functions to the Game of Googol
cannot depend on the coin flips made later to assign them, we
will now justify that in our case, this is actually equivalent to
our above first attempt.

Since all coin flips, those for the 1-sample game as well as
those for the k-sample game, are independent, we can imagine

them to be drawn in the following order: first, the assignments
of functions to all 5; and 7; are decided. Only then, we imagine
the coins for the assignment of functions in the 1-sample game
to be drawn, i.e., each two input functions f!, f2 are assigned
to s; or r;, respectively. With this, for each ¢, exchanging r;
for s; makes no difference. Both is simply the result (to be
drawn later) of whatever the fair coin flip between f} and f?
results in.

Since ALG is an a-approximation to the Game of Googol
with k£ > 1 samples, and the expected optimum of the instance
that we feed into this algorithm is a (k + 1)-approximation
to the expected optimum of the original instance, we get an
a(k + 1) approximation as claimed. O

We now have all the ingredients to prove Theorem III.1.

Proof of Theorem I1l.1. By Theorem IIL.5 there is a pointwise
O(1)-competitive two-sample prophet inequality, applying
Theorem III.10 we can turn this into a pointwise single-
sample prophet inequality while losing only a factor 2 in
the approximation guarantee. O

We conclude by noting that Theorem III.1 together with
Theorem 6.2 in [11] implies Corollary 1.2: the existence of a
O(1)-competitive algorithm for online combinatorial auctions
with XOS buyers in the order-oblivious secretary model.

IV. POSTED-PRICE MECHANISMS WITH POLYNOMIAL
SAMPLES

In this section we design (2 + €)-competitive truthful combi-
natorial auctions for bidders with independent XOS valuations
via sequential posted-pricing. The prices we construct will have
the additional property that each item sells with half probability,
over randomness in the agent valuations. We will call such
prices Median Prices, defined formally below. We show that,
even for non-XOS valuations, such prices always exist and
are learnable with a polynomial number of samples that is
independent of the valuation distributions, and in particular
does not require bounded valuations. Finally, we show that the
median property directly implies a constant approximation to
welfare for XOS valuations.

A. Generic Distributions and Median Prices

Informally, median prices have the property that when
agents make sequential purchase decisions, each item is sold
with probability 1/2. An important subtlety is how agent
indifferences are handled. We will first bypass these issues of
tie-breaking by focusing on generic valuation distributions, a
generalization of the atomless property, where for any fixed
price vector p indifferences occur with probability zero. Then,
in Section IV-F we relax this generic assumption and extend
our results to general distributions.

Definition IV.1 (Generic Distribution). Distribution D; over
valuations is generic if for any price vector p and any subset
M; C [m], the demand correspondence of agent 4 (given prices
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p and set M; of available items) contains only a single set
almost surely. That is,
Pr[3By, B C M;: By # Ba,{B1, Ba} C Di(vi,p, M;)] = 0.

v;

Distribution D over valuation profiles is generic if its marginal
distribution over each agent’s valuation is generic.

We interpret the genericness condition as saying that a buyer
has zero probability of being indifferent between two bundles,
and hence between whether or not to include a given item j
in their purchase. This generalizes the atomless property to
valuations. We further note that one can make any distribution
over valuations generic by adding an arbitrarily small noise to
the agent valuations; see Section B for a formal construction.
For technical convenience we will first restrict attention to
generic distributions, then in Section IV-F we will show how
to relax this assumption.

Given a fixed profile of generic valuation distributions, the
probability that item j is sold under price vector p is well-
defined. We will write 7;(p) for this probability, omitting the
dependence on the distributions. We are now ready to define
what is meant by median prices.

Definition IV.2 (Median Prices). Given « € [0,1/2] and
generic valuation profile distribution D, prices p are a-median
prices if 7;(p) < 1 — « for each j, and 7;(p) > « for each j
with p; > 0.

Note the interpretation of parameter «: (1/2)-median prices
have the property that each item is sold with probability exactly
1/2, whereas (1/4)-median prices have the property that each
item is sold with probability between 1/4 and 3/4. Lower
values of « are less restrictive, and every price vector p is
trivially O-median for any distribution D. Also note that we
permit an item with price 0 to be sold with probability less
than «; this edge case ensures that median prices exist even if
there is no demand for a given item even if it is free.

B. Truthful Combinatorial Auctions via Median Prices

We now show that median prices can be used to construct
approximately welfare-efficient posted pricing mechanisms.

Theorem IV.3. Let D be a generic product distribution over
XOS valuation profiles, and let p be a-median prices. Then the
expected social welfare of a sequential posted-price mechanism
using prices p is at least « times the expected optimal social
welfare.

Proof. Let OPT denote the optimal social welfare. We will
also write M;(p,v) for the set of items still available for
purchase for agent ¢ given the choice of prices and the agent
valuations. We will write S(p,v) for the set of items that are
allocated to any agent.

We now consider separately the expected revenue and the
expected buyer surplus generated by the mechanism.

The expected revenue generated by the mechanism is

B[ opx1lie sV = Yp < Prijesp.v)]

J
> azpj:
J

where we first use linearity of expectation and then that each
item sells with probability at least a.

For buyer surplus, write u; for the random variable denoting
the utility obtained by agent ¢. Note that since each buyer
chooses a utility-maximizing set, u; must be at least the
utility obtained by agent ¢ from any set of available goods.
In particular, if we write A*(v) for the welfare-maximizing
allocation for valuation profile v, we will consider a strategy
of agent ¢ in which they consider drawing a virtual choice
of valuations v’_; for the other agents, then purchase those
items from A*(v;, v’ ;) that are still available and for which
the prices p are not too high.

To bound the utility from this strategy we will make use
of the supporting prices property of XOS valuations. Fix any
valuation profile v. Since the valuations are XOS, there exist
supporting prices w;;(v) > 0 such that, for each i, we have
v (Af(v)) = ZjeA;(v) w;j(v), and moreover for any 7' C
A7 (v) we have v;(T') > 3 cp wiz(v).

Given an agent ¢, prices p, valuation profile v, and a hallu-
cinated valuation profile v’ of the other agents, we will define
a subset T;(p,v,v’;) of A¥(v;,v";) to be A¥(v;,v_;) N
M;(p,v) N {j: wi;(v) > p;}. That is, T;(p,v,v’ ;) is the
subset of agent ¢’s optimal allocation (under the hallucinated
profile of the other agents) that are available (under the true
valuations) and for which the prices no larger than w;;(v). We
then have

Elu] > E

Y VoV JETi(p,(vi,v",))

>E | X

v, Vv_ . .
Tt JET(pyv,vl )

E[Z

!
vi,v_ L ,
tjEAT (vivl )

(wij(vi,v';) —pj)}
((wij(vi, Vi) =)t

Prije Mip.v)) )]

—E[ Y ((wy(v)=p)*x

JEAF(V)

Pr [j € My(p. (v:.v)] )]

’
V_i

2B Y (wy(v)—p)* xal.

JEAL (V)

Taking a sum over all items, we conclude (writing OPT
for the expected optimal social welfare)

E [Zu} >a|OPT - p;
i j
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Since the expected social welfare is the expected revenue
plus the expected buyer surplus, we conclude that the expected
welfare is at least

a pj+a(OPT =Y p;) = aOPT,
J J
as required. O

C. Existence of Median Prices

Theorem IV.3 shows that median prices guarantee high
welfare when used as posted prices. But it is not immediately
obvious that such prices are even guaranteed to exist. We
now prove the existence of (1/2)-median prices for generic
distributions over (possibly non-XOS) valuations.

Theorem IV.4. For any generic distribution D over valuations
there exist (1/2)-median prices.

Fix a generic distribution D. In order to show the existence
we will use the Kakutani fixed-point theorem on an appropri-
ately defined function. Recall that 7;(p) is the (well-defined)
probability that item j is allocated under prices p and write
7(p) for the profile of allocation probabilities for the items. We
will first show that p — 7(p) is a continuous non-decreasing
function.

Lemma IV.5. The function 7(p;, p—
each j, m;(pj, p—

;) is continuous and, for
;) is weakly decreasing in p;.

Proof. Write A;(v, p) for the allocation to agent ¢ under prices
p when the valuations are v.

To see that it is weakly decreasing, take any p; > p; and any
valuation v. If the allocations A (v, p) and A (v, (p;-7 p—;)) are
identical, then either both allocate j or neither does. Otherwise,
take the smallest ¢ for which A;(v,p) # Ai(v, (9}, P—j))-
Then agent ¢ faces the same set of avallable items under p and
(P, p—;). Since agent i always receives a set from her demand
correspondence, and agent i faces the same set of available
items and the same prices except for a higher price on item
J» we must have j € A;(v,p) and j € A;(v,(p},p—;)). In
particular, this means that if A(v,p) does not allocate item j,
then neither does A (v, (p;, p—;)). Integrating over all choices
of v then implies that the probability of allocating item j is
weakly lower under price p; than under price p;.

To show continuity of 7;, we proceed as follows. For any
agent ¢ and sets of items S and M’, let f; g (p) be the
probability that under price vector p buyer i buys the set .S
conditional on the set of remaining items being M’.? It is now
enough to show that for each ¢, S, and M’ such that M’ is
the set of remaining items for ¢ with positive probability, the
function f; s p is continuous. This is because we can write

mj(p) as

> HfzS Im\(51U...US;_1)(P)-

S1,...,80Cm] i=
jESIU .USnh

mi(p) =

2Note that if D is not a product distribution, the conditioning on M’ impacts
the conditional distribution over v;.

To show continuity of f; s s for a fixed choice of ¢, S, and
M, let

F(p,t) = Pr [vz

Zpi— m%{ 1}1 Zp] <f}

jES S#S' jeS’
We observe that for all p, we have

<0
Pr [vl Zp] — Snéax vl Z p7 = 0} =0
jES 525" jeSs’

because the distribution is generic.® That is, the function F(p, -)
is continuous at 0. Furthermore, if ||p — p[lcc < d, then
F(p,t—md) < F(p',t) < F(p,t+md). So, in order to show
that f; g A+ is continuous at p, let € > 0 and choose § > 0 such
that |F(p, mz) — F(p,0)|< € for all z € [-4,¢]. Now, for
any p’ with |p —p’|lcc < J, we have F(p’,0) < F(p,md) <
F(p,0) + € and F(p’,0) > F(p,—md) > F(p,0) — €. The
statement now follows because f; s a(p) = F'(p,0) for all
p- O

Using monotonicity and continuity of the allocation property,
we can complete the proof of existence of (1/2)-median prices.

Proof of Theorem IV.4. We will construct a mapping ¥, which
takes as input a vector of item prices and returns a vector of
closed intervals of item prices. Informally, we wish to define
U (p) to be vector of intervals Q where each ), is the closed
interval of prices [qj , qj] such that item j sells with probability
1/2 on any price vector (p—;, ¢;) with ¢; € [qJ , q]} We’ll then
argue that ¥ has a fixed point, and this will be our 1/2-median
prices.

There are a few edge cases to consider when defining
the mapping formally. First, write p to be the median of
max; v;(M). Then it must be that 7;(p,p—;) < 1/2 for any
p because for item j to sell at price p it is necessary that
v;(M) > p for an 3. We will focus attention on price vectors
lying in [0, p]™. Fix input p, and define ¢;(q;) := 7;(q;, P—;)-
We have two cases. Either ¢;(0) < 1/2, or ¢;(0) > 1/2. In the
first case, we will define ¥,;(p) = {0}. In the latter case, must
exist some ¢ > 0 at which ¢;(¢) = 1/2, by continuity and the
fact that ¢;(p) < 1/2. Note there may be more than one such
q, so write ); for the set of ¢ that satisfy this property, which
must be a closed interval since ¢; is continuous and weakly
decreasing. Then we will define ¥;(p) = Q.

This concludes the definition of ¥. We now note that U is a
set-valued mapping from a compact space (i.e., [0, p]™) to itself
with closed values. Moreover, ¥ is upper hemi-continuous. To
see why, consider some sequence of prices vectors p* that
converge to p as k — oo, with a corresponding sequence
q* converging to q. We then have that item j sells with

3Here we used the assumption that M’ has non-zero probability of being
the set of remaining items for agent 7. If agent ¢ has non-zero probability
of indifference between S and S’ conditional on the set of remaining items
being M’, then they have non-zero probability of this event unconditionally,
contradicting genericness.
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probability 1/2 on price vector (¢*,p” ;) for all k. Since
(¢, p" ;) converges to (¢;, p—;), we conclude by continuity
of 7 that j sells with probability 1/2 on price vector (g;, p—;)
for each j, and hence q € ¥(p).

Since U is upper hemi-continuous, by the Kakutani fixed-
point theorem it has a fixed point p. That is, there exists p
such that p; € W,;(p) for all j. This fixed point is a choice of
1/2-median prices, by definition. O

D. Learning Median Prices

Next, we can also find median prices with polynomially
many samples. Note that in contrast to similar learnability
results for prices defined on the mean (e.g., in [1]), our error
is only multiplicative. That is, we do not need the distribution
of values to be bounded.

Theorem IV.6. For any generic distribution D, with probability
1-46, O (6% (m2 +mlogn + log(l/é))) samples suffice to
find (% — ¢)-median prices.

Suppose we are given k vectors of n valuation functions
that are drawn from the unknown distribution. Construct the
empirical distribution D, in which one of these k vectors is
drawn uniformly at random. (Note that there are correlations
between the agents in this empirical distribution.)

For draws from the generic distribution D, regardless of the
price vector p, almost surely no tie occurs. This is not true
for the empirical distribution D. In the following, we will fix
any deterministic tie-breaking rule that does not depend on
prices or the set of remaining items. That is, every agent has a
permutation of the power set of the set of items and whenever
there is a tie between S and S’ agent ¢ will prefer one over
the other.

Based on this tie-breaking, we let 7;(p) be analogously the
probability that item j gets sold under prices p if a valuation
profile v is drawn from D. Note that it is safe to assume that
the same tie-breaking rule is applied to define the probability
7;(p) that item j gets sold under price vector p if the valuation
profile v is drawn from D.

The following lemma states a uniform convergence property
that with high probability, the sale probability of each item
given any price vector is approximately equal between the
empirical distribution and the true distribution.

Lemma IV.7 (Uniform Convergence). Consider the empirical
distribution over k sampled valuation profiles, with k >
CE% (m2 + mlogn +log(1/8)) for a constant C. Then, with
probability at least 1 — §, we have ||7(p) — 7(p)||cc < € that
is, there is no price vector on which the probability that an
items sells differs by more than € between the actual and the
empirical distribution.

Before proving the lemma, we note that this implies
Theorem IV.6. We know that there exists a (1/2)-median price
vector p* for D. So with probability 1 — 4, p* is (1/2 — ¢)-
median for D, and hence in particular a (1/2 — €)-median price
profile exists. Let p be any (1/2 — €)-median price profile for
D. Then, again conditioning on the event of probability 1 — §,

p will be (1/2—2¢)-median for D. Taking k samples therefore
suffices to obtain (1/2 — 2¢)-median prices with probability
1-4.

Proof of Lemma 1V.7. Consider the space of all possible val-
uation vectors v. Every price vector p defines a subset S]P
of this space, equal to the collection of valuation vectors for
which item j is sold under price vector p. By this definition
7j(p) = Pry~p [v € S}] and 7;(p) = Pr,_p [v € ST].
Standard bounds on uniform convergence (e.g., in [35]
combine Theorem 4.10 and Equation (5.50)) imply that with
k samples, we have for any v > 0,
v

P [supiy(p) — 7)) 2 €17 4] < exp(-in?/2),

where C' is a constant and v is the VC dimension of the set
system {Sf}. Below, in Lemma IV.8, we show that the VC
dimension of the set system defined by all of these subsets is
at most O(m? + mlogn).

So for any item j
v+In(1/6")
€2

0, this
implies that O( samples are sufficient for
Pr [sup,|7;(p) — m;(p)| = ¢] < ¢".
By furthermore taking a union bound with &' =
v+In(1/6)
€2

and any ¢,0" >

S

m

over all items j, O( ) samples are sufficient for

Pr [sup,||#(p) — 7(P)|loc > €] < 6, meaning that with prob-
ability at least 1 — 0, we have that |7;(p) — 7;(p)| < € for all
items j and all price vectors p. O

So, it remains to bound the VC dimension of the set system
{ST} defined above. We use the technique by Balcan et al. [19]
(see also [20]).

Lemma IV.8. The VC dimension of the set system {S} is at
most O(m? + mlogn).

Proof. Let v& ... v(N) be N valuation profiles that are
shattered. That is, for every set 7' C [N], there is a price
vector p” such that item j gets sold on valuation profile v(*)
if and only if ¢ € T. We will give an upper bound on the
number of price vectors that lead to different outcomes on
vo o vo),

Note that if on a valuation profile v, item j gets sold
under price vector p but doesn’t get sold under price vec-
tor p’, there have to be i, S, and S’ such that agent i
prefers S under prices p but S’ under prices p’ because
otherwise the outcomes would be identical. That is, v;(S) —
YiresPi > vilS) = Xjes Py but vi(S) = 3 pes Pl <
v;(S) — Zj’eS' p;,, where one of the two inequalities is
strict because the tie-breaking is independent of the prices.
So, vi(S) — vi(S") = D jicons Py + 2jresng Py = 0 but
vi(S) = vi(S") = Xyesns Py + 2 jresns Py < 0, where
again one of the two inequalities is strict.

In other words, if we consider the space R’ of all price
vectors, the price vectors p and p’ lie on different sides of
the hyperplane defined by v;(S) — vi(S') — X jcq\ 5 P +
2 jresns Py = 0.
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The valuation profiles v(!), ..., v(Y) define N - n - (2)2
such hyperplanes. Due to a result by Buck [36], this means
there are no more than m (N -n - (2™)2)™ different regions. If
v, v(™) is shattered, each of the 2%V price vectors p”
for T' C [N] has to lie in a different region.

We conclude that 2V < m(N -n - (27)2)™. Taking logs
on both sides yields N < logm + mlog N + mlogn + 2m?,
which implies N = O(m?2 4+ mlogn). O

Generally, the polynomial dependence in Lemma IV.8 is
unavoidable. Indeed, for the special case of unit-demand
valuations, even with n = 1 the VC dimension of the proposed
set system is 2(m). Given m items, and any ¢ with 1 < ¢ < m,
let v%t) be unit-demand function that has value 1 for item 1,
value 2 for item ¢+ 1 and value O for all other items. Consider
price vectors with p; = 0. Now, depending on the price of
item ¢ + 1, v\" will prefer item 1 (if pi1 < 1) or item
t+ 1 (if pry1 > 1). Thus, for every subset of the valuations
v{ ), .. ,vim_l), there is a price vector such that exactly this
subset buys item 1.

E. Computational Challenges

The uniform convergence result from the previous section
also provides us a very powerful tool to compute median
prices, namely by considering the empirical distribution of
polynomially many samples—which means that one has to
argue only about polynomially many scenarios.

To demonstrate this strength, we now describe a Tatonnement
style polynomial-time algorithm for computing median prices
for unit demand valuations. We leave it as a challenging
but interesting open problem to extend this result to XOS
valuations.

Theorem IV.9. For any generic distribution D over unit
demand valuations and any € > 0, there is a fully polynomial-
time algorithm that, given polynomially many samples from
D, generates a (1/2 — €)-median distribution over item prices
with probability 1 — §. The runtime is polynomial in n, m, 1/e,
and log(1/9).

Proof. Fix generic distribution profile D. Our algorithm will be-
gin by drawing k sampled valuation profiles (v', ..., v") from
D; let D denote the empirical distribution. By Lemma IV.7,
the probability of sale between D and D agree within € on all
price vectors, with probability 1 — . We will condition on this
event for the remainder of this proof.

Write 7 (p) for the profile of probabilities that each item sells
under prices p given the empirical distribution D, assuming an
arbitrary tie-breaking rule. Note that 7, (p) is always a multiple
of 1/k, and can equivalently be thought of as counting how
many of the k samples result in item j being purchased.

Given any price vector p, we will define a potential value
f(p) that depends on the probabilities of allocation. This will
be the sum of potential values f;(p) for each item j. Assume
for convenience that k is even. If 7,;(p) < 1/2 then f;(p) = 0.
If 1/2 < 7;(p) < 1/2 + ¢, say 7,;(p) = 1/2 4+ t/k where
t < ek, then f;(p) = t% If #;(p) > 1/2 +¢, say 7;(p) =

1/2 4 t/k where t > €k, then f;(p) = (ek)t. Note then that
0 < f(p) < ek?m for all prices p.

We are now ready to describe our algorithm. We will
initialize all item prices p; to 0.

If 7;(p) < 1/2+ € for all j then we are done. Otherwise,
since k/e > m, there must exist some multiple of 1/k, say
t/k, such that t/k € (1/2,1/2 + ¢€) and 7;(p) # t/k for all
Jj. We will take S to be the set of all j such that 7;(p) > t/k.
Note that S is non-empty, since in particular any item j with
7;(p) > 1/2 + € must be in S.

We will then raise the price of each item in S, uniformly,
until some agent ¢ in some sample k switches from demanding
an item in S to demanding an item in [m] — S (or demanding
no item). Note that since the valuations are unit-demand, these
are the only changes to the demand of an agent that can occur.

The amount we need to raise the price for this to occur
is the minimum, over all ¢, ¢, and ;7 € S and j' & S, of
(v4(5) —p;) — (vE(4') — pjr). (Where here we can allow j' =0
to represent taking the empty set, with value and price both
equal to 0.) We can therefore find this uniform price increment
in polynomial time by enumerate each of these polynomially-
many options.

Under this update, the allocation probability of some item
j with 7;(p) > t/k reduces by 1/k, and the allocation
probability of some item j’ with 7,;(p) < t/k increases by
1/k. Thus, if we write p’ for the new price vector, we conclude
that f(p) — f(p') > (t+1)2+(t —1)2 - 2t2 = 2.

We then repeat, choosing a new set S and iterating,
terminating if 7;(p) > 1/2 + € for all j. Note that if we
do not terminate, then in particular we have 7;(p) > 1/2+ ¢
for some j, so f(p) > f;(p) > ek?. On the other hand, since
f(p) is at most ek?m initially and reduces by at least 2 on
each iteration, we conclude that the procedure must terminate
after at most ek?(m — 1)/2 iterations. This algorithm therefore
finds the desired price vector in polynomially many iterations,
as claimed. O

F. Beyond Generic Distributions

To this point in our discussion of median prices we have
focused on the case of generic distributions. We now show how
to remove this assumption. We will show how to define median
prices to non-generic distributions, then show that our welfare
bound in Theorem IV.3, existence result in Theorem IV.4, and
learning result in Theorem IV.6 all extend to general non-
generic settings.

For non-generic distributions, an agent ¢ may be indifferent
between multiple sets with positive probability. The probability
with which an item sells therefore depends on how agents
choose between sets in their demand correspondence. It will
thus be convenient to define, for each agent, a choice rule that
describes how indifferences are to be broken.

A choice rule A; for agent ¢ is a mapping from a demand
correspondence D C 20 (which recall is a set of sets of items)
to a distribution over elements of D. We think of A;(D) as
the (possibly randomized) set chosen by agent ¢ in the face of
indifference. Given a profile of choice rules A = (A1,..., 4,),

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 18,2024 at 05:56:15 UTC from IEEE Xplore. Restrictions apply.



a valuation profile v, and prices p, we will write A(v,p)
for the (random) allocation that occurs when each agent ¢
sequentially selects from their demand correspondence (given
v, P, and the set of remaining items M;) according to A;. We
will also write A;(v,p) for the (random) allocation to agent i
under allocation profile A(v,p).

Definition IV.10 (Median Prices for General Distributions).

Given « € [0,1/2] and any profile D of distributions of bidder
valuations, we say that prices p are a-median prices if there
exists a choice rule profile A such that, when agents acquire
bundles according to A, the probability that item j is allocated
lies in [, 1 — a] for every j.

Note that prices p are median prices if there exists an
appropriate corresponding choice rule A. We say that such a
choice rule is a witness for prices p.

Example IV.11. Suppose there is a single item {1} and two
agents {1,2}. Agent values are deterministic (i.e., D is a point
mass): agent 1 has value 3 and agent 2 has value 4. Then
the price p; = 4 is a median price, witnessed by any choice
rule such that A; is arbitrary and As({{1},0}) randomizes
uniformly between {1} and 0.

Welfare of Median Prices for General Distributions. We
are now ready to extend Theorem IV.3, our approximation
result for median prices, to non-generic settings. Indeed, under
our definition of median prices for general distributions, the
proof of Theorem IV.3 proceeds unchanged. We require only
that in our sequential posted-price mechanism, indifferences
are broken according to a choice rule A that witnesses the
median prices. The reason is that genericness is never used
explicitly in the proof; we use only that each item is purchased
with probability lying in [a, 1 — «] under the posted-price
mechanism, which is guaranteed if the witnessing choice rule
is followed. We obtain the following result.

Theorem IV.12. Let D be a product distribution over XOS
valuation profiles, and let p be a-median prices witnessed by
choice rule A. Then the expected social welfare of a sequential
posted-price mechanism using prices p and choice rule A to
resolve indifferences is at least « times the expected optimal
social welfare.

Existence of Median Prices for General Distributions. Next,
we will extend Theorem IV.4 and show that (1/2)-median
prices exist even for non-generic distributions over (possibly
non-XOS) valuations. The idea behind the proof is to consider
perturbations of the non-generic distribution, yielding generic
distributions for which median prices exist. We then take a
limit of vanishing perturbations to find median prices for the
original distribution. To find the witnessing choice rule, we
take an appropriate limit of allocations over the sequence of
perturbations. We obtain the following result.

Theorem 1V.13. For any (not necessarily generic) distribution
D over valuation profiles there exist (1/2)-median prices.

Proof. Following the outline above, we will construct a
perturbed distribution and consider its median prices. Given
distribution D over valuation profiles and ¢ > 0, write D
for the profile of generic distributions from the proof of
Proposition B.1. Recall that, to draw a valuations v’ from
distribution D(¢), we first draw v from D, then draw an additive
value w;; uniformly from [0, €] for each agent ¢ and item j,
and then finally set v;(S) = v; + >, g w;; for each S C [m].
In Proposition B.1 we prove that D(¢) is generic for any € > 0,
so by Theorem IV.4 it admits (1/2)-median prices. Write p(©)
for these prices.

First, we argue that the price vectors p(®) are uniformly
bounded. Consider the optimal welfare obtainable from a
valuation profile drawn from D. This is a random variable; let
1 denote its highest median value, which must be finite. If
@) is the corresponding median for distribution D(¢), then
note we must have ;{9 <y + me (as the optimal welfare
can increase by at most me pointwise under the addition of
e-bounded random noise for each item). So u(¢) is at most a
finite constant depending on D, for any 0 < e < 1. Finally,
note that we must have p§-€) < 1(® for all j, as the probability
that any set sells at a price higher than 1(©) is less than 1 /2 by
definition. We therefore conclude that p(©) lies in [0, yz 4 m]™
forall 0 <e< 1.

Since the prices p® lie in a compact set, the sequence p(¢)
as € — 0 must have a convergent subsequence. Write p* for
the limit of this convergent subsequence.

We claim that p* is a profile of (1/2)-median prices
for valuation profile distribution D. To prove this claim we
must construct a witnessing choice rule A*. We begin by
constructing a choice rule A(¢) for each ¢ > 0.* For any € > 0,
any agent ¢, and any collection of sets D, we will define

() 4ot = plo)
A;” (D) € arg max ; (wj + 0 —p; )
J

where each w; is drawn uniformly from [0, €] independently
for each j. Note that if the argmax is not unique in the
definition of AEE)(D) then we can choose an element in the
argmax arbitrarily, as this happens with probability 0 for generic
distribution D).

To give some intuition into the definition of AZ(-E), note that for
any v; and any set S, if we write v} for the perturbed version of

v; in the definition of Dl@, then Zjes (wj —‘,—p;f — pg.e)) =
Wi(S) = Sjespy”) = (vi(S) —

AEG) breaks indifferences according to preference under the
perturbed valuations and the corresponding median prices.
As the space of choice rules is compact (mapping a discrete
set to probability distributions over a discrete set), there must
be a subsequence of A(°) as ¢ — 0 that converges with respect
to total variation distance. Let A* denote the limit, which must

Zjesp;). In other words,

4These will not be witnesses for prices p(¢); they will simply be helpful
for defining A*.
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be a choice rule. We claim that A* is a witnessing choice rule
for p*.

To prove the claim, fix some ¢ and a valuation profile v
drawn from D. For each i we will couple D' and AZ(-E) by
using the same uniform weights w; ~ U[0, €] in the definition
of each. Write v, for the resulting perturbed valuation from
DEE). Let (S1,...,S5,) be the sets allocated to the agents
under valuations v, prices p, and choice rule AZ(-E), with each
S; being chosen from a corresponding demand set D;. Let
(Th,...,T,) be the sets allocated under perturbed valuations
v’ and prices/p(5>. Since D' is generic, each T; uniquely
maximizes u;* (T, p(?)) almost surely, so we condition on that
event. Our goal now is to show that for all ¢ and all sufficiently
small €, S; = T; with high probability.

Suppose there is some smallest ¢ such that S; #T;. Set T;;
uniquely maximizes v (T;, p)) over all items available to
agent i. On the other hand, S; € argmaxsep,{)_;cqs(w; +
i — i’} = argmaxsep, {u(S,p())}. Thus T; #
implies T; & D;. So in particular we must have u (T;, p*) <
ul (S;, p*) but u (T;, p9) > u* (T;,p'®). Since v} and v;
differ by at most me on the value of any set, we conclude that
T; # S; implies

u] (T;, p*) < uj*(Si, p*)

<ul(Tp?) +me+ S o5 -] @
J
Our strategy will be to argue that (2) can occur only with small
probability.

For any v > 0, ¢ € [m], and S, C [m], let
E(v,i,5,T) denote the event that, for prices p* and val-
uation v; drawn from D;, 0 < u!*(S,p*) — u) (T,p*) <
v. We claim that lim,_,oPr[E(v,i,5,T)] = 0 for any
distribution over the values v;(S) and v;(T). To see this,
let F(z) = Pru/(S,p*)—u (T,p*) <xz]. We have
Pr[E(v,:,5,T)] = F(y) — F(0) and, as F is the
CDF of a random variable, it is right-side continuous, so
lim7_>077>0 F(’y) = F(O)

Thus, if we define event E(v) to be U; s 7 E(7,1,5,T), a
union bound implies that lim,_,o E(y) = 0 as well. So for
any 0 > 0 there exists 75 > 0 such that Pr[E(ys)] < d. In
particular, with probability at least 1 — §, the loss in utility
from any non-demanded set taken by any agent is at least 5.

Since lim._,o p(e) = p*, There exists some ¢; > 0 such that
for all € <€ and all j, >, |p} — pl§€)| < 7s/2. We conclude
that for all € < min{e;,vs/(2m)}, if event E(y’) does not
occur then inequality (2) cannot hold, since if u;*(T;, p*) <
u;*(S;, p*) then, from the definition of E(v'),

1
u;* (Si, p*) > uw/ (T3, P*) + s
=u;" (T3, p") +75/2 4+ 75/2
> ul (T, p*) + me+ Y | — 7).
J

We conclude that if event E(vs) does not occur, then for
all sufficiently small e it must be that S; = T; for all 4, and

hence the distribution over allocations (and in particular the
probability that each item j sells) is identical. Some notation:
write 7;(D, p, A) for the probability of sale of item j under
valuation distributions D, prices p, and choice rule A, where
we can omit A from the notation for generic distributions. Then
since Pr[E(v5)] < 4, we conclude that |7;(D,p*, Al9)) —
7;(D,pl9)]| < § for all j and all sufficiently small . As
A converges to A* in total variation distance, we conclude
that |7, (D, p*, A*) — 7;(D©, p)| < 26 for all sufficiently
small €. Since p(®) are median prices for D(¢), taking § — 0
completes the proof. O

Learning Median Prices for General Distributions. Finally,
we will show that median prices not only exist for general
distributions, we can also find them with polynomially many
samples.

Theorem 1IV.14. Let D be any (not necessarily generic)
distribution over valuation profiles. With probability 1 — ¢,
0] (6% (m? +mlogn +log(1/8))) samples suffice to find

(3 — €)-median prices and their witnessing choice rule.

We will consider choice rules that are determined by a tie-
breaking vector q € R™. The choice rule A9 is defined as
follows. Each agent ¢ draws w; 1, . . ., Wim i U|0, 1] and then
chooses whatever .S in their demand correspondence maximizes
> jes(wj—qj) (any remaining ties broken arbitrarily in a fixed
way, say lexicographically). A consequence of the proof of

1

Theorem IV.13 is that for every v > 0 there are (5 —<y)-median

prices p* that are witnessed by A9 for some q* € R™,
namely setting q; = pﬁeﬁ the choice rules A9 and A(<)
are equivalent. Now consider €’ that is small enough so that
the probability of sale for every item j under prices p* and
A are within [2 —~,1 +1].

For any choice of a price vector p and tie-breaking vector
q, we let m;(p, q) be the probability that item j is sold under
p with choice rule A2 being applied. Our goal is to to find p
and q based on samples from D such that 7;(p,q) is close
to 3.

Let us call (v;,w;) the extended valuation of agent . For
a fixed price vector p € R’ and a fixed tie-breaking vector
q € R™, the extended valuation profile (v, w) completely
defines the outcome on p is choice rule A9 is applied.

Consider again the empirical distribution defined by k£ drawn
for extended valuation profiles (v, w). Note that k& draws from
D can easily be extended to draws of extended valuation
profiles by appending w; ; drawn i.i.d. from U|0, 1]. For the
empirical distribution of extended valuation profiles, we let
7;(p,q) be the fraction of extended valuation profiles such
that item j gets sold under prices p with tie-breaking q. We
again have a uniform-convergence guarantee.

Lemma IV.15 (Uniform Convergence). Consider the empirical
distribution over k sampled extended valuation profiles, with
k> C% (m? +mlogn +log(1/0)) for a constant C. Then,
with probability at least 1—6, we have ||#(p,q)—m(p, Q)00 <
€.
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This bound implies Theorem IV.14. We know that there
exists a (1/2 — ¢)-median price vector p* for D witnessed
by A9 for some q*. So with probability 1 — &, 7;(p*,q*) €
[% — 2e, % + 2¢] for all j. Let p and q be any vectors such that

7;(p,q) € [% — 2e, % + 2¢] for all j. Then, again conditioning
on the event of probability 1 — 6, #;(p,q) € [§ — 3¢, 1 + 3¢
for all j.

Proof of Lemma IV.15. Consider the space of all possible
extended valuation vectors (v,w). Every pair of a price
vector p and tie-breaking vector q defines a subset S]‘-”q
of this space, equal to the collection of valuation vectors
for which item j is sold under price vector p. By this
definition 7;(p,q) = Pry~p w~uvmp,1 [(v,w) € S79] and
7ATJ‘ (p7 q) = PrV~D,W~U"”[O,1] [(V7 W) € Sjp} !

Let v be the VC dimension of the set system {S¥9}. We
will show below in Lemma IV.16 that also the VC dimension of
the set system defined by all of these subsets is upper bounded
by O(m? + mlogn).

Therefore, also here, for anS item j and any €,8 > 0,

this implies that O %21/5/) samples are sufficient for

Pr [supy, o[ (P, @) — m;(p,q)| > €] <9
Again, taking a union bound with §' = % over

v+In(1/6)
€2

all items 7, O( samples are sufficient for

Pr [sup,, 4|17 (P, q) — 7(P, q)|lsc > €] < &, meaning that with
probability at least 1 —4, we have that |7;(p, q)—7;(p, q)| < €
for all items j and all price vectors p and all tie-breaking
vectors q. O

The bound on the VC dimension works in a similar way as
before.

Lemma IV.16. The VC dimension of the set system {S}*%} is
at most O(m? + mlogn).

Proof. Let (v(D, w) ... (v(N) w()) be N extended valu-
ation profiles that are shattered. That is, for every set T' C [N],
there is a price vector p” and a tie-breaking vector q such
that item j gets sold on (v, w®) if and only if t € T.

Note that if on an extended valuation profile (v,w),
item j gets sold under (p,q) but doesn’t get sold under
price vector (p’,q’), there have to be i, S, and S’ such
that agent ¢ prefers S under (p,q) but S’ under (p’,q’)
because otherwise the outcomes would be identical. That
is, vi(S) = Xjegpir = i) = Xjeg pir but vi(S) —
Zj/egp}/ < (S — Zj’eS’ ', and one of the two inequali-
ties is strict or 3, g (Wi jr —pjr) = 35 c g (Wi — pjr) but
> jres Wiyt —Py) < 3 jeg (wij — pjy) and one of the two
inequalities is strict.

That is, if we consider the 2m-dimensional space R* x R™
of all price vectors and tie-breaking vectors, the vectors (p, q)
and (p’,q’) either lie on different sides of the hyperplane
defined by v;(S) —vi(S") = X yean Py T2 jresns Py =0
or they lie both on the hyperplane but on different sides of
the one defined by >~/ g Wi,j =3 j1cq Wi — 2 yesns O T
Djresns & = 0.

The extended valuation profiles
(v w®) (v w(N)) define N - n - (2™)? such
hyperplanes of each kind, so 2- N -n-(2™)? hyperplane in total.
This means there are no more than 2m(2 - N - n - (27m)%)2™
different regions in R?™. If (v(), w), ... (v(™M) w(M) is
shattered, each of the 2V vectors (p”,q”) for T C [N] has
to lie in a different region.

We conclude that 2V < 2m(N - n - (27™)2)2™. Taking logs
on both sides yields N < logm + mlog N + mlogn + 2m?,
which implies N = O(m? 4+ mlogn). O

V. OPEN PROBLEMS AND FUTURE DIRECTIONS

In this work we showed that a single sample from each
bidder’s value distribution is sufficient to obtain an O(1)-
approximation for the online combinatorial allocation problem
with XOS bidders, while a polynomial number of samples
per bidder suffices to get a (2 + €)-approximate truthful
mechanism. An exciting frontier opened by our work is
whether the problem with XOS bidders admits a truthful O(1)-
approximate mechanism with a poly-logarithmic number of
samples, or even only a single sample from each bidder’s
value distribution. Another natural next step, would be to
explore whether the online combinatorial allocation problem
with subadditive bidders can be solved with poly-many samples,
or even with a single sample.

APPENDIX A
OMITTED PROOFS

A. Proof of Lemma II1.2

Proof of Lemma II1.2. First observe that the prices in the
buyer-wise greedy algorithm are non-decreasing. Th1s can
be shown by contradiction. If we had a;(v;, 4;) < p; ) for
some ¢ € [n] and j € A;, then buyer ¢ would strictly prefer
bundle A; \ {j} over A;, in contradiction to A; = d;(p?)) €
D(vi, p, [m]). Indeed, if we had a;(v;, A;) < pg-z), then

wANGH - Y Az Y (aen 40 - ")
jeAN G} jeAN{7}
> Z (aj(vi,Ai) *p?)
JEA;
—ua) = 3
JEA;

where we used that a(v;, A;) is an additive supporting function
for the first and last step, and the strict inequality comes from
the assumption.

Using this, we now show the approximation guarantee. We
will first lower bound G(v) > Z]. €m] p7n+1) Afterwards, we
will show that OPT(v) < 3 25" Y+ 37,y i Ai, p?)
and that ;0 ui(4, p®) < G(v). Together this shows that
OPT(v) < 2Gev), as claimed.

Let’s begin with the lower bound on G(v). Since G;(v) C A,
for all i € [n], a;(v;, 4;) = pS"H) forall i € [n] and j €
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G;(v), and p(n+1) 0 for all j € [m] that remain unassigned,
we obtain

G(v) = Z E Z (n-‘rl) Z plg_n-H).

i€[n] i€[n] JEG; (V) j€[m]
3

For the upper bound on OPT(v), we proceed in two steps.
First, observe that for each i € [n], since 4; = d(pV) €
D(vi,p(i), [m]), and prices are monotonically increasing, it

holds that
vi(OPT;(v) = > p{" Y
JEOPT;(v)

S Ul(OPTL(V)) —

Z p(l)

JEOPT,(v)
-S> )
JEA;
Note that the right-hand side v;(4;) — > .4, pg.i) =

u;(A;, p¥). We now use that in each step of the algorithm,
the sum of the additive supporting valuations increases exactly
by the updating buyer’s utility. Using this, we obtain

V)ZZ Z a;(vi, A

i€[n] JEG; (V)

—Z(

i€[n]

- Z pji>

JEA;

-y p(”) 5)

JEA;

By summing Inequality (4) over all ¢ € [n] and using
Equality (5), we obtain

s 3 (we

jE€[m] i€[n]

OPT(v) —

S p<z)>

JEA;

Rearranging this, shows OPT(v) < Z]G[m p(““) +G(v), a
claimed. []

B. Proof of Lemma II1.3

Proof of Lemma 111.3. The proof of the approximation guaran-
tee follows from the following observations. First note that as in
the unmodified algorithm, prices are monotonically increasing.
We can then use that a;(v;, A;) > p§"+1)/2 to conclude,

similar to Inequality (3), that G(v) > %ng ] p§n+1>_
Moreover, the arguments that lead to Inequality (4) also apply

to the modified algorithm, so that
OPT(v Z Y wi4np®) ©

m] i€[n]

The argument is completed by observing that in the modified
algorithm, although the sum of the additive supporting valua-
tions no longer increase by exactly the updating buyer’s utility,
it still grows by at least this amount. With this we can proceed

as in Inequality (5), except that the first equality becomes an
inequality, and conclude that

=Y > ai(wi, A) = > ui(Ai,pP). (D)

i€[n] jeG(v) i€[n]

Putting everything together, we obtain OPT(v) <
2 jeim] p]nH) 2 iep wilAi, p®) < 3G(v) as claimed. [

C. Proof of Lemma I11.4

Proof of Lemma IIl.4. Denote the demand set of agent ¢ with
respect to valuation 7; when prices p(*) are set through s.; by
B;; and let’s write A; for the demand set of agent ¢ with respect
to valuation s; when prices p() are set through s.;. Since r
and s are generated one-by-one by flipping an independent fair
coin, for all ¢ € [n], it holds that E [r;(B;)] = E[s;(4;)] and
E [Z B, pﬁz)} =E [ZjeAi pg_z)}
Summing this over all i € [n] yields

B> ri(B)| 2E | > [ri(B) = > p”

i€ [n] Li€[n] JEB;

=55 (- St

Li€[n] JEA;

>E |OPT(s)— Y p"*V],

Jjelm]

where the inequality holds by the same arguments as those
that lead to Inequality (6).
Moreover, we have that

E Z )| _ g Z Z((zﬂ) p;i))

j€[m] i€[n] JEA;
<E|Y 3| <2 | ¥ onia
i€[n] jEA; i i€[n]

We conclude that

E Zrz +E 2251

i€[n] i€[n]

E[OPT(s)],

which shows that 3E [Zie[n] u(BZ)} > E[OPT(s)] as
claimed. O

APPENDIX B
MAKING DISTRIBUTIONS GENERIC

Proposition B.1. Given any distribution D over valuations
and any € > 0, there exists a generic distribution D' and a
coupling F between D and D’ such that for all (v,v") ~ F,
[v(S) —v'(S)| < € for all S C [m)].

Proof. Given any distribution D over a class of valuations,
consider the following distribution D’. To draw v’ ~ D', first
draw v ~ D, then draw w; ~ U[0, €] for each item j. Then
we define v'(S) = v(S) + 3,5 w; for each S C [m].
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We need to prove that D’ is generic. Choose any price vector
p and any M C [m]. Choose any S,T C M with S # T.
We will show that the probability that S and T both lie in
D', p, M) is 0. To prove the claim, note that in order for
both S and T to be in D(v', p, M), a necessary condition is
that v'(S) = >, cgpj = V'(T) = 3_ e ;- From the definition
of ', this occurs only if

S w— S wy = ) — o)+ (p - S ).

jesS—T jer—s jeS jes

Once we draw v ~ I but before we draw the w; terms,
the right-hand side is a fixed constant and the left-hand side
is a random variable with no atoms (since S # T'). So the
probability of equality is 0. Taking a union bound over all .S
and 7T yields the desired result. O

APPENDIX C
EXAMPLES FOR SIMPLE ALGORITHMS

We give examples demonstrating the difficulties arising for
‘simple’ sample-based algorithms (for both the allocation and
the auction problem), outlining the need for our more elaborate
approach.

The Natural Single-Choice Extension. Probably the most
natural idea is to directly extend the single-choice SSPI that
simply sets the largest observed sample value as a threshold.
As a first idea, one might attempt to accordingly set a price
for each item that equals max,_cgs vs(j). However, imagine
an instance where every buyer has an additive value of 1 for
each item, except for buyer 1, who has a value of 2 for each
nonempty subset of the items, i.e. also for each singleton: then,
the algorithm never sells more than one item, resulting in a
ratio of Q(m).

Item Prices as Contribution to Offline Optimum. Consider
the following sequential posted pricing algorithm based on a
single sample. Given a single sample, compute the offline
optimum allocation for that sample, then price each item
according to its supporting price under that allocation (capturing

its “contribution” to said optimum). This approach doesn’t work.

Suppose n = m and consider a distribution D over profiles of
unit-demand valuations, such that player n always has value 1
for item 1 and value € for every other item. Each other player
and item has value €/2. Then assuming € < 1/n, the optimum
for any sample assigns item 1 to player 1 for a total value
of 1 + O(ne). So this approach sets p; = 1 and p; = ¢/2
for all j # 1. But under these prices, player 1 never chooses
item 1, so the total value generated is O(ne) (since a truthful
mechanism must assign buyers their favourite bundle under
the given prices). Without truthfulness, the algorithm could
instead e.g. assign each player the largest-valued item that is
still price-feasible. While this approach seems promising, one
needs to find a way of showing that such an algorithm will not
sell out high-valued items before the according buyers arrive.

Balanced Prices from a Single Sample. Motivated by balanced
pricing, suppose we instead take a single sample, compute an
offline optimal allocation, then set each item’s price to be

half of its supporting price. This also does not work. Suppose
n = m and consider a distribution D over profiles of unit-
demand valuations, such that player n has value 1 for one of
the items (uniformly at random), and value € for the remaining
items. Each other player has value € for every item. Then this
pricing approach will result in price 1/2 for one of the items
(uniformly at random), say item j, and price €/2 for all other
items. In the real valuation, the optimal allocation has value
1+ O(ne) by assigning to player n whichever item is valued
at 1 (say item 7). But unless j = ¢, player n will receive no
items: all items other than j will be taken by the first n — 1
players, leaving only item j which has price 1/2 > e. So the
total value obtained will be O(ne).

The construction above assumed a deterministic order in
which agents choose their items. Note that if we modify the
example by taking n > m, then the analysis would extend
to (a) an algorithm where the agent order is randomized for
sequential posted pricing, and even (b) scenarios where there
isn’t deterministically a single agent with high value for an
item, but all agent valuations are drawn iid from a distribution
with probability O(1/n) of having the “high” type (value 1
for some item uniformly at random).

In conclusion, it is not possible to correctly estimate the
value our algorithms “should” obtain from an item to compute
prices. Instead, our algorithms’ key property is using the fact
that both samples and actual valuation stem from the same
distribution to bound the probability that items are prematurely
assigned.
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