
The Online Submodular Assignment Problem
Daniel Hathcock∗, Billy Jin†, Kalen Patton‡, Sherry Sarkar∗ and Michael Zlatin§

∗Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
†Booth School of Business, University of Chicago, Chicago, IL, USA

‡School of Mathematics, Georgia Tech, Atlanta, GA, USA
§Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA, USA.

Abstract—Online resource allocation is a rich and var-
ied field. One of the most well-known problems in this
area is online bipartite matching, introduced in 1990 by
Karp, Vazirani, and Vazirani. Since then, many variants
have been studied, including AdWords, the generalized
assignment problem (GAP), and online submodular welfare
maximization.

In this paper, we introduce a generalization of GAP
which we call the submodular assignment problem (SAP).
This generalization captures many online assignment prob-
lems, including all classical online bipartite matching prob-
lems as well as broader online combinatorial optimization
problems such as online arboricity, flow scheduling, and
laminar restricted allocations. We present a fractional
algorithm for online SAP that is (1− 1/e)-competitive.

Additionally, we study several integral special cases of
the problem. In particular, we provide a (1 − 1/e − ε)-
competitive integral algorithm under a small-bids assump-
tion, and a (1 − 1/e)-competitive integral algorithm for
online submodular welfare maximization where the utility
functions are given by rank functions of matroids.

The key new ingredient for our results is the construction
and structural analysis of a “water level” vector for
polymatroids, which allows us to generalize the classic
water-filling paradigm used in online matching problems.
This construction reveals connections to submodular utility
allocation markets and principal partition sequences of
matroids.

Index Terms—Combinatorial Optimization, Online Algo-
rithms, Bipartite Matching, Adwords, Submodular Func-
tions

I. INTRODUCTION

Online assignment problems are fundamental in the
study of online algorithms. Perhaps the most well-known
online assignment problem is online bipartite matching,
introduced by Karp, Vazirani, and Vazirani [1]. In online
bipartite matching, we are given one side of a bipartite
graph (the offline vertices) in advance, while the vertices
on the other side arrive online. When an online vertex

D. Hathcock: Supported by the NSF Graduate Research Fellowship
grant DGE-2140739. K. Patton: Supported in part by NSF award CCF-
2327010.

arrives, all of its incident edges are revealed, and the
algorithm selects at most one of the edges. The goal is
to maximize the number of edges chosen, subject to the
edges being a matching in the graph. For this problem,
Karp, Vazirani, and Vazirani proposed the Ranking al-
gorithm which achieves a tight 1− 1/e competitive ratio.

Since then, online bipartite matching has received
considerable attention, and more general variations of the
problem have been studied. Some of the most prominent
examples include:

• Vertex and Edge Weighted Variants. In vertex
weighted online bipartite matching, each offline
vertex has a weight, and the goal is to maximize
the sum of the weights of the matched offline
vertices. In the more general edge-weighted setting,
individual edges have weight and the goal is to
maximize the sum of the weights of the selected
edges.

• AdWords. This was introduced by Mehta, Saberi,
Vazirani, and Vazirani [2], motivated by the Ad-
Words market in digital advertising. Each offline
vertex i has a budget Bi and each edge e has
a bid be. Selecting an edge consumes an amount
of budget from the offline vertex equal to the bid
of the edge. The goal is to maximize the total
sum of the bids of the selected edges, subject to
the budget constraints. Note that vertex-weighted
bipartite matching is a special case of AdWords
with bij = Bi for all edges ij.

• Generalized Assignment Problem (GAP). Here,
every offline vertex has a budget Bi, and every edge
e has both a value ve and a cost be. The goal is
to maximize the total value of the selected edges,
such that the total cost of the edges incident to any
offline vertex does not exceed its budget. This is one
of the broadest online matching problems that has
been studied in the literature, and generalizes all of

291

2024 IEEE 65th Annual Symposium on Foundations of Computer Science (FOCS)

2575-8454/24/$31.00 ©2024 IEEE
DOI 10.1109/FOCS61266.2024.00026

20
24

 IE
EE

 6
5t

h
An

nu
al

 S
ym

po
siu

m
 o

n
Fo

un
da

tio
ns

 o
f C

om
pu

te
r S

ci
en

ce
 (F

O
CS

) |
 9

79
-8

-3
31

5-
16

74
-1

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I:

10
.1

10
9/

FO
CS

61
26

6.
20

24
.0

00
26

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 18,2024 at 05:58:30 UTC from IEEE Xplore. Restrictions apply.

the settings above1. In particular, AdWords is the
special case of GAP with be = ve for all edges e.
Edge-weighted bipartite matching is the case with
all Bi and be equal to 1.

All of the above problems admit (1− 1/e)-competitive
algorithms under various assumptions. For vertex-
weighted bipartite matching, Aggarwal, Goel, Karande
and Mehta [4] give a generalization of the Ranking
algorithm which is (1− 1/e)-competitive. For AdWords,
[2] show the same competitive ratio can be achieved for
the fractional version of the problem, and more generally
for the integral version under a small-bids assumption.2

Edge-weighted bipartite matching and GAP are com-
monly studied under the “free disposal” assumption,
which is necessary to outmaneuver a trivial 1/n hard-
ness in these settings. Under free disposal, (1 − 1/e)-
competitive algorithms can be obtained for fractional
edge-weighted bipartite matching and GAP, and for GAP
under a small-bids assumption [3].

Nevertheless, many natural online assignment prob-
lems exist which are not captured by the above set-
tings. We illustrate these in the examples below. To
our knowledge, no optimally competitive algorithms for
these problems are implied by prior work.

• Laminar Restricted Matchings. Consider the Ad-
Words problem. Suppose that in addition to the
budget constraints for each offline node, we have
a laminar family S of subsets of offline nodes,
and there is a budget constraint for each S ∈ S .
For instance, this can model a setting where a
company has several departments each with their
own individual ad budget, and the company as a
whole also has an additional budget constraint for
the total amount that can be spent across all its
departments.

• Matroid Coloring. Suppose we have a matroidM
whose elements arrive one by one online. We have
∆ colors and may irrevocably assign a color to
each element as it arrives, subject to the constraint
that each color must be independent in M. The
objective is to color as many elements as possible.
Two natural applications of this problem are:
– Online Arboricity. Suppose the edges of an undi-

rected graph G = (V,E) arrive online. When
each edge arrives, we irrevocably decide whether
or not to select it. The goal is to maintain

1We consider GAP in the setting of [3], which includes the small-
bids and free disposal assumptions.

2The small-bids assumption states that the ratio be
Bi

should be small,
for any offline i and any edge e incident to i.

the largest possible sub-graph with arboricity3

at most ∆. One way to solve this problem is
by modelling it as a matroid coloring problem,
where M is the graphic matroid associated with
G. The arboricity of a graph is a well studied
property which has been used to maintain dy-
namic edge orientations [5] and proper colorings
of a sub-graph [6].

– Flow Scheduling. Suppose we have a network
N , with integer capacities on the edges, that
is known up front with a single sink t. The
times where the network is available for use
is partitioned into ∆ many time slots. Source
vertices with unit demand appear one by one.
When a source sj appears, we must schedule
it in one of the time slots (or not schedule it
at all). The goal is to maximize the number of
assignments, such that for every time slot, it is
feasible to simultaneously send the flow for all
sources scheduled in that slot. This is matroid
coloring where M is a gammoid.

• Coflows. Say we have a computing resource which
may process some tasks in parallel. For example,
perhaps a single server rack is made up of different
servers, each of which is equipped to handle only
certain types of tasks. What a server rack can handle
is modelled via a bipartite graph, with potential
tasks on one side and servers of the server rack
on the other. Tasks which may be processed to-
gether on a single rack form a transversal matroid;
these are called coflows, inspired by applications
to MapReduce [7]. Coflows governed by general
matroid constraints have been studied [8], [9] in
an offline setting. In an online formulation of this
problem, we have ∆ server racks and n tasks
arriving online. The tasks are splittable, but have
different costs and values for being completed at
different servers (i.e., some servers are closer or
cheaper than others). We must irrevocably split
tasks among computing resources, though we my
drop tasks later on; the goal is to handle as many
tasks as possible.

In this paper, we define the Online Submodular As-
signment Problem, which captures all of the problems
described earlier as special cases. Via our results on this
more general problem, we provide 1 − 1/e competitive
algorithms for all the problems above.

3The arboricity of a graph is the minimum number of forests
required to cover its edges.

292

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 18,2024 at 05:58:30 UTC from IEEE Xplore. Restrictions apply.

A. Problem Statement

The Online Submodular Assignment Problem (Online
SAP for brevity), is as follows. We have an (offline)
monotone submodular4 function f over ground set E
with f(∅) = 0 and f({e}) > 0 for all e ∈ E.5 Every
element e ∈ E has a value ve and a cost be. The
ground set, initially unknown, is partitioned into parts
Q1, . . . , Qm that arrive online one-by-one. Upon arrival,
each Qj reveals its contained elements along with their
values and costs. We have offline access to an evaluation
oracle for f that may be called on any subset of elements
revealed so far.

When a part Qj arrives, we may select at most one
element from Qj . At any point, we also can choose to
freely dispose of elements previously selected (known as
the free disposal assumption).6 The goal is to choose a
set S∗ ⊆ E so as to maximize

∑
e∈S∗ ve while main-

taining that S∗ satisfies the online assignment constraints

|S∗ ∩Qj | ≤ 1 for all j ∈ {1, . . . ,m}

and the offline submodular constraints∑
e∈S

be ≤ f(S) for all S ⊆ S∗

We note that, since online SAP is a generalization
of edge weighted online bipartite matching, the free
disposal assumption is necessary to avoid a trivial 1/n-
hardness.

In the fractional variant of this problem, we instead
choose a fractional allocation (xe)e∈Qj on the elements
in Qj when it arrives. In accord with the free disposal
assumption, we may decrease xe at any point. The
objective is to maximize the final value of

∑
e∈E vexe.

As before, we must allocate no more than 1 total
unit to elements in each Qj . In other words, we have
x(Qj) :=

∑
e∈Qj

xe ≤ 1. Moreover, the total cost vec-
tor bx := (bexe)e∈E must obey submodular constraints
defined by f , i.e., so that bx(S) =

∑
e∈S bexe ≤ f(S)

for every S ⊆ E. Put another way, we must maintain
a point x ∈ Pf ∩ Q, where Pf and Q are defined
respectively as:

Pf :=
{
x ∈ RE

≥0 : bx(S) ≤ f(S) for every S ⊆ E
}

4A function f : 2E → R≥0 is submodular if for all A,B ⊆ E,
we have f(A ∪ B) ≤ f(A) + f(B) − f(A ∩ B). It is monotone if
f(A) ≤ f(B) whenever A ⊆ B.

5This assumption is without loss of generality, since any e with
f({e}) = 0 can be removed.

6For our results this assumption is not used in settings where ve =
be for all e, generalizing results for AdWords.

and

Q :=
{
x ∈ RE

≥0 : x(Qj) ≤ 1 for every j = 1, . . . , n
}
.

Note that Online SAP captures all three assignment
problems posed in the introduction. We show how the
Laminar Restricted Matching Problem can be modeled as
Online SAP in Appendix A. In Online Matroid Coloring,
to color a matroidM online with ∆ colors, we consider
the product matroid M∆ :=M× . . . ×M and define
the submodular constraint to be the rank function of the
lifted matroid f := rankM∆ . The assignment constraint
dictates each element may map to at most 1 color, and
the submodular constraint f := rankM∆ enforces that
each color remains an independent set in M. The third
problem is a version of weighted matroid coloring, where
elements have different valuations for different colors.

B. Our Contributions

We introduce the online submodular assignment prob-
lem, which encompasses many online assignment prob-
lems. Some of these are well-known, including vertex-
and edge-weighted bipartite matching, AdWords, and
GAP. Others, such as laminar restricted matching, ma-
troid coloring, and coflow assignment, have not been
solved previously. Not only do we get optimal com-
petitive ratios for online SAP in several settings, but
in doing so we develop a novel framework for han-
dling submodular constraints in online assignment. We
consider the development of this machinery to be the
primary contribution of our work, as we believe it may be
broadly useful for future applications to problems with
similar structure.

Our first main theorem concerns the fractional version
of online SAP.

Theorem I.1. There exists a deterministic (1 − 1/e)-
competitive algorithm for the fractional Online Submod-
ular Assignment problem.

We note that the (1 − 1/e) competitive ratio is tight,
as there is a matching upper bound even for the special
case of fractional online bipartite matching [10].

Next, we show that our fractional algorithm can be
adapted to an integral algorithm under a “small bids”
assumption. This type of assumption is often made in
the AdWords setting [2], [3], where the costs (or “bids”)
are assumed to be small compared to the budgets of the
advertisers. Specifically, the cost be of an offline vertex
is assumed to at most a ε-fraction of the total budget of
its offline vertex for some ε > 0. We note that it is still
an open problem to determine the optimal competitive
ratio for integral AdWords without the assumption of

293

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 18,2024 at 05:58:30 UTC from IEEE Xplore. Restrictions apply.

small bids; only recently have researchers developed an
algorithm that achieves a competitive ratio better than
1/2 [11].

Our next result concerns the integral version of online
SAP under a small bids assumption about the marginal
functions fT (S) := f(S ∪ T) − f(T). This generalizes
the small bids assumption for AdWords.

Assumption I.2 (Small Bids). Assume there exists some
ε > 0 such that for all e ∈ E and T ⊆ E with
fT ({e}) > 0, we have be ≤ εfT ({e}).

Theorem I.3. Under the small bids assumption (As-
sumption I.2), there is a deterministic integral algorithm
for online SAP which is (1−O(ε))·

(
1− 1

e

)
-competitive.

In addition to our result in the small bids setting, we
also obtain 1 − 1/e competitiveness in a special case of
the integral setting without the need for a small bids
assumption. Suppose that the submodular function f is
the rank function of a cross-product matroid M :=
M1× . . .×Mn, and each part Qj contains at most one
element from eachMi. Then, assuming be = ve = 1 for
all e, this case of Online SAP is equivalent to the Online
Submodular Welfare Maximization problem where the
agents have matroid rank valuations.

The Online Submodular Welfare Maximization Prob-
lem (OSWM), is the problem of assigning m indivisible
items, which arrive online, to n agents with utility
functions fi : 2[m] → R≥0. Each utility function fi is
assumed to be a monotone, submodular function on [m].
The goal is to find an assignment σ : [m] → [n] that
maximizes the total welfare of the agents, i.e., the sum
of the utilities

∑n
i=1 fi(σ

−1(i)). In the offline setting,
a 1 − 1/e approximation algorithm for OSWM can be
achieved using an algorithm for Monotone Submodular
Maximization subject to a matroid constraint [12]. Sur-
prisingly however, Kapralov, Post, and Vondrák [13]
show that, in the online setting, achieving an competitive
ratio greater than 1/2 in polynomial time (1/2 is achieved
trivially with the Greedy algorithm) is impossible unless
NP = RP. By providing an integral algorithm for Online
SAP in this special case, we are able to show that this
barrier can be circumvented if the class of monotone sub-
modular utility functions is restricted to rank functions
of a matroid over ground set [m].

Theorem I.4. There exists a randomized polynomial
time (1 − 1/e)-competitive algorithm for Online Sub-
modular Welfare Maximization when the agents’ utility
functions are matroid rank functions.

This setting captures (integral) online matroid color-

ing. Indeed, given a matroidM we seek to color online,
each item represents an edge and each agent represents a
color class. Thus, our result implies a (1− 1

e)-competitive
algorithm for integral online matroid coloring.

C. Technical Overview

We primarily examine online submodular assignment
in the fractional setting, as the same techniques yield
results for the integral setting with small bids. For this
problem, we will employ a continuous pricing-based al-
location, in which we place prices pe on elements e ∈ E
and allocate continuously to the element maximizing
utility ve − pe. This approach is similar to algorithms
by [2], [3], and [14], which have yielded (1 − 1/e)-
competitive algorithms for a wide range of online match-
ing problems, including edge weighted online bipartite
matching, AdWords, and GAP. Each of these can be
interpreted as general forms of the classic water filling
algorithm for online bipartite matching.

In standard online matching, the water-filling algo-
rithm keeps track of a water level for each offline vertex,
which is the fractional amount it has been filled so far.
Upon the arrival of each online vertex, the algorithm
continuously sends water to its neighbors with the cur-
rent lowest water level, until either all neighbors have
been filled or the arriving vertex has been depleted.

a) Submodular Water Levels: The key challenge
in obtaining a water-filling type algorithm for online
SAP is adapting the concept of “water levels” from prior
work on matchings, to a general submodular constrained
linear program. Intuitively, given a fractional allocation
{xe}e∈E , we would like to assign a water level we to
element e which represents how “filled” it is under the
allocation x. This water level is then used to determine
the price of each element, with a higher water level
leading to a higher price.

In online bipartite matching, the water level of an edge
(i, j) (where i is offline and j is online), is the fraction
of vertex i’s capacity occupied by x, namely

∑
j′∼i xij′ .

In the submodular assignment setting, edges become
elements e ∈ E, but there is no longer a notion of unit-
capacity vertices. Suppose momentarily that be = 1 for
all e, for ease of presentation. Then each e is involved in
many submodular constraints of the form x(S) ≤ f(S)
for each S ∋ e, and it is not immediately clear how these
constraints should be aggregated into a single water level
we.

Nevertheless, we show that there exist such “submod-
ular water levels” that can be computed efficiently, and
that they satisfy several key properties that make a water-

294

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 18,2024 at 05:58:30 UTC from IEEE Xplore. Restrictions apply.

filling type algorithm possible. We present three different
ways of describing the submodular water levels.

1. A combinatorial description. Water levels can
be viewed as a measure of density. We describe
an iterative process in Algorithm 1 which finds
a densest set under x (i.e. the set with the least
multiplicative slack in its constraint), contracts this
set, and repeats until all elements are contracted.
The density at which an element gets contracted is
the water level of that element. This algorithm also
demonstrates that the level sets of w correspond to a
weighted version of the principal partition sequence
studied in [15], [16] for poly-matroids.

2. A max-min relation. The water level of an indi-
vidual element e can also be described directly via
a simple max-min formula maxS∋e minT

x(S\T)
fT (S) ,

where fT denotes the contraction of f by T .
This definition exhibits a surprising minimax
theorem showing that the water level is also
minT ̸∋e maxS

x(S\T)
fT (S) , and moreover, a “saddle

point” pair of optimizing sets S∗, T ∗ for both of
these expressions can be derived from the combi-
natorial description of water levels. Importantly, this
definition immediately demonstrates that the water
level of each element is a continuous piecewise
linear function of x.

3. A convex program. The concept of water levels
also arise from market equilibria. Jain and Vazirani
[17] introduced a notion of submodular utility allo-
cation (SUA) markets as a generalization of linear
Fisher markets [18, Chapter 5]. In a submodular
utility allocation market, we have some items A,
each with weight ma. We would like to fractionally
select a set of items, with the goal of maximizing
the Nash social welfare of the items; however, the
set of items picked must be feasible in a poly-
matroid defined by a submodular function f . It turns
out the water level vector is precisely the optimal
solution of an SUA market.

Once we have our notion of water levels defined, we
can define an algorithm for online SAP which is inspired
by prior work in matching settings. At a high level,
when a part Qj arrives, we assign a utility to each of
its elements depending on its value and current water
level. We make a small increase to the allocation of the
highest utility element, and continue this process until
we can no longer increase any element while preserving
feasibility.

The second key technical challenge in performing
a water-filling type analysis is understanding how the

water levels change throughout the algorithm. We use
a primal-dual framework, as in [19], to analyze the
approximation ratio of our algorithm. In this framework,
the algorithm maintains a primal solution at every step,
and for the sake of analysis, we continuously maintain a
dual solution in parallel. This dual solution will depend
on the current water levels of the primal allocation.
Critically, we must prove that throughout the algorithm,
the dual value is at most the primal value and the
dual solution is approximately feasible. To perform such
analysis, we need a strong structural understanding of
the water level vector w and how it changes with x. We
show that the vector w is remarkably well-behaved, and
each of our three viewpoints on water levels sheds light
on the properties that we will use in our analysis:

• Monotonicity and Continuity. For each e ∈ E, its
water level we is monotone and continuous in the
allocation vector x (Proposition III.4).

• Feasibility Indication. The water level vector w in-
dicates the feasibility of allocation vector x (Propo-
sition III.5). In particular, x is feasible if and only
if the water levels are at most 1.

• Locality. Changing the allocation xe of some el-
ement by a small amount can only affect the the
water level of elements whose water level is equal
to e’s water level.

• Duality. The water levels satisfy a duality property
with the Lovász extension of f (Proposition III.6).
That is Lf (w) =

∑
e∈E xe. This property can be

derived from the KKT conditions of the convex
program formulation of water levels.

These properties allow us to keep track of how the dual
objective of SAP changes with incremental changes of
the primal and dual assignments. Specifically, careful
setting of the dual ensures that approximate feasibility is
maintained. Moreover, we prove a derivative formula for
the Lovász extension of f in terms of the current water
levels (Lemma III.8) which allows us to upper bound
the rate of change of the dual objective by that of the
primal.

b) OSWM with Matroid Rank Valuations: Our al-
gorithm for Online Submodular Welfare Maximization
for matroidal rank valuations is a natural generalization
of the classical RANKING algorithm for online bipartite
matching. We interpret the arriving nodes as items which
we assign to the offline nodes (the agents). At the
very beginning of the algorithm, we randomly permute
the agents. When an item arrives, we assign it to the
“available” agent of highest priority.

In the bipartite matching case, and even for online b-

295

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 18,2024 at 05:58:30 UTC from IEEE Xplore. Restrictions apply.

matching (studied in [20]), whether an agent is available
simply depends on how many items have been allocated
to this agent so far. In our setting, we say that an item
is available to an agent if the agent’s marginal utility for
the item is non-zero, given the items already allocated
to this agent. Hence, the availability of an agent depends
on the item being considered and changes throughout the
course of the algorithm.

Despite this, we show that our Matroidal RANKING
algorithm always yields a tight (1 − 1

e)-competitive
allocation in expectation. Similar to the analysis in [19],
we construct an approximately feasible dual solution
which lower bounds the welfare of our allocation. The
main technical hurdle is to define a suitable threshold r∗ij
for each agent-item pair (i, j) so that the dual assignment
(which is constructed online) is approximately feasible,
and whose objective value matches the welfare of our
online assignment.

Finally, we show that our algorithm can be extended
in a natural way to the case where each agent has a non-
negative weight, and we seek to maximize the weighted
sum of their utilities.

D. Related Work

a) Online Matching: There is an extensive line
of work on online matching, starting with the work of
Karp, Vazirani and Vazirani [1], who gave a (1 − 1/e)-
competitive algorithm for online bipartite matching in
the adversarial order setting. The same competitive ratio
was extended to the vertex-weighted setting in [4], and
further to the vertex-weighted b-matching setting in [20].
Devanur, Jain, and Kleinberg [19] showed how the
results in [1] and [4] could be derived using the online
primal-dual framework, which unified and simplified the
existing analyses. While the RANKING algorithm re-
quires O(n log n) bits of randomness, Buchbinder, Naor,
and Wajc [21] provide a randomized rounding scheme
requiring only (1± o(1)) log log n bits of randomness.

For edge-weighted online bipartite matching, [22]
were the first to break the 1

2 -competitive barrier. This
has been subsequently refined in [23]–[25] to a 0.5368-
competitive ratio. Online edge-weighted bipartite match-
ing has also been studied in the vertex-arrival Bayesian
setting, also known as the Ride Hail problem; [26] give
a better-than-1/2 approximation to the optimal online
policy. See also [27], [28], and [29] for other Bayesian
formulations which compare to the optimal offline so-
lution. Further generalizations of online bipartite match-
ings have been studied, where the online constraint is
replaced with general allocation constraints [30].

b) Online Matroid Matching: Closely related to our
setting is the work of Wang and Wong [31] who studied
online bipartite matching under matroidal constraints on
the matched offline nodes. This captures the special case
of online SAP where be = ve = 1 for all e ∈ E. They
give a (1 − 1

e)-competitive algorithm for the fractional
version of this problem, and for the integral case assum-
ing random-order arrivals. Zhang and Conitzer [32] study
the same model but with matroidal constraints on both
the offline and online nodes, giving the same optimal
(1− 1

e)-competitive guarantees.
While these papers also generalize the classic water-

filling approach to accommodate submodular constraints,
our work crucially differs in that (1) we allow non-
uniform values ve and costs be, and (2) we greatly
simplify the primal-dual proofs through the development
of our general framework of water levels. In fact, the
flexibility of our framework also allows us to extend our
results to the two-sided submodular constraints consid-
ered in [32] with only a little extra work. The details
of this extension can be found in the full version of the
paper.

c) Online Matroid Intersection: Offline matroid
intersection captures a broad class of combinatorial
problems and has been well studied in both polyhedral
theory and algorithms (for a survey on this topic, see
[33, Chapter 41]). In [34], Guruganesh and Singla study
an online matroid intersection problem, with edges ar-
riving in random order, beating the 1/2-competitive ratio
achieved by Greedy. This was very recently improved
by Huang and Sellier [35] to 2/3 + ε. In [36], the part-
arrival online matroid intersection model is considered.
They instead study the problem of maintaining a max
cardinality independent set, while minimizing recourse.

d) Offline Submodular Welfare Maximization: The
offline variant of Submodular Welfare Maximization
problem can be cast as a problem of maximizing a
monotone submodular function subject to a (partition)
matroid constraint. While a simple greedy algorithm
achieves an approximation ratio of 1

2 , [12] gave an
improved (1− 1/e)-approximation using the Continuous
Greedy algorithm followed by Pipage Rounding. There
can be no (1−1/e+ε)-approximation unless P=NP since
this problem captures max-k-cover as a special case [37].

When the monotone submodular function is the rank
function of a matroid, the welfare maximizing offline
allocation can be computed optimally. These allocations
have been well-studied in the context of designing so-
cially optimal allocations which satisfy certain desirable
fairness constraints [38], [39]. For example, in [40] it
is shown that an optimal allocation which is envy-free

296

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 18,2024 at 05:58:30 UTC from IEEE Xplore. Restrictions apply.

up to one item (EFX) exists and can be computed effi-
ciently. In [41] they study the case of valuations which
have binary marginals, but which are not necessarily
submodular [41]. They also give truthfulness guarantees
for private valuations, which has been further studied
in [42].

e) Principal Partition: The principal partition of a
matroid is related to our definition of water levels. It is
precisely the nested sets found in Algorithm 1, when x
is the all ones vector. There have been several works
studying principal partitions, including generalizations
to arbitrary vectors x ∈ RE and extensions from rank
functions to submodular functions [15], [16]. The objects
studied in [15] and [16] are closely related to our water
levels; in our work, we (1) shift perspective from the
family of nested sets in [16] to the properties of a single
vector w, and (2) study properties of how w changes
dynamically with the weights given by x, such as mono-
tonicity (Proposition III.4), duality (Proposition III.6),
and locality (Proposition III.7). These properties are
clearly visible with our new perspective. We make the
novel connection between principal partitions and water-
filling in online bipartite matching.

The principal partition has been used for constant
competitive algorithms in the matroid secretary problem
under random assignment [43]. Huang and Sellier [35]
also use the principal partition to get an improved
approximation ratio of 2/3 − ε for online matroid in-
tersection with random order arrivals in a stream. Chan-
drasekaran and Wang [44] use the principal partition se-
quence for improved approximations in the submodular
k-partition problem.

E. Organization of the Paper

First, in Section II, we introduce some preliminaries.
Next, in Section III, we develop a theory of water levels
and provide three equivalent formulations. In Section IV,
we look at a special and illuminating case of online SAP:
online matroid intersection with part arrivals. We give a
water-filling algorithm for fractional online poly-matroid
intersection and prove that it achieves a competitive ratio
of 1− 1/e. Section V gives the general case analysis for
fractional online SAP, as well as online SAP with a small
bids assumption. In Section VI, we give a (1 − 1/e)-
competitive algorithm for (integral) Online Submodular
Welfare Maximization with matroidal utilities.

II. PRELIMINARIES

We analyze the algorithm for fractional online SAP via
the primal-dual framework. The primal linear program

(LP) describing Online Submodular Assignment, as well
as its dual are:

max
∑
e∈E

vexe

s.t.
∑

e∈Qj
xe ≤ 1, ∀j ∈ [n]∑

e∈S bexe ≤ f(S), ∀S ⊆ E

xe ≥ 0, ∀e ∈ E

min
∑
S⊆E

f(S) · αS +
∑
j∈[n]

βj

s.t. be
∑

S∋e αS + βj(e) ≥ ve, ∀e ∈ E

αS , βj ≥ 0, ∀S ⊆ E, ∀j ∈ [n]

In the dual, j(e) denotes the index j for which e ∈ Qj .
The solution to the primal LP is the (fractional) optimal
offline solution to a given instance, and we use OPT to
denote its value. By strong duality, the optimal values of
the primal and dual LPs are the same.

It will be useful for our analysis to re-write the dual
objective in a different form. Let us define γ ∈ RE

≥0 by
γe :=

∑
S∋e αS . By a standard uncrossing argument, we

may assume that the optimal dual α is supported on a
nested family of sets. Thus, we can recover the part of
the objective

∑
S⊆E f(S) · αS from γ as∑

S⊆E

f(S) · αS =

∫ ∞

0

f({e ∈ E : γe ≥ t}) dt. (1)

The right-hand-side integral is exactly the Lovász ex-
tension Lf of a submodular function f . This is a
natural continuous extension of the submodular function
f which has been studied in many contexts. Although
equivalent formulations exist, it will be convenient for
us to use the following definition.

Definition II.1. Let f be a monotone submodular
function on E with f(∅) = 0. The Lovász extension
Lf : RE

≥0 → R of f is

Lf (w) :=

∫ ∞

0

f({e ∈ E : we ≥ t}) dt.

With this definition, we can write our dual in terms
of γ as follows.

min Lf (γ) +

n∑
j=1

βj

s.t beγe + βj(e) ≥ ve, for all e ∈ E

γ,β ≥ 0.

297

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 18,2024 at 05:58:30 UTC from IEEE Xplore. Restrictions apply.

III. WATER LEVEL MACHINERY

Recall that, we want to assign each element e ∈ E a
water level we = w

(x)
e which depends on the current al-

location x, where x satisfies the submodular constraints
given by f :

x(S) ≤ f(S) ∀S ⊆ E.

Notice that, for the sake of defining water levels, we
are assuming unweighted costs (i.e. be = 1). This
removes clutter from our definitions, as we can simply
add weights later by taking w(bx).

To understand how we define this water level vector
w = w(x) ∈ RE

≥0 of allocation x, we first enumerate
several properties that the water levels should satisfy in
order for the water-filling algorithm to work as it does
for online bipartite matching:

1) (Monotonicity) w(x) is coordinate-wise non-
decreasing in x.

2) (Indication of Feasibility) w(x) ≤ 1 if and only if
x(S) ≤ f(S) for all S ⊆ E.

3) (Locality) If w(x)
e1 ̸= w

(x)
e2 , then

∂w(x)
e1

∂xe2
= 0.

4) (Duality) Lf (w
(x)) =

∑
e∈E xe.

Monotonicity and feasibility indication are natural
properties which intuitively require that we is an indica-
tor of how close xe is to being part of a tight constraint.
The need for locality and duality is less obvious, but
they are important for the details of the primal-dual
analysis of water-filling. Specifically, this is because the
dual value γe of an element e ∈ E will be defined
as a function of the water level we. The locality and
duality properties are needed to relate increases in the
dual objective term Lf (γ) to increases to the primal
objective

∑
e∈E xe as the algorithm progresses.

A. Definition of Water Levels and Equivalent Formula-
tions

In order to define a water level vector that satisfies our
desired properties, it will be convenient (and enlighten-
ing) to provide both algorithmic and static definitions,
which we will prove are equivalent. By juggling three
different definitions, we are able to provide succinct
proofs of the four key properties of water levels.

First, let’s consider a naive construction w̃
(x)
e . For

x ∈ RE
≥0, we define w̃

(x)
e = maxS∋e

x(S)
f(S) , i.e. the

maximum density of a poly-matroid constraint involving
xe. Such a definition clearly satisfies monotonicity and
indication of feasibility. However, this definition does
not capture the water levels from the classic bipartite
matching setting (i.e. in a partition matroid), and we can

see this already in the simple setting of E = {1, 2}
and f(S) = |S|. In such a setting, the poly-matroid
effectively only has the constraints 0 ≤ x1, x2 ≤ 1, so
we intuitively should let we = xe. However, notice that if
x1 < x2, then we have w̃1 = maxS∋1

x(S)
f(S) =

x1+x2

2 . We
see that this construction deviates from what we expect,
and indeed we also find that our desired locality and
duality properties are not satisfied. This problem arises
because the heavier element x2 influences the density of
the densest constraint on x1, despite the two variables
being functionally independent.

The critical insight is that we can prevent this unde-
sirable behavior by contracting sets with larger density
before assigning the values of we to sets with lower
density. This inspires the following formulation of water
levels in Definition III.1.

Definition III.1. The water level vector w(x,f) ∈ RE
≥0

(or w(x) when f is known) with respect to an allo-
cation x in RE

≥0 and a monotone submodular function
f : 2E → R≥0, is defined as

w(x)
e = w(x,f)

e := max
S∋e

min
T⊆E

fT ({e})̸=0

x(S \ T)
fT (S)

where fT (S) denotes the contracted function f(S∪T)−
f(T).

Not only does this modification fix the problems with
our naive definition, but it reveals a great degree of
hidden structure. First, it happens to be the case that
the min and max in Definition III.1 are reversible, i.e.
w

(x)
e = minT maxS

x(S\T)
fT (S) . We will prove this by

showing the existence of a saddle point S∗, T ∗:

min
T⊆E

fT ({e})̸=0

x(S∗ \ T)
fT (S∗)

=
x(S∗ \ T ∗)

fT∗(S∗)
= max

S∋e

x(S \ T ∗)

fT∗(S)
.

(2)
Furthermore, these optimal sets form a nested family.

We can find ∅ = S0 ⊆ S1 ⊆ · · · ⊆ Sk = E such that for
each e ∈ Sℓ+1 \Sℓ, the pair (Sℓ+1, Sℓ) is a saddle point
for w

(x)
e in the max-min expression of Definition III.1.

We find the nested family via an intuitive and efficiently
computable combinatorial description of water levels,
Algorithm 1.

Theorem III.2 (Saddle Point for Water Levels). For any
monotone submodular function f : 2E → R≥0 with

7The maximal such set is unique due to the submodularity of f .

298

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 18,2024 at 05:58:30 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: A Combinatorial
Presentation of Water Levels

input : A point x ∈ RE
≥0.

1 Initialize ℓ← 0, S0 ← ∅.
2 while Sℓ ̸= E do
3 Let Sℓ+1 be the unique maximal set7 in

arg max
S⊆E

S\Sℓ ̸=∅

x(S \ Sℓ)

fSℓ
(S)

,

i.e. the largest densest set over the
contracted polymatroid.

4 Let tℓ+1 = x(Sℓ+1\Sℓ)
fSℓ

(Sℓ+1)
be the density of Sℓ+1.

5 Set ŵe ← tℓ+1 for all e ∈ Sℓ+1 \ Sℓ.
6 ℓ← ℓ+ 1.

7 return ŵ.

f(∅) = 0 and x ∈ RE
≥0, the vector w = w(x) in

Definition III.1 has the property

w(x)
e := max

S∋e
min
T⊆E

fT ({e})̸=0

x(S \ T)
fT (S)

= min
T⊆E

fT ({e})̸=0

max
S∋e

x(S \ T)
fT (S)

.

Moreover, the output ŵ of Algorithm 1 is equal to w.

For readability, we delay the proof of the min-max
property of Definition III.1 and its equivalence to Algo-
rithm 1 until Section III-C.

We also find an unexpected connection to market
equilibria. Jain and Vazirani [17] introduced a notion
of submodular utility allocation markets which can be
described with the following convex program.

max
u

∑
e∈E me log ue

s.t.
∑

e∈S ue ≤ f(S), ∀S ⊆ E (αS)

ue ≥ 0.
(SUA)

It turns out the water levels of an allocation x can be
computed from the optimal utilities of an SUA market
where each element e has weight me := xe. Algorithm 1
gives us optimal duals to (SUA), which we also prove
in Section III-C.

Theorem III.3. Consider the vector ŵ, the nested sets
S1 ⊂ · · · ⊂ SL, and the levels t1, . . . , tL generated by

Algorithm 1. Then t1 > · · · > tL ≥ 0. Moreover, if we
define

α̂SL
:= tL

α̂Sℓ
:= tℓ − tℓ+1 ℓ = 1, . . . , L− 1

and α̂S = 0 for all other S ⊆ E, then, ûe = xe

ŵe
is an

optimal primal solution to (SUA) and α̂S is an optimal
dual solution.

B. Key Properties of Water Levels

Armed with the characterizations of water levels, we
show they satisfy the desired properties.

Proposition III.4 (Monotone and Continuous). The
vector w(x) is coordinate-wise non-decreasing in x.
Furthermore, w(x) is continuous with respect to x.

Proof. Both properties follow immediately from Defini-
tion III.1, since the w

(x)
e is a maximum of minimums

over monotone increasing linear functions on x.

Proposition III.5 (Indication of Feasibility). w(x) ≤ 1
if and only if x(S) ≤ f(S) for all S ⊆ E.

Proof. This follows from Algorithm 1. If w(x) ≤ 1,
then in particular t1 = maxS⊆E

x(S)
f(S) ≤ 1, which means

x(S) ≤ f(S) for all S ⊆ E. Conversely, if x(S) ≤
f(S) for all S ⊆ E then clearly t1 ≤ 1. Moreover, the
densities tℓ are decreasing by Theorem III.3, implying
tℓ ≤ 1 for all ℓ. Thus w(x) ≤ 1.

Proposition III.6 (Duality). For any x ∈ RE
≥0, we have

Lf (w
(x)) =

∑
e∈E xe.

Proof. For this, we refer to the convex program for-
mulation of water levels from Theorem III.3. Taking
the optimal primal/dual pair ue, αS from Theorem III.3,
the complementary slackness conditions of (SUA) give
αS

∑
e∈S ue = αSf(S) for each S ⊆ E. Summing over

those S with αS > 0, we get
L∑

ℓ=1

αSℓ
f(Sℓ)

(a)
=

L∑
ℓ=1

αSℓ

∑
e∈Sℓ

ue
(b)
=

L∑
ℓ=1

αSℓ

∑
e∈Sℓ

xe

we

=
∑
e∈E

(∑
ℓ:Sℓ∋e

αSℓ

)
· xe

we

(c)
=
∑
e∈E

xe.

Here, (a) is using αS

∑
e∈S ue = αSf(S) for each S ⊆

E, (b) is because ue =
xe

we
by Theorem III.3, and (c) is

because
∑

ℓ:Sℓ∋e αSℓ
= we, using the fact that the sets

Sℓ are nested and the definition of αSℓ
in Theorem III.3.

Finally, the LHS is equal to Lf (w
(x)) by (1) and using∑

ℓ:Sℓ∋e αSℓ
= we.

299

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 18,2024 at 05:58:30 UTC from IEEE Xplore. Restrictions apply.

Proposition III.7 (Locality). For x ∈ RE
≥0 and any

e1, e2 ∈ E with w
(x)
e1 ̸= w

(x)
e2 , we have

∂w(x)
e1

∂xe2
= 0.

Proof. This follows from the continuity of w(x) with
respect to x (implied by Definition III.1) and the algo-
rithmic definition given by Algorithm 1. Let w(x)

e2 = tℓ,
for some step ℓ, where t1, . . . , tL are the values from Al-
gorithm 1 on input x, and let ε := min(tℓ−1−tℓ,tℓ−tℓ+1)

2 .
By continuity, we may choose δε > 0 small enough so
that for any δ ∈ (−δε, δε) and y := x+ δ1e2 , we have

w(y)
e ∈ (w(x)

e − ε, w(x)
e + ε)

for all e ∈ E. It suffices to show for any such y that
w

(y)
e1 = w

(x)
e1 . Consider for each t the sets E

(x)
≥t := {e :

w
(x)
e ≥ t} and E

(y)
≥t := {e : w

(y)
e ≥ t}. Then by our

choice of ε, we have

E+ := E
(x)
≥tℓ+ε = E

(y)
≥tℓ+ε, and

E− := E
(x)
≥tℓ−ε = E

(y)
≥tℓ−ε.

Note that e2 ∈ E− \ E+.
It is clear then that the first ℓ − 1 steps of the Algo-

rithm 1 on x and on y are identical, with Sℓ−1 = E+ in
both cases. This follows because x and y differ only in
their value at e2, and w

(y)
e2 < w

(x)
e2 + ε = tℓ + ε, so the

algorithm assigns water levels to all elements e ∈ E+

before assigning a water level to e2. Hence, if e1 has
w

(x)
e1 > w

(x)
e2 , we have w

(y)
e1 = w

(x)
e1 as desired.

In the other case that e1 has w
(x)
e1 < w

(x)
e2 , observe

that e1 ∈ E \ E−. Moreover, for both inputs x and y,
Algorithm 1 will have some step ℓ′ ≥ ℓ (ℓ′ may differ
for x and y) at which Sℓ′ = E−. Since e2 ∈ E−, and
x and y differ only at e2, then every future step of the
algorithm is identical for the two inputs. In particular,
w

(y)
e1 = w

(x)
e1 .

In addition, a key consequence of the duality and
locality properties is the following “chain-rule” lemma
about the partial derivatives of Lf (G(w(x))) with re-
spect to entries of x. Such a lemma will be useful in the
primal-dual analysis of online SAP.

Lemma III.8 (Water Level Chain Rule). If G : R≥0 →
R≥0 is a non-decreasing differentiable function with
continuous derivative G′ = g, then for all x ∈ RE

≥0

and e ∈ E,

∂(Lf (G(w(x))))

∂xe
= g(w(x)

e),

where G(w(x)) := (G(w
(x)
e))e∈E .

Proof. For given x ∈ RE
≥0 and e ∈ E, let y = x+ε ·1e.

Then expanding Lf as an integral, applying a change of
variables, and invoking the monotonicity of G, we have

Lf (G(w(y)))− Lf (G(w(x)))

=

∫ ∞

0

(
f({e′ : G(w

(y)
e′) ≥ t})

− f({e′ : G(w
(x)
e′) ≥ t})

)
dt

=

∫ ∞

0

(
f({e′ : G(w

(y)
e′) ≥ G(u)})

− f({e′ : G(w
(x)
e′) ≥ G(u)})

)
g(u)du

=

∫ ∞

0

(
f({e′ : w(y)

e′ ≥ u})

− f({e′ : w(x)
e′ ≥ u})

)
g(u)du.

Now, we crucially use locality (Proposition III.7) to
claim that {e′ : w

(y)
e′ ≥ u} = {e′ : w

(x)
e′ ≥ u} for

any u ̸∈ [w
(x)
e , w

(y)
e]. This follows because for each

e′ ∈ E and every z = x + δ · 1e for δ ∈ [0, ε], we

have
∂w

(z)

e′
∂ze

= 0 unless w
(z)
e′ = w

(z)
e . In particular, if

w
(x)
e′ lies outside the range [w

(x)
e , w

(y)
e], then the water

level of e′ never changes as we move z from x to y.
Likewise, the water level of any e′ whose water level lies
within the range [w

(x)
e , w

(y)
e] may change, but it cannot

increase beyond w
(y)
e . So for each e′ ∈ E, either w(y)

e′ =

w
(x)
e′ ̸∈ [w

(x)
e , w

(y)
e] or w(x)

e′ , w
(y)
e′ ∈ [w

(x)
e , w

(y)
e].

Using this fact, we may restrict the above integral
to the range u ∈ [w

(x)
e , w

(y)
e]. Together with the inter-

mediate value theorem, we have that there exists some
û ∈ [w

(x)
e , w

(y)
e] such that

Lf (G(w(y)))− Lf (G(w(x)))

=

∫ w(y)
e

w
(x)
e

(
f({e′ : w(y)

e′ ≥ u})

− f({e′ : w(x)
e′ ≥ u})

)
g(u)du

= g(û) ·
∫ w(y)

e

w
(x)
e

(
f({e′ : w(y)

e′ ≥ u})

− f({e′ : w(x)
e′ ≥ u})

)
du

= g(û) · (Lf (w
(y))− Lf (w

(x))).

From duality (Proposition III.6), we know that
Lf (w

(y)) − Lf (w
(x)) =

∑
e′∈E(ye′ − xe′) = ε.

Therefore, we ultimately get

Lf (G(w(y)))− Lf (G(w(x)))

ε
= g(û).

300

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 18,2024 at 05:58:30 UTC from IEEE Xplore. Restrictions apply.

Taking the limit as ε → 0, we have û → w
(x)
e since

w
(x)
e ≤ û ≤ w

(y)
e . By continuity of g, we finally see

that

∂(Lf (G(w(x))))

∂xe
= lim

ε→0

Lf (G(w(y)))− Lf (G(w(x)))

ε

= g(w(x)
e).

C. Proofs of Equivalence of Water Level Definitions

In this sub-section, we prove the combinatorial de-
composition in Algorithm 1 and the SUA market for-
mulation both produce the water levels vector defined in
Definition III.1.

Theorem III.2 (Saddle Point for Water Levels). For any
monotone submodular function f : 2E → R≥0 with
f(∅) = 0 and x ∈ RE

≥0, the vector w = w(x) in
Definition III.1 has the property

w(x)
e := max

S∋e
min
T⊆E

fT ({e})̸=0

x(S \ T)
fT (S)

= min
T⊆E

fT ({e})̸=0

max
S∋e

x(S \ T)
fT (S)

.

Moreover, the output ŵ of Algorithm 1 is equal to w.

Proof. To show the desired min-max property, it suffices
to show that for any e ∈ E, there exist sets S∗, T ∗ such
that e ∈ S and fT ({e}) ̸= 0 and

min
T⊆E

fT ({e})̸=0

x(S∗ \ T)
fT (S∗)

=
x(S∗ \ T ∗)

fT∗(S∗)
= max

S∋e

x(S \ T ∗)

fT∗(S)
.

(3)
From this, it follows that

max
S∋e

min
T⊆E

fT ({e})̸=0

x(S \ T)
fT (S)

≥ min
T⊆E

fT ({e})̸=0

x(S∗ \ T)
fT (S∗)

=
x(S∗ \ T ∗)

fT∗(S∗)

= max
S∋e

x(S \ T ∗)

fT∗(S)

≥ min
T⊆E

fT ({e})̸=0

max
S∋e

x(S \ T)
fT (S)

.

Since we clearly have

max
S

min
T

x(S \ T)
fT (S)

≤ min
T

max
S

x(S \ T)
fT (S)

,

(omitting constraints on S, T) it follows that all inequal-
ities above must be equalities.

To show that such sets obeying eq. (3) exist, we will
show that they are exactly those given by the family

S0, S1, . . . , SL resulting from Algorithm 1. Specifically,
we will show that for each ℓ,

min
T⊆E

fT (Sℓ)̸=0

x(Sℓ \ T)
fT (Sℓ)

=
x(Sℓ \ Sℓ−1)

fSℓ−1
(Sℓ)

= max
S\Sℓ−1 ̸=∅

x(S \ Sℓ−1)

fSℓ−1
(S)

. (4)

From this, it follows that for each e ∈ Sℓ \ Sℓ−1, the
pair of sets (Sℓ−1, Sℓ) form an optimal pair (S∗, T ∗) in
eq. (3) for e. This not only completes the proof of our
min-max property, but also implies we = x(Sℓ\Sℓ−1)

fSℓ−1
(Sℓ)

=

tℓ = ŵe.
We proceed will show by induction that eq. (4) holds

for each ℓ ≥ 1. Notice that the second equality in eq. (4)
holds by choice of Sℓ in Algorithm 1, so we only need
to show the first equality.

For the case ℓ = 1, suppose some set T has x(S1\T)
fT (S1)

<
t1. We may assume T ⊆ S1, since otherwise we can take
T ∩ S1 since fT (S1) ≤ fT∩S1

(S1). Then we have

t1 =
x(S1)

f(S1)
=

x(S1 \ T) + x(T)

fT (S1) + f(T)
.

Since we know x(S1\T)
fT (S1)

< t1, it must then be true that
x(T)
f(T) > t1. However, this is impossible as S1 is chosen
to have maximum density.

For the inductive step, let ℓ ≥ 1 and assume eq. (4)
holds for all previous steps ℓ′ < ℓ. Our reasoning will be
similar to the base case, but with some extra steps. As
before, take some T ⊆ E with minimum possible value
of x(Sℓ\T)

fT (Sℓ)
, and suppose x(Sℓ\T)

fT (Sℓ)
< tℓ. We may again

assume T ⊆ Sℓ. In addition, we assume that there are
no e′ ̸∈ T with fT ({e′}) = 0, since adding such e′ to T
can only improve the choice of T .

We consider two cases: either Sℓ−1 ⊆ T , or Sℓ−1 \
T ̸= ∅. In the former case we have

tℓ =
x(Sℓ \ Sℓ−1)

fSℓ−1
(Sℓ)

=
x(Sℓ \ T) + x(T \ Sℓ−1)

fT (Sℓ) + fSℓ−1
(T)

.

Since we assumed that x(Sℓ\T)
fT (Sℓ)

< tℓ, it must be the case

that x(T\Sℓ−1)
fSℓ−1

(T) > tℓ. However, this contradicts the choice
of tℓ in Algorithm 1 as the maximum density of a set
after contracting Sℓ−1.

Now, consider the second case where Sℓ−1 \ T is
nonempty. Pick e′ ∈ Sℓ−1 \ T , and let ℓ′ < ℓ be such
that ŵe′ = tℓ′ . We then have

x(Sℓ \ T)
fT (Sℓ)

=
x(Sℓ \ (Sℓ′ ∪ T)) + x(Sℓ′ \ T)

fSℓ′∪T (Sℓ) + fT (Sℓ′)
.

301

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 18,2024 at 05:58:30 UTC from IEEE Xplore. Restrictions apply.

Notice that x(Sℓ′\T)
fT (Sℓ′)

≥ x(Sℓ′\Sℓ′−1)

fS
ℓ′−1

(Sℓ′)
= tℓ′ by eq. (4)

applied to ℓ′, which holds by our inductive hypothesis.
Since x(Sℓ′\T)

fT (Sℓ′)
≥ tℓ′ > tℓ > x(Sℓ\T)

fT (Sℓ)
, this means that

we must have x(Sℓ\(Sℓ′∪T))
fS

ℓ′∪T (Sℓ)
< x(Sℓ\T)

fT (Sℓ)
. However, this

contradicts the choice of T .

Theorem III.3. Consider the vector ŵ, the nested sets
S1 ⊂ · · · ⊂ SL, and the levels t1, . . . , tL generated by
Algorithm 1. Then t1 > · · · > tL ≥ 0. Moreover, if we
define

α̂SL
:= tL

α̂Sℓ
:= tℓ − tℓ+1 ℓ = 1, . . . , L− 1

and α̂S = 0 for all other S ⊆ E, then, ûe = xe

ŵe
is an

optimal primal solution to (SUA) and α̂S is an optimal
dual solution.

Proof. We begin with an rephrasing of Algorithm 1.
Instead of contracting elements as we did in Algorithm 1,
we “freeze” elements in Algorithm 2. Scaling x until
some set is saturated is equivalent to measuring the
multiplicative slack of sets; therefore, the densities in
Line 3 of Algorithm 1 are precisely the time steps at
which we freeze a new set of elements in Line 4 of
Algorithm 2.

Algorithm 2: An Alternate
Combinatorial Presentation of
Water Levels

input : A point x ∈ Rn
≥0.

1 Initialize t = 0, all elements are considered
“unfrozen”

2 while there exists an unfrozen element do
3 Raise t until the vector

x(t) =

{
t · xe if e is unfrozen
tfrozen(e) · xe if e is frozen

has a tight set including at least one
unfrozen element.

4 Freeze all the elements in the (unique) largest
such tight set St of t · x.

5 We set all newly frozen elements in S to
have tfrozen(e) := t.

6 Set ŵe =
1
t for all e ∈ St.

output: A vector ŵ.

We use the KKT conditions to show ûe and α̂S

are optimal. Denote the Lagrange multipliers for the

constraints ûe ≥ 0 by µe. We will set µe = 0 if xe > 0
and µe = we otherwise. The KKT conditions are as
follows:

• Primal Feasibility:
∑

e∈S ûe ≤ f(S) for all S ⊆ E.
• Dual Feasibility: α̂S ≥ 0 for all S ⊆ E.
• Stationarity Conditions: For all e ∈ E,

xe

ûe
=
∑
S∋e

α̂S − µe.

• Complementary Slackness: α̂S > 0 implies∑
e∈S ûe = f(S) and µe · ûe = 0.

Primal feasibility follows from the fact that Algorithm 2
maintains feasibility of t ·x on unfrozen elements. Dual
feasibility also easily follows since t only rises. If xe >
0, then µe = 0 and

xe

ûe
= ŵe =

∑
S∋e

α̂S

as desired. Otherwise, if xe = 0, then since µe = ŵe, the
stationary condition still holds. Lastly, we check com-
plementary slackness. We have a positive α̂S precisely
on the sets E1, . . . , EL, and so it suffices to check these
sets are tight. Indeed, by definition of Algorithm 2, these
sets are tight. Lastly, we have that if xe > 0, then
µe = 0 and that finishes our complementary slackness
conditions.

IV. A WARM UP: ONLINE MATROID INTERSECTION

With our new vector of water levels w(x) defined, we
will see how they can be used to naturally extend the
water-filling paradigm. Before proving Theorem I.1 for
general online SAP, we will see how our techniques can
be applied in a simpler setting: fractional online matroid
intersection with part arrival.

In Online Matroid Intersection, the goal is to max-
imize the size of a common independent set between
two matroids, when the elements are initially unknown
and arrive in some online fashion. We focus on the
case where one of the matroids is a partition matroid.
In particular, suppose M is an arbitrary matroid and
Q is a partition matroid with parts Q1, . . . , Qn, both
defined over (an initially unknown) ground set E. We
have access to an independence oracle for M restricted
to the elements which have been revealed so far; in
other words, M is known offline. Parts from the par-
tition matroid arrive online. When a part Qj arrives,
the elements in Qj are revealed, and we immediately
and irrevocably choose at most one element from Qj .
The goal is to maximize the cardinality of the set of
chosen elements, subject to the set being independent in
both matroids. In the fractional version of this problem,

302

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 18,2024 at 05:58:30 UTC from IEEE Xplore. Restrictions apply.

instead of choosing one e ∈ Qj , we select values xe ≥ 0
for e ∈ Qj so that x(Qj) ≤ 1 and x remains feasible in
the matroid polytope. Online matroid intersection, and
the corresponding fractional problem, are instances of
online (fractional) SAP where ve = be = 1 for all e ∈ E,
and f(S) := rankM(S).

Our fractional algorithm for this problem will, upon
receiving part Qj , continuously allocate infinitesimally
small dxe to xe for some e ∈ Qj which has minimum
water level, i.e. e ∈ argmine′∈Qj

w
(x)
e′ . This continues

until either 1 unit of water has been output by Qj (the
constraint x(Qj) = 1 becomes tight) or no more water
can be output because every e ∈ Qj has water level
w

(x)
e = 1 (each such e is part of a tight constraint

x(S) = f(S)). The algorithm then moves onto the next
arriving part and repeats the process. We use a primal-
dual analysis to prove that the algorithm is (1 − 1/e)-
competitive.

A. Analysis

We proceed with a primal-dual analysis to prove
Theorem I.1 for fractional online matroid intersection.
The dual program is:

min Lf (γ) +
n∑

j=1

βj

s.t γe + βj(e) ≥ 1, for all e ∈ E

γ,β ≥ 0.

where Lf is the Lovász extension of f , and j(e) is
defined such that e ∈ Qj(e). We will construct a
set of dual variables based on the primal allocation.
Specifically, upon each arrival of Qj , we start by setting
βj = 0. Then upon each infinitesimal increase of xe by
dxe for e ∈ Qj , we increase γ to maintain

γe′ := G(we′) for all e′ ∈ E

and increase βj by

dβj := (1− g(we))dxe.

where g(x) := ex−1, and G(x) :=
∫ x

0
g(t) dt = ex−1 −

e−1. Observe that since the algorithm only increases
the primal allocation x, by Proposition III.4 the dual
variables also only increase as the algorithm progresses.

To show a 1− 1/e competitive ratio, we need to show
(1−1/e)-approximate feasibility of the dual, and that the
dual increase is at most the primal increase.

1) Approximate Feasibility: We will show that, im-
mediately after the allocation to Qj completes, we have
γe+βj ≥ 1−1/e for all e ∈ Qj . Since dual values only
increase as the algorithm progresses, this would imply
inequality also holds for the final dual values.

Let w∗ = mine∈Qj
w

(x)
e be the minimum water

level of an element of Qj immediately following the
allocation to Qj . We claim that βj ≥ 1 − g(w∗). To
see this, notice that dβj ≥ (1 − g(w∗))dxe at each
point in time during the allocation, so we clearly have
βj ≥ (1−g(w∗))

∑
e∈Qj

xe. If
∑

e∈Qj
xe = 1, we have

our claim. Otherwise, every e ∈ Qj must be involved
in a tight offline constraint, so w∗ = 1. In this case,
1− g(w∗) = 0 ≤ βj .

Using this claim, we easily obtain for each element
e ∈ Qj ,

γe + βj ≥ G(we) + 1− g(w∗)

≥ G(we) + 1− g(we)

= 1− 1/e.

2) Primal equals Dual: To show that the primal
objective equals the dual objective, we will show that
the rate of change in primal and dual objectives are
equal at each instant in the continuous allocation. In
the allocation to Qj , when xe receives infinitesimal
allocation dxe, the change in the primal objective is
exactly dxe.

Meanwhile, the change in dual objective is
d(Lf (G(w(x)))) + dβj . By Lemma III.8, we know that
d(Lf (G(w(x)))) = g(we)dxe, and by definition of βj

we have dβj = (1−g(we))dxe. Hence, we have that the
change in dual is also g(we)dxe+(1−g(we))dxe = dxe.

3) Proof of the Main Theorem: The above discussion
immediately gives the proof of the main theorem:

Proof of Theorem I.1 for online matroid intersection.
Let x be the primal allocation given by water-
filling, and γ,β the associated dual assignment
defined above. Since we showed that at each step
of the algorithm, ∆Primal ≥ ∆Dual, we have that∑

e xe ≥ Lf (γ) +
∑

j βj . By approximate feasibility,
we have that γ′ := e

e−1 · γ and β′ := e
e−1 · β

together form a feasible dual solution. Finally, positive
homogeneity8 of the Lovász extension and duality

8Lf (λx) = λLf (x) for λ ≥ 0. This follows from the definition of
Lovász extension.

303

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 18,2024 at 05:58:30 UTC from IEEE Xplore. Restrictions apply.

together give∑
e

xe ≥ Lf (γ) +
∑
j

βj

=

(
1− 1

e

)
·
(
Lf (γ

′) +
∑
j

β′
j

)
≥
(
1− 1

e

)
· OPTDual =

(
1− 1

e

)
· OPT.

V. GENERAL ONLINE SUBMODULAR ASSIGNMENT

In order to motivate our algorithm for online SAP, it
will be useful to adopt an economics perspective similar
to that presented in [45]. We think of each online arrival
j as a bidder and each offline element e ∈ E as a good.
Each bidder j desires at most one unit of goods from the
set Qj , and receives utility ve for each unit of good e
received. We, as the seller, allocate a quantity xe of good
e to bidder j for each e ∈ Qj , but we are also limited
the supply constraints bx(S) ≤ f(S) for each S ⊆ E.
Our goal is to maximize the welfare

∑
e∈E vexe.

In this setting, it will be important to discriminate
between items based on their “bang-per-buck” ve

be
. This

is due to the fact that, with free disposal, it can be
beneficial to discard an allocation with small bang-per-
buck in order to make space for a higher value item. To
this end, for t ≥ 0 define the vector wt to be

wt := w((bexe)e : ve/be≥t),

i.e. the water levels of items when only considering
allocations on item e with bang-per-buck at least t.

Using this definition, we give a pricing-based algo-
rithm for allocating xe values. For each e ∈ E, we place
an instantaneous per-unit price on e of

pe := be ·
∫ ve/be

0

g(wt
e)dt.

Then, upon the arrival of Qj , bidder j will continu-
ously “purchase” an infinitesimal amount dxe of good
e, for some e ∈ Qj which has highest marginal utility,
i.e. e ∈ argmaxe′∈Qj

(ve′ − pe′). If e is not part of any
tight set, then we may increase it freely. Otherwise, in
order to accommodate the new increase to xe, we will
decrease the allocation in ealt by dxealt = − be

bealt
· dxe,

where

ealt ∈ argmin
e′

{
ve′

be′
: e′ ∈

⋂
S∋e

bx(S)=f(S)

S

}
.

In other words, ealt is the lowest bang-per-buck el-
ement that, upon decreasing xealt , creates space for an

increase in xe. Note that the choice of ealt is always non-
empty as it contains e. This continues until either 1 unit
of good is allocated to Qj (the constraint x(Qj) = 1
becomes tight) or no good produces positive utility
(ve = pe for each e ∈ Qj). The algorithm then moves
onto the next arriving part and repeats the process.

A. Analysis

We proceed with a primal-dual analysis to prove
Theorem I.1. Recall the dual program from Section II:

min Lf (γ) +
n∑

j=1

βj

s.t be · γe + βj(e) ≥ ve, for all e ∈ E

γ,β ≥ 0.

Upon each arrival of Qj , we start by setting βj = 0.
Then upon each infinitesimal increase of xe by dxe for
e ∈ Qj , we maintain

γe′ :=

∫ ∞

0

G(wt
e′) dt for all e′ ∈ E

and increase βj by

dβj := (ve−pe)dxe = be

(∫ ve/be

0

(1− g(wt
e))dt

)
dxe.

where g(x) := ex−1, and G(x) :=
∫ x

0
g(t) dt = ex−1 −

e−1.
1) Approximate Feasibility: The goal is to show that

immediately after the allocation to Qj completes, we
have beγe + βj ≥ (1− 1/e)ve for all e ∈ Qj . Again, by
monotonicity of water levels (Proposition III.4) the dual
variables also only increase as the algorithm progresses,
so this implies the approximate feasibility for the final
dual values.

We denote u∗ = maxe∈Qj
(ve − pe) to be the maxi-

mum marginal utility of an element of Qj immediately
following the allocation to Qj . We claim that βj ≥ u∗.
At every point during the allocation, dβj ≥ u∗dxe, so
clearly βj ≥ u∗∑

e∈Qj
xe. If

∑
e∈Qj

xe = 1 and we
have our claim. Otherwise, we must have reached zero
marginal utility during our allocation, so u∗ = 0, in
which case βj ≥ u∗ trivially.

Using this bound on βj , we conclude

beγe + βj ≥ be

∫ ∞

0

G(wt
e) dt+u∗ ≥

be

∫ ve/be

0

(
G(wt

e) + 1− g(wt
e)
)
dt = ve(1− 1/e).

for each element e ∈ Qj .

304

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 18,2024 at 05:58:30 UTC from IEEE Xplore. Restrictions apply.

2) Primal exceeds Dual: We will show the primal ex-
ceeds the dual by instead dealing with a “dual surrogate”
which upper bounds the dual value.

Lf (γ) = Lf

(∫ ∞

0

G(wt) dt

)
≤
∫ ∞

0

Lf (G(wt)) dt

The left hand term is precisely the γ term in the dual
objective. We call the right hand term the γ term of the
“dual surrogate”. The inequality follows from Jensen’s
inequality and the convexity of Lf .

We will show that the rate of change in primal and
dual surrogate objectives is equal at each instant in the
continuous allocation. In the allocation to Qj , when xe

receives infinitesimal allocation dxe, note that xealt is
infinitesimally reduced by be

bealt
· dxe. Hence, the change

in the primal objective is be(ve/be − vealt/bealt)dxe.
Meanwhile, the change in surrogate dual objective is∫∞

0
(dLf (G(wt)) dt+ dβj . Using the chain rule lemma

for water levels (Lemma III.8) with the fact that wt =
w((bexe)e:ve/be≥t), we know that

d(Lf (G(wt)) =

{
g(wt

e)be · dxe
vealt
bealt
≤ t ≤ ve

be

0 otherwise.

To see why d(Lf (G(wt)) is only non-zero for t ∈
[vealt/bealt , ve/be], observe that if t > ve/be, then clearly
xe’s value does not effect wt. On the other hand, if
t < vealt/bealt , we claim the water level of xe remains
1 while deallocating ealt and allocating e. Recall ealt
was chosen as the minimum bang-per-buck element in
Stight =

⋂
tight S ∋ e S. Note that Stight is itself a tight set,

one that remains tight if we restrict our allocation to
elements of bang-per-buck at least t. Stight also remains
tight while shifting mass from ealt to e. Thus, the water
level vector wt remains identical.

By definition of βj we have dβj =

be

(∫ ve/be
0

(1− g(wt
e))dt

)
dxe. Hence, in total, we

have that the change in surrogate dual is∫ ∞

0

(
dLf (G(wt)

)
dt+ dβj

= be

(∫ ve/be

vealt/bealt

g(wt
e)dt

)
dxe

+ be

(∫ ve/be

0

(1− g(wt
e))dt

)
dxe.

Notice that wt
e = 1 when t ≤ vealt/bealt , so we have (1−

g(wt
e)) = 0 for such t. Using this, we can simplify the

change in surrogate dual as

be

(∫ ve/be

vealt/bealt

g(wt
e)dt

)
dxe

+ be

(∫ ve/be

vealt/bealt

(1− g(wt
e))dt

)
dxe

= be

(
ve
be
− vealt

bealt

)
dxe.

The above discussion applied to an argument identical
to that of Section IV-A3 immediately gives the proof of
the main theorem.

B. Integral Algorithm under Small Bids Assumption

So far, we analyzed a fractional algorithm for online
SAP and showed that it gets a 1− 1/e competitive ratio.
Now, we will show that a similar algorithm and analysis
applies to integral SAP under a small bids assumption.
To illustrate the key ideas, in this section we will only
examine the AdWords version of SAP (in other words,
when be = ve for all e ∈ E). The AdWords version
of SAP does not require free disposal, which makes the
analysis simpler.

Recall the small bids assumption for SAP:

Assumption I.2 (Small Bids). Assume there exists some
ε > 0 such that for all e ∈ E and T ⊆ E with
fT ({e}) > 0, we have be ≤ εfT ({e}).

The small bids assumption allows us to prove the
following lemma, which essentially states that the water
level is an ε-Lipschitz function of the allocation. Intu-
itively, this is useful because it means that selecting any
single element can increase the water levels by at most
ε, which allows for an analysis that approximates the
fractional case. Indeed, when we analyze the integral
algorithm under the small bids assumption, we will only
use Lemma V.1, and not use Assumption I.2 directly.

Lemma V.1 (Water Levels are Lipschitz). Suppose As-
sumption I.2 holds. Let x ∈ RE

≥0 and suppose y =
x+ t1e for some t ≥ 0 and e ∈ E. Then we have∥∥∥w(bx) −w(by)

∥∥∥
∞
≤ εt.

Proof. Note that since y ≥ x, we have w(by) ≥ w(bx)

by monotonicity (Proposition III.4). Furthermore, by
locality (Proposition III.7), since y is obtained from x
by increasing the allocation on a single coordinate e, the
element whose water level increased the most is that of

305

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 18,2024 at 05:58:30 UTC from IEEE Xplore. Restrictions apply.

e itself. Thus it suffices to show that w(by)
e ≤ w

(bx)
e +εt.

From the definition of water levels (Definition III.1), we
have

w(bx)
e := max

S∋e
min
T⊆E

fT ({e})̸=0

bx(S \ T)
fT (S)

.

Let Sx and Tx be the sets that attain the above maxmin
for w(bx)

e . Analogously, define Sy and Ty to be the sets
that attain the maxmin for w(by)

e . Then

w(by)
e =

by(Sy \ Ty)

fTy
(Sy)

≤ by(Sy \ Tx)

fTx
(Sy)

=
bx(Sy \ Tx)

fTx(Sy)
+

b(y − x)(Sy \ Tx)

fTx(Sy)

≤ bx(Sx \ Tx)

fTx(Sx)
+

b(y − x)(Sy \ Tx)

fTx(Sy)

= w(bx)
e +

b(y − x)(Sy \ Tx)

fTx
(Sy)

.

Since y − x = t1e, we have

b(y − x)(Sy \ Tx)

fTx(Sy)
≤ tbe

fTx(Sy)
≤ tbe

fTx({e})
≤ tε.

Here, the second inequality is because e ∈ Sy and f is
monotone, and the last inequality is by the small-bids
assumption.

With Lemma V.1 in hand, we are now ready to analyze
integral online SAP under the small-bids assumption. We
prove the theorem here for the AdWords special case
of online SAP, where be = ve for all e ∈ E. This
illustrates the main ideas of the proof, while avoiding
some of the complexities of general online SAP, such
as requiring free disposal. The proof of Theorem I.3 for
general online SAP is included in the full version of this
paper.

Theorem I.3. Under the small bids assumption (As-
sumption I.2), there is a deterministic integral algorithm
for online SAP which is (1−O(ε))·

(
1− 1

e

)
-competitive.

Proof of Theorem I.3 when be = ve. Define f ′(S) :=
(1 − ε)f(S). Since f is monotone and submodular, so
is f ′. In this proof, all water levels will be with respect
to f ′, unless explicitly noted otherwise.

Consider the following integral algorithm:

1) Initialize x = 0. (x is the integral allocation to be
returned.)

2) Upon the arrival of part j, pick

ej ∈ argmax
e∈Qj

{
be

(
1− g(w(bx)

e)
)
: w(bx)

e < 1
}
.

3) Update x ← x + 1ej . (If there is no e ∈ Qj with
w

(bx)
e < 1, leave x unchanged.)

The idea here is the same as the fractional algorithm:
always select the item with the highest utility. The only
difference is that we are artificially scaling down the
capacity constraints by a factor of 1 − ε. The reason
for this is to ensure that the allocation returned by the
integral algorithm is always feasible to the original prob-
lem. Indeed, since the integral algorithm only allocates
items whose water level (with respect to f ′) is less
than 1, Lemma V.1 and locality (Proposition III.7) imply
that the final water levels (again, under f ′), are at most
1 + ε. Since f ′ = (1 − ε)f , this implies that the final
water levels of the allocation with respect to the original
function f are at most (1 + ε)(1 − ε) < 1, which by
indication of feasibility (Proposition III.5) means that
the integral algorithm is guaranteed to produce a feasible
solution.

Having seen that the solution returned by the integral
algorithm is always feasible, we now proceed to bound
its competitive ratio. We recall the primal and dual LPs
(with capacity constraints given by f ′) below:

Primal: max
∑
e

bexe

s.t.
∑
e∈Qj

xe ≤ 1 ∀ j

∑
e∈S

bexe ≤ f ′(S) ∀ S ⊆ E

xe ≥ 0 ∀e ∈ E

Dual: min Lf ′(γ) +
∑
j

βj

s.t. beγe + βj(e) ≥ be ∀e ∈ E

γ, β ≥ 0.

Setting the dual variables. Consider the arrival of
part j. Let x denote the allocation right before j arrives,
and let x′ denote the allocation right after j arrives. After
j makes its allocation, we update the dual variables as
follows:

• γe = G(w
(bz′)
e) for all e ∈ E.

• βj = max{0,max{be(1− g(w
(bx)
e)) : e ∈ Qj}}.

Note that the values of γe are updated in each iteration,
whereas the values of βj are updated once in iteration
j and then remain unchanged forever. Moreover, note
that the dual variables are non-decreasing throughout the
course of the algorithm, because the water levels are non-
decreasing and g is an increasing function.

306

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 18,2024 at 05:58:30 UTC from IEEE Xplore. Restrictions apply.

a) Approximate Feasibility: Consider any e ∈ E,
and let j = j(e). Let x denote the final allocation of the
algorithm. Then,

beγe + βj = beG(w(bx)
e) + βj

(a)

≥ beG(w(bx)
e) + be(1− g(w(bx)

e))

(b)
=

(
1− 1

e

)
be.

Here, (a) uses the fact that the water levels are non-
decreasing throughout the course of the algorithm, and
g is increasing. (b) is using the definition of g(t) = et−1.

b) Primal vs. Dual: The last thing we need to
show is that the value of the algorithm is not too small
compared to the value of the dual solution. To do this,
we compare the change in the primal to the change in
the dual in each iteration.

Consider the arrival of part j. Let denote the algo-
rithm’s allocation right before j arrives. There are two
cases: Either the algorithm selects an element or it does
not. If the algorithm does not select any element, then
∆P = 0. Moreover, the only reason the algorithm did
not select an element is if w

(bx)
e ≥ 1 for all e ∈ Qj .

This implies βj = 0. Since γ also does not change in
this case, we have ∆D = 0.

It remains to consider the case where the algorithm
selects an element ej in part j. Let x′ = x+1ej be the
algorithm’s allocation after j’s arrival. Then, on the one
hand we have

∆P = bej .

On the other hand, we have

∆D = βj + Lf ′(γ′)− Lf ′(γ),

where γ = G(w(bx)) and γ′ = G(w(bx′)). Since
element ej was selected, we know

βj = bej (1− g(w(bx)
ej)).

Also,

Lf ′(γ′)− Lf ′(γ)

= Lf ′(G(w(bx′)))− Lf ′(G(w(bx)))

=
〈
∇zLf ′(G(w(bz))), x′ − x

〉
(for some z ∈ [x, x′], by Mean Value Theorem)

=
〈
bg(w(bz)), x′ − x

〉
(by Lemma III.8)

= bejg(w
(bz)
ej)

≤ bej

(
g(w(bx)

ej) +
ε

1− ε

)
(by Lemma V.1 and f ′ = (1− ε)f)

Thus,

∆D ≤ bej

(
1 +

ε

1− ε

)
=

1

1− ε
∆P.

c) Final Competitive Ratio: To conclude, we have

ALG = P ≥ (1− ε)D ≥ (1− ε)2
(
1− 1

e

)
OPT.

Here, the first inequality is because ∆P ≥ (1−ε)∆D in
each time step. For the second inequality, the 1− 1

e factor
comes from approximate dual feasibility, and the 1 − ε
factor comes from the fact that we performed the primal-
dual analysis on the problem with capacities scaled down
by 1− ε, which reduces the optimal value by a factor of
at most 1− ε.

VI. ONLINE SUBMODULAR WELFARE
MAXIMIZATION FOR MATROIDAL UTILITIES

In this section, we give a (1− 1/e)-competitive algo-
rithm for the Online Submodular Welfare Maximization
problem where the utility function of each agent is the
rank function of a matroid.

Formally, there are n agents, and m items. The items
arrive one at a time online. Each agent has an associated
utility function fi : 2[m] → Z≥0 which is the rank
function of a matroid Mi on ground set [m]. In each
time step, we must irrevocably assign the arriving item to
some agent. Suppose items Ui ⊆ [m] have been assigned
to agents i ∈ [n]. Then the welfare of this allocation is∑

i∈[n]

fi(Ui).

The goal is to assign items to maximize welfare, as
compared to the optimal offline allocation. We work in
the value oracle model, where we can query the value
fi(S) for any i ∈ [n] and S ⊆ [m] in constant time.

307

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 18,2024 at 05:58:30 UTC from IEEE Xplore. Restrictions apply.

Our algorithm extends to the setting where each agent
has a non-negative weight ai. In this case, the utility
function of each agent is fi := ai · rankMi .

A. The Matroidal Ranking Algorithm

First, some notation. For an allocation of items to
agents, we will denote by Ui the set of items assigned
to agent i. Given such an allocation, we say that an item
j is available to agent i if fi(Ui + j) > fi(Ui).

The algorithm proceeds as follows. Independently for
each agent i, select ri uniformly at random from [0, 1].
Let the priority of agent i be defined as ai · (1− g(ri)),
where g(z) := ez−1. When an item arrives, consider the
set of agents to whom this item is available, and assign
the item to the highest priority agent among these. See
Algorithm 3 for a formal description.

Remark VI.1 (Perusal perspective). We note that the
Matroidal Ranking Algorithm yields the same alloca-
tion as the following procedure. In order of decreasing
priority, each agent “peruses” the full set of items in
their arrival order, and greedily picks any item which
increases its utility. While this perusal perspective cannot
be implemented online, it yields an identical allocation
as the Matroidal Ranking Algorithm, and will be useful
for the analysis.

Algorithm 3: Matroidal Ranking
Algorithm

input : An instance of Matroid-OSWM with
agents i ∈ [n], items [m], and utility
functions fi : 2

[m] → Z≥0.
output: An allocation of items Ui ⊆ [m] to each

agent i with welfare at least (1− 1
e)

times the welfare of the optimal offline
allocation.

1 Select a value ri ∈ [0, 1] uniformly and
independently for each agent, and set the
priority of agent i to be ai(1− g(ri)).

2 When an item j arrives, assign it to the highest
priority agent to whom it is available.

3 return the resulting allocation Ui.

B. Analysis

Consider the primal and dual problems below. The
primal has variables xij representing to what extent item
j ∈ [m] is allocated to agent i ∈ [n]. Notice that in the
primal, rather than directly optimizing for the welfare
of the agents, we simply maximize the total (weighted)

quantity of items assigned, while the constraints enforce
that each agent receives an independent set of items
with respect to their matroid. Furthermore, there are
constraints for each item enforcing that each is assigned
at most once. Thus, an integer binary solution to the
primal corresponds to a feasible allocation with objective
value equal to the welfare of the allocation.

Primal: max
∑
i∈[n]

ai ·
∑
j∈[m]

xij


s.t. x(S) ≤ fi(S), ∀i ∈ [n], S ⊆ [m]∑

i∈[n]

xij ≤ 1, ∀j ∈ [m]

x ≥ 0

Dual: min
∑
i∈[n]

∑
S⊆[m]

fi(S)αi,S +
∑
j∈[m]

βj

s.t.
∑
S∋j

αi,S + βj ≥ ai, ∀i ∈ [n], j ∈ [m]

α,β ≥ 0

Consider the primal solution x induced by the allo-
cation at the end of the Matroidal Ranking algorithm.
This x depends on the random values ri which were
chosen for each agent. We will construct a dual solution
(α,β) whose objective value is the same as that of x,
and which is approximately feasible in expectation. In
particular, we will have

Ew∼[0,1]n

∑
S∋j

αi,S + βj

 ≥ (e− 1

e

)
· ai

for each (i, j) ∈ [n] × [m]. This implies that the scaled
up solution (e

e−1)(α,β) is feasible in expectation, and
that x is (e−1

e)-approximately optimal.
a) Dual Assignment: We now define the dual so-

lution (α,β). For each agent i ∈ [n], if Ui is the set of
items assigned to agent i at the end of the algorithm, let
Si := spanMi

(Ui) be the span of Ui with respect toMi

(i.e. the largest set of items containing Ui whose rank
is equal to rankMi

(Ui)). We assign αi,Si
:= ai · g(ri).

For each item j, if j ∈ Ui for some i ∈ [n], we set
βj := ai · (1 − g(ri)). The remaining variables are set
to zero.

308

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 18,2024 at 05:58:30 UTC from IEEE Xplore. Restrictions apply.

b) Primal = Dual: The dual solution described
above has objective value equal to the primal solution
returned by the algorithm. To see this, note that whenever
an item is assigned to an agent i, the objective value of
the dual increases by exactly ai. Furthermore, since we
only assign an item to an agent if it is available to them,
the primal objective value increases by ai as well.

c) Expected Approximate Feasibility: We now
show that the dual solution is approximately feasible in
expectation. Fix a particular agent-item pair (̂i, ĵ). We
will focus on the dual constraint

∑
S∋ĵ αî,S + βĵ ≥ âi.

First, condition on all random choices ri for i ̸= î. We
denote these choices by r−î. Note that, once r−î is fixed,
the run of the algorithm is determined by the value of
r̂i. Hence, for any choice rA ∈ [0, 1] we will denote a
run of the algorithm in which r̂i = rA as A.

For an agent i ∈ [n] and run A of the algorithm
with r̂i = rA ∈ [0, 1], let U

(A,t)
i ⊆ [m] denote

the set of items assigned to agent i at time step t of
run A of the algorithm. Likewise, let U

(A)
i denote the

set of items assigned to agent i at the end of run A

of the algorithm. We will also write span(U
(A,t)
i) to

mean spanMi
(U

(A,t)
i), the span in agent i’s matroid of

the set of items assigned to agent i (and similarly for
span(U

(A)
i)).

We now define the critical threshold r∗ to be maxi-
mum value of r̂i such that ĵ is in the span of the items
assigned to î in the final allocation. Formally,

r∗ := sup
{
rA ∈ [0, 1] : ĵ ∈ span

(
U

(A)

î

)}
.

We define sup(∅) = 0 by convention.
The following key lemma characterizes several invari-

ants that hold throughout the Matroidal Ranking algo-
rithm. Specifically, it describes how the span(U

(A,t)
i)

changes as rA changes. This will allow us to lower bound
the expected amount of dual value assigned during the
procedure.

Lemma VI.2. Fix r−î, and values rA and rB in [0, 1]
with rA < rB . Consider the two separate runs of the
algorithm: A with r̂i = rA and B with r̂i = rB . Then
at each iteration t, we have
(1) span(U

(A,t)

î
) ⊇ span(U

(B,t)

î
),

(2) span(U
(A,t)
i) = span(U

(B,t)
i) for all i ∈ [n] with

ri ≤ rA,
(3) If rB = 1, then span(U

(A,t)
i) ⊆ span(U

(B,t)
i) for

all i ̸= î.

Proof. Points (1) and (2) follow from the perusal per-
spective of Algorithm 3. In particular, for point (1), agent

î only peruses earlier in run A than in run B, so î has
more items to choose from in run A. For the tth item j, if
j ∈ U

(B,t)

î
and it was not already spanned by U

(A,t−1)

î
,

then it would be chosen by î in step t of run A. So
U

(B,t)

î
⊆ span(U

(A,t)

î
), which implies point (1).

For point (2), the perusal of all agents i with ri < rA
is identical in both runs A and B of the algorithm, so
in particular, U (A,t)

i = U
(B,t)
i , implying point (2).

We prove point (3) by induction. Let rB = 1. Suppose
for induction (3) holds at iteration t, and a new item j
arrives. Consider some i ̸= î. First, if j ∈ span(U

(B,t)
i)

already at time t, then we have by induction

span(U
(A,t+1)
i) ⊆ span

(
span(U

(A,t)
i) ∪ {j}

)
⊆ span(U

(B,t+1)
i)

as desired.
So suppose otherwise that j ̸∈ span(U

(B,t)
i). This

means that in run B, when item j arrives, it is available
to agent i. For the invariant in point (3) to break, item
j must be assigned to i in run A but not assigned to
i in run B. If j is not assigned to i in run B, it must
be assigned to some other i′ with ri′ < ri (since when
j arrives, it is available to agent i). In particular, since
r̂i = 1, we know i′ ̸= i and we may apply induction
to i′. This tells us that at time t (before j’s arrival),
span(U

(A,t)
i′) ⊆ span(U

(B,t)
i′), and therefore in run A,

item j was also available to i′. Since ri′ < ri, this
contradicts that j is assigned to i in run A.

This yields the following pair of corollaries.

Corollary VI.3. If r̂i < r∗, then ĵ ∈ span(Uî)

Proof. This follows directly from the definition of r∗,
and point (1) from Lemma VI.2.

Corollary VI.4. If r∗ < 1, then item ĵ is always
assigned to an agent i with ri at most r∗.

Proof. Observe first that for any ε > 0, if r̂i = r∗ +

ε ≤ 1 then item ĵ is assigned to some agent i with
ri < r∗ + ε. This is because r̂i > r∗ implies both that
item ĵ is available to î when it arrives, and that it is not
assigned to î. Since this holds for every ε > 0 yet there
are only finitely many agents, there is some such i =: i∗

with ri∗ ≤ r∗, and some ε∗ > 0 such that ĵ is assigned
to i∗ when r̂i = r∗ + ε∗.

Now we claim that for any value of r̂i, item ĵ is
always available to i∗ when ĵ arrives. This implies the
claim. First, we compare instance A of the algorithm
with r̂i = rA := r∗ + ε∗ to any instance B with

309

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 18,2024 at 05:58:30 UTC from IEEE Xplore. Restrictions apply.

r̂i = rB > r∗+ε∗. By Lemma VI.2(2) applied to i∗, we
have span(U

(A,t)
i∗) = span(U

(B,t)
i∗) at the time t when ĵ

arrives. So, in particular, ĵ is available to i∗ in instance
B, since it’s available in instance A.

Since the above holds for any rB > r∗ + ε, it in par-
ticular holds for rB = 1. Now we apply Lemma VI.2(3)
to i∗ on any instance A with r̂i = rA < 1 and
instance B with r̂i = rB = 1. We have span(U

(A,t)
i∗) ⊆

span(U
(B,t)
i∗) at time t when ĵ arrives. Therefore, again,

since i∗ is available to ĵ in instance B, it is also available
in instance A.

So in all cases, ĵ is available to i∗ (with ri∗ ≤ r∗)
when it arrives. So ĵ is always assigned to an agent i
with ri at most r∗.

This gives us all ingredients required for the final
proof that the Matroidal Ranking algorithm achieves a
(1− 1/e)-competitive ratio.

Proof of Theorem I.4. Let x be the primal solution
given by the Matroidal Ranking algorithm, and (α, β)
the corresponding dual solution described above. We
showed that the primal and dual objectives are equal:∑

i(ai ·
∑

j xij) =
∑

i,S fi(S)αi,S +
∑

j βj . To argue
that x is (1 − 1/e)-competitive in expectation with the
offline optimal primal solution, it then suffices by duality
to show that, in expectation, α, β are approximately
feasible.

For any fixed agent-item pair (̂i, ĵ), we condition on
the values of r−î, and let r∗ be the critical threshold.
Then Corollary VI.3 implies that

Erî∼[0,1]

[∑
S∋ĵ

αî,S

∣∣∣∣ r−î

]
≥

∫ r∗

0

âi · g(z) dz = âi ·
(
g(r∗)− 1

e

)
.

Similarly, Corollary VI.4 implies that

Erî∼[0,1]

[
β ĵ

∣∣∣∣ r−î

]
≥∫ 1

0

âi · (1− g(r∗)) dz =âi · (1− g(r∗)).

(note if r∗ = 1, then the RHS is 0, so the inequality still
holds, despite Corollary VI.4 not applying). The sum is
then âi · (1− 1/e), and since this does not depend on the
conditional values of r−î, we may drop the conditioning
to get

Ew∼[0,1]n

[∑
S∋ĵ

αî,S + β ĵ

]
≥ âi ·

(
1− 1

e

)

as desired.

ACKNOWLEDGMENT

The authors are grateful for the ACORN workshop
held at Georgia Tech in 2023, which facilitated this
collaboration.

REFERENCES

[1] R. M. Karp, U. V. Vazirani, and V. V. Vazirani, “An optimal
algorithm for on-line bipartite matching,” in Proceedings of the
22nd Annual ACM Symposium on Theory of Computing, May 13-
17, 1990, Baltimore, Maryland, USA. ACM, 1990, pp. 352–358.
1, 6

[2] A. Mehta, A. Saberi, U. V. Vazirani, and V. V. Vazirani,
“Adwords and generalized online matching,” J. ACM, vol. 54,
no. 5, p. 22, 2007. [Online]. Available: https://doi.org/10.1145/
1284320.1284321 1, 2, 3, 4

[3] J. Feldman, N. Korula, V. S. Mirrokni, S. Muthukrishnan,
and M. Pál, “Online ad assignment with free disposal,” in
Internet and Network Economics, 5th International Workshop,
WINE 2009, Rome, Italy, December 14-18, 2009. Proceedings,
ser. Lecture Notes in Computer Science, S. Leonardi, Ed.,
vol. 5929. Springer, 2009, pp. 374–385. [Online]. Available:
https://doi.org/10.1007/978-3-642-10841-9 34 2, 3, 4

[4] G. Aggarwal, G. Goel, C. Karande, and A. Mehta, “Online
vertex-weighted bipartite matching and single-bid budgeted
allocations,” in Proceedings of the Twenty-Second Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2011, San
Francisco, California, USA, January 23-25, 2011, D. Randall,
Ed. SIAM, 2011, pp. 1253–1264. [Online]. Available:
https://doi.org/10.1137/1.9781611973082.95 2, 6

[5] C. Chekuri, A. B. G. Christiansen, J. Holm, I. van der Hoog,
K. Quanrud, E. Rotenberg, and C. Schwiegelshohn, “Adaptive
out-orientations with applications,” CoRR, vol. abs/2310.18146,
2023. [Online]. Available: https://doi.org/10.48550/arXiv.2310.
18146 2

[6] A. B. G. Christiansen and E. Rotenberg, “Fully-dynamic
α + 2 arboricity decompositions and implicit colouring,”
in 49th International Colloquium on Automata, Languages,
and Programming, ICALP 2022, July 4-8, 2022, Paris,
France, ser. LIPIcs, M. Bojanczyk, E. Merelli, and D. P.
Woodruff, Eds., vol. 229. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2022, pp. 42:1–42:20. [Online]. Available:
https://doi.org/10.4230/LIPIcs.ICALP.2022.42 2

[7] M. Chowdhury and I. Stoica, “Coflow: a networking abstraction
for cluster applications,” in 11th ACM Workshop on Hot
Topics in Networks, HotNets-XI, Redmond, WA, USA - October
29 - 30, 2012, S. Kandula, J. Padhye, E. G. Sirer, and
R. Govindan, Eds. ACM, 2012, pp. 31–36. [Online]. Available:
https://doi.org/10.1145/2390231.2390237 2

[8] H. Jahanjou, E. Kantor, and R. Rajaraman, “Asymptotically
optimal approximation algorithms for coflow scheduling,” in
Proceedings of the 29th ACM Symposium on Parallelism
in Algorithms and Architectures, SPAA 2017, Washington
DC, USA, July 24-26, 2017, C. Scheideler and M. T.
Hajiaghayi, Eds. ACM, 2017, pp. 45–54. [Online]. Available:
https://doi.org/10.1145/3087556.3087567 2

[9] S. Im, B. Moseley, K. Pruhs, and M. Purohit, “Matroid coflow
scheduling,” in 46th International Colloquium on Automata,
Languages, and Programming, ICALP 2019, July 9-12, 2019,
Patras, Greece, ser. LIPIcs, C. Baier, I. Chatzigiannakis,
P. Flocchini, and S. Leonardi, Eds., vol. 132. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2019, pp. 145:1–145:14.
[Online]. Available: https://doi.org/10.4230/LIPIcs.ICALP.2019.
145 2

310

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 18,2024 at 05:58:30 UTC from IEEE Xplore. Restrictions apply.

[10] U. Feige, Tighter Bounds for Online Bipartite Matching. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2019, pp. 235–255.
[Online]. Available: https://doi.org/10.1007/978-3-662-59204-5
7 3

[11] Z. Huang, Q. Zhang, and Y. Zhang, “Adwords in a panorama,” in
2020 IEEE 61st Annual Symposium on Foundations of Computer
Science (FOCS). IEEE, 2020, pp. 1416–1426. 4

[12] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák, “Maximizing a
monotone submodular function subject to a matroid constraint,”
SIAM Journal on Computing, vol. 40, no. 6, pp. 1740–1766,
2011. 4, 6

[13] M. Kapralov, I. Post, and J. Vondrák, “Online submodular
welfare maximization: Greedy is optimal,” in Proceedings of
the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2013, New Orleans, Louisiana, USA, January
6-8, 2013, S. Khanna, Ed. SIAM, 2013, pp. 1216–1225.
[Online]. Available: https://doi.org/10.1137/1.9781611973105.88
4

[14] B. Kalyanasundaram and K. Pruhs, “An optimal deterministic
algorithm for online b-matching,” Theor. Comput. Sci., vol.
233, no. 1-2, pp. 319–325, 2000. [Online]. Available: https:
//doi.org/10.1016/S0304-3975(99)00140-1 4

[15] H. Narayanan, “The principal lattice of partitions of a
submodular function,” Linear Algebra and its Applications,
vol. 144, pp. 179–216, 1991. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/002437959190070D 5, 7

[16] S. Fujishige, “Theory of principal partitions revisited,” in
Research Trends in Combinatorial Optimization, Bonn Workshop
on Combinatorial Optimization, November 3-7, 2008, Bonn,
Germany, W. J. Cook, L. Lovász, and J. Vygen, Eds.
Springer, 2008, pp. 127–162. [Online]. Available: https:
//doi.org/10.1007/978-3-540-76796-1 7 5, 7

[17] K. Jain and V. V. Vazirani, “Eisenberg-gale markets: Algorithms
and game-theoretic properties,” Games Econ. Behav., vol. 70,
no. 1, pp. 84–106, 2010. [Online]. Available: https://doi.org/10.
1016/j.geb.2008.11.011 5, 9

[18] N. Nisan, T. Roughgarden, É. Tardos, and V. V. Vazirani, Eds.,
Algorithmic Game Theory. Cambridge University Press, 2007.
[Online]. Available: https://doi.org/10.1017/CBO9780511800481
5

[19] N. R. Devanur, K. Jain, and R. D. Kleinberg, “Randomized
primal-dual analysis of ranking for online bipartite matching,” in
Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium
on Discrete Algorithms, ser. SODA ’13. USA: Society for
Industrial and Applied Mathematics, 2013, p. 101–107. 5, 6

[20] S. Albers and S. Schubert, “Optimal algorithms for online
b-matching with variable vertex capacities,” in Approximation,
Randomization, and Combinatorial Optimization. Algorithms
and Techniques, APPROX/RANDOM 2021, August 16-18,
2021, University of Washington, Seattle, Washington, USA
(Virtual Conference), ser. LIPIcs, M. Wootters and L. Sanità,
Eds., vol. 207. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021, pp. 2:1–2:18. [Online]. Available: https:
//doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.2 6

[21] N. Buchbinder, J. S. Naor, and D. Wajc, “Lossless online
rounding for online bipartite matching (despite its impossibility),”
in Proceedings of the 2023 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023,
N. Bansal and V. Nagarajan, Eds. SIAM, 2023, pp. 2030–2068.
[Online]. Available: https://doi.org/10.1137/1.9781611977554.
ch78 6

[22] M. Fahrbach, Z. Huang, R. Tao, and M. Zadimoghaddam,
“Edge-weighted online bipartite matching,” in 61st IEEE
Annual Symposium on Foundations of Computer Science,
FOCS 2020, Durham, NC, USA, November 16-19, 2020,
S. Irani, Ed. IEEE, 2020, pp. 412–423. [Online]. Available:
https://doi.org/10.1109/FOCS46700.2020.00046 6

[23] Y. Shin and H. An, “Making three out of two: Three-way
online correlated selection,” in 32nd International Symposium
on Algorithms and Computation, ISAAC 2021, December 6-8,
2021, Fukuoka, Japan, ser. LIPIcs, H. Ahn and K. Sadakane,
Eds., vol. 212. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021, pp. 49:1–49:17. [Online]. Available: https:
//doi.org/10.4230/LIPIcs.ISAAC.2021.49 6

[24] R. Gao, Z. He, Z. Huang, Z. Nie, B. Yuan, and Y. Zhong,
“Improved online correlated selection,” in 62nd IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2021,
Denver, CO, USA, February 7-10, 2022. IEEE, 2021, pp. 1265–
1276. [Online]. Available: https://doi.org/10.1109/FOCS52979.
2021.00123 6

[25] G. Blanc and M. Charikar, “Multiway online correlated
selection,” in 62nd IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2021, Denver, CO, USA, February
7-10, 2022. IEEE, 2021, pp. 1277–1284. [Online]. Available:
https://doi.org/10.1109/FOCS52979.2021.00124 6

[26] C. H. Papadimitriou, T. Pollner, A. Saberi, and D. Wajc,
“Online stochastic max-weight bipartite matching: Beyond
prophet inequalities,” in EC ’21: The 22nd ACM Conference on
Economics and Computation, Budapest, Hungary, July 18-23,
2021, P. Biró, S. Chawla, and F. Echenique, Eds. ACM,
2021, pp. 763–764. [Online]. Available: https://doi.org/10.1145/
3465456.3467613 6

[27] J. Feldman, A. Mehta, V. Mirrokni, and S. Muthukrishnan,
“Online stochastic matching: Beating 1-1/e,” in Proceedings
of the 2009 50th Annual IEEE Symposium on Foundations
of Computer Science, ser. FOCS ’09. USA: IEEE Computer
Society, 2009, p. 117–126. [Online]. Available: https://doi.org/
10.1109/FOCS.2009.72 6

[28] Z. Huang, X. Shu, and S. Yan, “The power of multiple choices
in online stochastic matching,” in Proceedings of the 54th
Annual ACM SIGACT Symposium on Theory of Computing,
ser. STOC 2022. New York, NY, USA: Association for
Computing Machinery, 2022, p. 91–103. [Online]. Available:
https://doi.org/10.1145/3519935.3520046 6

[29] S. Yan, “Edge-weighted online stochastic
matching: Beating ¡inline-graphic type=”simple”
href=”1.9781611977912.165.image.inline1.gif”
medium=”1.9781611977912.165.image.inline1.gif”¿¡/inline-
graphic¿,” in Proceedings of the 2024 Annual
ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2024, pp. 4631–4640. [Online]. Available:
https://epubs.siam.org/doi/abs/10.1137/1.9781611977912.165 6

[30] N. R. Devanur, Z. Huang, N. Korula, V. S. Mirrokni, and
Q. Yan, “Whole-page optimization and submodular welfare
maximization with online bidders,” ACM Trans. Economics
and Comput., vol. 4, no. 3, pp. 14:1–14:20, 2016. [Online].
Available: https://doi.org/10.1145/2892563 6

[31] Y. Wang and S. C.-w. Wong, “Matroid online bipartite matching
and vertex cover,” in Proceedings of the 2016 ACM Conference
on Economics and Computation, ser. EC ’16. New York, NY,
USA: Association for Computing Machinery, 2016, p. 437–454.
[Online]. Available: https://doi.org/10.1145/2940716.2940793 6

[32] H. Zhang and V. Conitzer, “Combinatorial ski rental and online
bipartite matching,” in Proceedings of the 21st ACM Conference
on Economics and Computation, ser. EC ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 879–910.
[Online]. Available: https://doi.org/10.1145/3391403.3399470 6

[33] A. Schrijver, Combinatorial optimization. Polyhedra and effi-
ciency. Vol. B, ser. Algorithms and Combinatorics. Springer-
Verlag, Berlin, 2003, vol. 24, matroids, trees, stable sets, Chapters
39–69. 6

[34] G. P. Guruganesh and S. Singla, “Online matroid intersection:
Beating half for random arrival,” in Integer Programming and
Combinatorial Optimization, F. Eisenbrand and J. Koenemann,

311

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 18,2024 at 05:58:30 UTC from IEEE Xplore. Restrictions apply.

Eds. Cham: Springer International Publishing, 2017, pp. 241–
253. 6

[35] C. Huang and F. Sellier, “Robust sparsification for matroid
intersection with applications,” CoRR, vol. abs/2310.16827, 2023.
[Online]. Available: https://doi.org/10.48550/arXiv.2310.16827 6,
7

[36] N. Buchbinder, A. Gupta, D. Hathcock, A. R. Karlin,
and S. Sarkar, “Maintaining matroid intersections online,”
CoRR, vol. abs/2309.10214, 2023. [Online]. Available: https:
//doi.org/10.48550/arXiv.2309.10214 6

[37] U. Feige, “A threshold of ln n for approximating set cover,”
Journal of the ACM, vol. 45, no. 4, pp. 634–652, 1998. [Online].
Available: https://doi.org/10.1145/285055.285059 6

[38] V. Viswanathan and Y. Zick, “A general framework for fair
allocation under matroid rank valuations,” in Proceedings of
the 24th ACM Conference on Economics and Computation, EC
2023, London, United Kingdom, July 9-12, 2023, K. Leyton-
Brown, J. D. Hartline, and L. Samuelson, Eds. ACM, 2023,
pp. 1129–1152. [Online]. Available: https://doi.org/10.1145/
3580507.3597675 6

[39] A. Dror, M. Feldman, and E. Segal-Halevi, “On fair division
under heterogeneous matroid constraints,” Journal of Artificial
Intelligence Research, vol. 76, pp. 567–611, 2023. 6

[40] N. Benabbou, M. Chakraborty, A. Igarashi, and Y. Zick, “Finding
fair and efficient allocations for matroid rank valuations,” ACM
Transactions on Economics and Computation, vol. 9, no. 4, pp.
1–41, 2021. 6

[41] M. Babaioff, T. Ezra, and U. Feige, “Fair and truthful
mechanisms for dichotomous valuations,” in Thirty-Fifth AAAI
Conference on Artificial Intelligence, AAAI 2021. AAAI Press,
2021, pp. 5119–5126. [Online]. Available: https://doi.org/10.
1609/aaai.v35i6.16647 7

[42] S. Barman and P. Verma, “Truthful and fair mechanisms
for matroid-rank valuations,” in Thirty-Sixth AAAI Conference
on Artificial Intelligence, AAAI 2022. AAAI Press, 2022,
pp. 4801–4808. [Online]. Available: https://doi.org/10.1609/aaai.
v36i5.20407 7

[43] J. A. Soto, “Matroid secretary problem in the random-assignment
model,” SIAM J. Comput., vol. 42, no. 1, pp. 178–211, 2013.
[Online]. Available: https://doi.org/10.1137/110852061 7

[44] K. Chandrasekaran and W. Wang, “Approximating submodular
k-partition via principal partition sequence,” in Approximation,
Randomization, and Combinatorial Optimization. Algorithms
and Techniques, APPROX/RANDOM 2023, September 11-13,
2023, Atlanta, Georgia, USA, ser. LIPIcs, N. Megow and
A. D. Smith, Eds., vol. 275. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2023, pp. 3:1–3:16. [Online]. Available:
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.3 7

[45] B. Birnbaum and C. Mathieu, “On-line bipartite matching made
simple,” Acm Sigact News, vol. 39, no. 1, pp. 80–87, 2008. 14

APPENDIX

Laminar AdWords as a Case of Online SAP
In the AdWords problem, we have bidders known

offline. Impressions j arrive online; bidder i bids bij
dollars for this impression. Each bidder i has budget
Bi. When an impression arrives, we must irrevocably
allocate it to a bidder who may afford it. Our goal
is to maximize revenue. Written in terms of an linear

program,

max
∑
ij∈E

bijxij

s.t
∑
j

bijxij ≤ Bi for all bidders i∑
i

xij ≤ 1 for all impressions j

x ≥ 0.

In the laminar setting, we account for a laminar
family L of budget constraints on the bidders. Formally
speaking, L is a laminar family over edges E, and each
set S ∈ L has a budget constraint of BS . The laminar
AdWords linear program is

max
∑
ij

bijxij

s.t
∑
ij∈S

bijxij ≤ BS for all S ∈ L∑
i

xij ≤ 1 for all impressions j

x ≥ 0.

We will show a single monotone submodular function
f which captures these constraints.

Theorem A.1. Laminar AdWords may be captured as a
case of online SAP.

Proof. Let

f(S) := min

{∑
T∈S

BT : S ⊆ L covers S

}
.

In other words, f(S) is the most restricted budget
constraint on S imposed by L. A solution satisfying the
submodular assignment problem with f clearly satisfies
the laminar AdWords linear program. A solution to
laminar AdWords linear program will also satisfy the
submodular assignment problem with f ; this follows
from the fact that a minimizing sub-family S achieving
f(S) will be disjoint sets.

We move on to showing f is monotone and submod-
ular. The former property is follows from definition. So
it remains to show f is submodular. Take S, T ⊆ E. We
will show

f(S ∪ T) ≤ f(S) + f(T)− f(S ∩ T).

Say S and T are realized by covers S and T respectively.
Then, S ∪T (here, we allow the union family to contain

312

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 18,2024 at 05:58:30 UTC from IEEE Xplore. Restrictions apply.

duplicate sets) is clearly a cover for S ∪ T . We will
show a sub-family N ⊆ S ∪ T which covers S ∩ T and
moreover, S ∪ T \N is still a cover for S ∪ T . Proving
this, we are left with

f(S ∪ T) ≤ budget of (S ∪ T \ N)

= f(S) + f(T)− budget of (N)

≤ f(S) + f(T)− f(S ∩ T).

So, it remains to find a set N satisfying (1) N covers
S ∩ T and (2) S ∪ T \ N is still a cover for S ∪ T .
Let N be a collection of lowest level9 sets which covers
S ∩ T . Clearly (1) is satisfied with this definition of N .
To see (2), note that elements in S ∩T must be covered
twice in the family S∪T . Therefore, for any set A ∈ N ,
there exists a set B ∈ S ∪ T covering A. This implies
removing N from S ∪T still leaves us with a cover for
S ∪ T .

9The laminar family is partially ordered inclusion wise, where a set
A is lower than B if A ⊆ B.

313

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 18,2024 at 05:58:30 UTC from IEEE Xplore. Restrictions apply.

