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Abstract
We introduce a family of Finsler metrics, called the L p-Fisher–Rao metrics Fp , for p ∈
(1,∞), which generalizes the classical Fisher–Rao metric F2, both on the space of den-
sities Dens+(M) and probability densities Prob(M). We then study their relations to the
Amari–C̆encov α-connections∇(α) from information geometry: on Dens+(M), the geodesic
equations of Fp and ∇(α) coincide, for p = 2/(1 − α). Both are pullbacks of canonical
constructions on L p(M), in which geodesics are simply straight lines. In particular, this
gives a new variational interpretation of α-geodesics as being energy minimizing curves. On
Prob(M), the Fp and ∇(α) geodesics can still be thought as pullbacks of natural operations
on the unit sphere in L p(M), but in this case they no longer coincide unless p = 2. Using
this transformation, we solve the geodesic equation of the α-connection by showing that the
geodesic are pullbacks of projections of straight lines onto the unit sphere, and they always
cease to exists after finite time when they leave the positive part of the sphere. This unveils
the geometric structure of solutions to the generalized Proudman–Johnson equations, and
generalizes them to higher dimensions. In addition, we calculate the associate tensors of Fp ,
and study their relation to ∇(α).
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1 Introduction

Information geometry is concerned with the study of spaces of probability densities as differ-
entiable manifolds. Its first developments were mostly about the finite-dimensional geometry
of parametric statistical models, for which the space of distributions can be identified with
the parameter space. In 1945, Rao [37] showed that the Fisher information could be used
to define a Riemannian metric on this space, and in 1982, C̆encov [15] proved that it was
the only metric invariant with respect to sufficient statistics, for families with finite sample
spaces. The Fisher–Rao metric was also shown to induce well-known geometries on certain
important statistical models, such as hyperbolic geometry on normal distributions [3].

Encompassing the Fisher–Rao metric, a richer geometric structure was introduced by
C̆encov [15] and Amari [2] on spaces of parametric probability distributions. The Amari–
C̆encov structure relies on a family of affine connections called the α-connections, denoted
by ∇(α), that are dual with respect to the Fisher–Rao metric, and such that the 0-connection
is the Levi–Civita connection. The α-connections arise naturally as an interpolating fam-
ily between the so-called exponential and mixture connections ∇(1) and ∇(−1), for which
exponential and mixture families are (dually) flat manifolds. These geometric tools relate to
natural information-theoretic quantities such as the Kullback–Leibler divergence, and have
been used in statistical inference, e.g. to express conditions for existence of consistent and
efficient estimators, or to obtain a purely geometric interpretation of the famous Expectation-
Maximization (EM) algorithm in the presence of hidden variables [1].

In parallel, infinite-dimensional information geometry tools have also been developed in
the non-parametric setting, although arguably to a lesser extent. The non-parametric Fisher–
Rao metric was introduced by Friedrich in 1991 [21] on the space of all probability densities.
He showed that it yields the historical Fisher information metric when restricted to finite-
dimensional submanifolds representing parametric statisticalmodels, and that the geometry is
sphericalwith constant curvature 1/4.More than twodecades later, itwas proved tobe theonly
metric (up to amultiplicative factor) invariant with respect to the action of sufficient statistics,
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namely diffeomorphic change of the support, just like in the finite-dimensional case [4, 9]. In
the infinite-dimensional setting, it is possible to work with diffeomorphisms of the support
instead of the densities themselves, since the space of smooth densities on a compactmanifold
M with respect to a volume form λ can be obtained as the quotient Diff(M)/Diffλ(M) of
diffeomorphisms modulo diffeomorphisms preserving λ. Using this representation Khesin,
Lenells, Misiolek and Preston [26] have shown in 2013 that the Fisher–Rao metric can be
obtained as the quotient of a right-invariant homogeneous Sobolev Ḣ1-metric on Diff(M),
see also [33] and the recent overview article [27].

The Amari–C̆encov structure induced by the α-connections also received interest in the
non-parametric setting. Giblisco and Pistone [24] defined the exponential and mixture con-
nections in this case, and showed that for α ∈ (−1, 1), the interpolating connections can be
defined through a p-root mapping to an L p sphere, for p = 2

1−α
. Divergences and dualistic

structures are investigated in the monograph of Ay, Jost, Lê and Schwachhöfer [5], although
the α-connections themselves are not directly considered there in the infinite-dimensional
setting. See also [35] for a definition of theα-divergences andα-connections in aHilbertman-
ifold settings. In [30], Lenells andMisiołek study the α-connections on diffeomorphisms and
relate their geodesic equations to a well-known equation, the generalized Proudman–Johnson
equation. Very recently, three authors of the present paper showed that these Proudman–
Johnson equations, on the real line, could alternatively be seen as the geodesic equations of
right-invariant Finsler metrics on the diffeomorphism group [11], which were first introduced
in [18]. This led to making a first link between α-connections and a family of Finsler metrics,
which we investigate further here.

1.1 Main contributions

The aim of the present paper is threefold. First, to introduce and study the L p-Fisher–Rao
metrics on (probability) densities

Fp(a) := Fp(μ, a) =
(∫ ∣∣∣∣ a

μ

∣∣∣∣
p

μ

) 1
p

,

for p ∈ (1,∞) and any density μ and tangent vector a. Note, that is a family of Finsler
metrics that conincides with the Fisher–Raometric when p = 2. Second, to give a precise and
rigorous reviewof theAmari–C̆encovα-connections in the infinite-dimensional setting, a new
variational formulation of their corresponding geodesics, and explicit solution formulas for
them. Finally, to make links between the two, distinguishing between the space of densities,
the space of probability densities, and parametric statistical models.

Next we will describe the main contributions in more details: we study the L p-Fisher–Rao
geometry of (probability) densities through a mapping to the set of positive functions,

�p(μ) =
(μ

λ

)1/p
,

where λ is some background probability measure. Just like the Fisher–Rao metric is the
pullback of the standard L2-metric via the square-root transform [13, 22, 26], we show that
the L p-Fisher–Rao metric is the pullback of the L p-norm via the mapping �p , that we call
by analogy the p-root transform (Theorems 3.12 and 4.10). The L p-Fisher–Rao geometry on
the space of densities is therefore that of a flat space, as described in Corollary 3.13, and on
the space of probability densities that of the L p-sphere (Theorem 4.10). The p-root transform
(for p = 2

1−α
) also presents an alternative way to define the α-connections as pullbacks of the
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trivial connection of the vector space of functions (Theorems 3.12 and 4.10), as first shown
by Gibilisco and Pistone [24] for probability distributions, albeit with a slightly different
construction. The geometric differences between these constructions for the L p-Fisher–Rao
metric and the α-connections, which we systematically study in this paper, are summarized
in Fig. 1.

Towards this aim, we show that the geodesic equations of Fp and ∇(α) coincide on
Dens+(M) (for α = 1−2/p), but not on Prob(M) (see Theorems 3.3, 3.7, 4.2 and 4.4); sim-
ilarly, on Dens+(M) the Chern connection induced by Fp coincides with the α-connection,
while this no longer holds on Prob(M) (Theorem 3.10 and Remark 4.8). This provides the
novel variational formulation of these α-connection geodesics.

We further use the p-root transform to obtain explicit solution formulas forα-geodesics on
densities and on probability densities: for densities, we show in Corollary 3.13 that geodesics
are pullbacks of straight lines in L p space, whereas for probability densities we show in
Theorem 4.11 that they are pullbacks of projections of straight lines in L p onto the L p-
sphere. In the latter case the projection involves a time rescaling that is obtained as a solution
of an ordinary differential equation. Similar solutions of the geodesic equation of the α-
connection were obtained for finite sample space [5, pp. 50–51]. In the infinite-dimensional
case with a one-dimensional basemanifold M , it gives an explicit solution (modulo a solution
to anODE) of the generalized Proudman–Johnson equation, for a certain range of parameters,
and to the generalization to higher-dimensional base manifolds by Lenells andMisiołek [30].
There, they proved the complete integrability of these equations for the flat case α = ±1 by
providing an explicit solution formula. Similarly, the integrability for the case α = 0 was
shown in [26]. Our results can thus be interpreted as complete integrability of the α-geodesic
equation for the whole range α ∈ (−1, 1).

The results in the one-dimensional situation are in correspondencewith the analysis of [29,
38], where a similar p-root transform was used to study the generalized Proudman–Johnson
equation. In these articles it was used as an ad-hoc simplification of some auxiliary equa-
tions; here we expose the geometry behind it, which also simplifies some of the authors’
calculations, and generalize it to higher dimensions. These connections are summarized in
Sect. 5.

Throughout this paper we work in the smooth category, i.e., all densities are assumed to
be smooth, and the underlying space M is assumed to be a smooth manifold. This is mainly
in order to avoid some technicalities, and most results work in much lower regularity. For
example, for all results not involving the action of Diff(M), the underlying space M can be
simply a measurable space, and in many cases densities only need to be integrable.

1.2 Outline

The rest of the paper is organized as follows. We start by describing some background on
spaces of densities and the Fisher–Rao metric in Sect. 2. Then we investigate the geometries
induced by the α-connections and the L p-Fisher–Rao metrics as well as their links, on the
space of smooth densities in Sect. 3 and on the space of probability densities in Sect. 4. In
Sect. 5 we discuss the relations of the various geodesic equations obtained in Sects. 3–4 to
some known PDEs, as well as the relation between the L p-Fisher–Rao metric to Finsler met-
rics on diffeomorphism groups. The different notions of geodesics are compared numerically
on an example in Sect. 6. Finally, we consider the finite-dimensional setting of paramet-
ric statistical models in Sect. 7, illustrated by the special case of normal distributions. In
“Appendix A” we present a short overview of infinite-dimensional Finsler geometry.
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Fig. 1 Geometric structures on Dens+(M) and Prob(M) via the p-root transform: The map μ �→ (μ
λ

)1/p

maps Dens+(M) to (a subset of) L p(λ), and Prob(M) to its unit sphere Sp . On L p(λ) there is the natural
Finsler metric ‖ · ‖L p and the trivial connection ∇tr of a vector space, the geodesics of both are straight lines.
Their pullback via the p-root map yield (up to a constant) the L p-Fisher–Rao metric Fp and the α-connection
∇(α) on Dens+(M), whose geodesic equations coincide. The metric ‖ · ‖L p naturally restricts to Sp . The
connection∇tr induces a connection on Sp via the natural projectionπ p : T L p(λ)|Sp → T Sp . The geodesics
of these induced metric and connection differ. Their pullbacks via the p-root map yield (up to a constant) Fp

and the α-connection ∇(α)
on Prob(M)

2 Spaces of densities and the Fisher–Raometric

In all of this article let M be a closed manifold of dimension dim(M) < ∞. We denote by
Dens+(M) the space of smooth positive densities and by Prob(M) the subspace of smooth
probability densities, i.e.,

Dens+(M) := {μ ∈ �n(M) : μ > 0}
Prob(M) :=

{
μ ∈ Dens+(M) :

∫
μ = 1

}
.

Since Dens+(M) is an open subset of the Fréchet space �n(M) it carries the structure of a
Fréchet manifold with tangent space Tμ Dens(M) = �n(M). Similarly, as a linear subspace
of a Fréchet manifold, the space of probability densities is a Fréchet manifold, where the
tangent space is given by

Tμ Prob(M) =
{

a ∈ �n(M) :
∫

a = 0

}
.

On both the space of densities and probability densities we can consider the pushforward
action of the diffeomorphism group Diff(M). On Dens+(M) it is given by

Diff(M) × Dens+(M) � (ϕ, μ) �→ ϕ∗μ ∈ Dens+(M) (1)

and, since the pushforward by a diffeomorphism is volume preserving, this action restricts
to an action on the space of probability densities. By a result of Moser [34] this action is
transitive, which allows us to identify the space of probability densities with the quotient

Prob(M) ≡ Diff(M)/Diffλ(M), (2)

whereDiffλ(M) is the group of volumepreserving diffeomorphisms of somefixed probability
density λ. Thus, constructions (metrics, connections, geodesics) on Prob(M) can be pulled
back to Diff(M) via the map ϕ �→ ϕ∗λ.

For a ∈ �n(M) andμ ∈ Dens+(M), we denote by a
μ
the Radon–Nikodym derivative of a

with respect toμ. In particular, themapμ �→ μ
λ
allows us to identifyDens+(M)with positive

smooth functions on M , and Prob(M) with the positive smooth functions that integrate to
one. For the proof of the local wellposedness results in Sects. 3 and 4 we will also need
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the Sobolev completions of these spaces, which can be defined using their Radon–Nikodym
derivative w.r.t. to λ, i.e., for k > dim(M)/2 we consider

Densk+(M) :=
{
μ : μ

λ
∈ Hk(M), and μ > 0

}

Probk(M) :=
{
μ ∈ Densk+(M) :

∫
μ = 1

}
.

Note, that the assumption k > dim(M)/2 is necessary to make sense of the positivity
condition.

A central object in information geometry is the Fisher–Rao metric, which we introduce
now:

Definition 2.1 (Fisher–Rao metric) Given μ ∈ Dens+(M) and a, b ∈ Tμ Dens+(M) the
Fisher–Rao metric on Dens+(M) is given by

GFR
μ (a, b) =

∫
a

μ

b

μ
μ . (3)

Via restriction GFR induces a Riemannian metric on Prob(M), which we denote by the same
letter.

3 The Lp-Fisher–Raometric and˛-connections on the space of densities

In this section we will introduce the L p-Fisher–Rao metric on the space of densities, which
will allow us to obtain a new interpretation of the family of α-connections.

3.1 The Amari–Cencov˛-connections on Dens+(M)

First we will introduce the family of α-connections on the space Dens+(M). In the finite-
dimensional case, i.e., when M is a finite set, the below definitions coincide with the classical
ones, see e.g. [2, 4].

Definition 3.1 (α-divergence) For α ∈ (−1, 1), define the α-divergence D(α) : Dens+(M)×
Dens+(M) → R, by

D(α)(μ||ν) = p
∫

M
ν + p∗

∫
M

μ − p∗ p
∫

M

(μ

λ

)1/p (ν

λ

)1/p∗
λ,

where p = 2
1−α

and p∗ = 2
1+α

is its Hölder conjugate.

Using Hölder inequality, it follows that D(α) is non-negative and vanishes if and only if
μ = ν. Furthermore, a straightforward calculation shows that the negative of its second
derivative defines a positive bilinear form, which is exactly the Fisher–Rao metric, i.e.,

−∂μ∂ν D(α)(μ||ν)|ν=μ[a, b] =
∫

M

a

μ

b

μ
μ = GFR

μ (a, b), a, b ∈ T μDens+(M).

Here ∂μ and ∂ν refer to derivatives with respect to the μ and ν variables, respectively. Thus,
for any α ∈ (−1, 1), D(α) is a divergence in the sense of [4, Section 4.4], and induces a
connection ∇(α) on Dens+(M) via the relation
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GFR
μ (∇(α)

a b, c) = −∂μ(∂μ∂ν D(α)(μ||ν)[b, c])[a]|ν=μ

=
∫

M

Db.a

μ

c

μ
μ − 1

p∗

∫
M

a

μ

b

μ

c

μ
μ, (4)

where a, b, c ∈ Tμ Dens+(M). SinceDens+(M) is a Fréchetmanifold,GFR ismerely aweak
Riemannian metric, and as such, (4) does not necessarily define ∇(α) uniquely. However, in
our case it does, yielding the following formulae:

Lemma 3.2 (α-connection) For any α ∈ (−1, 1) the α-connections ∇(α) on Dens+(M) are
given by

∇(α)
a b = Db.a − 1

p∗
a

μ
b, a, b ∈ Tμ Dens+(M), p∗ = 2

1 + α
. (5)

Here Db.a|μ := Dμb(aμ) denotes the directional derivative of the vector field b in the
direction given by aμ.

The easiest way to read this lemma (and similar formulae below) is to consider again the
identification of densities and positive functions via μ �→ μ/λ.

Proof This follows directly from formula (4).

In the following result we will study the local wellposedness of the corresponding geodesic
equations. Therefore we will first consider these equations on a Banach space of Sobolev
densities, where it will be easy to obtain the local wellposedness using the theorem of Picard-
Lindelöff. The result in the smooth category will then follow from an Ebin-Marsden type
no-loss-no-gain result [19]:

Theorem 3.3 A path μ : [0, 1] → Dens+(M) is a geodesic with respect to ∇(α) if

μt t = 1

p∗
μt

μ
μt . (6)

For any k > dim(M)/2 the geodesic equations are locally wellposed on the space of
Sobolev densities Densk+(M), i.e., given initial conditions μ(0) ∈ Densk+(M), μt (0) ∈
Tμ(0) Densk+(M) there exists an unique solution to Eq. (6) defined on a maximal interval of
existence [0, T ). The maximal interval of existence is uniform in the Sobolev order k and thus
the local wellposedness continues to hold in the limit, i.e., on the space of smooth densities
Dens+(M).

Proof The formula for the geodesic equation follows directly from Lemma 3.2. To show the
local well-posedness we view the geodesic equation (6) as a flow equation on T Densk+(M).
Therefore let F(μt ) denote the right hand side of the geodesic equation, i.e.,

F(μ,μt ) = μ−1μ2
t (7)

where we use the identification of Densk+(M) with the space of positive, Sobolev functions
Hk+(M) and Tμ Densk+(M) with all of Hk(M). Using the Sobolev module properties and the
positivity ofμ it follows that F is a smoothmap from Hk+(M)×Hk(M) and thus the localwell-
posedness follows by the theorem of Picard-Lindelöff. Next, we observe that F is equivariant
under the action of the diffeomorphism group Diff(M), i.e., F(ϕ∗μ, ϕ∗μt ) = ϕ∗F(μ,μt ).
Thus the result on the uniformness of themaximal interval of existence follows by an adaption
of the Ebin-Marsden no-loss-no-gain theorem [19, Lemma 12.2] to the present setting, i.e.,
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the diffeomorphism group acting on densities. This can be achieved by following the proof
in [7], where the no-loss-no-gain result has been extended to the action of diffeomorphisms
on the space of all Riemannian metrics. The key ingredient for this result is the fact that, in
a chart, Lie derivatives along coordinate vector fields coincide with ordinary derivatives.

3.2 The Lp-Fisher–Raometric

Next we introduce the main object of the present article, the L p-Fisher–Rao (Finsler) metric
on the space Dens+(M):

Definition 3.4 Given μ ∈ Dens+(M) and a ∈ Tμ Dens+(M) we define the L p-Fisher–Rao
metric via:

Fp(a) := Fp(μ, a) =
(∫ ∣∣∣∣ a

μ

∣∣∣∣
p

μ

) 1
p

. (8)

Remark 3.5 It is easy to see that the L p-Fisher–Rao metric satisfies the axioms of a Finsler
metric, as defined in Definition A.1, for any p ∈ (1,∞).Wewill, however, see in Lemma 3.8,
that it is not strongly convex if p �= 2.

First we will show, that the family of L p-Fisher–Rao metrics shares an important property
with the Fisher–Rao metric: they are invariant under the action of the diffeomorphism group
as defined in (1).

Lemma 3.6 For any p ∈ (1,∞), the L p-Fisher–Rao metric on the space of Dens+(M) is
invariant under the action of the diffeomorphism group Diff(M), i.e.,

Fp(μ, a) = Fp(ϕ∗μ, ϕ∗a), a ∈ Tμ Dens+(M), ϕ ∈ Diff(M). (9)

Proof This result follows by direct computation using the transformation formula for inte-
grals. �


Next we calculate the geodesic equations of this family of Finsler metrics on Dens+(M).

Theorem 3.7 (Geodesic equation on Dens+(M)) For any p ∈ (1,∞), the geodesic equation
of the L p-Fisher–Rao metric on the space of densities Dens+(M) is given by

d

dt

(
μt

μ

)
+ 1

p

(
μt

μ

)2

= 0, (10)

which coincides with the geodesic equation of the α-connection for α = 1 − 2
p . Thus the

local well-posedness result of Theorem 3.3 also hold for the geodesic equation of the L p-
Fisher–Rao metric.

Proof The length functional of the L p-Fisher–Rao metric on Dens+(M) is given by

L(μ) =
∫ 1

0

(∫ ∣∣∣∣μt

μ

∣∣∣∣
p

μ

) 1
p

dt,

where μ : [0, 1] → Dens+(M) such that μ(0) = μ0, μ(1) = μ1 and where μt denotes
its (time) derivative. A geodesic is a path that locally minimizes the length functional; since
L is invariant to reparametrization, we can restrict ourselves to paths of constant speed. By
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the Hölder inequality, it follows that constant speed geodesics are equivalently the local
minimizers of the q-energy

Eq(μ) = 1

q

∫ 1

0

(∫ ∣∣∣∣μt

μ

∣∣∣∣
p

μ

) q
p

dt,

for any q > 1. In our case themost convenient choice is to consider the q-Energywith q = p.
The corresponding energy functional reads as

E p(μ) = 1

p

∫ 1

0

∫ ∣∣∣∣μt

μ

∣∣∣∣
p

μ dt .

Calculating the variation of the p-energy functional in direction δμ leads to

δE p(μ)(δμ) = 1

p

∫ 1

0

∫
p

∣∣∣∣μt

μ

∣∣∣∣
p−2

μt

μ
δμt − (p − 1)

∣∣∣∣μt

μ

∣∣∣∣
p

δμ dλ dt

= − 1

p

∫ 1

0

∫ (
p

d

dt

(∣∣∣∣μt

μ

∣∣∣∣
p−2

μt

μ

)
+ (p − 1)

∣∣∣∣μt

μ

∣∣∣∣
p
)

δμ dλ dt,

(11)

where we used integration by parts in time t and that the variational direction vanishes at the
end points, i.e., δμ(0) = δμ(1) = 0. From here we can immediately read off the geodesic
equation

p
d

dt

(∣∣∣∣μt

μ

∣∣∣∣
p−2

μt

μ

)
+ (p − 1)

∣∣∣∣μt

μ

∣∣∣∣
p

= 0.

which can be simplified to the desired formula. That this equation coincides with the geodesic
equation of the α-connection can be seen by comparing it to the equation of Theorem 3.3.�


Next we will study the Finslerian geometry induced by the L p-Fisher–Rao metric (see
“Appendix A” for a short overview of the main definitions). We will see in the next Lemma,
that the L p-Fisher–Rao metric is, in general, not strongly convex and thus some of the
calculations in this and the next sections have to be understood formally.

Lemma 3.8 (The Hessian matrix) Let μ ∈ Dens+(M) and ν, a, b ∈ Tμ Dens+(M). The
Hessian matrix gν of the squared L p-Fisher–Rao metric at ν is given by

gν
μ(a, b) = (p − 1)I (ν, ν)

2
p −1 I (a, b) − (p − 2)I (ν, ν)

2
p −2 I (ν, a)I (ν, b). (12)

where

I (a, b) := I ν
μ(a, b) :=

∫ ∣∣∣∣ ν

μ

∣∣∣∣
p−2 a

μ

b

μ
μ. (13)

If ν is nowhere zero than gν is positive definite and thus a Riemannian metric. If ν vanishes
on an open set U ⊂ M then, for p > 2, gν is degenerate as it vanishes for all a, b ∈
Tμ Dens+(M) with support contained in U , and for p < 2 it is not well-defined.

Proof We introduce the notations

ω̃ =ω̃(r , s) := ν

μ
+ r

a

μ
+ s

b

μ
,

ω :=|ω̃(r , s)| =
∣∣∣∣ ν

μ
+ r

a

μ
+ s

b

μ

∣∣∣∣ .
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To compute the Hessian matrix of F2
p(μ, ν) we need to calculate the second derivative in r

and s of F2
p(μ, ω). We have

∂r F2
p(μ, ω) = 2

(∫
ωpμ

)2/p−1 ∫
ωp−1∂rω μ = 2

(∫
ωpμ

)2/p−1 ∫
ωp−1 sgn(ω̃)

a

μ
μ.

For the second derivative we get

∂s∂r F2
p(μ, ω) = 2(2 − p)

(∫
ωpμ

)2/p−2 ∫
ωp−1 sgn(ω̃)

a

μ
μ

∫
ωp−1 sgn(ω̃)

b

μ
μ

+2(p − 1)

(∫
ωpμ

)2/p−1 ∫
ωp−2 a

μ

b

μ
μ.

Evaluating at r = s = 0 yields the desired formula for gν
μ.

For ν �= 0 we can use the Cauchy–Schwarz inequality to prove the positive-definiteness
of the Hessian:

(∫ ∣∣∣∣ ν

μ

∣∣∣∣
p−1 ∣∣∣∣ a

μ

∣∣∣∣ μ

)2

≤
∫ ∣∣∣∣ ν

μ

∣∣∣∣
p

μ

∫ ∣∣∣∣ ν

μ

∣∣∣∣
p−2 (

a

μ

)2

μ.

Then we get the inequality

gν(a, a) ≥
(∫ ∣∣∣∣ ν

μ

∣∣∣∣
p

μ

)2/p−1 ∫ ∣∣∣∣ ν

μ

∣∣∣∣
p−2 (

a

μ

)2

μ.

Thus for ν being a nowhere vanishing vector field, gν(a, a) = 0 implies that a
μ

= 0. �


Lemma 3.9 (The Cartan tensor) Let μ ∈ Dens+(M) and ν, a, b, c ∈ Tμ Dens+(M). The
Cartan tensor of the L p-Fisher–Rao metric is given by

Cν(a, b, c) =1

2
(p − 1)(p − 2)I (ν, ν)

2
p −3

(
2I (ν, a)I (ν, b)I (ν, c)

− I (ν, ν)I (ν, a)I (b, c) − I (ν, ν)I (ν, b)I (c, a)

− I (ν, ν)I (ν, c)I (a, b) + I (ν, ν)2 J (ν, a, b, c)
)
,

(14)

where

I (a, b) := I ν
μ(a, b) :=

∫ ∣∣∣∣ ν

μ

∣∣∣∣
p−2 a

μ

b

μ
μ,

J (a, b, c) := J ν
μ(a, b, c) :=

∫ ∣∣∣∣ ν

μ

∣∣∣∣
p−4 a

μ

b

μ

c

μ
μ.

(15)

Proof This formula can be derived similarly as the formula for the Hessian by computing

Cν(a, b, c) = ∂r∂s∂t |r=s=t=0 Fp(μ, ω̃)

where ω̃(r , s, t) = ν + ra + sb + tc. �
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3.3 The˛-connection as Chern connection of the Lp-Fisher–Raometric

Next we will show that the Chern connection associated to the L p-Fisher–Rao metric on
Dens+(M) is an α-connection, when two entries are taken to be the same.

Theorem 3.10 (The Chern connection on Dens+(M)) Let α = 1 − 2
p . For every nowhere

vanishing vector field ν on Dens+(M) and any a ∈ Tμ Dens+(M), we have

∇ν
a ν = ∇(α)

a ν, (16)

where ∇ν is the Chern connection induced by the L p-Fisher–Rao metric and ∇(α) is the
α-connection on Dens+(M) defined by (5).

Proof Formula (16) defines the Chern connection if and only if it verifies the generalized
Koszul formula (see Lemma A.8)

2gν(∇ν
a ν, b) = agν(ν, b) + νgν(b, a)

− bgν(a, ν) + gν([a, ν], b) − gν([ν, b], a) + gν([b, a], ν)

− 2Cν(∇ν
a ν, ν, b) − 2Cν(∇ν

ν ν, b, a) + 2Cν(∇ν
ν b, a, ν).

Since the Cartan tensor verifies Cν(ν, ·, ·) = 0 this formula reduces to

2gν(∇ν
a ν, b) = agν(ν, b) + νgν(b, a) − bgν(a, ν)

+ gν([a, ν], b) − gν([ν, b], a) + gν([b, a], ν) − 2Cν(∇ν
ν ν, b, a).

(17)

To compute the first terms of the right hand-side of this equality, we will need

cI (a, b) = I (Da.c, b) + I (a, Db.c) − (p − 1)K (a, b, c) + (p − 2)J (ν, a, b, Dν.c),

where I and J are defined by (15), and

K (a, b, c) := K ν
μ(a, b, c) =

∫ ∣∣∣∣ ν

μ

∣∣∣∣
p−2 a

μ

b

μ

c

μ
μ.

Using this we get

agν(ν, b) = − p − 2

p
I (ν, ν)2/p−2 I (ν, b) (pI (ν, Dν.a) − (p − 1)K (ν, ν, a))

+ I (ν, ν)2/p−1 (I (ν, Db.a) − (p − 1)K (ν, a, b) + (p − 1)I (b, Dν.a)) ,

bgν(ν, a) = − p − 2

p
I (ν, ν)2/p−2 I (ν, a) (pI (ν, Dν.b) − (p − 1)K (ν, ν, b))

+ I (ν, ν)2/p−1 (I (ν, Da.b) − (p − 1)K (ν, a, b) + (p − 1)I (a, Dν.b)) ,

and

νgν(a, b) = − (p − 1)(p − 2)

p
I (ν, ν)2/p−2 I (a, b) (pI (ν, Dν.ν) − (p − 1)K (ν, ν, ν))

+ (p − 1)I (ν, ν)2/p−1

(I (Da.ν, b) + I (a, Db.ν) − (p − 1)K (ν, a, b) + (p − 2)J (ν, a, b, Dν.ν))

+ 2(p − 1)(p − 2)

p
I (ν, ν)2/p−3 I (ν, a)I (ν, b) (pI (ν, Dν.ν) − (p − 1)K (ν, ν, ν))

− (p − 2)I (ν, ν)2/p−2 I (ν, b) (I (ν, Da.ν) − (p − 1)K (ν, ν, a) + (p − 1)I (a, Dν.ν))

− (p − 2)I (ν, ν)2/p−2 I (ν, a) (I (ν, Db.ν) − (p − 1)K (ν, ν, b) + (p − 1)I (b, Dν.ν)) .
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The following terms of the right hand-side of the generalized Koszul formula (17) are given
by

gν([a, ν], b) = (p − 1)I (ν, ν)2/p−1 I (Dν.a − Da.ν, b)

− (p − 2)I (ν, ν)2/p−2 I (ν, Dν.a − Da.ν)I (ν, b),

gν([ν, b], a) = (p − 1)I (ν, ν)2/p−1 I (Db.ν − Dν.b, a)

− (p − 2)I (ν, ν)2/p−2 I (ν, Db.ν − Dν.b)I (ν, a),

gν([b, a], ν) = I (ν, ν)2/p−1 I (ν, Da.b − Db.a).

Finally there remains to compute the two terms involving the Chern connection, i.e. the term
on the left hand-side and the last term of the right hand-side. With the chosen value of α, we
have

∇ν
a ν = Dν.a − p − 1

p

a

μ

ν

μ
μ,

and so

I (∇ν
a ν, b) = I (Dν.a, b) − p − 1

p
K (ν, a, b)

J (ν, a, b,∇ν
ν ν) = J (ν, a, b, Dν.ν) − p

p − 1
K (ν, a, b).

This yields, using (14),

2Cν(∇ν
ν ν, b, a) = (p − 1)(p − 2)I (ν, ν)2/p−3

·
[
2I (ν, a)I (ν, b)

(
I (ν, Dν.ν) − p − 1

p
K (ν, ν, ν)

)

− I (ν, ν)I (ν, a)

(
I (b, Dν.ν) − p − 1

p
K (ν, ν, b)

)

− I (ν, ν)I (ν, b)

(
I (a, Dν.ν) − p − 1

p
K (ν, ν, a)

)

− I (ν, ν)I (a, b)

(
I (ν, Dν.ν) − p − 1

p
K (ν, ν, ν)

)

+ I (ν, ν)2
(

J (ν, a, b, Dν.ν) − p − 1

p
K (ν, a, b)

) ]
.

Putting all the terms together yields the left hand-side of the generalized Koszul formula
(17), i.e.

2gν(∇ν
a ν, b) = 2(p − 1)I (ν, ν)2/p−1

(
I (Dν.a, b) − p − 1

p
K (ν, a, b)

)

− 2(p − 2)I (ν, ν)2/p−2 I (ν, b)

(
I (Dν.a, ν) − p − 1

p
K (ν, ν, a)

)
.

�

As a direct consequence of the above characterization of the α-connections as a Chern
connection we obtain that these connections have an interpretation as describing energy
minimizing curves:
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Corollary 3.11 Let α ∈ (−1, 1). Geodesic curves of the α-connection describe locally mini-
mizing curves of the 2

1−α
-Energy

E 2
1−α

(μ) = 1 − α

2

∫ 1

0

∫ ∣∣∣∣μt

μ

∣∣∣∣
2

1−α

μ dt .

3.4 The p-root transform

Next, we will isometrically map the space of densities to a simpler space, which will allow us
to obtain explicit expressions for solutions to the geodesic equation; we call this construction,
which is a direct generalization of the square-root transform for the Fisher–Rao metric, the
p-root transform. At the same time the p-root transform presents an alternative way to define
the α-connection. This has been first proposed by Gibilisco and Pistone [24], who considered
this construction specifically for the space Prob(M) albeit with slightly different notations
and a different identification of a tangent vector with a function.

Theorem 3.12 Endow the space C∞(M) of smooth functions with the standard L p-norm
and with the trivial vector space connection ∇ tr, i.e., for two vector fields ξ, η : C∞(M) →
C∞(M),

∇ tr
ξ η = Dη.ξ.

Let α ∈ (−1, 1) and, as before, denote p = 2
1−α

. Define the map �p : Dens+(M) →
C∞(M) by

�p(μ) =
(μ

λ

)1/p
. (18)

We have:

(a) The image �p(Dens+(M)) is the set of all positive functions in C∞(M).
(b) The mapping �p is an isometric embedding, whereDens+(M) is equipped with a multiple

of the L p-Fisher–Rao metric and where C∞(M) is viewed as a vector space equipped
with the standard L p-norm.

(c) The pullback of �∗
p∇ tr coincides with ∇(α) up to a constant depending only on the

footpoint:

(�∗
p∇ tr)ab|μ = 1

p

(μ

λ

) 1
p −1 ∇(α)

a b|μ, μ ∈ Dens+(M), a, b ∈ X(Dens+(M))

In particular, the geodesics of �∗
p∇ tr and ∇(α) coincide.

Note that geodesics of the trivial connection on a vector space are always straight lines; in
particular, this proposition allows us to obtain geodesics of the L p-Fisher–Rao metric (of the
α-connection, resp.) by pulling-back straight lines in C∞(M) using �p . We will use this in
Corollary 3.13 below to explicitly describe the resulting formulas on Dens+(M). First we
present the proof of the above theorem, which is a fairly straightforward calculation:

Proof of Theorem 3.12 The characterization of the image of �p follows directly from the
definition of Dens+(M). To show item (b) we calculate for μ ∈ Dens+(M) and a ∈
Tμ Dens+(M) the differential of �p:

Dμ�p(a) = 1

p

a

λ

(μ

λ

)1/p−1
.
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Therefore the pullback of the L p-norm via the embedding �p is given by

‖Dμ�p(a)‖L p = 1

p

(∫
M

∣∣Dμ�p(a)
∣∣p dλ

)1/p

= 1

p

(∫
M

∣∣∣∣ a

μ

∣∣∣∣
p

μ

)1/p

= 1

p
Fp(μ, a),

which implies that the embedding �p is indeed an isometry.
Similarly we calculate for item (c)

(�∗
p∇ tr)ab|μ = (T �p)

−1∇ tr
T �p(a)T �p(b)|�p(μ)

= (T �p)
−1

(
1

p2

(μ

λ

) 1
p −1

(
∇ tr

a/λ

(ν

λ

) 1
p −1 b

λ

)
μ=ν

)

= 1

p

(
∇ tr

a/λ

(ν

λ

) 1
p −1 b

λ

)
μ=ν

λ

= 1

p

(μ

λ

) 1
p −1

(
D(b/dx).(a/dx) +

(
1

p
− 1

) (μ

λ

)−1 a

λ

b

λ

)
λ

= 1

p

(μ

λ

) 1
p −1

(
Db.a +

(
1

p
− 1

)
a

μ
b

)
= 1

p

(μ

λ

) 1
p −1 ∇(α)

a b|μ.

�

The above theorem allows us to explicitly solve for geodesics on Dens+(M), which in turn
leads to a proof of metric and geodesic incompleteness of the L p-Fisher–Rao metric for any
p > 1. By the equivalence of geodesics for the α-connections and for the L p-Fisher–Rao
metric the formulas for geodesics also hold for the former. In the finite dimensional setting
this solution formula (via the p-root mapping) for the α-geodesics is known albeit without
any geometric interpretation, cf. [5, Page 50].

Corollary 3.13 (The geometry of the L p-Fisher–Rao metric) For any p > 1 we have the
following statements:

(a) The space Dens+(M) equipped with the L p-Fisher–Rao metric (the α-connection resp.)
is geodesically convex and, even more, there exists an explicit formula for all minimizing
geodesics: given any μ0, μ1 ∈ Dens+(M) the unique geodesic μ : [0, 1] → Dens+(M)

connecting μ0 to μ1 is given by

μ(t) =
(

t p
√

μ1
λ

+ (1 − t) p
√

μ0
λ

)p

λ.

(b) Given any μ0, μ1 ∈ Dens+(M) the geodesic distance of the L p-Fisher–Rao metric is
given by

d(μ0, μ1) =
(∫

M

∣∣∣∣ p
√

μ1
λ

− p
√

μ0
λ

∣∣∣∣ λ
)1/p

In particular, the geodesic distance of the L p-Fisher–Rao metric on Dens+(M) is non-
degenerate.

(c) For any initial conditions μ0 ∈ Dens+(M) and a ∈ Tμ Dens+(M) the unique L p-
Fisher–Rao geodesic (α-connection geodesic, resp.) μ : [0, T ) → Dens+(M) defined
on its maximal interval of existence [0, T ) is given by

μ(t) =
(

p
√

μ0
λ

+ t
a

λ

(μ

λ

)1/p−1
)p

λ.
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The geodesic μ(t) exists for all time t, i.e., T = ∞, if and only if a
λ
(x) ≥ 0 for all x ∈ M.

Thus the space Dens+(M) equipped with the L p-Fisher–Rao metric is geodesically
incomplete since the solution to the geodesic equation (10) leaves the space in finite time
for any initial condition with a

λ
(x) < 0 for some x.

(d) The space Dens+(M) equipped with the geodesic distance of the L p-Fisher–Rao metric
is metrically incomplete.

(e) The metric completion of the space Dens+(M) with respect to the geodesic distance of
the L p-Fisher–Rao metric is the space of all non-negative L1-densities:

DensL1(M) =
{
μ : μ

λ
∈ L1(M),

μ

λ
≥ 0 a.e.

}

Proof Statements (a)–(d) follow directly from the isometry of Theorem 3.12, the fact that
geodesics on the vector space (C∞(M), L p) are straight lines and the characterization of
the image of �p as an open, convex subset of C∞(M). To see the statement regarding the
metric completion we observe that the metric completion of the image is exactly the set of
a.e. non-negative L p-functions and thus the statement on the metric completion follows by
applying �−1

p . �


4 The Lp-Fisher–Raometric and˛-connections on the space of
probability densities

The L p-Fisher–Raometric Fp and theα-divergence Dα define, via restriction, corresponding
objects on Prob(M), which we study in this section. In particular, we will see that Prob(M)

equipped with the L p-Fisher–Rao metric corresponds geometrically to an infinite dimen-
sional L p-sphere. In addition we will see that the equivalence to the α-connection, that has
been established for the space of all densities in the previous section, does not hold on the
space of probability densities. Consequently we obtain three different notions of p-geodesics
on this space:

(1) geodesics of the restriction of the L p-Fisher–Rao metric to Prob(M);
(2) geodesics of the α-connections on Prob(M);
(3) projections of L p-Fisher–Rao geodesic curves (or equivalently, the α-connection ones)

on Dens+(M).

In addition, if we allow to leave the space of probability densities, we obtain a fourth notion:

(4) L p-Fisher–Rao geodesics in Dens+(M). In analogy to the L2 case, the induced geodesic
distance between probability densities defines an L p version of the Hellinger distance.

We will show that (2) and (3) coincide, thereby providing an explicit formula for α-geodesics
on Prob(M). For a graphic summary of these constructions we refer to Fig. 1. In the next
section we will compare the remaining three notions of geodesics numerically.

4.1 The Amari–Cencov˛-connections on Prob(M)

The restriction of the α-divergences Dα to the space Prob(M) induces again a family of

α-connections, which we will denote by ∇(α)
. Note, that this connection is not simply the

restriction of the α-connections on Dens+(M), which is the reason for choosing a different
notation for it. We start by deriving an explicit formula for the α-connections on Prob(M):
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Lemma 4.1 For any α ∈ (−1, 1) the α-connections ∇(α)
on Prob(M) are given by

∇(α)

a b = Db.a − 1

p∗

(
a

μ
b −

(∫
M

a

μ

b

μ
μ

)
μ

)
. (19)

Thus, the connection ∇(α)

a b on Prob(M) is the projection of ∇(α)
a b with respect to the Fisher–

Rao metric GFR.

For finite sample spaces this result is well-known (e.g., [5, Section 2.5.2]); in infinite
dimensions formula (19) agrees with the formula (22) in [30], under the identification of
Prob(M) = Diff(M)/Diffλ(M).

Proof To derive the formula for the α-connection ∇(α)
we calculate the second derivative of

the restriction of Dα , which is given again by formula (4) with the only difference being that

a, b, c ∈ Tμ Prob(M). Thus we have determined∇(α)
up to a function in the GFR orthogonal

complement of Tμ Prob(M), which are exactly the constant multiples ofμ. Thus the formula

follows by ensuring that ∇(α)

a b ∈ Prob(M). This argument also proves that ∇(α)

a b is the

Fisher–Rao projection of ∇(α)
a b. �


Theorem 4.2 A path μ : [0, 1] → Prob(M) is a geodesic with respect to ∇(α) if

μt t − 1

p∗ μ−1μ2
t = − 1

p∗

(∫ (
μt

μ

)2

μ

)
μ.

For any k > dim(M)/2 the geodesic equations are locally wellposed on the space of Sobolev
probability densities Probk(M), i.e., given initial conditions μ(0) ∈ Probk(M), μt (0) ∈
Tμ(0) Probk(M) there exists an unique solution to equation (6) defined on a maximal interval
of existence [0, T ). The maximal interval of existence is uniform in the Sobolev order k and
thus the local wellposedness continues to hold in the limit, i.e., on the space of smooth,
probability densities Prob(M).

Proof The proof of the local wellposedness follows exactly as in Theorem 3.3. �


4.2 The Lp-Fisher–Raometric on Prob(M)

Next, we study the restriction of the L p-Fisher–Rao metric to the space Prob(M).

Remark 4.3 (C̆encov’s theorem)Note that Lemma 3.6 on the invariance of the L p-Fisher–Rao
metric continues to hold on the space Prob(M). For the Riemannian case and dim(M) >

1 C̆encov’s theorem states that the Fisher–Rao metric is the only Riemannian metric on
Prob(M) that is invariant under the action of the diffeomorphism group Diff(M), cf. [4,
9, 16]. In the Finslerian case there is a significant amount of additional flexibility, and one
can indeed construct metrics beyond the L p-Fisher–Rao metric that satisfy this property. In
future work it would be interesting to obtain a complete characterization of all such Finsler
metrics.

We start by computing the geodesic equation of the (restriction) of the L p-Fisher–Rao
metric Fp on Prob(M):
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Theorem 4.4 (Geodesic equation on Prob(M)) For any p ∈ (1,∞), the geodesic equation
of the L p-Fisher–Rao metric on the space of densities Prob(M) is given by∣∣∣∣μt

μ

∣∣∣∣
p−2 d

dt

(
μt

μ

)
+ 1

p

∣∣∣∣μt

μ

∣∣∣∣
p

= C(t) (20)

where C(t) is a constant depending only on time t, that is chosen such that
∫

M μ(t) = 1.
This equation coincides with the geodesic equation of the α-connection if and only if

p = 2 (α = 0, resp.).

Remark 4.5 (Existence of solutions) In the previous section we showed that the geodesic
equation of the α-connections is locally wellposed on the space Prob(M). One would be
tempted to expect a similar result for the geodesic equation of the L p-Fisher–Rao metric;
recall that this statement was true on the space Dens+(M). It turns out that the above equation
is analytically much worse-behaved: the problem arises from the vanishing of the quantity
μt
μ

which leads to singularities of the geodesic equation. As a consequence we conjecture
that the geodesic equation does not admit any classical solutions. This behavior can also be
observed in the numerical simulations (Fig. 2), where the obtained (approximate) solutions
show a singular behavior.

Proof of Theorem 4.4 To derive this equation, we proceed as for the geodesic equation on the
space Dens+(M). We then obtain again

δE p(μ)(δμ) = − 1

p

∫ 1

0

∫ (
p

d

dt

(∣∣∣∣μt

μ

∣∣∣∣
p−2

μt

μ

)
+ (p − 1)

∣∣∣∣μt

μ

∣∣∣∣
p
)

δμ dλ dt

=: − 1

p

∫ 1

0

∫
� δμ dλ dt

for the variation of the p-Energy with the only difference being that δμ now has to integrate
to zero. Thus we do not get that � = 0 as we had on the space Dens+(M), but only that �
has to be orthogonal to all such δμ. This is equivalent to � being a constant for each fixed
time t , which is determined by the condition that

∫
M μ(t) = 1.

The above result suggests that the equivalence between the α-connection and the Chern-
connection of the L p-Fisher–Raometric cannot hold in this setting.We will make this formal
in the following theorem:

Theorem 4.6 (The Chern connection on Prob(M)) For a vector field ν on Prob(M) the Chern
connection is given by, for all a ∈ Tμ Prob(M),

∇ν

aν = Dν.a − p − 1

p

a

μ

ν

μ
μ + k1

∣∣∣∣ ν

μ

∣∣∣∣
−p a

μ
ν + k2

∣∣∣∣ ν

μ

∣∣∣∣
2−p

μ, (21)

with the constants

k1(ν) := − (p − 1)(p − 2)

2p

(∫ ∣∣∣∣ ν

μ

∣∣∣∣
2

μ

)
/

(∫ ∣∣∣∣ ν

μ

∣∣∣∣
2−p

μ

)

k2(ν, a) := p − 1

p

(∫
a

μ

ν

μ
μ

)
/

(∫ ∣∣∣∣ ν

μ

∣∣∣∣
2−p

μ

)

+ (p − 1)(p − 2)

2p

(∫ ∣∣∣∣ ν

μ

∣∣∣∣
−p a

μ
ν

∫ ∣∣∣∣ ν

μ

∣∣∣∣
2

μ

)
/

(∫ ∣∣∣∣ ν

μ

∣∣∣∣
2−p

μ

)2

.
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Remark 4.7 As any vector field ν ∈ Tμ Prob(M) has zeros the above formula has to be taken
with caution and should be understood formally only.

Remark 4.8 In particular, when all entries are the same, the Chern connection on Prob(M)

is the orthogonal projection of the α-connection ∇(α) on Dens+(M), for α = 1 − 2
p , with

respect to gν , the Riemannian metric (12) induced by the L p-Fisher–Rao metric

∇ν

νν = Projν
(
∇(α)

ν ν
)

= Dν.ν − 1

p∗
ν

μ

ν

μ
μ + k

∣∣∣∣ ν

μ

∣∣∣∣
2−p

μ (22)

where p∗ is the Hölder conjugate of p and

k(ν) := 1

p∗

(∫ ∣∣∣∣ ν

μ

∣∣∣∣
2

μ

)
/

(∫ ∣∣∣∣ ν

μ

∣∣∣∣
2−p

μ

)
.

Indeed, the correction term k
∣∣∣ ν
μ

∣∣∣2−p
μ is orthogonal to T Prob(M) and makes the integral

zero.

Proof of Theorem 4.6 We start by noticing that, since Dν(a) integrates to zero, the integral of
the right hand-side of (21) is zero and so it defines a tangent vector of Prob(M). The formula
(21) defines the Chern connection if and only if it verifies the generalized Koszul formula
(17). Letting α = 1− 2

p and ∇(α) be the corresponding α-connection on Dens+(M), we can
decompose the candidate for the Chern connection as

∇ν

aν = ∇(α)
a ν + k1

∣∣∣∣ ν

μ

∣∣∣∣
−p a

μ
ν + k2

∣∣∣∣ ν

μ

∣∣∣∣
2−p

μ.

Since ∇(α) is the Chern connection on Dens+(M) for this choice of α, the candidate (21)
verifies the generalized Koszul formula if and only if

0 = 2gν

(
k1(ν)

∣∣∣∣ ν

μ

∣∣∣∣
−p a

μ
ν + k2(ν, a)

∣∣∣∣ ν

μ

∣∣∣∣
2−p

μ, b

)

+ 2Cν

(
k1(ν)

∣∣∣∣ ν

μ

∣∣∣∣
−p

ν

μ
ν + k2(ν, ν)

∣∣∣∣ ν

μ

∣∣∣∣
2−p

μ, b, a

)

= 2k1(ν)gν

(∣∣∣∣ ν

μ

∣∣∣∣
−p a

μ
ν, b

)
+ 2k2(ν, a)gν

(∣∣∣∣ ν

μ

∣∣∣∣
2−p

μ, b

)

+ 2(k1(ν) + k2(ν, ν))Cν

(∣∣∣∣ ν

μ

∣∣∣∣
2−p

μ, b, a

)
.

(23)

Noticing that, for all b ∈ Tμ Prob(M), I (| ν
μ
|2−pμ, b) = ∫

b = 0, we see from (12) that

gν

(∣∣∣∣ ν

μ

∣∣∣∣
2−p

μ, b

)
= 0.
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This also means that all terms in the Cartan tensor (14) but one vanish, leaving

2Cν

(∣∣∣∣ ν

μ

∣∣∣∣
2−p

μ, b, a

)
= (p − 1)(p − 2)I (ν, ν)

2
p −1 J

(
ν,

∣∣∣∣ ν

μ

∣∣∣∣
2−p

μ, b, a

)

= (p − 1)(p − 2)I (ν, ν)
2
p −1

∫ (
ν

μ

)−1 a

μ

b

μ
μ

Finally there remains to compute

gν

(∣∣∣μ
ν

∣∣∣p a

μ
ν, b

)
= (p − 1)I (ν, ν)

2
p −1

∫ ∣∣∣∣ ν

μ

∣∣∣∣
p−2 ∣∣∣∣ ν

μ

∣∣∣∣
−p a

μ

ν

μ

b

μ
μ

− (p − 2)I (ν, ν)
2
p −2 I (ν, b)

∫ ∣∣∣∣ ν

μ

∣∣∣∣
p−2

ν

μ

∣∣∣∣ ν

μ

∣∣∣∣
−p a

μ

ν

μ
μ

= (p − 1)I (ν, ν)
2
p −1

∫ (
ν

μ

)−1 a

μ

b

μ
μ.

Putting all these together, and noticing that k2(ν, ν) = − p
p−2k1(ν), we obtain

2gν

(
k1(ν)

∣∣∣∣ ν

μ

∣∣∣∣
−p a

μ
ν + k2(ν, a)

∣∣∣∣ ν

μ

∣∣∣∣
2−p

μ, b

)

+ 2Cν

(
k1(ν)

∣∣∣∣ ν

μ

∣∣∣∣
−p

ν

μ
ν + k2(ν, ν)

∣∣∣∣ ν

μ

∣∣∣∣
2−p

μ, b, a

)

= (pk1(ν) + (p − 2)k2(ν)) (p − 1)I (ν, ν)
2
p −1

∫ (
ν

μ

)−1 a

μ

b

μ
μ

= 0,

and so condition (23) is satisfied. �


4.3 The p-root transform on Prob(M)

In the previous section we have seen that the α-connection and the L p-Fisher–Rao metric
induce different geodesics on the space Prob(M). In this section we will investigate the
geometric reasons behind this, by connecting both of these objects to the p-root transform.
In order to state this result we will need to define an appropriate connection on the sphere

Sp := { f ∈ C∞(M) : ‖ f ‖L p = 1},
as the image of Prob(M) under �p is in this set. To this end, we define:

Definition 4.9 (p-projection and p-connection) The p-projection map π p : T C∞|Sp →
T Sp is defined by

π
p
f (ξ) = ξ −

(∫
M

ξ f | f |p−2 dλ

)
f , f ∈ Sp, ξ ∈ T C∞|Sp .

The induced p-connection on Sp is defined by

∇ p
ξ η = π p (∇ tr

ξ η
)
.
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Note, that π p is the projection with respect to the splitting T f C∞ = T f Sp ⊕ span{ f }. The
geodesic equation ∇ p

γ̇ γ̇ = 0 can therefore be written as:
{

γ̈ ‖ γ∫
M γ p dλ = 1

(24)

Note that from a metric point of view, this splitting is natural since f ∈ T f C∞ is the unique
direction from which straight lines (i.e., geodesics in C∞) emanating from f gets the fastest
away from Sp with respect to the L p norm (since for p ∈ (1,∞) the space L p is strictly
convex). Similarly, π p

f (ξ) satisfies ‖ξ − π
p
f (ξ)‖L p = distL p (ξ, T f Sp). For a more general

viewpoint on projections on a sphere in uniformly convex Banach spaces whose dual is also
uniformly convex, see [23] and [22, Prop. 2].

We are now able to formulate the analogous statement of Theorem 3.12, which will
demonstrate the geometric differences between the α-connections and the L p-Fisher–Rao
metric:

Theorem 4.10 Let α ∈ (−1, 1) and, as before, denote p = 2
1−α

. Consider the restriction of
the map �p, as defined in (18), to the space Prob(M). We have:

(a) The image �p(Prob(M)) is the set of all positive functions in the L p-sphere Sp.
(b) The mapping �p is an isometric embedding, where Prob(M) is equipped with a multiple

of the L p-Fisher–Rao metric and where Sp is equipped with the restriction of the standard
L p-norm.

(c) The pullback of �∗
p∇ p to Prob(M) coincides with the connection ∇(α)

up to a constant
depending only on the footpoint:

(�∗
p∇ p)ab|μ = 1

p

(μ

λ

) 1
p −1 ∇(α)

a b|μ, μ ∈ Prob(M), a, b ∈ X(Prob(M)).

In particular, the geodesics of �∗
p∇ p and ∇(α)

coincide.

Proof The proof follows by the same calculation as the proof of Theorem 3.12. �

On Sp , geodesics are no longer straight lines, and we do not have an explicit solution for
the geodesic equations of either the α-connection or the L p-Fisher–Rao metric. However, by
projecting straight lines on the sphere and rescaling time, one can obtain geodesics for the
α-connection (cf. [4, Section 2.5.2] where this result has been shown in the finite dimensional
situation):

Theorem 4.11 Let f ∈ Sp and ξ ∈ T f Sp. Let I ⊂ R be an interval containing 0, and let
τ : I → R satisfy the ODE

τ̈ (t) = 2

∫
M | f + τ(t)ξ |p−2( f + τ(t)ξ)ξ dλ∫

M | f + τ(t)ξ |p dλ
τ̇ (t)2

τ(0) = 0

τ̇ (0) = 1

Then γ : I → Sp defined by

γ (t) = f + τ(t)ξ

‖ f + τ(t)ξ‖L p

is a geodesic of ∇ p, with initial condition γ (0) = f , γ̇ (0) = ξ .
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A boundary value problem between f , g ∈ Sp can be similarly addressed by putting
ξ = g − f and I = [0, 1], and replacing the initial conditions for τ by the boundary
conditions τ(0) = 0, τ(1) = 1.

Geodesics of ∇(α)
are obtained by pulling back these geodesics using �p. They all cease

to exist (i.e., leave the space Prob(M)) after finite time. Since the geodesic equation is locally
well-posed (Proposition 4.2), this procedure induces all the α-connection geodesics, i.e., the

exponential map of ∇(α)
.

Proof Using (24), we need to show that γ̈ ‖ γ ; all the other assumptions are satisfied by
construction. We have

γ̈ = τ̈ (t)‖ f + τ(t)ξ‖−1
L p ξ + 2τ̇ (t)

d

dt
‖ f + τ(t)ξ‖−1

L p ξ + d2

dt2
‖ f + τ(t)ξ‖−1

L p ( f + τ(t)ξ).

The last addend is clearly parallel to γ . Hence it is sufficient to require that

τ̈ (t)‖ f + τ(t)ξ‖−1
L p + 2τ̇ (t)

d

dt
‖ f + τ(t)ξ‖−1

L p = 0,

which is equivalent to the wanted ODE.
In order to prove that the pullback of the solutions leaves Prob(M) after a finite time, we

need to show that γ (t) stops being positive, i.e., that for some t > 0, f (x) + τ(t)ξ(x) ≤ 0
for some x ∈ M . From the equivariance under the action of Diff(M), cf. Remark 4.3, it
is sufficient to consider the case f ≡ 1 (which corresponds to μ(0) = λ). In this case ξ

is a non-zero function satisfying
∫

M ξ λ = 0, and thus in particular ξ(x) < 0 for some x .
Therefore, in order to prove that 1 + τ(t)ξ(x) ≤ 0 for some t , it is sufficient to prove that τ
is unbounded as t → ∞. Note that we can write the equation for τ as

τ̈ (t) = 2

(
1 − 1∫

M |1 + τ(t)ξ |p dλ

)
τ̇ (t)2

τ
. (25)

Now, since s �→ 1 + sξ is a tangent line to the unit sphere at f = 1 in the strictly convex
space L p , it follows that ‖1 + sξ‖L p ≥ 1, and equality holds if and only if s = 0. Thus, the
term in the parentheses in (25) is non-negative, and vanishes if and only if τ(t) = 0. Since
we also have that τ(0) = 0 and τ̇ (0) = 1, it follows that τ̈ (t) > 0 for t ∈ (0, t0) for some t0
small enough, and thus for any positive t . It follows therefore that τ > t for all t > 0, and in
particular, it is unbounded. �

Remark 4.12 In fact, the estimate τ > t implies that 1+ τ(t)ξ hits zero at some point for the
first time at t∗ < 1

−min ξ
. Pulling back to Prob(M), we obtain that a geodesic from λ with

initial condition a ∈ Tλ Prob(M) blows up at time

t∗ <
p

−min(a/λ)
. (26)

In principle, better estimates on the blowup can be obtained by more careful analysis of (25).
The estimate (26) is exactly the estimate obtained in [29, Formula (78)] (there, the parameter
a is equivalent to −1 − 2

p in our notation).

Example 4.13 (Fisher–Rao geodesics) For the case p = 2, assuming that ξ is a unit vector
(which is, by definition, perpendicular to f ), we obtain that the ODE takes a simpler form

τ̈ = 2τ

1 + τ 2
τ̇ 2,
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whose solution is τ(t) = tan t , yielding the known solution of the Fisher–Rao geodesics [26,
Remark 4.4].

5 Summary of relations to known PDEs andmetrics on diffeomorphism
groups

We now summarize how the L p-Fisher–Rao metric relates to (degenerate) right-invariant
Finsler metric on the group of diffeomorphisms, in a similar spirit as in [26] who studied this
for the L2-case. Furthermore, we will see how the geodesics equations described in this paper
relate to other previously studied equations in hydrodynamics and mathematical physics:

• On the diffeomorphism group of a closed manifold M one can consider the family of,
right-invariant (degenerate) Ẇ 1,p-Finsler metrics of the form

F̃p(ϕ, X ◦ ϕ) =
(∫

M
| div(X)|pdλ

)1/p

, X ∈ Tϕ Diff(M).

These metrics were useful for proving that the diameter of Diff(M) with respect to some
critical Sobolev Riemannian metrics is infinite [12]. Note that the kernel of the Finsler
metric F̃p consists exactly of all divergence free vector fields, and thus F̃p is only a “true”
Finsler metric on the quotient space Diff(M)/Diffλ(M). The relation to the L p-Fisher–
Rao metric, as studied in the present article, becomes clear by considering the mapping
ϕ �→ Jac(ϕ)λ, which gives rise to an isometry

(Diff(M)/Diffλ(M), F̃p) → (Prob(M), Fp).

Note, that this result is a direct generalization of the case p = 2 treated in Khesin et
al. [26]. For this case Modin [33] constructed an extension of the metric F̃2 to obtain a
non-degenerate, right invariant Riemannian metric on the full group of diffeomorphisms
Diff(M), that still descends to the Fisher–Rao metric F2 on Prob(M). In future work it
would be interesting to consider a similar extension for the case p �= 2.

• Similarly, the α-connections on Prob(M) can be pulled back to Diff(M)/Diffλ(M); the
corresponding geodesic equation (which is equivalent to the one in Theorem 4.2) was
first considered in [30]. Theorem 4.11 shows their integrability and finite-time blowup.

• For the special case M = S1, where the group of volume preserving diffeomorphisms is
given by the group of rotations Rot(S1), theα-connections on Prob(S1) can thus be pulled
back to Diff(S1)/Rot(S1), where the associated geodesic equation, when presented on
the Lie algebra, is the generalized periodic inviscid Proudman–Johnson equation

utxx + (2 − α)ux uxx + uuxxx = 0,

as was first shown in [30]. See [29, 38] and the references therein for analysis of this
equation, also beyond the range α ∈ (−1, 1).

• Similarly, the L p-Fisher–Rao metric on Prob(S1) can be considered as a Finsler metric
on Diff(S1)/Rot(S1). The resulting geodesic equation is the periodic r -Hunter–Saxton
equation for r = 1/p, as considered in [11, 18]. As shown in this paper, this is not the
same equation as the one of the α-connections on Prob(S1) (i.e., the generalized periodic
invicid Proudman–Johnson equation), unlike what we erroneously stated in [11].

• For M = R, the geodesic equations of α-connections (equiv., of the L p-Fisher–Rao
metric) onDens(R) canbe considered as equations of an appropriate subgroupofDiff(R),
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defined in [11]. The resulting equation is the generalized non-periodic invicid Proudman–
Johnson equation, or equivalently, the non-periodic r -Hunter–Saxton equation (for r =
1/p) [18]. Moreover, the metric F̃p described above on this subgroup of Diff(R) yields
a similar isometry to (Dens+(R), Fp), as follows from [11]. It is interesting whether
(Dens+(R), Fp) can be similarly interpreted on compact manifolds as well, maybe in a
similar way to the "simple unbalanced optimal transport" extension, introduced recently
in [28].

6 A numerical comparison of geodesics on Dens+(M) and Prob(M)

In this section we aim to numerically compare the different notions of geodesics that we
have encountered in this article. Given two probability densities we consider three notions
of geodesics:

(1) The geodesic for the L p-Fisher–Rao metric and the α-connection on Dens+(M), which
is simply obtained as the pullback by the p-root transform �p of the straight line in L p .
This geodesic leaves the space Prob(M).

(2) The geodesic for the α-connection on Prob(M), which is the pullback by the p-root
transform of the projection of the straight line on the L p sphere, as described in Theorem
4.11.

(3) The geodesic for the L p-Fisher–Rao geodesic on Prob(M), which is the pullback by the
p-root transform of the geodesic of the L p-metric restricted to the L p-sphere.

Specifically we consider the example of probability densities on the one-dimensional base
space M = [0, 1]. Note, that we have an explicit formula for the first two notions of geodesics
(geodesics on Dens+(M) and α-connection geodesics on Prob(M)), but that the calculation
of the L p-Fisher–Rao geodesic between two probability distributions μ0 and μ1 requires us
to solve an optimization problem: the geodesic boundary value problem on the L p-sphere.
Namely, we minimize the p-energy for the L p metric on smooth functions

E p( f ) = 1

p

∫ 1

0

∫
| ft |p dλ dt, (27)

where f : [0, 1] → C∞(M) is a path constrained to belong to the L p-sphere, such that
f (0) = �p(μ0), f (1) = �p(μ1) and ft denotes its time derivative. This is equivalent to
minimizing the length functional, as explained in the proof of Theorem 3.7. We then obtain
the wanted geodesic μ : [0, 1] → Prob(M) by applying �−1

p .
In Fig. 2 we show the three types of geodesics obtained for different values of p

(p = 2, 3, 5, 10 from top to bottom), and the corresponding values of α = 1 − 2/p.
The constrained minimization of (27) was performed in Python using the Sequential Least
Squares Programming (SLSQP) method provided by the Scipy minimization solver, with a
discretization of 30 time points and 100 sampling points, in a straightforward implementation
that was not aimed for computational efficiency. As expected, the L p-Fisher–Rao metric and
the α-connection yield different geodesics on Prob(M), except for the special case p = 2
corresponding to the Fisher–Rao metric and its Levi–Civita connection.
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Fig. 2 Different notions of geodesics between two probability distributions on [0, 1], for p = 2, 3, 5, 10
from top to bottom, and corresponding values of α = 1 − 2/p. On the left: geodesics of Dens+(M) for the
L p-Fisher–Rao metric and the corresponding α-connection. In the middle: α-geodesics on Prob(M). On the
right: L p-Fisher–Rao geodesics on Prob(M). The last two notions coincide only for p = 2

7 Finite-dimensional geometry of parametric statistical models

In this section we make the link with the finite-dimensional setting of parametric statistical
models. Let us consider a finite-dimensional submanifold of Prob(Rn) corresponding to a
family of probability distributions on R

n that are absolutely continuous with respect to the
Lebesgue measure, and whose densities are parametrized by a parameter θ belonging to an
open subset � of Rd :

P� = {μ(dx) = f (x, θ) dx : θ ∈ �} ⊂ Prob(Rn).

Here x ∈ R
n is the sample variable and dx denotes the Lebesgue measure on R

n . Then
a tangent vector of P� at a given μ = f (·, θ)dx is of the form a = d

dt

∣∣
t=0 μt , where

μt = f (·, θt )dx with t �→ θt a curve in � such that θ0 = θ and θ̇0 = u ∈ Tθ�. Thus the
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tangent space at μ is

TμP� = {a = 〈∇θ f , u〉dx : u ∈ Tθ� � R
d}

= span{e1, . . . , ed}, (28)

where ei = ∂ f
∂θ i dx . Here ∇θ denotes the gradient with respect to θ and 〈·, ·〉 the Euclidean

scalar product on R
d . In all the sequel, we identify P� � � and TμP� � Tθ� � R

d via
the one-to-one maps

φ : � → P�, θ �→ f (·, θ)dx,

(φ∗)θ : Tθ� → Tφ(θ)P�, u �→ 〈∇θ f , u〉dx .
(29)

7.1 The Fisher–Raometric and the˛-connection

The Fisher–Rao metric on the parameter space � is the Riemannian metric whose metric
matrix is the Fisher information matrix

G(θ) = E

[
∇θ �(X , θ)∇θ �(X , θ)�

]
.

HereE denotes the expectation takenwith respect to the randomvariable X of density f (·, θ),
and �(x, θ) = log f (x, θ) is the log-likelihood.

Definition 7.1 Given θ ∈ � and u, v ∈ Tθ� � R
d , the Fisher–Rao metric is

GFR
θ (u, v) = u�G(θ)v = E [〈∇θ �, u〉〈∇θ �, v〉] ,

where 〈·, ·〉 denotes the Euclidean scalar product on Rd .

The Fisher–Rao metric on the parameter space � is the pullback of the Fisher–Rao metric
on the infinite-dimensional space Prob(Rn) by the bijection φ defined by (29), i.e. for any
θ ∈ � and u, v ∈ Tθ�,

GFR
φ(θ)(φ∗u, φ∗v) = GFR

θ (u, v),

and so both are denoted the same way.
Just like in the infinite-dimensional setting, the α-connection on the parameter space can

be defined using the α-divergence.

Definition 7.2 The α-connection on � is defined by its Christoffel symbols of the first kind
([39], Eqn 2.9)

�̃
(α)
i j,k

∣∣∣
θ

= GFR
θ (∇(α)

∂i
∂ j , ∂k) = − ∂3

∂ui∂u j∂vk
D(α)(θ + u, θ + v)

∣∣∣∣
u=v=0

where

D(α)(θ, θ ′) = 4

1 − α2

(
1 −

∫
f (x, θ)

1−α
2 f (x, θ ′)

1+α
2 dx

)

is the α-divergence. This yields the following formula in local coordinates, where ∂i denotes
∂/∂θ i ,

�̃
(α)
i j,k = E

[
(∂i∂ j� + 1 − α

2
∂i�∂ j�)∂k�

]
. (30)
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The following result is well-known in the literature, and stated e.g. in [2] for spaces of
probability distributions on a finite set.

Theorem 7.3 (α-connection on �) For any u, v ∈ Tθ�, we have

∇̃(α)
u v = ProjFR

(
∇(α)

φ∗uφ∗v
)

,

where ∇̃(α) and ∇(α)
denote the α-connections on P� � � and Prob(Rn) respectively, and

ProjFR : Tφ(θ) Prob(Rn) → Tθ� is the orthogonal projection with respect to the Fisher–Rao
metric.

Proof First notice that at any μ = φ(θ) ∈ P�, the orthogonal projection of a tangent vector
a ∈ Tμ Prob(Rn) onto Tθ� with respect to the Fisher–Rao metric GFR is given by

ProjFR(a) = Gi j GFR(a, e j )∂i , (31)

where (Gi j )i j is the inverse of the Fisher matrix. Indeed, the tangent space TμP� is a d-
dimensional vector space spanned by the tangent vectors ei = ∂i f dx for i = 1, . . . , d , and
so the orthogonal projection of a ∈ Tμ Prob(Rn) onto TμP� is given by ui ei where for
j = 1, . . . , d ,

GFR(a − ui ei , e j ) = 0 i.e. GFR(a, e j ) = ui GFR(ei , e j ) = ui Gi j .

The α-connection on Prob(Rn) is given by

(∇(α)

a b)μ = Dμb(a) − 1 + α

2

(
a

μ

b

μ
μ −

(∫
a

μ

b

μ
μ

)
μ

)
,

where Dμb(a) is the directional derivative of the vector field b in the direction of the vector
aμ. Let ∂i denote partial derivative with respect to θ i for all i = 1, . . . , d . For vector fields
on the finite-dimensional manifold P�,

a = φ∗u = ui ei , b = φ∗v = v j e j ,

and at μ = φ(θ), we get since ei = ∂i f dx ,

Dμb(a) = Dθ v(u) = ∂i (∂ j f v j )ui dx = (∂i∂ j f uiv j + ∂ j f ui∂iv
j )dx

= ((∂i∂ j� + ∂i�∂ j�)u
iv j + ∂ j�ui∂iv

j ) f dx,

where in the last equality we used the equality ∂i∂ j� = ∂i∂ j f / f − ∂i�∂ j�. Since

a

μ

b

μ
μ = ∂i�∂ j�uiv j f dx,

we obtain ∇(α)

a b = hdx where

h/ f = ∂ j�ui∂iv
j +

(
∂i∂ j� + 1 − α

2
∂i�∂ j�

)
uiv j − 1 + α

2
GFR(a, b).

Remembering that GFR(hdx, kdx) = E(hk/ f 2) and since E(∂m�) = 0, we obtain using
(30),

GFR(∇(α)

a b, em) = E[∂ j�∂m�]ui∂iv
j + E

[
(∂i∂ j� + 1 − α

2
∂i�∂ j�)∂m�

]
uiv j

= G jmui∂iv
j + �̃

(α)
i j,muiv j .
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Finally, using (31), we see that

ProjFR(∇(α)

a b) = Gkm GFR(∇(α)

a b, em)∂k =
(

ui∂iv
k + Gkm �̃

(α)
i j,muiv j

)
∂k = ∇̃(α)

u v,

which concludes the proof. �


7.2 The Lp-Fisher–Raometric

We now introduce a finite-dimensional version of the Finsler L p-Fisher–Rao metric.

Definition 7.4 Given θ ∈ � and v ∈ Tθ� we define the L p-Fisher–Rao metric on � as

Fp(θ, v) = (
E|〈∇θ �(X , θ), v〉|p)1/p

. (32)

Here 〈·, ·〉 denotes the Euclidean scalar product on R
d , E denotes the expectation taken

with respect to the random variable X of density f (·, θ), and �(x, θ) = log f (x, θ) is the
log-likelihood.

The metric (32) on the parameter space � coincides with the Finsler metric induced on P�

by the L p-Fisher–Rao metric (8) through the identification P� � �, which is why they are
denoted the same way. Indeed, for any (θ, v) ∈ T �,

Fp(φ(θ), φ∗v) =
∫ ∣∣∣∣ 〈∇θ f (x, θ), v〉

f (x, θ)

∣∣∣∣
p

f (x, θ)dx = E|〈∇θ �(X , θ), v〉|p = Fp(θ, v).

Lemma 7.5 (Induced Chern connection on �) The Chern connection associated to the L p-
Fisher–Rao metric on � is given by

(∇̃v
u v)m = u(vm) + (gv)mk(gφ∗v(ω(u, v), ek) + Cφ∗v(ω(v, v), φ∗u, ek)

−(gv)i j gφ∗v(ω(v, v), ei )C
φ∗v(φ∗u, e j , ek)

)
, (33)

where g and C respectively denote the Riemannian metric (12) and Cartan tensor (14)
induced by the L p-Fisher–Rao metric, (gv)i j = gφ∗v(ei , e j ) and (ei )i are the basis vectors
(28) of TμP� and

ω(u, v) = ωi j u
ivi with ωi j =

(
∂i∂ j� + 1

p
∂i�∂ j�

)
f dx . (34)

Proof Let a = φ∗u, ν = φ∗v, α = 1 − 2/p, and ∇(α) be the α-connection on Dens+(Rn).
Similarly to the orthogonal projection with respect to the Fisher–Rao metric (31), the orthog-
onal projection on T � with respect to gν is given by

Projν(a) = (gv)i j gν(a, e j )∂i . (35)

Let us denote

(∇(α)
a ν)� := φ∗Projν

(
∇(α)

a ν
)

= (gv)i j gν(a, e j )ei , (∇(α)
a ν)⊥ := (∇(α)

a ν) − (∇(α)
a ν)�.

We define the connection ∇̃ by

φ∗(∇̃uv) := (∇(α)
a ν)� + (gv)mkCν

(
(∇(α)

ν ν)⊥, a, ek

)
em . (36)

Let us show that ∇̃ is the Chern connection ∇̃v on �, by showing once again that it veri-
fies the generalized Koszul formula (40). Using the notations gv(u, w) = gφ∗v(φ∗u, φ∗w),
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Cv(u, w, z) = Cφ∗v(φ∗u, φ∗w,φ∗z) and the fact thatCv(v, ·, ·) = 0, the generalized Koszul
formula can be written

2gv(∇̃uv,w) = ugv(v,w) + vgv(w, u) − wgv(u, v)

+ gv([u, v], w) − gv([v,w], u) + gv([w, u], v) − 2Cv(∇vv, u, w).

Recalling that ∇(α) is the Chern connection on Dens+(M) and noticing that φ∗(∇vv) =
(∇(α)

ν ν)�, the previous equation is satisfied if and only if

gν
(
(gv)i j Cν

(
(∇(α)

ν ν)⊥, a, e j

)
ei , φ∗w

)
= Cν

(
(∇(α)

ν ν)⊥, a, φ∗w
)

,

which is easily checked to be true using the fact that gν(ei , e j ) = (gv)i j . To obtain the desired
formula for ∇̃v , we write the α-connection in coordinates, through the same computations
as in the proof of Theorem 7.3

∇(α)
a ν = Dν.a − 1 + α

2

a

μ

ν

μ
μ = ui∂iv

j e j

+
(

∂i∂ j� + 1 − α

2
∂i�∂ j�

)
uiv j f dx = u(v j )e j + ω(u, v).

Using (35) we obtain

(∇(α)
a ν)� = u(vm)em + (gv)mk gν(ω(u, v), ek)em

(∇(α)
ν ν)⊥ = w(v, v) − (gv)i j gν(ω(v, v), ei )e j

which injected into (36) gives the desired result. �

Remark 7.6 Like in infinite dimensions (see Remark 4.8), when all entries are the same, the
Chern connection on P� � � is the orthogonal projection of the α-connection ∇(α) on
Dens+(Rn), for α = 1 − 2

p , with respect to gφ∗v, the Riemannian metric (12) induced by
the L p-Fisher–Rao metric

∇̃v
v v = Projφ∗v

(
∇(α)

ψ∗vφ∗v
)

=
(
v(vm) + (gv)mk gφ∗v(ω(v, v), ek)

)
∂m . (37)

Theorem 7.7 (Geodesic equation on�) The geodesic equation of the L p-Fisher–Rao metric
on the space P� is given by

θ̈m + (gθ̇ )mk gφ∗ θ̇ (ω(θ̇ , θ̇ ), ek) = 0, (38)

where (ei )i are the basis vectors (28) and ω is defined by (34).

Proof This results directly from Lemma A.9 in “Appendix A” and writing ∇̃ θ̇

θ̇
θ̇ = 0 in local

coordinates using (37). �


Example 7.8 (Normal distributions) Let us consider the example of univariate normal dis-
tributions, parametrized by mean and standard deviation. The parameter space is the upper
half-plane � = R × R

∗+, and the Fisher–Rao metric, after a change of coordinates, is the
hyperbolic metric of the Poincaré half-plane. The family of Riemannian metrics induced by
the Finsler L p-Fisher–Rao metric are also Poincaré metrics: for any θ = (m, σ ) ∈ � and
v ∈ R

2, the metric matrix is given by

gv
(m,σ ) = 1

σ 2 gv
0
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Fig. 3 Comparison of the geodesics between two normal distributions shown in the parameter space for the
L p-Fisher–Rao metric (left) and for the α-connection (right), for different values of p and the corresponding
values of α = 1 − 2/p. The geodesics all start at the normal distribution of parameters m0 = −2, σ0 = 1,
and end at the normal distribution of parameters m1 = 2, σ1 = σ0 = 1

where gv
0 does not depend on m and σ . In order to compute geodesics for the L p-Fisher–Rao

metric, one can solve the geodesic equation (38), using the following densities with respect

to a given μ(dx) = 1√
2πσ

exp(− (x−m)2

2σ 2 )dx : the basis vectors of the tangent plane TμP� are
given by

e1
μ

= 1

σ
z,

e2
μ

= 1

σ
(z2 − 1) with z := x − m

σ

and for a given curve t �→ θ(t) = (m(t), σ (t)),

θ̇

μ
= 1

σ
(ṁz + σ̇ (z2 − 1))

ω(θ̇ , θ̇ )

μ
= 1

σ 2

(
(−1 + 1

p
z2)ṁ2 + (1 − 3z2 + 1

p
(z2 − 1)2)σ̇ 2 + 2(−2z + 1

p
z(z2 − 1))ṁσ̇

)
.

The L p-Fisher–Rao geodesic can be compared to the solutions of the geodesic equation of
the α-connection for α = 1 − 2/p:

m̈ − 2
1 + α

σ
ṁσ̇ = 0, σ̈ + 1 − α

2σ
ṁ2 − 1 + 2α

σ
σ̇ 2 = 0.

In both cases, we solve the geodesic ODE with boundary constraints in Python for a dis-
cretization of 50 time steps, using the dedicated function in Scipy,1 which implements a
fourth order collocation algorithm. We plot in Figure 7.8 the L p-Fisher–Rao geodesics for
several values of p as well as the α-geodesics for the corresponding values of α. As expected,
these geodesics do not coincide, except for p = 2, where we retrieve the Fisher–Rao metric.

Acknowledgements Parts of this work are contained in the PhD-thesis of the third author [31]. MB was
partially supported by NSF grants DMS-1912037 and DMS-1953244 and by FWF grant FWF-P 35813-N.
The first two authors acknowledge support of the Institut Henri Poincaré (IHP, UAR 839 CNRS-Sorbonne
Université), andLabExCARMIN (ANR- 10-LABX-59-01). CMwas partially supported by ISF grant 1269/19.
MB and CM were partially supported by BSF grant 2022076.

Funding Open access funding provided by University of Vienna.

Data Availability Data sharing not applicable to this article as no datasets were generated or analysed during
the current study.

1 https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_bvp.html

123

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_bvp.html


56 Page 30 of 33 M. Bauer et al.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A. Infinite dimensional Finsler geometry

In this appendix we will present several key definitions of Finsler geometry in the infinite
dimensional setting. We will base our definitions on their counterparts from classical finite
dimensional Finsler geometry, see eg. [6, 17, 36].

In the following let M be an infinite dimensional, Fréchet manifold with tangent bundle
TM.

Definition A.1 (Finsler structure)AFinsler structure onM is a function F : TM → [0,∞),
that is smooth on the complement of the zero section of TM and satisfies for all x ∈ M and
X , Y ∈ TxM
(a) F(λY ) = λF(Y ) for all λ > 0;
(b) F(Y ) ≥ 0 and F(Y ) = 0 if and only if Y = 0.
(c) F(X + Y ) ≤ F(X) + F(Y ).

The Finsler norm F is called strongly convex if we have in addition

(d) For any 0 �= V ∈ TxM the Hessian matrix gV of F2 at V exists and is positive definite,
where

gV (X , Y ) := 1

2

∂2

∂s∂t

[
F2(V + s X + tY )

]
s=t=0 .

Remark A.2 It can be shown that the strong convexity condition (d) implies the subadditivity
condition (c) and several modern textbooks require strong convexity instead of subadditivity
in the definition of a Finsler metric as this allows to develop several concepts of Riemannian
geometry in the Finslerian setting. We choose to not assume this stronger condition as our
main example, the L p-Fisher–Rao metric, is not strongly convex.

Remark A.3 (Weak and strong Finslermetrics) For each x ∈ M the Finslermetric F induces a
topology on TxM and in finite dimensions this topology coincides with the original manifold
topology. In infinite dimensions this is not the case and we will distinguish between two
different types of Finsler metrics: strong Finsler metric, for which Fx induces the locally
convex topology on Tx M and weak Finsler metrics, where the induced topology can be
weaker than the locally convex topology. If M is not a Banach manifold then any Finsler
metric on M can only be a weak Finsler metric.

Similarly as a Riemannian metric a Finsler structure F on a manifoldM defines a length
structure on the set of piece wise smooth curves and thus one can define a corresponding
path length distance:
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Definition A.4 Let c : [a, b] → M be a piece wise smooth curve. The length of c with
respect to F is defined as

L F (c) :=
∫ b

a
F(c(t), ċ(t))dt .

For any pair of points x, y ∈ M we consider the induced geodesic distance function

dF (p, q) := infc L F (c),

where the infimum is calculated over the set of a piece wise smooth curves that connect x to
y. Similar as in Riemannian geometry one can show that minimizing the length is equivalent
to minimizing the energy, which is defined as

EF (c) :=
∫ b

a
F2(c(t), ċ(t))dt . (39)

Remark A.5 (Vanishing Geodesic distance) It is easy to see that the geodesic distance func-
tions is symmetric and satisfies the triangle inequality. In general, for weak Finsler metrics,
it does not satisfy the non-degenracy property – dF (x, y) = 0 if and only if x = y for Finsler
metrics. Indeed, even in the Riemannian case, several examples have been encounteredwhere
the geodesic distance can be degenerate or even vanishes identically, see eg. [10, 20, 25, 32].

Next we will introduce two important concepts from Finsler geometry: the Cartan tensor,
which was introduced by E. Cartan [14] to evaluate the differences between Finsler metrics
and Riemannian metrics, and the Chern connection, which is a generalization of the Levi–
Civita connection on a Finsler manifold.

Note, that the definition of these two objects requires that the Finsler metric is strongly
convex. As the L p-Fisher–Rao metric, studied in the following sections, will not satisfy this
property several of the calculations in these parts have to be taken with caution and should
be thus understood only formally.

Definition A.6 (Cartan Tensor and Chern connection) Let (M, F) be a Finsler manifold,
where F is assumed to satisfy the strong convexity assumption. For any nonzero tangent
vector V ∈ TxM, the Cartan tensor is defined as the symmetric trilinear form

CV (X , Y , Z) := 1

4

∂3

∂s∂t∂r

[
F2(V + s X + tY + r Z)

]
s=t=r=0 ,

and the Chern connection, if it exists, is the unique affine, torsion-free connection ∇V that is
almost metric, that is for vector fields X , Y , Z we have

XgV (Y , Z) = gV (∇V
X Y , Z) + gV (Y ,∇V

X Z) + 2CV (∇V
X V , Y , Z).

Remark A.7 In the above definition of the Chern-connection we have added the assumption
on it’s existence. This is additional assumption is not necessary in finite dimensions, but
is entirely an infinite dimensional phenomenon, see eg. [8] where the authors studied a
Riemannian metric on a group of diffeomorphisms such that the corresponding Levi–Civita
connection does not exist.

The next Lemma, which will be of importance when we show the equivalence of the
Chern-connection of the L p-Fisher–Rao metric and the α-connection on Dens(M), provides
a generalized Koszul-formula for the Chern-connection:

123



56 Page 32 of 33 M. Bauer et al.

Lemma A.8 Let (M, F) be a Finsler manifold, where F is assumed to satisfy the strong
convexity assumption. For every non-zero vector field V ∈ TxM, the Chern connection, if it
exists, satisfies the generalized Koszul formula

2gV (∇V
X Y , Z) = XgV (Y , Z) + Y gV (Z , X) − ZgV (X , Y )

+ gV ([X , Y ], Z) − gV ([Y , Z ], X) + gV ([Z , X ], Y )

− 2CV (∇V
X V , Y , Z) − 2CV (∇V

Y V , Z , X) + 2CV (∇V
Z V , X , Y )

(40)

Proof The proof of this result follows exactly as in the finite dimensional situation, see
eg. [17]. �

The next results shows that the Chern-connection, similarly to the Levi–Civita connection in
Riemannian geometry, describes the locally minimizing curves.

Lemma A.9 Let (M, F) be a Finsler manifold, where F is assumed to satisfy the strong
convexity assumption. Assume in addition that the Chern connection ∇ exists. Then the
critical points of the energy functional (39) are describe by the geodesic equation

∇ct
ct

ct = 0. (41)

Proof Assuming the existence of the Chern connection, this follows exactly as in finite
dimensions, see eg. [17, 36]. �


References

1. Amari, S.: Information Geometry and Its Applications, vol. 194. Springer, New York (2016)
2. Amari, S., Nagaoka, H.: Methods of Information Geometry, vol. 191. American Mathematical Society,

Providence (2000)
3. Atkinson, C., Mitchell, A.F.: Rao’s distance measure. Sankhyā Indian J. Stat. Ser. A 43, 345–365 (1981)
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