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Abstract— With the rapidly changing climate and an increase
in extreme weather events, it is necessary to have better methods
to monitor and study the impacts of these phenomena on urban
river environments. Multi-robot environmental monitoring has
long focused on strategies that assign individual robots to distinct
regions or task objectives. While these methods have seen
success for Autonomous Surface Vehicles (ASVs), the spatial
expanse and temporal variability of rivers impose an increased
burden on existing techniques, necessitating computationally
intensive replanning. Alternative methods aim to model and
control teams of robots by prescribing global constraints on the
system, using the insight that robots’ transitions between tasks
are stochastic and time-based. These methods do not require
replanning because robots will perform different tasks achieving
the overall desired system state, focusing on temporal switching
alone limits their overall descriptive power. In this paper, we
present a method that considers collaborations between robots
to inform task switching based on spatial proximity. Our results
suggest that in unknown environments macroscopic models
provide increased flexibility for individual robot task execution
as compared to coverage control methods.

Index Terms— Macroscopic models, Robotic Teams, Environ-
mental Monitoring

I. INTRODUCTION

Urban centers are often established in proximity to rivers
which provide people access to diverse resources [1], [2]. The
health of the ecosystems in these environments necessitates
better understanding of the impact of human activities in
and around these areas, e.g., how pollutants resulting from
agriculture and/or waste water runoffs hinder natural river
regulation processes [3], [4]. Additionally, other climate
change driven events including rising sea levels and increased
rainfall [5], can impact the shape of the river interfering
with urban river infrastructure such as bridges [6]. In this
work, we consider environmental monitoring strategies of
unknown environments that require flexible replanning to
match environmental changes.

Given the dynamic nature and large spatial expanse of
most rivers, multi-robot systems, particularly ones including
autonomous surface vehicles (ASVs), are often employed in
their monitoring [7]-[11]. These methods focus on planning
and control for the individual robot, or are bottom-up ap-
proaches to working with multi-robot teams. Existing bottom-
up multi-robot environmental monitoring strategies focus on
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Fig. 1: During environmental monitoring on a river, robots will
interact spatially. This interaction can result in collaboration,
i.e., task switching, depending on how many other robots are
performing the task and the overall goal of the system.

two main approaches. The first method, aims to assign robots
to tasks which requires solving an NP-Hard combinatorial
optimization problem [12], [13]. Alternatively, coverage based
approaches often rely on a tessellation of the environment in
which robots are assigned regions to monitor [7], [14]. The
limitation of bottom-up methods is the lack of formal analysis
describing the overall behavior of the system, resulting in ad
hoc evaluation of the robot team. In addition, these methods
often require computationally expensive replanning to handle
new information about the environment. This replanning
either requires global knowledge of the state of the system
or communication methods for robots to determine how to
redistribute resources [14], [15].

Another way to design single robot task execution strategies
for environmental monitoring by a team of robots is to
employ a top-down macroscopic ensemble approach. Such
an approach enables the specification of global behaviors
for the team a priori while enabling individual robots to
switch between tasks without the need for replanning. The
ability to model the global dynamics of the robot team has
led to insights into the stability, scalability, and the design
of feedback control strategies for these systems [16], [17],
but often at the cost of ignoring the specific complexities of
individual robot dynamics and their interactions with other
robots and the environment. This is because the derivation of
the macroscopic ensemble models relies on the assumption
that individual robot models can be abstractly represented
as stochastic hybrid systems and as such robots effectively
switch between their assigned tasks in a time-based stochastic
fashion [18]. Nevertheless, these models have proven to be
extremely powerful in improving the performance of large
teams of robots tasked to execute a collection of spatially
distributed single-robot tasks [19]-[21].

While macroscopic approaches have been employed for
collaborative tasks, i.e., tasks where robots must work in



conjunction with other robots [22], these methods are funda-
mentally limited by only considering the time a task must
be done together with another robot instead of collaborations
as the result of spatially based interactions. Similar to [23],
we consider an environmental monitoring task where task
switching occurs based on potential collaborations with other
team members. However, our proposed approach uses an
abstracted model to describe robot collaboration-informed
task switching between different behavioral patterns. Figure
1 shows an example spatial interaction and the result of
this interaction is a potential collaboration based on the
desired global state of the system. The contributions of this
paper are: (i) A nonlinear macroscopic ensemble model for
environmental monitoring based on robot collaboration to
inform behavior switching. (ii) Analysis of the proposed
model and control strategies to improve the robustness of the
robotic team. (iii) Comparison of the macroscopic ensemble
environmental modeling with other existing solutions, and
evaluation on data collected during ASV surveys on the
Schuylkill River in Philadelphia PA, [24].

II. PROBLEM FORMULATION

Given a team of autonomous surface vehicles we aim to
define a macroscopic ensemble model and control approach
to execute environmental monitoring in a river environment.

A. Single Robot Exploration-Exploitation Behaviors

Consider individual robots which are capable of executing
different path planning strategies to achieve behaviors neces-
sary for environmental monitoring. We will refer to behaviors
and tasks interchangeably to mean the specific pattern the
robot is executing. Let M = 3 tasks be performed by a
team of NN robots. The three tasks are home, explore, and
exploit, where any robot performing a task has a specific
path pattern to execute. These task categories are well known
and provide a starting point for the more general study of
collaborative macroscopic ensemble models that may consist
of more complex behavioral patterns.

A directed graph G = (V,€) is built to represent the
relation between tasks, Figure 2a. This graph G, is connected
in a cycle between the three tasks, where from home robots
go to the explore task, from explore robots go to the exploit
task, and from the exploit task robots go home. The elements
of the node set V = {vy, vy, v3} corresponds to each task,
and the elements of the edge set £ C V x V corresponds to
possible changes between tasks. Specifically, an edge e;; € £
can be either zero, if robots cannot switch from task v; to task
vj, or e;; = 1 if the switch from task v; to task v; is allowed.
We assume that graph G is strongly connected, which means
that there is a path from each task to any other task in the
graph. Prior work has used task graphs to represent spatially
distributed tasks [17], [20], however, in our instance, G is
reflective of the potential for robot collaboration to occur. For
collaboration to exist between robots performing different
tasks, the robots performing tasks must be well-mixed. We
define well-mixed as the sufficiently even dispersal of robots
performing tasks in a bounded workspace, such that robots
are likely to come within collaboration range [25].

(a) Task Graph (b) Phase Portrait

Fig. 2: Figure 2a is a task graph for an exploration-exploitation
scenario. Figure 2b shows numerical simulations for various
initial populations with the constraint that N = 30, and
klg = kgl = 0.002 and k‘23 = 0.0003.

B. Macroscopic Ensemble Model

Consider our outlined environmental monitoring scenario
with M = 3 tasks and IV robots. We define a transition law
that determines the outcome of a collaboration between two
robots performing different tasks. The population of each
behavior is represented by a random variable X;, and the
dynamics can be written as:

X1 = —k12X1 Xo + k31 X1 X3,
Xo = —ko3Xo X3 + k12 X2 X1, (D
X3 = —k31 X3X1 + ko3 X3Xo,

where each population X; > 0 for all time and k12, k31, ko3
are collaboration rates between robots performing the three
tasks. Note that for each edge, e;;, Xi has a positive term
representing the addition of robots to task 7, k;;.X; X, and
the same term appears in X j as a negative term representing
the loss of robots from task j.

We assume a fixed population of N robots which means
we need to guarantee that Zf X; = N for all time. We will
use similar model analysis techniques to those used in in
evolutionary biology to guarantee our constraint [26], [27].
Consider the two dimensional simplex as,

Ny ={X eR3|X; >0, XT1 = N}, )

where 1 is a vector of ones of dimension R3. Let X =
(X1 Xo Xs] .and f(X) = [f(X1) f(X2) f(X3)]"
where f;(X) = X;. We know XT1 = N from the definition
of the system, likewise 17 f(X) = 0, which implies that
XT1 = N is an invariant hyperplane, since X1 is non-
negative. Therefore, the positive quadrant of R is a trapping
region for the dynamics, i.e., all trajectories starting with
positive populations of robots, X; > 0 for all ¢ € V, will
remain positive. In addition, the intersection of the invariant
hyperplane and the positive quadrant of R3 reduces the system
to the 2 dimensional simplex, A,. This reduction allows for
the following model simplification, where X35 = (N — (X7 +
X5)) and the new system of equations is as follows:

X1 = —k12X1 X0 + k1 X1 (N — (X1 + X2)),
Xp = ka3 Xo(N — (X + X2)) + ks Xo X1, (3)

We have described a macroscopic ensemble method to model
the distributions of robots performing the three different



environmental monitoring tasks, at the microscopic level
robots will switch between tasks based on local collaborations.
We will now study the behavior of Equations (3), and
introduce control methods to ensure that our desired outcomes
are achieved.

III. ANALYSIS AND CONTROL

The equilibrium points for Equations (3) are: [0,N],
[N, 0], [0,0], and { kas N kg1 N } Notice that

ki2+kos+ks1’ ki2+kasz+ks1
there are three equilibrium at the extreme points of the simplex

Ao, red stars in Figure 2b. We determine the local stability
of each fixed point (see Chapter 6 of [28] for more details).
Consider k;; > 0 for all i,j € {v1,v2,v3}, in this case
the first three fixed points are unstable. Specifically, the
eigenvalues of the Jacobian matrix evaluated on those points
have one positive and one negative real values (i.e, saddle
points [28]). The final equilibrium has a pair of complex
conjugate eigenvalues suggesting center classification, or
closed loop orbits that neither attract nor repel trajectories
around the equilibrium, i.e. neutrally stable [28]. For the
purposes of this work, we select parameters which result
in close to center behavior, as seen in Figure 2b. However,
further detailed analysis is needed to classify the equilibrium
for all model parameters. For k;; < 0 for all 4, j, the direction
of the graph is reversed and the fixed point classification is
the same as before. Finally, if k;; = 0 for any pair ¢, j in (1),
the strongly-connected assumption on G is invalidated.

The proposed model with our chosen parameters is sensitive

to population size fluctuations, which are likely to arise during
microscopic evaluation. Such sensitivity means that it is easy
to lose small populations of robots performing certain task
behaviors.
Claim 1: If any X, gets too small, the result is a shift
in the behavior of the equilibrium points for Equations (1).
Consider if any X; = 0 in Equation (1), to find the new
equilibrium point at least one other population must be 0,
X; = 0. Because we are in a trapping region, as specified
before this implies that all robots must be attracted to the
remaining behavior such that X; = N. Thus we have the
loss of two behaviors. Notice that as any population gets
small, the system tends towards the extreme points of the
simplex, which implies that at least one task is no longer
being performed. This motivates the need to consider control
strategies which can help recover the lost task behavior.

A. Control Synthesis

To help mitigate and/or reverse task loss we present
two control strategies. Our first method, is to allow robots
performing the same task to switch to a new task when they

are within collaboration range, specifically X; +X; By ox s
where j = mod (i + 1, M), i.e., the next task in the graph.

X1 ==k XiXo + k31 Xi (N — (X1 + X2))
— k1 X7 + kas(N — (X1 + X3))?
Xo = — ko Xo(N — (X1 + X2)) + k12 X2 X3
— koo X3 + k11 X7, 4

where k;; is the self collaboration rate for robots performing
the same task. The addition of the self collaborating terms
changes the system dynamics to a stable attractor, and is
referred to as Control 1 (C1) in Section V. For example, if
many robots are performing the exploitation task in the same
region then this type of collaboration will help robots move
back to the home behavior.

Our second method is to use the well-studied time based
task switching, [17], [18], which at the microscopic level can
be translated to robots changing tasks after a certain amount
of time, specifically X; LN X; where p;;, is a transition
rate from robots performing task i to task j. The resulting
dynamical system is

X1 = — kX1 X2 + k31 X1 (N — (X1 + X2)) + p21 X2
+p31(N — (X1 + X2)) — (p12 + p13) Xa

Xo = — ko3 Xo(N — (X1 + X2)) + k12 Xo X1 + p12 X3
+p32(N — (X1 + X2)) — (P21 + p23) Xo. (5

Previous work by Berman ef al. [18] and Silva et al. [17]
showed that the dynamics of the linear macroscopic ensemble
models result in stable distributions of X; for a given set of
parameters p;;. The result for Equations (5) is that the linear
terms dominate the dynamics and drive the system to a stable
equilibrium. This control method is referred to as Control 2
(C2) in Section V.

Thus both control methods result in final distributions of
robots which settle to around an equilibrium, this means
that for all time robots will continue to perform all three of
the specified tasks. In addition, the recovery of behaviors
is possible because the control terms can reintroduce lost
behaviors back into the system organically.

IV. EXPERIMENTAL SETUP
A. Experimental Data Collection

In the summer of 2022, field deployments using the
Clearpath Heron ASV in the Philadelphia, PA, Schuylkill
River were performed [24], Figure 3a. The data collected
consists of ASV trajectories using the onboard DGPS and
vectorNav IMU for localization, and a Micron Echosounder to
measure depth data of the river. Rivers are impacted by tidal
fluctuations which will change the observed river depth by
the bathymetry sensor. As such, we perform tidal corrections
using linear interpolation between high and low tides with
data from tide tables for the Schuylkill River [29]. The tide
correction was computed to consider all data at low tide, the
resulting cleaned up dataset is in Figure 3b.

To evaluate multi-robot river exploration-exploitation
strategies we need to interpolate between the sampled
data points in the dataset. To the best of our knowledge,
there is no prior work studying the Schuylkill River, so
we used Scikit Learn Gaussian Process Regression (GP)
[30], a non-parametric modeling approach to approximate
the underlying function that describes the data. We in-
vite others to use our dataset: https://github.com/
hsiehScalAR/Schuylkill_River_Dataset.



(a) A Clearpath Heron on the Schuylkill River in Philadelphia, PA.
This photo was taken by T. Z. Jiahao.
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Fig. 3: Figure 3b is the raw data from 4 experimental surveys,
and Figure 3c is the combined interpolated map solved
with Scikit Learn Gaussian Process Regression [30]. Color
corresponds to depth in both cases.

B. Evaluation Methods

Our simulated platforms are point robots that follow
assigned waypoints. Using the environmental monitoring sce-
nario we have outlined, we can define specific instantiations
of each task behavior pattern while being careful to ensure
our well-mixed assumptions. Robots performing the home
task do not collect data and go to any next location assigned
within the workspace. Robots executing the exploration task
will perform a random walk within the workspace, and robots
at the exploitation task switch a third of the way through
the experiment from circling at random locations to a greedy
exploit where the robot goes to the deepest point observed
so far and circles. In environmental monitoring the aim is to
collect high-value information, we use depth as the richest
form of information in our current dataset and it could be
replaced by other high value sensor measurements, [31].

To apply this method to robots it is necessary to map
the macroscopic model parameters to the individual robot.
Collaboration rates, k;;, are related to the density of robots
in a fixed environment, the collaboration area for robots
performing different tasks is given by,

ki NQAVA

Ai' )
7 Uinin

(6)
where A is the total area robots will collaborate, k;; is the
collaboration rate, v;; is the average relative speed between
robots performing different tasks, and 2 is an approximate
scaling coefficient of the robot area to the environment size.
Notice that robots will switch tasks whenever they come
within the collaboration area of each other, and also (6) takes
into account the population of robots performing adjacent
tasks. As the size of the environment increases the only
way to guarantee the robot density is to add more robots
to the system, which would directly guarantee the method’s
validity across macroscopic and microscopic instantiations.

However, this is naturally not possible. Therefore, changing
the collaboration area is a strategy to tackle such a problem,
which can only be approximated. Our method uses a scaling
factor, {2, based on the range of sensing and the environment
size. There is a special case for k;;, where X; = Xi;l, to
account for the fact that robots performing the same task
are interacting. For all macroscopic models the collaboration
parameters are k15 = k31 = 0.002, ko3 = 0.0003, and k1, =
koo = k33 = 0.0002 with estimated relative speeds of vio =
V23 — V11 — Vg2 — 0.9 and V31 — V33 — 0.5.

In Control 2, the additional transition rates are not based on
spatial interactions, instead p;; is related to how much time a
robot is performing a task. Previous work has interpreted such
models as a stochastic jump process from one state to another,
which can be interpreted as a switch based on sampling a
Poisson Distribution with mean related to the transition rate,
for more information on this see [17]. For an individual robot,
a transition rate, p;;, relates to the next time to switch tasks
by taking a random sample from an exponential distribution
with a rate of f;; or bj;. The rates are defined in terms of
Pij as, fij = %pini and bji = %pjin. For all results of
Control 2 we selected transition rates to be the dominant
process: pi12 = p13 = p32 = p23 = p31 = 0.1.

To evaluate our microscopic instantiation of the macro-
scopic models, we will benchmark against microscopic
coverage control [14]. Coverage control can be formulated by
solving the Voronoi partition for each robot in the environ-
ment, and then having the robot survey its assigned region.
Within each region we consider two planning approaches, the
first uses lawnmower patterns similar to [7], and the second
is the multi-robot extension of Tan et al. [31] which uses
the Upper Confidence Bound (UCB) along with predictions
from a GP to determine the next location the robot should
go. This approach explicitly balances the trade-off between
exploration and exploitation.

To evaluate the two coverage control approaches and our
two macroscopic controllers we compute the mean squared
error between the estimated GP, x;, and the underlying
environmental model used, z; , at the end of fixed trials,
mse = %va(x} — x;)%. We use two environments for
evaluation. The first environment is a 10 x 10 unit envi-
ronment with depth map defined as a sum of Gaussian
model: means (2, 1), (5,8), (7, 3), and (6,9), variances (1, 2),
(2,1), (0.5,0.5), (5,5), and amplitudes of 5 for each mean,
sigma pair. The second environment uses the underlying GP
solved for the experimentally collected river data, and each
robot samples from the solved distribution, we limit this
environment to a 1002100m square of the original data. For
the sum of Gaussian environment, 2 = 0.275 for N = 100,
and 2 = 0.365 for N = 10. For the river environment
Q = 0.415 for N = 30. These values were tuned for our test
cases.

V. RESULTS

Figure 4 shows the results for the sum of Gaussian envi-
ronmental model. In Figures 4a and 4b there are highlighted
Voronoi regions, which show that the robots in these cells are
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Fig. 5: The final GP of all data collected at ¢ = 300s and the trajectory of each robot where depth data is the experimental

river data. The initial populations are X (0) = [30 0 0

]T

. While Figure 5a shows good results, Figure 5b needs more

time to have a complete picture of the larger environment. The macroscopic control methods in Figures Sc and 5d show 10
randomly selected agent trajectories, black lines, where the concentration of data is collected in deep parts of the environment.

not necessarily sampling in the most interesting region of the
environment. As compared to both macroscopic approaches,
Figures 4c and 4d, where five sample robot trajectories are
not rigidly assigned to regions and can more freely execute
different tasks throughout the environment. The resulting
mean squared error of the predicted environmental models
across all four methods is in the following table:

Lawnmower | MR UCB | Macro C1 | Macro C2
Env 1 0.028 0.0324 0.013 0.017
Env 2 0.039 1.77 0.93 0.69

In the river environmental data scenario, Figure 5, for the
macroscopic solutions we see ten sample trajectories that
highlight the flexibility robots have to switch task based
on collaboration. Figure 5d shows shorter path segments
reflecting a switch to the home task, which is more likely
due to time based switching in C2. We believe the high

mean squared error for MR-UCB would decrease significantly
if more time for each robot was given to explore. Across
all environments the collaborative based task switching
method performs comparably to coverage control methods,
and suggests that instead of naive partitioning of unknown
environments a more flexible method which controls the
distributions of robots performing tasks is worth considering.

Figure 6 shows three microscopic trials represented as
points along with the macroscopic model as solid lines for
the uncontrolled method and both control methods. The
initial conditions are X (0) = [100,0,0]% for both controlled
methods, X (0) = [40, 30, 30]7 for the uncontrolled method,
and depth data used the sum of Gaussian environmental
model. Figure 6¢c, has the behavior extinction predicted by
Claim 1 when no control is present. Qualitatively, both
control methods, Figure 6a and 6b, are close to the predicted
population sizes up to t = 50s. At ¢ > 50s, we see a
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Fig. 6: Three microscopic trials represented as dots along
corresponding macroscopic continuous model in solid line,
and robots sampling from a sum of Gaussian environmental
model. At t = 50, the robots switch to a greedy exploitation
strategy highlighted by a vertical dashed line.

deviation from our predicted model, we believe this comes
from the switch to a greedy exploitation behavior pattern
and the breakdown of the well-mixed assumption. This is
more prominent for C1 where only collaborations are used
as shown in Figure 6a.

VI. CONCLUSION

In this paper, we defined a method for global specification
of desired robot distributions for an environmental monitoring
scenario. Our results suggest that in unknown environments
instead of using individual robot methods where robots might
over sample data in uninteresting regions, more flexible
collaborative macroscopic ensemble models can be used with
similar returns. While our approach was able to perform
comparably to existing methods, there are some outstanding
challenges, including our understanding of collaboration in
non well-mixed scenarios. Consider in Figure 6 after t = 50's
we see that our model predictions begin to deteriorate. We
believe this break down emerges because robots begin to
cluster in regions of the environment in a way that hinders
the possibility for robot collaboration. Future work aims to
address the break-down of the well-mixed assumption, since
it is relevant across a wide range of tasks.
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