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ARTICLE INFO ABSTRACT

Keywords: Equivalent circuit models (ECMs) that capture low-order dynamics in drop formation are conducive to the
Inkjet printing integration of advanced control algorithms to enhance inkjet printing performance and the optimization of
Hybrid modeling printhead design. However, the pinch-off of a drop from the nozzle transforms the continuous drop growth

Equivalent circuits
Monte Carlo simulation
Parameter identification

into a discrete event, where variations in drop characteristics are observed practically. To address this modeling
discrepancy, this paper introduces a hybrid modeling framework that integrates continuous ECMs with data-
driven adjusters. 3"-order ECMs are developed and validated to simulate the continuous drop growth within
the nozzle, with parameters determined partially from sampled data and partially from prior knowledge
of nozzle geometries and ink rheological properties. Data-driven adjusters and pinch-off estimates are then
incorporated into ECM simulations to compensate for the variations occurring at the pinch-off, thereby
improving the estimation accuracy for in-flight drop volume and jetting velocity. Cross-validation of the
framework is performed using data from three different types of ink. Good agreement between simulations

and experiments confirms the efficacy of this end-to-end hybrid modeling framework.

1. Introduction

The ability to precisely pattern functional materials on the sub-
strate with predefined volume makes drop-on-demand (DoD) inkjet
printing a high-efficiency tool for drug delivery [1-3], electronics
fabrication [4,5], system functionalization [6,7] and 3D geometry con-
struction [8-10]. Commercial DoD inkjet printheads typically provide
users with several accessible control parameters to parameterize a
constrained firing waveform. By tuning these parameters, users can
regulate drop characteristics, such as drop volume and jetting veloc-
ity. Open-loop tuning has been widely adopted based on trial-and-
error methods [11-15], numerical simulations [16-18], experimental
data [19], wave propagation studies [20,21] and input—-output mod-
els [22-24]. However, process and system uncertainties, including
variations in nozzle size, supply pressure and temperature fluctuations,
and ink aging and inhomogeneities, present challenges when printing
in an open-loop manner. These uncertainties can significantly vary drop
characteristics, thereby compromising the geometry and functionality
of print products. Kamal et al. [4] and Trondle et al. [9] reported
high relative standard deviations (RSDs) in drop volume when printing
electro-optic materials and bioinks, respectively. Empirical results also
demonstrated notable spreads in drop volume and jetting velocity
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from printhead to printhead [25] and over time [26], even with well-
tuned control parameters and the same material. To address these
challenges, online parameter tuning algorithms or closed-loop con-
trol strategies have been developed by leveraging drop characteristics
measured from vision systems [26-31]. When applying model-based
tuning and control strategies, a high-fidelity model of drop formation
— specifically, the formation of in-flight drop volume and drop jetting
velocity — is required. It can provide insights into the relationship
between manufacturer-provided control parameters and drop charac-
teristics while facilitating integration with advanced control algorithms
to ensure precise and robust printing processes.

First-principle-based models of drop formation in DoD inkjet print-
ing have been developed over several decades. Fromm [32] pioneered
the use of two-dimensional axisymmetric Navier-Stokes equations to
investigate drop formation under different ink properties and pressure
inputs. Xu et al. [33] numerically solved continuity and Navier—Stokes
equations to explore the effect of ink properties and flow inputs with
various driving frequencies on drop dynamics. By assuming axially-
dependent fluid motion within the nozzle, one-dimensional models
were proposed to examine drop characteristics under uncertainties,
such as air bubble [34] and variations in nozzle diameter [35].
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Fig. 1. Schematic of the printing system.

Equivalent circuit models (ECMs) have also been applied to discuss
fluid behaviors regarding firing waveforms and printhead configura-
tions [36-39]. Given that the characteristic dimension of a nozzle (in
pm) is typically much smaller than the governing acoustic wavelength
(in m) at hundreds or thousands of jetting frequencies, spatial and
temporal variations of the fluid flow within the nozzle can be assumed
to be decoupled. This enables the characterization of fluid motion
using lumped elements [40]. By analogy, the lumped fluid elements
and mechanical entities of the printhead can be represented by their
electrical equivalents. In turn, the low-frequency dynamics of fluid flow
within the nozzle can be effectively analyzed using an appropriately
derived equivalent circuit model.

In recent years, data-driven approaches have been applied to pre-
dict drop characteristics, including regressions [26,29,30], neural net-
works [27,41-43], and other machine learning algorithms [44-47].
These models effectively map drop characteristics/output onto acces-
sible control parameters/input, which can be readily synthesized for
control design.

To address discrepancies between first-principles model predictions
and actual system behaviors, hybrid models are proposed in additive
manufacturing, where empirical data are incorporated to determine
appropriate model structure and refine model prediction [48-51]. By
integrating physical and mechanistic insights with data-driven adjust-
ments, these hybrid models capture fundamental system behaviors and
provide more accurate predictions under varying operating conditions.

In DoD inkjet printing, ECMs offer an efficient approach to capturing
the growth of drop volume and velocity in the nozzle by providing
insights into essential system dynamics beyond the processed data
while minimizing computational load. However, accurately estimating
in-flight drop volume and jetting velocity requires addressing dis-
crepancies in drop characteristics at pinch-off, which are observed
empirically in Fig. 6 and reported in [52-54]. These variations can
be attributed to factors such as wetting properties at the nozzle tip
and complex dynamics of the drop pinch-off [55-57], for which, to the
best of the authors’ knowledge, no relevant dynamic model is found in
the literature. To resolve this modeling discrepancy, based on a data-
driven modeling framework proposed by Wang and Chiu [52], in this
study, we introduce physics-informed hybrid models for characterizing
in-flight drop volume and jetting velocity in DoD inkjet printing. This
hybrid modeling framework consists of two integral components: con-
tinuous ECMs and data-driven adjusters. The ECMs model drop growth
within the nozzle before pinch-off, with parameters partially derived
from historical data and partially informed by prior knowledge of noz-
zle geometries and ink rheological properties. They provide essential
physical insights into drop formation, such as bandwidth and dynamics.
The adjusters then complement the ECM simulations to account for the
discrepancies at drop pinch-off. Through experimental validation with

three different inks, the hybrid models demonstrate high accuracy in
estimating in-flight drop volume and jetting velocity.

The remainder of this paper is organized as follows. An inkjet
printing platform is introduced in Section 2, followed by the devel-
opment of hybrid models. Section 4 covers data collection, as well as
the evaluation and identification of these models. Model validation is
presented in Section 5. Finally, Section 6 concludes the paper.

2. Printing system

As introduced in [26,29,30], the printhead in this study is a com-
mercial squeeze-mode printhead (BioFluidix PipeJet P9, Freiburg, Ger-
many) as shown in Fig. 1. The nozzle is a disposable pipe clamped
between two guide plates. Fig. 2 illustrates the working mechanism
of this printhead. The movement of a piezostack-driven piston governs
the pipe deformation, where a rapid piston stroke expels an amount
of ink out of the nozzle as a single drop within one firing cycle. The
piston displacement u(r) throughout a complete firing cycle follows a
trapezoidal waveform, see Fig. 2, which is parameterized by stroke
velocity u;, piston stroke u,, instroke velocity u3;, and stroke holding
time ¢, . The piece-wise function of the constrained waveform can be
written as,

u; Xt OSISZ—27
1
uy 2Lt < 2 gty
ult,uy, up, Uz, ty) = o “ @

u2—u3><(t—(:—? +15) Z—? +itg <t<

u uy

f g+
where u; and u, are the user-accessible control parameters, and 7 is the
time. The printhead is capable of firing drop volume up to 70 n/ at a
frequency up to hundreds of hertz with a 200-pm inner diameter nozzle.

In the printing platform, an imaging system comprising a strobe LED

and a monochrome camera with a 1X telecentric lens is integrated to
monitor drop behaviors. It has a resolution of 1.3 megapixels with a
pixel size of 4.73 pm. A syringe pump is PID-controlled to regulate
the back pressure at the reservoir. A trigger signal synchronizes the
printhead, camera, and strobe LED through a myRIO FPGA (National
Instruments).

3. Hybrid modeling strategy

A physics-informed hybrid modeling framework is introduced in
this section to characterize the formation of a drop from its contin-
uous growth within the nozzle to pinch-off, as illustrated in Fig. 3.
Physics-based ECMs are developed to approximate the growing drop
volume and flow rate. To address discrepancies in drop characteristics
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Fig. 2. Formation of a drop regarding piston displacements, represented by a parameterized firing waveform.
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Fig. 3. Hybrid modeling framework of drop formation.

at pinch-off and improve estimations of in-flight drop volume and
jetting velocity, volume and velocity adjusters are proposed to adjust
the ECM-simulated results. Two user-adjustable control parameters
(uy,u,) define the firing waveform, which is the input to ECMs, and
approximate the pinch-off instant.

3.1. Equivalent circuit model

The nozzle is considered to be rigid to the fluid flow, with the
motion of a piston causing two distinct fluid flows as shown in Fig. 2.
One flow is directed towards the open end for drop formation while the
other moves towards the reservoir. Given that the nozzle diameter, the
dominant characteristic dimension, is much smaller than the acoustic
wavelength at jetting frequencies of a few hundred hertz, the lumped
elements can effectively describe the fluid motion within the nozzle.
The speed of fluid flow in the nozzle is notably slower than the acoustic
speed in the fluid, and the Reynolds number associated with the pipe
flow is low. Thus, it is reasonable to assume that the fluid flow within
the nozzle is incompressible, laminar, and fully developed [58]. An
equivalent circuit model can be constructed by employing analogies
between fluid properties and their electrical equivalents [59], as shown
in Fig. 4.

According to the hydraulic-electric analogy, a pressure drop is
analogous to a voltage drop, the volumetric flow rate to the electric
current, and the hydraulic resistance to the electric resistance [59].
Hydraulic resistance R and inertance L are defined as
R= 8—’;{ and L= 2 !

x 72 @
where / is the length of the pipe with a radius r,  is the fluid viscosity,
and p is the fluid density.

L, and R, in Fig. 4 denote the mechanical inductance and loss,
respectively, associated with the piston motion. The transformer rep-
resents the transfer from mechanical motion to fluid motion. A com-
pliance ratio K, relates the piston displacement u(r) in Eq. (1) with
the effective pressure V, caused by piston force onto the fluid. Iy and
I represent the two flows resulting from piston motion towards the

—

b 31, 3Ly
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Fig. 4. Equivalent circuit model of the nozzle.

open end and the reservoir, respectively. (Ly,Ry) and (Lg, Rg) are
the fluid inertance and resistance towards the nozzle open end and
the reservoir, respectively. To account for the effect of pressure on
volume change at the meniscus, a compliance Cy is incorporated in
the model. Compliance at the reservoir end is neglected, given the
negligible volume change to the formation of a drop.

By assuming all R's, L's and Cy are time-invariant, the following
relations are obtained based on Kirchhoff’s laws and Ohm’s law,
I, =1y +Ip,

LyTy +RNIN+C1—N/Ith=LRI'R+RRIR, 3
Vy=L,I,+R,I, and

I,=-1

ar

Solving the flow rate Iy in Eq. (3) for the input V|, replacing V;

with equivalent displacement K, u, and converting the result to Laplace

domain with an assumption of zero initial conditions, then it comes to
Bys + B

D 2 4

Ajs® + Apst + As+ Ay

In(s) = 7Y (s) = sU(s),
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where

Ay =CyLyL,+CyLgL,,

Ay =CyL,Rg+CyL,Ry +CyLyR,+CyxLgR,,
A =CyNRgR,+CyRyR, + L,

Ay=R,, By = K.CyLg, and By = K.CyRp.

()

The negative sign denotes the flow direction towards the nozzle end.
vael (s) is the Laplace transform of average fluid velocity y;d ).
The growing volume yZ”l (1) in Laplace domain can be represented
by,
Bys+ B
A+ Ays? + Aps + Ay

Dol 1
Y, I(s) = EIN(s) = U(s). (6)
Egs. (4) and (6) present 3rd -order models of the growing aver-
age velocity and drop volume, respectively, influenced by the firing
waveform.

3.2. Data-driven models of pinch-off instant and adjusters

As discussed earlier, there are no dynamic models found in the
literature that accurately represent variations in drop volume and
jetting velocity at pinch-off. Similar to the approach in [52], this
paper proposes data-driven approximations for pinch-off instant and
adjustments for drop volume and velocity. These models adjust the
results from the continuous ECMs for more accurate estimations of
discrete in-flight drop volume and jetting velocity.

To establish an explicit correlation between input and output vari-
ables, polynomials of accessible control parameters (u;, u,) are pro-
posed as candidates for modeling the pinch-off instant k, and volume
and velocity adjusters (2%, yo¢'),

2
z(uy, uy) = pog + Proly + Po, Uy + Prolt] + Py Uty

2 -1
+ Pots e Py o+ Dyt Uy @)

ny—1 n
+ . +pl‘nz_1u|uz2 +p0’n2u22,
where p; ; represents the coefficient, i = 0,1,...,n; and j = 0,1,...,n,,
while n; and n, denote the orders for u; and u,, respectively.

3.3. Hybrid modeling framework

By concatenating ECMs and adjusters as depicted in Fig. 3, a hybrid
modeling framework is constructed,

vol

¥y, up) = B ,] = Vp kst ty) + Yoty ). (8)

In Eq. (8), y* and y'¢ are the in-flight drop volume and jetting
velocity, respectively. y,(k,.uj,u;) = [y;"”, y;'e’]T, where y;"” is the
grown drop volume achieved by simulating Eq. (6) at the pinch-off
instant k, and yze’ represents the average fluid velocity achieved by
Eq. (4). ye(up.up) = [y2', y*]T is the volume and velocity adjustments.
Eq. (8) suggests that the discrete in-flight drop volume y** and drop
jetting velocity y“¢ can be projected onto the two user-adjustable
control parameters (u;, u,) of a firing waveform.

4. Model evaluation and identification

During printhead-ink calibration practice, experimental data are
collected and processed. These data can be used to evaluate the struc-
ture of the developed ECMs and identify their unknown parameters. Ad-
ditionally, these data allow for determining the appropriate polynomial
orders for modeling the pinch-off instant and adjusters.

Additive Manufacturing 97 (2025) 104596

Table 1

List of ink properties and experimental parameters.
Name DI Water Color Ink GW Mixture
Density (g/cm?) 1.002 0.993 1.158
Viscosity (mPa s) 1.07 2.21 9.53
Surface Tension (mN/m) 73.24 28.72 67.87
Back Pressure (Pa) 0 —400 -100
Stroke Velocity u; Range (pm/ms) 60-75 50-80 70-100
Stroke Velocity u, Increment (pm/ms) 1.25 5 2.5
Stroke u, Range (pm) 20-35 20-35 25-35
Stroke u, Increment (pm) 1.25 1.25 1.25

4.1. Experimental setup and data collection

Three inks were tested with the PipeJet printhead: deionized (DI)
water, pigmented color ink, and glycerol-water (GW) mixture com-
posed of 60 wt% glycerol and 40 wt% DI water, see Table 1. They
represent densities, viscosities, and surface tensions widely used in
DoD inkjet printing. Following the printhead-ink calibration procedure
detailed in [29], a set of experiments was conducted in printable
regions defined by control parameters u; and u, as shown in Table 1
without exhibiting abnormal jetting behaviors such as satellite drops
and unstable tails. More than two hundred drops were jetted at each
combination of control parameters (u;, u,). These drops were sequen-
tially imaged at strobe intervals of 10 us from the initialization of a
drop firing trigger until the instant when a drop exited the field of view.

4.1.1. Data of volume and velocity

Fig. 5 shows several drop images at different strobe delays with
respect to the initialization of a firing trigger. Meniscus is initially
formed at the nozzle tip, see Fig. 5a. After the printhead receives a
firing waveform signal, drop volume continues growing until a neck
appears and shrinks as shown in Fig. 5b-f. Shortly after 1000 us, a
distinct drop is pinched off from the nozzle tip, see Fig. 5g.

In-flight drop volumes and jetting velocities are estimated using the
methods detailed in [29]. By assuming that the nozzle and meniscus
are rotationally symmetric to the axis of symmetry, the growing drop
volume before pinch-off can be calculated by subtracting the initial
meniscus volume in Fig. 5a from the following estimates. The average
flow velocity is approximated by dividing the drop volume growth rate
by the nozzle’s cross-sectional area.

Figs. 6(a) and 6(b) show drop volumes and velocities of color ink for
seven firing waveforms with the same stroke velocity u; and different
strokes u,. Solid color lines are the firing waveforms. Color circles
represent the sampled volumes and average velocities, respectively.
Filled color circles with error bars at the end denote the means and
standard deviations of in-flight drop volumes and jetting velocities. The
waveforms are delayed by 220 ps from the initialization of a drop firing
trigger for comparison. Fig. 6(a) shows that after an approximately
220 ps delay, drop volume shows linear growth until reaching its
maximum. Piston retraction decelerates volume growth afterward by
pulling the volume back until a certain amount of volume is pinched off
from the nozzle tip, forming a distinct characteristic drop. The results
in Fig. 6(a) reveal that the in-flight drop volumes are larger than the
drop volumes grown right before the pinch-off. Fig. 6(a) also highlights
a proportional correlation between drop volume and stroke u,.

Drop formation of color ink under firing waveforms with a constant
stroke u, and four different stroke velocities u; is illustrated in Figs. 6(c)
and 6(d). In Fig. 6(c), it is observed that after 220 ps, drop volume grows
at a rate proportional to the stroke velocity u; until it reaches the max-
imum before decaying to pinch-off. Volume differences at the pinch-off
are more intricate. At higher u,, the pinch-off location is closer to the
nozzle end, resulting in a larger in-flight drop due to the inclusion of
additional meniscus volume. Conversely, with lower flow forwarding
momentum, the pinch-off occurs further away from the nozzle, leaving
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from the initialization of a drop firing trigger for comparison.

a portion of the grown volume to remain at the meniscus and resulting
in a smaller volume being pinched off. The results in Figs. 6(c) and 6(d)
also suggest that stroke velocity u; primarily influences drop jetting
velocity and has less degree of control over drop volume.

In Figs. 6(b) and 6(d), it is noteworthy that the drop jetting veloc-
ity is closely related to the average fluid velocity that occurs at the
maximum stroke of the piston. This suggests that in-flight drops pre-
serve a considerable portion of the kinetic energy from piston motion.
Similar drop formation characteristics are observed with other inks and
operating conditions.

4.1.2. Data of pinch-off instant and differences in volume and velocity
Based on the data illustrated in Fig. 6, the dataset of pinch-off
instants at control parameter pairs (u;, u,) is processed by identifying
the moment when a drop separates from the meniscus in the drop
image. The volume difference at pinch-off is computed by subtracting
the grown drop volume right before pinch-off from the in-flight drop
volume. The velocity variation is determined by subtracting the average

fluid velocity occurring at the maximum stroke from the drop jetting
velocity.

4.2. Evaluation of equivalent circuit models

As shown in Egs. (4) and (6), third-order models with lumped
physical properties are proposed to represent the growing drop charac-
teristics before pinch-off. Data collected at each combination of control
parameters (u;, u,) can be used to evaluate the structure of the derived
ECM.

Given that drop volumes are collected every ¢, = 10 ps, the fir-
ing waveform presented in Eq. (1) is discretized accordingly with
factory-preset values of u; =2 pm/ms and ¢, = 20 ps, as follows,

uy X kit 0<k< 2
1 s upty’
ek u, “uzr <k§uui +2, 9
= 1ts 1%s
up(k, kp,uy,uy) Uy — 2% (k — (22 +2))1 Lo k<k ©
2 ut S upt i

Not applicable k, <k,
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Table 2 Table 3
Statistics of strictly proper ARX models at n, =22 for color ink. Identified parameters from datasets of color ink.
n, n, Training Data Validation Data K. (x1077) R,(x10712) L, (x1071%) Cy (x10720)
2 2 4 4 4 2
RMSE (nl)  Fit Percent (%) RMSE (nl) Fit Percent (%) (kg/ (m* 5°)) (kg/(m* 5)) (kg/m*) ((m* s?)/kg)
5 1 1.73 775 171 77.4 Mean -6.77 14.02 4.01 1.11
3 1 1.43 81.2 1.42 81.1 EB* 0.082 0.056 0.016 0.004
4 1 1.43 81.2 1.42 81.1 X - N - -
5 1 1.44 81.1 1.43 81.0 EB is the error bound of a 95% confidence interval.
6 1 1.44 81.1 1.43 81.0
7 1 1.44 81.2 1.42 81.0
2 ot Pt o where ¢ = [=p2y2(1), —pyi' ).~y —pu(t), —u(n] and 6 =
. . . . . .
5 9 0.63 02.1 0.60 919 [A,/As, A/A;, Aog/As, By/A;, By/A;]". A difference operator, or a
6 2 0.59 92.6 0.56 92.5 delta operator [63], is then applied to approximate the differentiation.
7 2 0.57 92.8 0.55 92.7 Eq. (10) can be written as
4 3 0.68 91.4 0.65 91.2
5 3 0.63 92.1 0.60 91.9 le”)”’(k) = T (k)0, 11
6 3 0.58 92.6 0.56 92.5
7 3 0.57 92.8 0.54 92.7 where o7 (k) = [y (k= 1), y2°/(k—2), y2°'(k—3), u(k—2), u(k—3)]. 0 is
5 4 0.63 92.1 0.60 91.9 A b 4 T4 p
6 4 058 92.7 0.56 92.5 9:[3—h—3,—3+2h—3—h2—%
7 4 0.56 92.9 0.54 92.8 A3 A3 Ay
A A A B B B
=22 422l o320 2L 22l 30 ] T
Ay A; Ay Az Az A;

where k denotes the sampling instant. k, represents the instant of a
drop pinched off from the nozzle, which also is the final moment that
piston motion influences the drop growth.

Similar to [52], a collection of ARX (Autoregressive with Extra
Input) models is constructed by varying the polynomial orders (n,, n;)
and delay n,. By using firing waveforms u,(k,k,,u;,u,) in Eq. (9) at
different pairs of control parameters (u,u,) (input data), associated
collected drop volumes y;”’ (k) (output data), and identified pinch-off
instants k,, 10-fold cross-validation is employed to evaluate the model
structure. Root mean square error (RMSE) and fit percent are used to
measure the quality of the ARX models [60].

Table 2 lists the results of several strictly proper ARX models
assessed with color ink data. Although higher-order ARX models have
a modest improvement in approximation accuracy, an ARX model
with n, = 3, n, = 2, and n, = 22 can achieve comparable RMSE
and fit percent metrics with a simpler structure. In turn, these results
confirm the efficiency of the third-order ECM proposed in Section 3.1
in modeling the drop growth within the nozzle and 220 ps input delay
shown in Fig. 6.

4.3. Parameter identification of equivalent circuit models

In the proposed ECM, hydraulic equivalents can be calculated using
Eq. (2), if the values of nozzle geometries and ink rheological properties
are known. Quantities, such as L,, R,, and K,, are not typically
included as specifications in commercial printheads. Calculation of
compliance C remains challenging due to complex interactions among
back pressure, surface tension, and the dynamic nature of the ink flow.
Alternatively, these parameters can be approximated from available
empirical data.

Identifying these physical properties from continuous-time models
is preferred due to their continuous representation of physical laws
in nature. Equivalent continuous-time models are achievable through
converting the identified ARX model in Section 4.2. However, there
exist technical difficulties in specifying the physical attributes from
these converted continuous-time models, such as mismatches of ze-
ros and sampling-rate dependence [61,62]. In this study, given the
validated ECM structure and calculated hydraulic equivalents, a least
squares method is employed to estimate L,, R,, K,, and Cy from the
derivative-approximated ECM.

A differentiation operator p = (%(-) is used to rewrite the resulting
equation after applying the inverse Laplace transform to Eq. (6),

Py =0, 10)

where 4 is the sampling subinterval.
By applying the final value theorem to Eq. (6) under a step input

with amplitude K, we have
B;s+ B K
lim y°°'(f) = lim s[ — ! 0 s
t—oo " P 5=0 A3+ Ays2+Ais+ Ay | s 12)
B, K,CyRpy
= _KssA_ = _Kss ER—
0 a

Eq. (12) suggests

vol

R

K, =l (13)

¢ _KSSCNRR’

where y;"“s’s is the steady-state volume achieved under a stroke of K.
By substituting Eq. (13) into 6, the parameters R,, L, and Cy can be

approximated by minimizing the objective function J,
N

7=+ 205w 516,
To enhance the estimation accuracy of ECMs for the grown drop volume
at pinch-off, ny’SIS and K used in the optimization above are the grown
volume at pinch-off from the experimental data and the corresponding
piston displacement. In turn, K, is computed with the approximated R,
and Cy through Eq. (13).

Table 3 presents the mean and error bound of a 95% confidence
interval for each parameter. With these values, the coefficients of ECMs
in Eq. (4) and (6) for the color ink are given by:

_ -25 _ —22
Ay = 10011028 Ay = 1542% 1072

— —13 — —12
Ay =401 107 Ay = 1402X 1070

— —19
B =270 1070 .

- -18
By =-9.49 x 10&4_59)(10_22),

14)

where subscripts are the error bounds of 95% confidence intervals.

Remark 1. As discussed in [61,62], pre-filtering schemes can be em-
ployed to address the bias on identified parameters resulting from
least squares, which is caused by measurement noise. No prefilters
are used in this work since the data are clean and informative in
presenting each complete drop-growing cycle, as seen in Figs. 6(a) and
6(c). Rather, influences of noise and process uncertainty during data
collection can be mitigated by averaging the parameters estimated from
various experimental datasets.
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Table 4
Statistics of polynomial models for pinch-off instants in color ink (instants are rounded
off to their nearest greater or equal integer).

Order Training Data Validation Data
RMSE (Instants) RMSE (Instants)

n=1n=1 7 7

n=1,n =2 7 7

n=1,n =3 7 7

n=2n=1 4 4

n =2,n =2 4 4

ng=2,n =3 4 4

Table 5

Statistics of polynomial models for drop volume adjustments in color ink.

Order Training Data Validation Data
RMSE (nl) RMSE (nl)
n=1n=1 1.02 0.91
n=1,n =2 1.03 0.91
no=1,n=3 1.04 0.86
no=2mn=1 1.03 0.92
n =2,n =2 1.03 0.93
no=2n=3 1.02 0.94

4.4. Evaluation and identification of models for pinch-off instant and ad-
Jjusters

Using the color ink data detailed in Section 4.1.2, regression and
10-fold cross-validation are employed to determine the appropriate
orders (n;, n,) for approximating pinch-off instants k, and adjusters
Yo = 2, y¢1T, as well as to estimate the model coefficients. RMSE
is utilized to evaluate these model candidates.

4.4.1. Pinch-off instants

The cross-validation results of several polynomials are shown in
Table 4. A linear model (n, = 1,n, = 1) can approximate an acceptable
pinch-off instant with a simpler structure. The identified model is

Ky, tty) = 163.1 1,154y — 140 o 17ytt1 + 1020103312 (15)

4.4.2. Adjusters of drop volume

Table 5 shows RMSEs of several polynomials used to model the
difference in drop volume, regarding training and validation data. A
linear model comes to a simple and satisfactory representation of the
drop volume adjuster y*°/(u;, u,),

Yy uy) = 0.16 (41 g7, + 0.014 0,001y + 0.0037 (10 0454 1- (16)

4.4.3. Adjusters of drop jetting velocity

In Table 6, RMSEs of several drop jetting velocity adjusters are
presented, which are trained and validated with color ink data, respec-
tively. A linear model can achieve a comparable RMSE with a simpler
structure compared to higher-order polynomials,

Yy ) = —0.155 0 300 + 0.0025 10,0034y 41 + 00008 40 007202-  (17)

5. Model validation

As outlined in Fig. 3, although continuous ECMs and data-driven
adjusters have been individually evaluated with their respective exper-
imental data, variability in the parameters of each model introduces
uncertainty into the hybrid framework, affecting the accuracy of in-
flight drop volume and jetting velocity estimations. To assess the
impact of these parameter uncertainties on the framework, Monte Carlo
simulations are performed.
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Table 6
Statistics of polynomial models for drop jetting velocity adjustments in color ink.

Order Training Data Validation Data
RMSE (m/s) RMSE (m/s)
n=1n =1 0.15 0.16
n=1,n =2 0.15 0.16
n=1n=3 0.16 0.16
no=2n=1 0.15 0.16
no=2,n =2 0.15 0.16
n =2,n =3 0.16 0.16

5.1. Simulation setup

Control parameters (u;, u,) are user-chosen to construct a firing
waveform through Eq. (9). With these control parameters, 10000 pinch-
off instants are estimated by combining 100 values randomly sampled
from the interval of the constant term with 10 values from the interval
of each coefficient of Eq. (15). To reduce the simulation load, the
pinch-off instant estimated by the nominal coefficients is employed to
truncate the firing waveform, which is the input to the ECMs.

With the truncated firing waveform, 10000 ECMs are simulated for
volume and velocity growth, respectively, where 10 values of each
of K., R,, L,, and Cy are randomly sampled from their respective
confidence intervals as listed in Table 3 and combined. Using the
control parameters, 10000 volume and jetting velocity adjustments are
also sampled by randomly drawing 100 values of the constant term
combined with 10 values of each coefficient from Egs. (16) and (17).
As specified in Eq. (8), in-flight drop volumes are estimated by adding
these 10000 volume adjustments to the grown drop volume at pinch-
off for each of the 10000 simulated ECM responses. Average velocities
of these 10000 responses occurring at the maximum stroke of the
truncated firing waveform are identified, each of which is subsequently
compensated by the 10000 velocity adjustments to estimate the drop
jetting velocity.

5.2. Validation with data of color ink

Following the procedure outlined in Section 4.1, drop volumes and
velocities of color ink at control parameters (u; = 70 pm/ms, u, =
25 pm) are collected and used to validate the framework. In Figs. 7(a)
and 7(b), the responses of ECMs with nominal coefficients specified
in Eq. (14) are plotted in red solid lines, while experimental data are
presented in black solid lines. The associated red shades denote the
ranges of the 10000 simulated ECM responses. The red dots denote
the mean values of these 100000000 in-flight drop volumes and jetting
velocities, with associated variabilities in red shades. The mean values
of measured in-flight drop volumes and drop jetting velocities are
depicted by black dots with gray shades representing their spreads.

The purple shading in Fig. 7(a) represents a distribution of the
10000 pinch-off instants. The wide spread is attributed to the large
confidence intervals of model parameters in Eq. (15). Collecting more
data and incorporating physical modeling could narrow down this
spread. Despite this variability, the nominal model is sufficient to
estimate the pinch-off time, with an error limited to a few instants.
The resulting truncated firing waveform effectively excites the ECM,
simulating volume growth that closely aligns with the experimental
data with few fluctuations, see Fig. 7(a). The ECM can accurately
estimate the grown drop volume at pinch-off, achieving a mean error
of 0.15%. With volume adjustments, the mean of estimated in-flight
drop volumes is 17.74 nl, with a 6.20% mean error compared to the
measurement.

Fig. 7(b) demonstrates that the ECM can capture the development
of average velocity adequately. With velocity compensation, the mean
of estimated drop jetting velocities comes to 1.12 m/s, which is close
to the mean of measured values of 1.05 m/s.
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Fig. 7. Comparison of the experimental and model-simulated drop volumes and velocities for color ink at (u, = 70 pm/ms, u, =25 pm), DI water at (u; = 65 pm/ms, u, =25 pm),
and GW mixture at (u; =85 pm/ms, u, = 30 pm), respectively. Black solid lines are the measured growing drop volumes and average velocities before pinch-off. Shaded red solid
lines are the growing drop volumes and average velocities simulated by the uncertain ECMs. Black dots with shades denote the means of measured in-flight drop volumes and
jetting velocities with their respective spreads. Red dots with shades are the means of in-flight drop volumes and jetting velocities simulated by the uncertain hybrid models with

their respective spreads. Purple shades are the spreads of pinch-off instants.
5.3. Validation with data of other inks

Data of DI water collected at control parameters (u; = 65 pm/ms,
u, = 25 pm) and GW mixture at (u; = 85 pm/ms, u, 30 pm) are
used to validate the hybrid modeling framework. Their properties are
listed in Table 1, including densities, viscosities, and surface tensions
commonly used in DoD inkjet printing. Following the modeling strategy
outlined in Section 3, hybrid models for DI water and GW mixture
are constructed and simulated based on the setup described in Sec-
tion 5.1. Figs. 7(c) and 7(e) illustrate that the ECM responses show good
agreement with experimental data. With volume adjustments, the mean
errors are 2.13% for DI water and 3.65% for GW mixture, compared to
the measured in-flight drop volume.

Figs. 7(d) and 7(f) compare the estimated jetting velocities with
experimental measurements. The mean errors for both inks are within
4%, demonstrating the efficiency of the proposed modeling framework
in estimating drop jetting velocity.

6. Conclusion

This paper proposes a physics-informed hybrid framework for mod-
eling the formation of drop volume and jetting velocity in drop-on-
demand inkjet printing. The framework integrates linear-time-invariant
equivalent circuit models with linear adjusters and is validated with
three different inks. Good agreement between Monte Carlo simulations
and experimental data confirms the effectiveness of the framework.
Furthermore, this framework characterizes an end-to-end linear-time-
invariant relationship between in-flight drop volume and jetting veloc-
ity (the two desired output characteristics) and manufacturer-provided
control parameters (the user-accessible input variables) with uncer-
tain model parameters. This suggests the potential of using its static
representation with uncertain model parameters for developing drop
control strategies. The validated 3" — order ECM within the framework
additionally can be employed to investigate printhead behaviors and
design drop firing waveforms.
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