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A B S T R A C T

Equivalent circuit models (ECMs) that capture low-order dynamics in drop formation are conducive to the
integration of advanced control algorithms to enhance inkjet printing performance and the optimization of
printhead design. However, the pinch-off of a drop from the nozzle transforms the continuous drop growth
into a discrete event, where variations in drop characteristics are observed practically. To address this modeling
discrepancy, this paper introduces a hybrid modeling framework that integrates continuous ECMs with data-
driven adjusters. 3𝑟𝑑 -order ECMs are developed and validated to simulate the continuous drop growth within
the nozzle, with parameters determined partially from sampled data and partially from prior knowledge
of nozzle geometries and ink rheological properties. Data-driven adjusters and pinch-off estimates are then
incorporated into ECM simulations to compensate for the variations occurring at the pinch-off, thereby
improving the estimation accuracy for in-flight drop volume and jetting velocity. Cross-validation of the
framework is performed using data from three different types of ink. Good agreement between simulations
and experiments confirms the efficacy of this end-to-end hybrid modeling framework.
1. Introduction

The ability to precisely pattern functional materials on the sub-
strate with predefined volume makes drop-on-demand (DoD) inkjet
printing a high-efficiency tool for drug delivery [1–3], electronics
fabrication [4,5], system functionalization [6,7] and 3D geometry con-
struction [8–10]. Commercial DoD inkjet printheads typically provide
users with several accessible control parameters to parameterize a
onstrained firing waveform. By tuning these parameters, users can

regulate drop characteristics, such as drop volume and jetting veloc-
ity. Open-loop tuning has been widely adopted based on trial-and-
error methods [11–15], numerical simulations [16–18], experimental
data [19], wave propagation studies [20,21] and input–output mod-
els [22–24]. However, process and system uncertainties, including
ariations in nozzle size, supply pressure and temperature fluctuations,
nd ink aging and inhomogeneities, present challenges when printing
n an open-loop manner. These uncertainties can significantly vary drop
haracteristics, thereby compromising the geometry and functionality
f print products. Kamal et al. [4] and Tröndle et al. [9] reported

high relative standard deviations (RSDs) in drop volume when printing
electro-optic materials and bioinks, respectively. Empirical results also
demonstrated notable spreads in drop volume and jetting velocity

∗ Corresponding author.
E-mail address: jiew@mit.edu (J. Wang).

from printhead to printhead [25] and over time [26], even with well-
tuned control parameters and the same material. To address these
challenges, online parameter tuning algorithms or closed-loop con-
trol strategies have been developed by leveraging drop characteristics
measured from vision systems [26–31]. When applying model-based
tuning and control strategies, a high-fidelity model of drop formation
– specifically, the formation of in-flight drop volume and drop jetting
velocity – is required. It can provide insights into the relationship
between manufacturer-provided control parameters and drop charac-
teristics while facilitating integration with advanced control algorithms
to ensure precise and robust printing processes.

First-principle-based models of drop formation in DoD inkjet print-
ing have been developed over several decades. Fromm [32] pioneered
the use of two-dimensional axisymmetric Navier–Stokes equations to
investigate drop formation under different ink properties and pressure
inputs. Xu et al. [33] numerically solved continuity and Navier–Stokes
equations to explore the effect of ink properties and flow inputs with
various driving frequencies on drop dynamics. By assuming axially-
dependent fluid motion within the nozzle, one-dimensional models
were proposed to examine drop characteristics under uncertainties,
such as air bubble [34] and variations in nozzle diameter [35].
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Received 15 September 2024; Received in revised form 7 November 2024; Accepte
vailable online 14 December 2024 
214-8604/© 2024 Elsevier B.V. All rights are reserved, including those for text and
d 7 December 2024

 data mining, AI training, and similar technologies. 

https://www.elsevier.com/locate/addma
https://www.elsevier.com/locate/addma
https://orcid.org/0000-0002-8830-4425
mailto:jiew@mit.edu
https://doi.org/10.1016/j.addma.2024.104596
https://doi.org/10.1016/j.addma.2024.104596


J. Wang and G.T.-C. Chiu

t
t
u
a
e

s
c

a
m
a
i
m
p

t
i
w
i
c
e
b
a
b
t
d
s
i
h
t
w
f
z
p
T
d

Additive Manufacturing 97 (2025) 104596 
Fig. 1. Schematic of the printing system.
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Equivalent circuit models (ECMs) have also been applied to discuss
fluid behaviors regarding firing waveforms and printhead configura-
tions [36–39]. Given that the characteristic dimension of a nozzle (in
μm) is typically much smaller than the governing acoustic wavelength
(in m) at hundreds or thousands of jetting frequencies, spatial and
emporal variations of the fluid flow within the nozzle can be assumed
o be decoupled. This enables the characterization of fluid motion
sing lumped elements [40]. By analogy, the lumped fluid elements
nd mechanical entities of the printhead can be represented by their
lectrical equivalents. In turn, the low-frequency dynamics of fluid flow

within the nozzle can be effectively analyzed using an appropriately
derived equivalent circuit model.

In recent years, data-driven approaches have been applied to pre-
dict drop characteristics, including regressions [26,29,30], neural net-
works [27,41–43], and other machine learning algorithms [44–47].
These models effectively map drop characteristics/output onto acces-
ible control parameters/input, which can be readily synthesized for
ontrol design.

To address discrepancies between first-principles model predictions
nd actual system behaviors, hybrid models are proposed in additive
anufacturing, where empirical data are incorporated to determine

ppropriate model structure and refine model prediction [48–51]. By
ntegrating physical and mechanistic insights with data-driven adjust-
ents, these hybrid models capture fundamental system behaviors and
rovide more accurate predictions under varying operating conditions.

In DoD inkjet printing, ECMs offer an efficient approach to capturing
he growth of drop volume and velocity in the nozzle by providing
nsights into essential system dynamics beyond the processed data
hile minimizing computational load. However, accurately estimating

n-flight drop volume and jetting velocity requires addressing dis-
repancies in drop characteristics at pinch-off, which are observed
mpirically in Fig. 6 and reported in [52–54]. These variations can
e attributed to factors such as wetting properties at the nozzle tip
nd complex dynamics of the drop pinch-off [55–57], for which, to the
est of the authors’ knowledge, no relevant dynamic model is found in
he literature. To resolve this modeling discrepancy, based on a data-
riven modeling framework proposed by Wang and Chiu [52], in this
tudy, we introduce physics-informed hybrid models for characterizing
n-flight drop volume and jetting velocity in DoD inkjet printing. This
ybrid modeling framework consists of two integral components: con-
inuous ECMs and data-driven adjusters. The ECMs model drop growth
ithin the nozzle before pinch-off, with parameters partially derived

rom historical data and partially informed by prior knowledge of noz-
le geometries and ink rheological properties. They provide essential
hysical insights into drop formation, such as bandwidth and dynamics.
he adjusters then complement the ECM simulations to account for the
iscrepancies at drop pinch-off. Through experimental validation with
 v

2 
hree different inks, the hybrid models demonstrate high accuracy in
stimating in-flight drop volume and jetting velocity.

The remainder of this paper is organized as follows. An inkjet
rinting platform is introduced in Section 2, followed by the devel-
pment of hybrid models. Section 4 covers data collection, as well as
he evaluation and identification of these models. Model validation is
resented in Section 5. Finally, Section 6 concludes the paper.

. Printing system

As introduced in [26,29,30], the printhead in this study is a com-
mercial squeeze-mode printhead (BioFluidix PipeJet P9, Freiburg, Ger-
many) as shown in Fig. 1. The nozzle is a disposable pipe clamped
between two guide plates. Fig. 2 illustrates the working mechanism
of this printhead. The movement of a piezostack-driven piston governs
the pipe deformation, where a rapid piston stroke expels an amount
of ink out of the nozzle as a single drop within one firing cycle. The
piston displacement 𝑢(𝑡) throughout a complete firing cycle follows a
trapezoidal waveform, see Fig. 2, which is parameterized by stroke
velocity 𝑢1, piston stroke 𝑢2, instroke velocity 𝑢3, and stroke holding
time 𝑡𝐻 . The piece-wise function of the constrained waveform can be
written as,

𝑢(𝑡, 𝑢1, 𝑢2, 𝑢3, 𝑡𝐻 ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑢1 × 𝑡 0 ≤ 𝑡 ≤ 𝑢2
𝑢1
,

𝑢2
𝑢2
𝑢1

< 𝑡 ≤ 𝑢2
𝑢1

+ 𝑡𝐻 ,

𝑢2 − 𝑢3 × (𝑡 − ( 𝑢2𝑢1 + 𝑡𝐻 )) 𝑢2
𝑢1

+ 𝑡𝐻 < 𝑡 ≤
𝑢2
𝑢1

+ 𝑡𝐻 + 𝑢2
𝑢3
,

(1)

where 𝑢1 and 𝑢2 are the user-accessible control parameters, and 𝑡 is the
time. The printhead is capable of firing drop volume up to 70 𝑛𝑙 at a
frequency up to hundreds of hertz with a 200-μm inner diameter nozzle.

In the printing platform, an imaging system comprising a strobe LED
and a monochrome camera with a 1X telecentric lens is integrated to
monitor drop behaviors. It has a resolution of 1.3 megapixels with a
ixel size of 4.73 μm. A syringe pump is PID-controlled to regulate
he back pressure at the reservoir. A trigger signal synchronizes the
rinthead, camera, and strobe LED through a myRIO FPGA (National
nstruments).

. Hybrid modeling strategy

A physics-informed hybrid modeling framework is introduced in
his section to characterize the formation of a drop from its contin-
ous growth within the nozzle to pinch-off, as illustrated in Fig. 3.
hysics-based ECMs are developed to approximate the growing drop

olume and flow rate. To address discrepancies in drop characteristics
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Fig. 2. Formation of a drop regarding piston displacements, represented by a parameterized firing waveform.
Fig. 3. Hybrid modeling framework of drop formation.
t
t
v
t
n

r

𝑉

𝐼

t pinch-off and improve estimations of in-flight drop volume and
etting velocity, volume and velocity adjusters are proposed to adjust
he ECM-simulated results. Two user-adjustable control parameters
𝑢1, 𝑢2) define the firing waveform, which is the input to ECMs, and
pproximate the pinch-off instant.

.1. Equivalent circuit model

The nozzle is considered to be rigid to the fluid flow, with the
otion of a piston causing two distinct fluid flows as shown in Fig. 2.
ne flow is directed towards the open end for drop formation while the
ther moves towards the reservoir. Given that the nozzle diameter, the
ominant characteristic dimension, is much smaller than the acoustic
avelength at jetting frequencies of a few hundred hertz, the lumped

lements can effectively describe the fluid motion within the nozzle.
he speed of fluid flow in the nozzle is notably slower than the acoustic
peed in the fluid, and the Reynolds number associated with the pipe
low is low. Thus, it is reasonable to assume that the fluid flow within
he nozzle is incompressible, laminar, and fully developed [58]. An
quivalent circuit model can be constructed by employing analogies
etween fluid properties and their electrical equivalents [59], as shown
n Fig. 4.

According to the hydraulic-electric analogy, a pressure drop is
nalogous to a voltage drop, the volumetric flow rate to the electric
urrent, and the hydraulic resistance to the electric resistance [59].
ydraulic resistance 𝑅 and inertance 𝐿 are defined as

𝑅 =
8𝜇 𝑙
𝜋 𝑟4 and 𝐿 =

𝜌𝑙
𝜋 𝑟2 , (2)

where 𝑙 is the length of the pipe with a radius 𝑟, 𝜇 is the fluid viscosity,
nd 𝜌 is the fluid density.
𝐿𝑎 and 𝑅𝑎 in Fig. 4 denote the mechanical inductance and loss,

respectively, associated with the piston motion. The transformer rep-
resents the transfer from mechanical motion to fluid motion. A com-
liance ratio 𝐾𝑐 relates the piston displacement 𝑢(𝑡) in Eq. (1) with
he effective pressure 𝑉𝑠 caused by piston force onto the fluid. 𝐼𝑁 and

represent the two flows resulting from piston motion towards the
𝑅

3 
Fig. 4. Equivalent circuit model of the nozzle.

open end and the reservoir, respectively. (𝐿𝑁 , 𝑅𝑁 ) and (𝐿𝑅, 𝑅𝑅) are
he fluid inertance and resistance towards the nozzle open end and
he reservoir, respectively. To account for the effect of pressure on
olume change at the meniscus, a compliance 𝐶𝑁 is incorporated in
he model. Compliance at the reservoir end is neglected, given the
egligible volume change to the formation of a drop.

By assuming all 𝑅′𝑠, 𝐿′𝑠 and 𝐶𝑁 are time-invariant, the following
elations are obtained based on Kirchhoff’s laws and Ohm’s law,
𝐼𝑏 = 𝐼𝑁 + 𝐼𝑅,

𝐿𝑁 ̇𝐼𝑁 + 𝑅𝑁𝐼𝑁 + 1
𝐶𝑁 ∫ 𝐼𝑁𝑑 𝑡 = 𝐿𝑅 ̇𝐼𝑅 + 𝑅𝑅𝐼𝑅,

𝑠 = 𝐿𝑎 ̇𝐼𝑎 + 𝑅𝑎𝐼𝑎, and

𝑏 = −𝐼𝑎.

(3)

Solving the flow rate 𝐼𝑁 in Eq. (3) for the input 𝑉𝑠, replacing 𝑉𝑠
with equivalent displacement 𝐾𝑐𝑢, and converting the result to Laplace
domain with an assumption of zero initial conditions, then it comes to
𝐼 (𝑠) = 𝜋 𝑟2𝑌 𝑣𝑒𝑙(𝑠) = − 𝐵1𝑠 + 𝐵0 𝑠𝑈 (𝑠), (4)
𝑁 𝑝 𝐴3𝑠3 + 𝐴2𝑠2 + 𝐴1𝑠 + 𝐴0
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where
𝐴3 = 𝐶𝑁𝐿𝑁𝐿𝑎 + 𝐶𝑁𝐿𝑅𝐿𝑎,

2 = 𝐶𝑁𝐿𝑎𝑅𝑅 + 𝐶𝑁𝐿𝑎𝑅𝑁 + 𝐶𝑁𝐿𝑁𝑅𝑎 + 𝐶𝑁𝐿𝑅𝑅𝑎,

𝐴1 = 𝐶𝑁𝑅𝑅𝑅𝑎 + 𝐶𝑁𝑅𝑁𝑅𝑎 + 𝐿𝑎,

𝐴0 = 𝑅𝑎, 𝐵1 = 𝐾𝑐𝐶𝑁𝐿𝑅, and 𝐵0 = 𝐾𝑐𝐶𝑁𝑅𝑅.

(5)

The negative sign denotes the flow direction towards the nozzle end.
𝑣𝑒𝑙
𝑝 (𝑠) is the Laplace transform of average fluid velocity 𝑦𝑣𝑒𝑙𝑝 (𝑡).

The growing volume 𝑦𝑣𝑜𝑙𝑝 (𝑡) in Laplace domain can be represented
y,

𝑌 𝑣𝑜𝑙
𝑝 (𝑠) = 1

𝑠
𝐼𝑁 (𝑠) = − 𝐵1𝑠 + 𝐵0

𝐴3𝑠3 + 𝐴2𝑠2 + 𝐴1𝑠 + 𝐴0
𝑈 (𝑠). (6)

Eqs. (4) and (6) present 3rd –order models of the growing aver-
age velocity and drop volume, respectively, influenced by the firing
waveform.

3.2. Data-driven models of pinch-off instant and adjusters

As discussed earlier, there are no dynamic models found in the
literature that accurately represent variations in drop volume and
etting velocity at pinch-off. Similar to the approach in [52], this
paper proposes data-driven approximations for pinch-off instant and
djustments for drop volume and velocity. These models adjust the

results from the continuous ECMs for more accurate estimations of
discrete in-flight drop volume and jetting velocity.

To establish an explicit correlation between input and output vari-
ables, polynomials of accessible control parameters (𝑢1, 𝑢2) are pro-
posed as candidates for modeling the pinch-off instant 𝑘𝑝 and volume
and velocity adjusters (𝑦𝑣𝑜𝑙𝑐 , 𝑦𝑣𝑒𝑙𝑐 ),
𝑧(𝑢1, 𝑢2) = 𝑝0,0 + 𝑝1,0𝑢1 + 𝑝0,1𝑢2 + 𝑝2,0𝑢

2
1 + 𝑝1,1𝑢1𝑢2

+ 𝑝0,2𝑢
2
2 +⋯ + 𝑝𝑛1 ,0𝑢

𝑛1
1 + 𝑝𝑛1−1,1𝑢

𝑛1−1
1 𝑢2

+ ⋯ + 𝑝1,𝑛2−1𝑢1𝑢
𝑛2−1
2 + 𝑝0,𝑛2𝑢

𝑛2
2 ,

(7)

where 𝑝𝑖,𝑗 represents the coefficient, 𝑖 = 0, 1,… , 𝑛1 and 𝑗 = 0, 1,… , 𝑛2,
while 𝑛1 and 𝑛2 denote the orders for 𝑢1 and 𝑢2, respectively.

3.3. Hybrid modeling framework

By concatenating ECMs and adjusters as depicted in Fig. 3, a hybrid
modeling framework is constructed,

𝐲(𝑢1, 𝑢2) =
[

𝑦𝑣𝑜𝑙

𝑦𝑣𝑒𝑙

]

= 𝐲𝐩(𝑘𝑝, 𝑢1, 𝑢2) + 𝐲𝐜(𝑢1, 𝑢2). (8)

In Eq. (8), 𝑦𝑣𝑜𝑙 and 𝑦𝑣𝑒𝑙 are the in-flight drop volume and jetting
velocity, respectively. 𝐲𝐩(𝑘𝑝, 𝑢1, 𝑢2) = [𝑦𝑣𝑜𝑙𝑝 , 𝑦𝑣𝑒𝑙𝑝 ]𝑇 , where 𝑦𝑣𝑜𝑙𝑝 is the
grown drop volume achieved by simulating Eq. (6) at the pinch-off
instant 𝑘𝑝 and 𝑦𝑣𝑒𝑙𝑝 represents the average fluid velocity achieved by
Eq. (4). 𝐲𝐜(𝑢1, 𝑢2) = [𝑦𝑣𝑜𝑙𝑐 , 𝑦𝑣𝑒𝑙𝑐 ]𝑇 is the volume and velocity adjustments.
Eq. (8) suggests that the discrete in-flight drop volume 𝑦𝑣𝑜𝑙 and drop
jetting velocity 𝑦𝑣𝑒𝑙 can be projected onto the two user-adjustable
control parameters (𝑢1, 𝑢2) of a firing waveform.

4. Model evaluation and identification

During printhead-ink calibration practice, experimental data are
collected and processed. These data can be used to evaluate the struc-
ture of the developed ECMs and identify their unknown parameters. Ad-
ditionally, these data allow for determining the appropriate polynomial

orders for modeling the pinch-off instant and adjusters.

4 
Table 1
List of ink properties and experimental parameters.

Name DI Water Color Ink GW Mixture

Density (g/cm3) 1.002 0.993 1.158
Viscosity (mPa s) 1.07 2.21 9.53
Surface Tension (mN/m) 73.24 28.72 67.87
Back Pressure (Pa) 0 −400 −100
Stroke Velocity 𝑢1 Range (μm/ms) 60–75 50–80 70–100
Stroke Velocity 𝑢1 Increment (μm/ms) 1.25 5 2.5
Stroke 𝑢2 Range (μm) 20–35 20–35 25–35
Stroke 𝑢2 Increment (μm) 1.25 1.25 1.25

4.1. Experimental setup and data collection

Three inks were tested with the PipeJet printhead: deionized (DI)
water, pigmented color ink, and glycerol–water (GW) mixture com-
posed of 60 𝑤𝑡% glycerol and 40 𝑤𝑡% DI water, see Table 1. They
epresent densities, viscosities, and surface tensions widely used in

DoD inkjet printing. Following the printhead-ink calibration procedure
detailed in [29], a set of experiments was conducted in printable
regions defined by control parameters 𝑢1 and 𝑢2 as shown in Table 1
without exhibiting abnormal jetting behaviors such as satellite drops
and unstable tails. More than two hundred drops were jetted at each
combination of control parameters (𝑢1, 𝑢2). These drops were sequen-
tially imaged at strobe intervals of 10 𝜇 𝑠 from the initialization of a
drop firing trigger until the instant when a drop exited the field of view.

4.1.1. Data of volume and velocity
Fig. 5 shows several drop images at different strobe delays with

respect to the initialization of a firing trigger. Meniscus is initially
formed at the nozzle tip, see Fig. 5a. After the printhead receives a
firing waveform signal, drop volume continues growing until a neck
appears and shrinks as shown in Fig. 5b-f. Shortly after 1000 𝜇 𝑠, a
distinct drop is pinched off from the nozzle tip, see Fig. 5g.

In-flight drop volumes and jetting velocities are estimated using the
methods detailed in [29]. By assuming that the nozzle and meniscus
are rotationally symmetric to the axis of symmetry, the growing drop
volume before pinch-off can be calculated by subtracting the initial
meniscus volume in Fig. 5a from the following estimates. The average
flow velocity is approximated by dividing the drop volume growth rate
by the nozzle’s cross-sectional area.

Figs. 6(a) and 6(b) show drop volumes and velocities of color ink for
seven firing waveforms with the same stroke velocity 𝑢1 and different
strokes 𝑢2. Solid color lines are the firing waveforms. Color circles
represent the sampled volumes and average velocities, respectively.
Filled color circles with error bars at the end denote the means and
standard deviations of in-flight drop volumes and jetting velocities. The
waveforms are delayed by 220 μs from the initialization of a drop firing
trigger for comparison. Fig. 6(a) shows that after an approximately
220 μs delay, drop volume shows linear growth until reaching its
maximum. Piston retraction decelerates volume growth afterward by
pulling the volume back until a certain amount of volume is pinched off
from the nozzle tip, forming a distinct characteristic drop. The results
in Fig. 6(a) reveal that the in-flight drop volumes are larger than the
drop volumes grown right before the pinch-off. Fig. 6(a) also highlights
a proportional correlation between drop volume and stroke 𝑢2.

Drop formation of color ink under firing waveforms with a constant
stroke 𝑢2 and four different stroke velocities 𝑢1 is illustrated in Figs. 6(c)
and 6(d). In Fig. 6(c), it is observed that after 220 μs, drop volume grows
at a rate proportional to the stroke velocity 𝑢1 until it reaches the max-
imum before decaying to pinch-off. Volume differences at the pinch-off
are more intricate. At higher 𝑢1, the pinch-off location is closer to the
nozzle end, resulting in a larger in-flight drop due to the inclusion of
additional meniscus volume. Conversely, with lower flow forwarding

momentum, the pinch-off occurs further away from the nozzle, leaving
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Fig. 5. Sequential images of drop formation at different strobe delays.
Fig. 6. (a) Volumes and (b) average velocities of color ink at stroke velocity 𝑢1 = 70 μm∕ms and various strokes 𝑢2. (c) Volumes and (d) average velocities of color ink at various
stroke velocities 𝑢1 and stroke 𝑢2 = 25 μm. Solid color lines are the firing waveforms. Associated color circles represent growing drop volumes and average velocities at the nozzle.
Associated filled color circles with error bars denote the means and standard deviations of in-flight drop volumes and jetting velocities. The waveforms are delayed by 220 ms
from the initialization of a drop firing trigger for comparison.
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a portion of the grown volume to remain at the meniscus and resulting
in a smaller volume being pinched off. The results in Figs. 6(c) and 6(d)
also suggest that stroke velocity 𝑢1 primarily influences drop jetting
velocity and has less degree of control over drop volume.

In Figs. 6(b) and 6(d), it is noteworthy that the drop jetting veloc-
ty is closely related to the average fluid velocity that occurs at the
aximum stroke of the piston. This suggests that in-flight drops pre-

erve a considerable portion of the kinetic energy from piston motion.
imilar drop formation characteristics are observed with other inks and
perating conditions.

.1.2. Data of pinch-off instant and differences in volume and velocity
Based on the data illustrated in Fig. 6, the dataset of pinch-off

nstants at control parameter pairs (𝑢1, 𝑢2) is processed by identifying
he moment when a drop separates from the meniscus in the drop
mage. The volume difference at pinch-off is computed by subtracting
he grown drop volume right before pinch-off from the in-flight drop
olume. The velocity variation is determined by subtracting the average
5 
luid velocity occurring at the maximum stroke from the drop jetting
elocity.

.2. Evaluation of equivalent circuit models

As shown in Eqs. (4) and (6), third-order models with lumped
hysical properties are proposed to represent the growing drop charac-
eristics before pinch-off. Data collected at each combination of control
arameters (𝑢1, 𝑢2) can be used to evaluate the structure of the derived
CM.

Given that drop volumes are collected every 𝑡𝑠 = 10 μs, the fir-
ng waveform presented in Eq. (1) is discretized accordingly with
actory-preset values of 𝑢3 = 2 μm∕ms and 𝑡𝐻 = 20 μs, as follows,

𝑢𝑝(𝑘, 𝑘𝑝, 𝑢1, 𝑢2) =

⎧

⎪

⎪

⎨

⎪

⎪

𝑢1 × 𝑘𝑡𝑠 0 ≤ 𝑘 ≤ 𝑢2
𝑢1𝑡𝑠

,

𝑢2
𝑢2
𝑢1𝑡𝑠

< 𝑘 ≤ 𝑢2
𝑢1𝑡𝑠

+ 2,
𝑢2 − 2 × (𝑘 − ( 𝑢2

𝑢1𝑡𝑠
+ 2))𝑡𝑠 𝑢2

𝑢1𝑡𝑠
+ 2 < 𝑘 ≤ 𝑘𝑝,

(9)
⎩Not applicable 𝑘𝑝 ≤ 𝑘,
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Table 2
Statistics of strictly proper ARX models at 𝑛𝑘 = 22 for color ink.
𝑛𝑎 𝑛𝑏 Training Data Validation Data

RMSE (nl) Fit Percent (%) RMSE (nl) Fit Percent (%)

2 1 1.73 77.5 1.71 77.4
3 1 1.43 81.2 1.42 81.1
4 1 1.43 81.2 1.42 81.1
5 1 1.44 81.1 1.43 81.0
6 1 1.44 81.1 1.43 81.0
7 1 1.44 81.2 1.42 81.0
3 2 0.71 90.9 0.68 90.8
4 2 0.68 91.4 0.65 91.2
5 2 0.63 92.1 0.60 91.9
6 2 0.59 92.6 0.56 92.5
7 2 0.57 92.8 0.55 92.7
4 3 0.68 91.4 0.65 91.2
5 3 0.63 92.1 0.60 91.9
6 3 0.58 92.6 0.56 92.5
7 3 0.57 92.8 0.54 92.7
5 4 0.63 92.1 0.60 91.9
6 4 0.58 92.7 0.56 92.5
7 4 0.56 92.9 0.54 92.8

where 𝑘 denotes the sampling instant. 𝑘𝑝 represents the instant of a
drop pinched off from the nozzle, which also is the final moment that
piston motion influences the drop growth.

Similar to [52], a collection of ARX (Autoregressive with Extra
Input) models is constructed by varying the polynomial orders (𝑛𝑎, 𝑛𝑏)
and delay 𝑛𝑘. By using firing waveforms 𝑢𝑝(𝑘, 𝑘𝑝, 𝑢1, 𝑢2) in Eq. (9) at
different pairs of control parameters (𝑢1, 𝑢2) (input data), associated
collected drop volumes 𝑦𝑣𝑜𝑙𝑝 (𝑘) (output data), and identified pinch-off
instants 𝑘𝑝, 10-fold cross-validation is employed to evaluate the model
structure. Root mean square error (RMSE) and fit percent are used to
measure the quality of the ARX models [60].

Table 2 lists the results of several strictly proper ARX models
assessed with color ink data. Although higher-order ARX models have
a modest improvement in approximation accuracy, an ARX model

ith 𝑛𝑎 = 3, 𝑛𝑏 = 2, and 𝑛𝑘 = 22 can achieve comparable RMSE
nd fit percent metrics with a simpler structure. In turn, these results
onfirm the efficiency of the third-order ECM proposed in Section 3.1
n modeling the drop growth within the nozzle and 220 μs input delay
hown in Fig. 6.

4.3. Parameter identification of equivalent circuit models

In the proposed ECM, hydraulic equivalents can be calculated using
q. (2), if the values of nozzle geometries and ink rheological properties

are known. Quantities, such as 𝐿𝑎, 𝑅𝑎, and 𝐾𝑐 , are not typically
ncluded as specifications in commercial printheads. Calculation of
ompliance 𝐶𝑁 remains challenging due to complex interactions among
ack pressure, surface tension, and the dynamic nature of the ink flow.

Alternatively, these parameters can be approximated from available
mpirical data.

Identifying these physical properties from continuous-time models
s preferred due to their continuous representation of physical laws
n nature. Equivalent continuous-time models are achievable through
onverting the identified ARX model in Section 4.2. However, there
xist technical difficulties in specifying the physical attributes from
hese converted continuous-time models, such as mismatches of ze-
os and sampling-rate dependence [61,62]. In this study, given the
alidated ECM structure and calculated hydraulic equivalents, a least
quares method is employed to estimate 𝐿𝑎, 𝑅𝑎, 𝐾𝑐 , and 𝐶𝑁 from the
erivative-approximated ECM.

A differentiation operator 𝑝 = 𝑑
𝑑 𝑡 (⋅) is used to rewrite the resulting

equation after applying the inverse Laplace transform to Eq. (6),
3 𝑣𝑜𝑙 𝑇
𝑦𝑝 (𝑡) = 𝜑 𝜃 , (10)

6 
able 3
dentified parameters from datasets of color ink.

𝐾𝑐 (×10−7)
(kg/ (m2 s2))

𝑅𝑎(×10−12)
(kg/(m4 s))

𝐿𝑎 (×10−13)
(kg/m4)

𝐶𝑁 (×10−20)
((m4 s2)/kg)

Mean −6.77 14.02 4.01 1.11

𝐸 𝐵a 0.082 0.056 0.016 0.004

a EB is the error bound of a 95% confidence interval.

where 𝜑𝑇 = [−𝑝2𝑦𝑣𝑜𝑙𝑝 (𝑡), −𝑝𝑦𝑣𝑜𝑙𝑝 (𝑡), −𝑦𝑣𝑜𝑙𝑝 (𝑡), −𝑝𝑢(𝑡), −𝑢(𝑡)] and 𝜃 =
𝐴2∕𝐴3, 𝐴1∕𝐴3, 𝐴0∕𝐴3, 𝐵1∕𝐴3, 𝐵0∕𝐴3]𝑇 . A difference operator, or a
elta operator [63], is then applied to approximate the differentiation.
q. (10) can be written as

𝑦̂𝑣𝑜𝑙𝑝 (𝑘) = 𝜑𝑇 (𝑘)𝜃 , (11)

here 𝜑𝑇 (𝑘) = [𝑦𝑣𝑜𝑙𝑝 (𝑘− 1), 𝑦𝑣𝑜𝑙𝑝 (𝑘− 2), 𝑦𝑣𝑜𝑙𝑝 (𝑘− 3), 𝑢(𝑘− 2), 𝑢(𝑘− 3)]. 𝜃 is

𝜃 =
[

3 − ℎ
𝐴2
𝐴3

, −3 + 2ℎ𝐴2
𝐴3

− ℎ2
𝐴1
𝐴3

,

1 − ℎ
𝐴2
𝐴3

+ ℎ2
𝐴1
𝐴3

− ℎ3
𝐴0
𝐴3

, −ℎ2
𝐵1
𝐴3

, ℎ2 𝐵1
𝐴3

− ℎ3
𝐵0
𝐴3

]

𝑇 ,

where ℎ is the sampling subinterval.
By applying the final value theorem to Eq. (6) under a step input

with amplitude 𝐾𝑠𝑠, we have

lim
𝑡→∞

𝑦𝑣𝑜𝑙𝑝 (𝑡) = lim
𝑠→0

𝑠

(

−
𝐵1𝑠 + 𝐵0

𝐴3𝑠3 + 𝐴2𝑠2 + 𝐴1𝑠 + 𝐴0

)

𝐾𝑠𝑠
𝑠

= −𝐾𝑠𝑠
𝐵0
𝐴0

= −𝐾𝑠𝑠
𝐾𝑐𝐶𝑁𝑅𝑅

𝑅𝑎
.

(12)

Eq. (12) suggests

𝐾𝑐 = −
𝑦𝑣𝑜𝑙𝑝,𝑠𝑠𝑅𝑎

𝐾𝑠𝑠𝐶𝑁𝑅𝑅
, (13)

where 𝑦𝑣𝑜𝑙𝑝,𝑠𝑠 is the steady-state volume achieved under a stroke of 𝐾𝑠𝑠.
y substituting Eq. (13) into 𝜃, the parameters 𝑅𝑎, 𝐿𝑎 and 𝐶𝑁 can be

approximated by minimizing the objective function 𝐽 ,

𝐽 = 1
𝑁

𝑁
∑

𝑘

(

𝑦𝑣𝑜𝑙𝑝 (𝑘) − 𝑦̂𝑣𝑜𝑙𝑝 (𝑘)
)2.

To enhance the estimation accuracy of ECMs for the grown drop volume
at pinch-off, 𝑦𝑣𝑜𝑙𝑝,𝑠𝑠 and 𝐾𝑠𝑠 used in the optimization above are the grown
volume at pinch-off from the experimental data and the corresponding
piston displacement. In turn, 𝐾𝑐 is computed with the approximated 𝑅𝑎
nd 𝐶𝑁 through Eq. (13).

Table 3 presents the mean and error bound of a 95% confidence
nterval for each parameter. With these values, the coefficients of ECMs

in Eq. (4) and (6) for the color ink are given by:
𝐴3 = 10.01 × 10−25

(±0.16×10−28)
, 𝐴2 = 15.42 × 10−22

(±0.24×10−25)
,

𝐴1 = 4.01 × 10−13
(±1.59×10−15)

, 𝐴0 = 14.02 × 10−12
(±0.56×10−13)

,

𝐵1 = −2.70 × 10−19
(±1.31×10−23)

,

𝐵0 = −9.49 × 10−18
(±4.59×10−22)

,

(14)

where subscripts are the error bounds of 95% confidence intervals.

Remark 1. As discussed in [61,62], pre-filtering schemes can be em-
ployed to address the bias on identified parameters resulting from
least squares, which is caused by measurement noise. No prefilters
are used in this work since the data are clean and informative in
presenting each complete drop-growing cycle, as seen in Figs. 6(a) and
6(c). Rather, influences of noise and process uncertainty during data
collection can be mitigated by averaging the parameters estimated from
various experimental datasets.
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Table 4
Statistics of polynomial models for pinch-off instants in color ink (instants are rounded
ff to their nearest greater or equal integer).
Order Training Data

RMSE (Instants)
Validation Data
RMSE (Instants)

𝑛1 = 1, 𝑛2 = 1 7 7
𝑛1 = 1, 𝑛2 = 2 7 7
𝑛1 = 1, 𝑛2 = 3 7 7
𝑛1 = 2, 𝑛2 = 1 4 4
𝑛1 = 2, 𝑛2 = 2 4 4
𝑛1 = 2, 𝑛2 = 3 4 4

Table 5
Statistics of polynomial models for drop volume adjustments in color ink.

Order Training Data
RMSE (nl)

Validation Data
RMSE (nl)

𝑛1 = 1, 𝑛2 = 1 1.02 0.91
𝑛1 = 1, 𝑛2 = 2 1.03 0.91
𝑛1 = 1, 𝑛2 = 3 1.04 0.86
𝑛1 = 2, 𝑛2 = 1 1.03 0.92
𝑛1 = 2, 𝑛2 = 2 1.03 0.93
𝑛1 = 2, 𝑛2 = 3 1.02 0.94

4.4. Evaluation and identification of models for pinch-off instant and ad-
justers

Using the color ink data detailed in Section 4.1.2, regression and
10-fold cross-validation are employed to determine the appropriate
orders (𝑛1, 𝑛2) for approximating pinch-off instants 𝑘𝑝 and adjusters
𝐲𝐜 = [𝑦𝑣𝑜𝑙𝑐 , 𝑦𝑣𝑒𝑙𝑐 ]𝑇 , as well as to estimate the model coefficients. RMSE
is utilized to evaluate these model candidates.

4.4.1. Pinch-off instants
The cross-validation results of several polynomials are shown in

Table 4. A linear model (𝑛1 = 1, 𝑛2 = 1) can approximate an acceptable
pinch-off instant with a simpler structure. The identified model is
𝑘𝑝(𝑢1, 𝑢2) = 163.1(±15.4) − 1.40(±0.17)𝑢1 + 1.02(±0.33)𝑢2. (15)

4.4.2. Adjusters of drop volume
Table 5 shows RMSEs of several polynomials used to model the

difference in drop volume, regarding training and validation data. A
inear model comes to a simple and satisfactory representation of the

drop volume adjuster 𝑦𝑣𝑜𝑙𝑐 (𝑢1, 𝑢2),
𝑦𝑣𝑜𝑙𝑐 (𝑢1, 𝑢2) = 0.16(±1.87) + 0.014(±0.021)𝑢1 + 0.0037(±0.0454)𝑢2. (16)

4.4.3. Adjusters of drop jetting velocity
In Table 6, RMSEs of several drop jetting velocity adjusters are

presented, which are trained and validated with color ink data, respec-
tively. A linear model can achieve a comparable RMSE with a simpler
structure compared to higher-order polynomials,

𝑦𝑣𝑒𝑙𝑐 (𝑢1, 𝑢2) = −0.155(±0.300) + 0.0025(±0.0034)𝑢1 + 0.0008(±0.0072)𝑢2. (17)

5. Model validation

As outlined in Fig. 3, although continuous ECMs and data-driven
djusters have been individually evaluated with their respective exper-
mental data, variability in the parameters of each model introduces
ncertainty into the hybrid framework, affecting the accuracy of in-
light drop volume and jetting velocity estimations. To assess the
mpact of these parameter uncertainties on the framework, Monte Carlo
imulations are performed.
7 
Table 6
Statistics of polynomial models for drop jetting velocity adjustments in color ink.

Order Training Data
RMSE (m/s)

Validation Data
RMSE (m/s)

𝑛1 = 1, 𝑛2 = 1 0.15 0.16
𝑛1 = 1, 𝑛2 = 2 0.15 0.16
𝑛1 = 1, 𝑛2 = 3 0.16 0.16
𝑛1 = 2, 𝑛2 = 1 0.15 0.16
𝑛1 = 2, 𝑛2 = 2 0.15 0.16
𝑛1 = 2, 𝑛2 = 3 0.16 0.16

5.1. Simulation setup

Control parameters (𝑢1, 𝑢2) are user-chosen to construct a firing
waveform through Eq. (9). With these control parameters, 10000 pinch-
off instants are estimated by combining 100 values randomly sampled
from the interval of the constant term with 10 values from the interval
of each coefficient of Eq. (15). To reduce the simulation load, the
pinch-off instant estimated by the nominal coefficients is employed to
truncate the firing waveform, which is the input to the ECMs.

With the truncated firing waveform, 10000 ECMs are simulated for
volume and velocity growth, respectively, where 10 values of each
of 𝐾𝑐 , 𝑅𝑎, 𝐿𝑎, and 𝐶𝑁 are randomly sampled from their respective
confidence intervals as listed in Table 3 and combined. Using the
control parameters, 10000 volume and jetting velocity adjustments are
also sampled by randomly drawing 100 values of the constant term
combined with 10 values of each coefficient from Eqs. (16) and (17).
As specified in Eq. (8), in-flight drop volumes are estimated by adding
these 10000 volume adjustments to the grown drop volume at pinch-
off for each of the 10000 simulated ECM responses. Average velocities
of these 10000 responses occurring at the maximum stroke of the
truncated firing waveform are identified, each of which is subsequently
compensated by the 10000 velocity adjustments to estimate the drop
jetting velocity.

5.2. Validation with data of color ink

Following the procedure outlined in Section 4.1, drop volumes and
velocities of color ink at control parameters (𝑢1 = 70 μm∕ms, 𝑢2 =
25 μm) are collected and used to validate the framework. In Figs. 7(a)
and 7(b), the responses of ECMs with nominal coefficients specified
in Eq. (14) are plotted in red solid lines, while experimental data are
presented in black solid lines. The associated red shades denote the
ranges of the 10000 simulated ECM responses. The red dots denote
the mean values of these 100000000 in-flight drop volumes and jetting
velocities, with associated variabilities in red shades. The mean values
of measured in-flight drop volumes and drop jetting velocities are
depicted by black dots with gray shades representing their spreads.

The purple shading in Fig. 7(a) represents a distribution of the
10000 pinch-off instants. The wide spread is attributed to the large
confidence intervals of model parameters in Eq. (15). Collecting more
data and incorporating physical modeling could narrow down this
spread. Despite this variability, the nominal model is sufficient to
estimate the pinch-off time, with an error limited to a few instants.
The resulting truncated firing waveform effectively excites the ECM,
simulating volume growth that closely aligns with the experimental
data with few fluctuations, see Fig. 7(a). The ECM can accurately
estimate the grown drop volume at pinch-off, achieving a mean error
of 0.15%. With volume adjustments, the mean of estimated in-flight
drop volumes is 17.74 nl, with a 6.20% mean error compared to the
measurement.

Fig. 7(b) demonstrates that the ECM can capture the development
of average velocity adequately. With velocity compensation, the mean
of estimated drop jetting velocities comes to 1.12 m/s, which is close
to the mean of measured values of 1.05 m/s.
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Fig. 7. Comparison of the experimental and model-simulated drop volumes and velocities for color ink at (𝑢1 = 70 μm∕ms, 𝑢2 = 25 μm), DI water at (𝑢1 = 65 μm∕ms, 𝑢2 = 25 μm),
and GW mixture at (𝑢1 = 85 μm∕ms, 𝑢2 = 30 μm), respectively. Black solid lines are the measured growing drop volumes and average velocities before pinch-off. Shaded red solid
lines are the growing drop volumes and average velocities simulated by the uncertain ECMs. Black dots with shades denote the means of measured in-flight drop volumes and
jetting velocities with their respective spreads. Red dots with shades are the means of in-flight drop volumes and jetting velocities simulated by the uncertain hybrid models with
their respective spreads. Purple shades are the spreads of pinch-off instants.
c

5.3. Validation with data of other inks

Data of DI water collected at control parameters (𝑢1 = 65 μm∕ms,
𝑢2 = 25 μm) and GW mixture at (𝑢1 = 85 μm∕ms, 𝑢2 = 30 μm) are
used to validate the hybrid modeling framework. Their properties are
listed in Table 1, including densities, viscosities, and surface tensions
commonly used in DoD inkjet printing. Following the modeling strategy
outlined in Section 3, hybrid models for DI water and GW mixture
are constructed and simulated based on the setup described in Sec-
tion 5.1. Figs. 7(c) and 7(e) illustrate that the ECM responses show good
agreement with experimental data. With volume adjustments, the mean
errors are 2.13% for DI water and 3.65% for GW mixture, compared to
the measured in-flight drop volume.

Figs. 7(d) and 7(f) compare the estimated jetting velocities with
xperimental measurements. The mean errors for both inks are within
%, demonstrating the efficiency of the proposed modeling framework
n estimating drop jetting velocity.

. Conclusion

This paper proposes a physics-informed hybrid framework for mod-
eling the formation of drop volume and jetting velocity in drop-on-
emand inkjet printing. The framework integrates linear-time-invariant
quivalent circuit models with linear adjusters and is validated with
hree different inks. Good agreement between Monte Carlo simulations
nd experimental data confirms the effectiveness of the framework.
urthermore, this framework characterizes an end-to-end linear-time-
nvariant relationship between in-flight drop volume and jetting veloc-
ty (the two desired output characteristics) and manufacturer-provided
ontrol parameters (the user-accessible input variables) with uncer-

tain model parameters. This suggests the potential of using its static
representation with uncertain model parameters for developing drop
control strategies. The validated 3𝑟𝑑− order ECM within the framework
additionally can be employed to investigate printhead behaviors and

design drop firing waveforms.
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