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1. Introduction. The (generalized!) Calogero—Moser system is

1 1
>a+1 -

(1) .'fj = -« )a-‘rl

1 L (@m — @ () — Tj—m

In the above, j € Z, ; € R, t € R. The system can be interpreted as the governing
equations for the positions (z;(¢)) of infinitely many particles arranged on a line and
interacting pairwise through a power-law force.

Ingimarson and Pego in [7] state that for « € (1,3) and in a certain scaling regime
(the so-called long-wave limit) the system is formally approximated by a Benjamin—
Ono-type equation. Here is a quick summary of their findings. Suppose that u =
u(X,7) solves the (generalized?) Benjamin-Ono equation

(2) K10-u + Koudxu + k3 H|D|%u = 0.

In (2), H is the Hilbert transform on R and |D| = Hdx. We define these as Fourier?
multiplier operators:

~

Hf(k):=—isgn(k)f(k) and [D|*f(k) = [k|*F(k).
The constants k1, k2, and k3 are determined from a by

o =vVala+1)la, K1:=2C, Ko:=ala+1)(a+2),

(9] 1_ : 2 2
and k3:=ala+ 1)/ #W)
0 S

3) ds.
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1t is the Calogero-Moser system when a = 2.
21t is the Benjamin—-Ono equation when o = 2.
3We use the following form of the Fourier transform: §[f](k):=f(k):=(2m) " [g F(X)e~*Xdx and
Fgl(X) :==g(X) == ng(k)e““Xdk. We use the Fourier transform to define Sobolev norms in the

usual way: ||l ==/ fq (1+ k2)°| F(k)|2d.
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5584 J. DOUGLAS WRIGHT

Here (s:=)",,~; 1/m?® is the ballyhooed zeta-function.
In [7], the authors show that if u=—9dxv and

(4) Ti(t):=j+7;(t) and 7;(t):=e*2v(e(j — cal),et),
then
) B3t =2+a ) {(@wn —1 )t (@ - 5J‘1m)“+1

m>1

is formally o(e?*~1) as e — 07. We call R, the residual, and it indicates the amount
by which the approximation fails to satisfy (1). The scaling in (4) is what is referred
to as the long-wave scaling.

Given the result from [7], one expects that if z;(t) solves (1) and z;(t) is given as
in (4), then z; —z; will be small in some appropriate sense. Indeed, our goal here is to
provide a quantitative and rigorous error estimate on the difference. However, it turns
out to be more natural to validate the approximation in terms of relative displacements
and velocities instead of the position coordinates x;(t), that is, in terms of

ri(t):=xzj11(t) —z;j(t) —1 and p;(t):=z;(1).

The reason for this is that the total mechanical energy of (1) is expressed in terms
of these variables and the validation process makes use of that energy (the interested
reader can jump ahead to section 3 to see the details). This is the approach taken in
many previous long-wave approximation results for Hamiltonian lattices (especially
FPUT-type systems; see [11, 2, 3]).

And so if one suspects x;(t) ~ x;(t), then some quick formal calculations show
that one expects 7;(t) ~ —e* " tu(e(j — cat),e*t) and p;(t) ~ cae* u(e(j — cat), ).
These arguments are made precise in our main result, which is the following.

THEOREM 1. There exists a,, € (1.45,1.5) such that the following holds for a €
(s, 3). Let

_J2a-5/2, ae(1,2],
T = 3, ae(2,3),

and determine co, K1, K2, and k3 as in (3). Suppose that, for some 79 >0, w(X,T)
solves (2) for |7| < 1o and sup, <., [|u(-,7)||ge < oo. Then there exist C1,C2,ex >0,
so the following holds for € € (0,¢.].

If the initial data for (1) satisfies

7;(0) = —€*u(ef,0) + ii; and p;j(0) = coe® tu(ef,0) + v;,

where
G|z < Cre?™  and ||D]lp2 < Cree,

then the solution of (1) satisfies

ri(t)= —ea_lu(e(j —cat), €%t) + 1 (t) and p;(t) = caea_lu(e(j — cat), €7t) +v5(),

sup  [Jp(t)]|e2 < Cae™ and  sup ||v(t)|le2z < Coee.
|t|<7 /e lt|<7/e
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Remark 1. The theorem presents the absolute error made in the approximation.
To compute the relative error we note that the long-wave scaling X = ¢j implies
€ u(e(- — cat),et)]|2 < Ce®1/2 (see estimate (4.8) from Lemma 4.3 in [3]). This
leads to a relative error like Cev>~2+1/2 = C'el~le=2l 'We do think the error estimates
we compute here are sharp, though we do not have a proof of that.

Remark 2. In our proof, it comes out that we need 2(,4+1 — (o > 0, and it is
here that the restriction a > . comes from. See Figure 1 below. Precisely, o, is the
positive solution of 2{,+1 — {, = 0. By deploying the tried and true method of using
MAPLE to zoom in on the intersection of the graph of 2{44+1 — (, with the a-axis,
one finds that a, ~ 1.478750785. We do not claim the condition 2(,+1 — (o > 0 is
necessary, but it does arise in a somewhat natural way.

Remark 3. The use of H% in the theorem is a worst-case scenario. It works for
all a € (a, 3). If one wanted, one could determine a lower regularity condition on u
which would depend on «. There is no pressing need for that in this article. One may
wonder if HY solutions of (2) exist. The short answer is yes. To get more information,
the introduction of [5] gives a terrific overview.

Remark 4. For a =2, there are known connections between special solutions of
(1) and (2), which rely in part on the fact that both systems are integrable. In partic-
ular, in [8] it is shown that the poles of the multisoliton solutions of the Benjamin—Ono
equation satisfy a (finite dimensional) Calogero—Moser system. This remarkable con-
nection between the two systems is seemingly quite different from the long-wave limit
uncovered in [7] and studied further here. Exploring the similarities and differences
between the two reductions is a very interesting path for future research.

Remark 5. The Benjamin—Ono equation has served as long-wave limit in a variety
of hydrodynamic problems; see [1] for an overview. The article [6] and recent preprint
[9] contain rigorous validations of two different such limits, similar in some ways to
what we have here.

Here is the plan of attack. First we make the formal estimates on R, from [7]
rigorous in section 2. Then we prove a general approximation theorem in section 3.
Last, in section 4 we put things together in the proof of Theorem 1.

2. Rigorous residual estimates. The first task is to make the formal estimate
of the residual R, from [7] rigorous. Here is the result.

PROPOSITION 2. If w(X,7) is a solution of (2) with sup|, <, |lu(-,7)|[ms < oo,
then there exist C >0 and g >0 for which € € (0,¢e0] implies

sup || Re(+, )]z < Cél,
[t|<To/e>

where
B, = 3a—5/2, a€e(l,2],
T la+3/2, ac(2,3).
Proof. The proof is technical, and we break it up into several parts: an analysis
of the acceleration term, another for the force terms, and then a final section where
we put everything together.

Part 1: the acceleration term. The chain rule and (4) give Ej(t) =a.(e(j —
cat), €*t), where

Qe := eo‘ciﬁﬁv —2¢,€2710 0xv + 630‘_28211.
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Using the relation u = —0x v along with the formula for k; from above, we can convert
this to

e = —eo‘ciaxu + 2 k100 + 63@—2831;.

The first two terms on the right-hand side constitute the leading order part of a. and
will ultimately combine and cancel with terms from the force down below. Thus the
contribution from a, to R will stem from €3*~292v.

With this in mind, we have

sup |lac + €*c20xu — 2 k10 ull g = sup 372|020 g1

[7|<70 [7|<70

We need to estimate 92v in terms of u, but this is somewhat ambiguous since all we
have specified is that © = —9xv. Here is what to do.* First we put

X
(6) v(X,7) = —/O u(b, 7)db+ q(1)

for an as yet undetermined scalar function ¢(7). This ensures that u = —dxv and
q(7) is in place to make sure that §%v is in H'. Differentiation of v with respect to 7
followed by using (2) gives us

K3

X
0.0(X,7) :/O (’”(abqﬂ)(b,r) - 8b|D|a_1u(b,7)> db + g(r).

2I<61 K1
Note that in this computation we have used the fact that H|D|* = —|D|*"1dx.
The fundamental theorem of calculus yields

K K a— K R a— .
Oro(X,7) = 5 20 (X,7) = DI (X, 7) = 5 2ut(0,7) + 2 DI u(0,7) + (7).

We select
. k2 9 K3, Hja—1
(7) ¢=5—u"(0,7) — —[D|*""u(0,7) and ¢(0)=0
2;‘11 K1
so that
K2 o K3 a—1

0= —u’— —|D .

(8) 0-v 2/€1u "fl‘ |“"u

One more 7-differentiation gives us

Ko K3 _
020 = —ud,u — —|D|* 0 u.
K1 K1

Using the Sobolev inequality and counting derivatives provides us the estimate
10202 < Cllull 2|07 ull o + C| 0| gy

Taking the H*® norm of both sides of (2) tells us that [|O;ulgs < C(||ulFs +
||| zs+o ). In turn this gives

1020]ln < Cllulls (lulZ + lullie) + € (lalZarn + llul sz -

4Special thanks go to one of the referees for pointing out an error in the first draft related to
this part of the paper and suggesting this remedy.
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Since @ < 3 and we have assumed a uniform bound on u € H® for |7| < 79, we can
conclude that

(9) sup ||ac + €*c20xu — 2 k0 ul| g < O3
IT<70

Part 2: the force term. The authors of [7] show that

Tjvm —Tj=m—me* "Aguu(X,7) and T; —Tj_pm=m—me* 'A_,u(X,T),

where
1 h
Apu(X,T):= E/ w(X + z,7)dz.
0
If we let
1 1 o

10 Vilg) = —— — — 4+ ——
(10) ()= oo~ s * e
so that

« «
m+g)a+1 + ma+1’

Vinl9) =1

then the force terms in R, can be rewritten as
1 1

2 {@m “5) (@~ Fym) T

e = F(e(j — cat),e™t),

where
Fu(X,7) ==Y [V (=me* ' Agnu(X, 7)) = V;,(=me* ' A_cpu(X,7))] .
m>1
A combination of the fundamental theorem of calculus and Taylor’s theorem im-
plies

V(o) = Vil ) = Via(O)(gs — g ) + 3Vl O —g2)+ [ Bnlo)do,

g—

where
En(o)= [ V(o) - é)do.
0
This leads to the expansion

1 2
ala+ 2)(a+ )N€+Mey

(11) F.=ala+1)L.+
where

o 1
Le =€ 1 Z W (Aem — A—em) u,

m>1

New=e=2 ) ﬁ (Aem)?® = (A—emu)?),
m>1

—me* YAmu

Mo==Y" [ Ep(0)do.

m>1 me*—1A__u
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The terms L. and N, coincide with their forms in [7]. The remaining term, M., is
lumped into a generic o(e2*t1) term there.

Part 2a: Estimates for L.. We follow the blueprint provided by [7]. Using the
fact that Apu(k)=a(k)(ei*" — 1) /ikh, they show that

~ (|k 2)—1
Le(k) = e Caikti(k) + 2@~ Vik| k|1 a(k) | |K|e }:smc :k:mml/)
€
m>1

Let
Ve h Z 1 — sinc? hm/2).
m2>1
A key observation from [7] is that 7, (h) is the approximation of
> 1 —sinc?(s/2
" ::/ sinc*(s/ )ds
0 5%

using the rectangular rule with right-hand endpoints. As such, limy,_,g+ 70 (h) = 74.-
Note that 7, is finite so long as a € (1, 3).
Then we have

(12) Le(k) = e Caikti(k) — €9 Inqik| k| (k)
+ 2 ik|k[* Tk (0 — na(e[K])) - O

What is the error made by approximating 1, (€|k|) by 74?7 To determine this, we need
the following.

LEMMA 3. For a € (1,2], there exists C > 0 for which |ny(h) —ne| < Ch for all
h>0. If a € (2,3), there exists C >0 for which |na(h) —ne| < Ch3= for all h>0.

Proof. If the integral were not improper, this would be an elementary estimate.
But it is. In fact when a € (2,3) it is improper at s =0 and that is why the estimate
is worse in that setting. Also, when « € (1,2) the derivative of the integrand

1 —sinc?(s/2)
SCM

fal(s):=

diverges as s — 0™, which complicates things.
First we deal with h > 1. We have

|77a(h) _77(1| <na+h Z

m>1

1 —sinc®(hm/2)
(hm)* '

Since sinc?(s) € [0,1] for all s € R, we make an easy estimate:
1a(h) — 7704|<77a+hz

m>1(

So h>1 is taken care of for all o € (1,3).
Now fix h € (0,1). We break things up:

[1/h] oo

R[1/R]
molh) ==k 3 faln) = [ fads b Y falm) = fas)ds

m>[1/h]+1 hT1/h]

77704 hlia(a S (na +<a)h§0h
m)

IN ouT
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For OUT, by standard integral identities and the integral version of the mean
value theorem we have

ouT= > (hfa(mh)—/

m>1/h]+1 (m—1)h

mh

fa(S)dS> —h Y (falmh) = fu(sn))-

m>[1/h]+1

Here s,, € [(m — 1)h,mh]. Then we use the derivative version of the mean value
theorem to get

OUT=h Y filow)(mh—su),

m>[1/h]+1

where 0, € [$y,, mh]. Note that |mh — s,,| < h.
Routine calculations show that there is a constant C' > 0 such that |f/(s)| <
Cs= ! for s> 1. Since s~ ! is a decreasing function, these considerations lead to

ouT|<ch® > [(m—Dht=Ch* Y [mh]7*7
m>[1/h]+1 m>[1/h]

Next, B 37,5 1/m [mh]=2~1 is the approximation of f;ﬁl/h]fh s~ 1ds using the
rectangular rule with right-hand endpoints. Since s~*~! is decreasing, we know that
WY msriymmh] =7t < f:rol/h]_hs_a_lds. Also, since h € (0,1), we have h[1/h] —
h>1/2, and so f;ﬁl/h]_h sTaTl< f1072 5771 =29/, Putting these together implies
|OUT| < Ch.

For I N, we need to desingularize the integrand at s =0. Putting

— (82 — sinc?(s
fa(S):l ( /12) (/2)_"_%82—(1

SO(

9o (s)
gives

[1/h] h[1/h] 1 [1/h] hl1/R]
— 2—« 2—a
IN=|h m§:1 Jo(mh) —/0 ga(s)ds| + B h mgﬂ (mh) —/0 §°7%s

Taylor’s theorem tells us that |1 —(s?/12) —sinc?(s/2)|/s* is bounded as s — 0, and as
a byproduct we see that g, (s) is C! on the interval [0,2]. Routine error estimates for
approximating integrals with rectangles tells us |hZE£ﬂ go(mh) — Oh“/hw Ja(s)ds]
<Ch.

So what remains is to estimate the singular piece

[1/h] h[1/h]
SINGo=|h > (mh)*= - / s27ds|.
0

m=1

Note that if « = 2, then SING, = 0, so that case is pretty easy. But the cases
a€(1,2) and « € (2,3) require some care.
We know that hzgi }i] (mh)?=* is the rectangular approximation of

foh[l/ " g2—a g using right-hand endpoints, but it is also the rectangular approxi-

mation of fohrl/h] (s + h)?>~“ds using left-hand endpoints. If o € (2,3), then s~ is a
decreasing function and we get the following chain of inequalities:

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/06/24 to 144.118.75.34 by J. Wright (jdw66@drexel.edu). Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

5590 J. DOUGLAS WRIGHT

h[1/h] [1/h] R1/h]
/ (s+h)>"*ds <h Z (mh)*~* < / s27%ds.
0 0

m=1
On the other hand, if a € (1,2), then s~ is increasing and we have

h[1/h] [1/h] hI1/h]
/ (s+h)2>~*ds>h Z (mh)?~ > / 527 %ds.
0 0

m=1

Either of the chains tells us

nr1/m]
SING, < / (2 (5 1 B> ds
0
=3 i (/)P = (h[1/R] + R)P 4 |
< g [(h[1/R)* 7 = (A[1/R] + h)*=0 |+ :),%ah?"“-

The mean value theorem gives (3 — )~ t|(h[1/h])3~% — (h[1/h] + h)3~%| = hh2~2,
where h, is in between h[1/h] and h[1/h] + h. These numbers are in the interval
[1,3], and so we have (3 —a)~t|(R[1/h])>~* — (h[1/R] + h)3~®| < Ch. Therefore,
|ISING,| < Ch+ Ch3~2.

Everything all together tells us that h € (0,1) and « € (1,3) imply [74(h) — 14|
Ch+Ch*=2. If a € (1,2], then h < h3~ and the inequality flips for o € (2,3). Tha
finishes the proof.

With Lemma 3, (12) implies

Ed‘/\

Le(k) — €“Coikii(k) + € ik k|~ a(k)| < C2o 17 k| otra|a(k)],

where

— 1, a€(1,2]
T 13-aq, a€(2,3).

This in turn implies (along with the assumed uniform estimate for u) that

(13) sup ||Le — €*(nOxu — eZa*lnaH|D|auHH1 < Qe Hra,

[7I<70o

Part 2b: Estimates for N.. Some easy algebra leads to

. 1
Ne=26"u 3 o (At = Ao
m>1
o 1
FEE ST (Aot At — 20) (At — A ).
m>1

We recognize that L. is lurking in the first term. That and a little subtraction action
get us to

N, — 22271 udxu=2e*"tu (Le — €*¢a0xu)
1
1 (a2 Z W(Aemu +A_pu—2u)(Acpu — A_ ).

m>1
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We take the H' norm and use triangle and Sobolev:
[Ne = 262 uudxul| i
< 2¢* N ul| g1 || Le — €*CaOxul g

_ 1
+ 6204 2 Z WHAemu + A—emu — 2U||H1 ||Aemu - A—emuHHl .
m>1

(14)

The estimate (13) tells us that 26 !{|u|| g1 || Le — €*CaOxull g < CE3*2||ul|Fy agor, -
To control the remaining term in (14), we will use the following estimates (see [4]
for the proof).

LEMMA 4. There is C >0 such that for all h >0 and s € R,

[Apull s < Cllullas,
||Ahu + A_pu— 2u||Hs < Ch2||u| Hs+2,
[Anu — A_pullgs < Chllull e+,
1Ayt — ull e < Chllu g1

We have to deal with terms like A.,,, and so the above result will be helpful when
em is “small” but not very useful otherwise. So we break things up:

_ 1
€2a 2 Z W”Aemu'i'A—emu - 2UHH1||A’4€mu - f4—e7nu||H1

m>1
[1/€]
= €2a_2 Z W”Aemu + A—emu - 2UHHl ||Aemu - A—emuHHl
m=1
o 1
+62 2 Z W||Aemu+A—emu_2u||H1||AemU_A—emuHH1
m>[1/e]
=I+1I.

The second and third estimates from Lemma 4 give I < Ce?**||ul?, Z}iiﬁ% m2-e,
A classic “integral comparison” tells us that 2551] m2~® < Ce® 3. So then I <
32 ull

For II, we use the first estimate in Lemma 4 to get II < Ce** 2||u||3,
Z7n>L1/€J —21+. Then another integral-type estimate tells us Z"z>tl/€] ﬁ < Ce”.
So then 11 < Ce**~2||ul|%,,. Therefore, we have our final estimate for N,:

(15) sup || Ne — 262 1 udxul g < Ce3*72,

[7|<70

Part 2c: Estimates for M.. We need to treat ||M||zz and ||0x M|z separately,
and we start with the former. A standard estimate shows

|Me| < Z m5a71|(A6m —A_em)ul sup [Ep (o),

m>1 o€lm

where I,,, is the interval between —me® A, u and —me*1A_,,,u.
If we assume o > 0, then

o o 1
[Em(0)] < / Vi (@)llo —ldé < sup [V (9)] / o~ dldo =5 sup [V"(9)|o”.
0 0<¢<o 0 0<¢<o
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[V (¢)] is decreasing, and so supg<g<q |V (0)| = [Vi2"(0)] = C/m**. So in this
case

Co?
|Em(0)] < poopw g

Similarly, if ¢ <0, then

Co?

0
1
< " _ <z 1 2 < )
IEm(o)l_/U Vi (9)llo = dlde < QOEI;I;UIVm (0)lo” = G oyara

In either case we had
Co?

(16) |Em(‘7)| < W-

Note that the constant C here is independent of m.
We have, using Lemma 4 and Sobolev,

(17) o€l = |o| <Cme* Y ul .
In particular, by ensuring that € is not so large we have
(18) oel, = |o|<m/2.

So (16), (17), and (18) give

C«m262a—2”uip) CeQa—Z

(19) swp [, (o) < (T ) < Sl

In turn, this gives [M.| < Ce3*3||u|3: 3,51 7asr|(Aem — A—em)ul. Then Lemma 4
leads us to -

_ 1 _
1Mz < CE&*2ulld Y — < Ccac®™ 2 ulll

m>1
Next, we compute using the fundamental theorem and some algebra
Ox M, =e>1 Z m [Em(—mea_lAemu)Aémaxu — Em(—mea_lA,emu)A,emBXu} .
m>1
Adding zero takes us to
Ox M, =1 Z mE,, (—me* P Aeptt) (Aem — A_em) Oxu
m>1

+ Ca_l Z m (Em(_m€a_1Aemu) - Em(_mea_lA_emu)) A_emaxu
m>1

=IIT+1V.

Using (16) and the same reasoning that led to (18) yields

aflA 2
I <ce*=' Y mu |(Aem — A_ ) Ox 1l

= ma+4
m2=
_ 1
< Cedo—3 Z W'Aemu‘Z [(Aem — A—cm)Oxul.
m>1

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/06/24 to 144.118.75.34 by J. Wright (jdw66@drexel.edu). Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

APPROXIMATION OF CM LATTICES BY BO EQUATIONS 5593

Sobolev and the first estimate in Lemma 4 imply |Acnu(X)| < C|lu|| g1, and so

1

(111 < Ce*||ul|3p Z il I(

m>1

Aem - A—mn)aXu| .

We take the L? norm of the above, use the third estimate in Lemma 4, and do the
resulting sum to obtain

1
||III||L2 S 063(1_3”’[1,”%_[1 Z WEmHaXHHHl S Cega_2HU||?}_12.
m>1

For IV, routine estimates and the mean value theorem give

V<272 mP A cndxul[(Aan — A—em)ul sup |E;, (o)),

m>1 o€l

where [,,, is consistent with its definition above. Reasoning analogous to that which
led to (16) can be used to show that |E! (0)| < Clo|/(m —|o])**t*. And then (17) and
. a—1
(18) imply sup,¢; |E;,(0)] < %HunHl So
1
3a—3
IV < C = ull g Y — et A emOxull(Acm — Acm)ul.

m>1

Using Sobolev and the estimates in Lemma 4 in ways we have done above give
|1V 12 < Ce¥*~2||u||3,,. This, in conjunction with the above estimates for |[I11] 12
and || M|z, results in

(20) sup || M| g < Ce3*72,
[T|<70
Part 3: finishing touches. Using the decomposition of F, from (11) and adding
and subtracting a lot of terms, we get

ala+1)(a+2)
2
:a5+e%iaxu—e k10,0
+ala+1) (L€ — €% 0xu — eQa*lnaH|D|°‘u)
ala+1)(a+2
,olat Do+

ac+F.=a.+ala+1)L+ N, + M,

2c

(N6 - 262“_1Cau<9xu)

+ M.

+ e (—c2Oxu+ala+1)(0xu)

+ 27 (1510, u 4+ aa+ Do H|D|%u + a(a + 1) (a + 2)Caudxu) .

The second to last line is zero because of the definition of ¢, in (3). The final line
is zero because u satisfies (2) with the coefficients as given in (3). And the first four
lines we have estimates for, namely (9), (13), (15), and (20). Thus, we have

sup |lac+ Fellgr <C (62“_1“’“ + 63(’_2) .

IT1<70
For a € (1,2], we have 2@~ 1H7a = 2o < 322 and so

a€(1,2] = sup |lac+ F.||m < Ce¥* 2

[7|<T0
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For a € (2,3), we have 2@~ 1+7a = ¢ +2 > 3a=2 and so

€(2,3) = sup |ac+ Fellg <Ce* 2.

[TI<70

By design, R.(j,t) = ac(e(j — cat),e*t) + Fe(e(j — cat),€*t). Estimate (4.8) from
Lemma 4.3 in [3] states that

(21) G(X)e H' = ||G(e)|le2 < Ce V2 ||G| 1.

Thus, we have sup|; <y, /co | Re(€(- —1),€%t)[ 2 < CeéPa, with B, as in the statement of
the proposition. That does it. 0

3. A general approximation theorem. The previous section provides a rig-
orous bound on the size of the residual R, but this is only part of the approximation
theory. We need to demonstrate that a true solution z;(t) is shadowed by the ap-
proximate solution Z;(t) in an appropriate sense. The argument is based on “energy
estimates” and is a direct descendent of the validation of KAV as the long-wave limit
for FPUT lattices in [11] (see also [2, 10, 3]). The estimates are much more transparent
after a change of coordinates. After the recoordinatization, we prove a conservation
law which will imply global in time existence of solutions. Then we prove a general
approximation result.

3.1. Relative displacement/velocity coordinates. As stated in the intro-
duction, we work in terms of relative displacements (r; := z ;41 —x; —1) and velocities
(p; == xj). Note that if r; = p; = 0, then the system is in the equilibrium configuration
xj=j. A calculation shows that

Tjgm —Tj=m+Gpr; and z; —Tj—m =m+G_n,75,

where
m—1 m—1
gmrj - g Ti+1 and g—mrj - E Tj—m—1
=0 =0

Also define operators S*, 6 via
S*fii=Fivks Ohfii=Fiom—fi and 6 fyi=f = fiom-
Here are a few useful formulas that are not too hard to confirm:
gm(sf' =6 and ST"Gmr; =GmTj—m = G_m7;j.

The above considerations allow us to reformulate (1) as a first order system in
terms of r; and p;:

(22) szdfpj and p; = 2(5 (Gmr)

m>1
where V,,, coincides with its definition in the previous section at (10).

3.2. Energy conservation. Let

E=K+P,
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where
1
=3 Zp? and P:= Z Z Ve (GmT)
j€Z jEZm>1

This quantity corresponds to the total mechanical energy of the system. It is constant
and here is the extremely classical argument.
Differentiate £ with respect to ¢:

E= | pipi+ Y Vin(Gmr) ;G

JEZ m>1

Eliminate p and 7 on the right using (22):

E=Y "1 Y 6uVin(Gumr)s + Y Vir(Gr);Gmdi p;

JjEZ m>1 m>1

Rearrange the sums:

E= S S 00V G )s + V(G )G 1)

m>1j€Z

Use G,,6; =6, in the second term and the summation by parts formula in the first:

E=3 "> (=64 Vin(Gr); + Vi (Gr)6,p;) = 0.

m>1;€Z
So £ is constant.

3.3. Norm equivalence and global existence. In certain circumstances, the
(square root of the) energy &€ from the previous section is equivalent to the ¢2 x (2
norm. It is trivial that K is equivalent to ||p||%, but the part involving P is not
obvious. Here is the result.

LEMMA 5. Suppose that o > 1 such that 2(o4+1 — (o > 0. Then there exist p >0
and a constant C' > 1 such that

Irllez < p = C7Mrllee VP < Cllr ez

The proof of this will be a consequence of Proposition 8, below. For now, note
that it implies that small initial data for (22) implies global existence of solutions.
Specifically, we have the following.

COROLLARY 6. Fiz a > 1 such that 2(o41 — (o > 0. Then there exist p,C >0
such that if |F,pllezxe < p, then there exists (r;(t),p;(t)) € CH(R; €% x €%) which
solves (22) and for which (r;(0),p;(0)) = (7;,p;). Moreover, sup,cg ||7(t),p(t)||;2xe2 <
Clir,pllez ez

We omit the proof, as it is classical. In any case, it is nearly identical to the proof
of Theorem 5.2 of [3].

Remark 6. It is nonobvious that the condition 2{,+1 — (, > 0 is met. In Figure 1,
we plot 2¢411 — (o vs. . One sees that there exists a root of 2{,41 — (., denoted by
v, in the interval (1.4,1.5), such that 2{,4+1 — (4 > 0 for a > «, and is nonpositive
otherwise. Thus, the condition is nonvacuous.
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2Ca+1 — Ca

2 I I I I I I I I I I
1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3

@

Fic. 1. 2¢a4+1 — Ca vs. a.

3.4. Approximation in general. Let

ri(t)=7;(t)+n;(t) and p;(t) =p;(t) +&;(t),

where 7;(t) and p;(t) are some given functions which we expect to be good approx-
imators to true solutions r;(t) and p;(t) of (22). Then the “errors” n;(t) and &;(t)
solve

(23) ;=67 +Resy and &= 6, [V, (G (F+n)) = Vi1, (GuP)]; + Reso,
m>1
where
(24) Res; =07 p; —7; and Resy = Z O Vi (GimT) —5]».
m>1

The functions Res; and Ress are, like R, residuals and quantify the amount by
which the approximators 7;(t) and p;(t) fail to satisfy (22). Ultimately, these will be
expressed in terms of R, but for now we leave things general.

Our goal in this section is to show that 7;(¢) and &;(t) remain small (in ¢?)
over long-time periods, provided they are initially small. In particular, we prove the
following.

THEOREM 7. Suppose that o > 1 with 2(o+1 — Co > 0. Assume further that for
some 19,C1,e1 >0 and > «, e € (0,€], imply

(25) sup (|| Resq ||g2 + || Resz [|2) < C1€P, sup  ||Flese < Cre®
Jt|<7o /e Jt|<ro/ee

and

17, €l g2 ez < CreP .

Then there exist constants Cy, €. > 0 so that the following holds for e € (0,e.]. Ifn;(t),
& (t) solve (23) with initial data 7j;, &;, we have
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sup [[n(t), E(t)[le2xez < Cre? ™,
[t| <70 /e

Proof. We begin by rewriting (23) in a helpful way. For a,b € R, put
Wi (a,b) := V(b +a) — Vi (b) — V. (b)a
and let

!
W

(a,b) := 0 Wy, (a,b) =V, (b+a)—V, (b).
With this (23) becomes

(26) ;=07 +Resy and &= 0, W) (Gmn,GmT); + Ress.

m>1

The point of introducing W,, here is that now (26) is structurally similar to (22) with
Vi replaced by W,,. Then we hope we can recapture some of the glory of conservation
of £ from above but for the error equations.

So for a solution of (26) put

H = % 25]2 + Z Z Wm<gm777gmmj'

JEZ JEZm>1
This is our replacement for £. The following proposition contains the key properties
of the second term in #H, chief of which that under some conditions it is equivalent to
117

PRrROPOSITION 8. Fiz o > 1 with 2(o41 — (o > 0. Then there exists C > 1 such
that the following hold when ||F||;2 <1/4 and ||n||e= < 1/4:

(27) C Ml < 303 WG, Gon); < Clnle
JEZmMm>1
(28) > mlWy(Gmn, G2 < Clinlle2,
m>1
(29) S 1|0 Win Gontts Gon ) |2 < - 0
m>1

Remark 7. Note that Wy, (a,0) = Vi (a), and so if 7;(t) is identically zero, then
(27) coincides exactly with the estimate in Lemma 5, with 7 swapped with r.

Proof. We begin with (27). Taylor’s theorem tells us that W,,(a,b) = a(a+1)a?/
2(m + b,)*"? with b, in between b and b+ a. This leads to

ala+1) 5 ala+1) 5
< <
B T P

30
(30) S+ [a F e S

We have assumed ||n||,2 < 1/4. Thus, the classical estimate || f| g < ||f|le2 along
with the triangle inequality tell us

m—1
G| < NGmnlle= <Y [Imsallese = mllnlle= < m/4.
=0
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Similarly, [|7]|¢2 < 1/4 implies |G,,7;| < m/4. So we have m — |Gpn;| — |GmT;5| > m/2
and m + |Gmnj| + |GmT;| > 3m/2, and thus (30) gives

20 a(a + 1) 20 a(a+1)
arzarz (Gni)? WG, Gn); < —— 25— (Gnn;)*.

Summing this gets us to

29t g (a + 1)
3a+2

P < Z Z Wm(gmnagmmj < 2a+104(06 + 1)P2,

JEZm>1
where
1 2
Py=) > — 5 (Gmn);
JEZmMm>1

Using the definition of G,, and multiplying out the square gives

P=>" Z Z W2 Y mimitk

]EZm>1 0<i<k<m-—1

Rearranging sums and doing some computations on the “diagonal part” of the above
gets

1 m—1
Z Z ma+2 Z 773+l Z m"‘“ Z Z%H Z a2 Z H77||§2 :Ca+1|\77||§2'

JEZmMm>1 m>1 =0 j€Z m>1 =0
Therefore,
9 1
Py — Cat1llnllz =2 E E etz E Nj+1Mj+k =: Paa.
jEZm>1 0<l<k<m—1
Rearranging sums gives
1
Pry =2 E at? E E Nj+1Mj+k-

m>1 0<l<k<m—1j€Z

We use Cauchy—Schwarz to get
1
2
[Pl <2) o N 717
m>1 0<l<k<m-—1

Since Y o<jcp<m—_1 L =m(m —1)/2, we obtain

m(m —1)
Pl < Il 32 P = (G = o) e
m>1
Thus,
P2 = Cata|nllZe| < (Ca = Catr) Imll7
or rather

(2Ca+1 = Ca) 1Ml < Po < Callnlle-
Therefore, 2¢,+1 — (o > 0 implies that +/Ps is equivalent to ||n||¢.
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This in combination with (27) gives

20+l +1
PO (9~ )l €30S WonlGor, Gy <2 (e 1)l

JEZmMm>1

That is, we have (27).

Next up is (28). The mean value theorem tell us that W/ (a,b) = a(a + 1)a/
(m + b,)**2, where b, lies between b and b+ a. As above, we have |G, 7|~ < m/4
and ||Gpmnllg=e <m/4. So b, would be controlled above by m/2 for all j. Thus,

2020 (a + 1)
ma+2

|W7/n(gm77agm?)j| < |gm77j|'

We take the £2 norm and use the triangle inequality

29 20 (a + 1) 2020 (a + 1)
W3 G G s < 2 20D g < Z O Dy,

Thus,
> Wi (G, G2 < 2% Cacr(a + 1) ]2

m>1

This is (28).

To get (29) is more of the same. We have 0yW,,(a,b) = —a(a + 1)(a + 2)a?/
2(m + b,)**? with b, in between b and b+ a. Much as we did above, we get the
estimate

20 20 (a+ 1) (a + 2)

|ame(gm777gm?)j| < mae+3

|G |?.

Summing over j and the triangle inequality leads to

2020 (a+ 1) (a +2)
ma+3

29 20 (a+ 1) (a + 2)
Gl < Tt D@ D),

||ame(gm777 ng)ng <
Then

> mllosWon (Gt G2 < 2220 + 1) (@ + 2)Callnl 7

m>1
and we are done. 0

With Proposition 8 taken care of, we can now get into the energy argument at
the heart of the proof of Theorem 7. We begin with differentiation of H to get

7—.[ = Z gjéj + Z Wém(gmﬁ,gmf jgm".?j + Z Z 8me(gm77agm?:)jgm7.'~j-

JEZ m>1 JEZmM>1

Call the terms on the right I and IT in the obvious way. Using (26) in I gets

1= "1 & [ D 6mWi(Gmn,Gmi); + Rese

JEZ m>1

+ Z ern(gmn7 gm;'/)jgm((srfj + Resl)

m>1
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Summing by parts and using G,,8;” = J;. gives some cancellations:

I= Z 5] RQSQ + Z ern(gmn, gm;:)]gm Resl

JEZ m>1

Cauchy—Schwarz implies |I| < ||€]|¢z|| Resz ||¢, + |I2|, where
Iy:=Y ) W) (Gmn, GmT)jGrm Res: .

m>1j€Z

The dual of the operator G,, with respect to the ¢?-inner product is G_,,, and so

I = Z Z (G—mW; (Gmn, GmT);) Ress .

m>1j€Z

Reorder the sum again:

I2 = ZRGS1 Z (gme/n(gmnagmmj) :

JEZ m>1

Then Cauchy—Schwarz and the triangle inequality lead to
‘12| < H Resl ”52 Z ||g—mW7ln(gmnagm?)”Z2 < || Resl Hfz Z m ||W1{n(g7nnag7n;:)‘|€2 .

m2>1 m>1
The estimate (28) from Proposition 8 gives
[I2| < C[[Resy [[ez ]l e2-
Thus, we have
[ < C ([[Resy [le2[Imlle> + | Resz [[e2[[€ ]l e) -

Now look at I1. By using naive estimates we get

111< 37 S 106 Gt G Gl < [Pl S mll 05V (Grat, Gon

JEZm>1 m>1

Then (29) from Proposition 8 yields
11| < OFle=Inl|Z-
So all together
H < C (IIRest ez 1mlle + | Resz ez 1€l e2) + CIF] s Il 7.
Using (27) we have
H < C (|| Rest |lez + || Resz [|e2) VH + C|[7] g H.
The assumptions made on Res;, Ress, and 7 lead to
H < CPVH + Ce M.
Applying Gronwall’s inequality yields
VH(t) < eCEH(0) + CP (606% — 1) .
Then we use (27) one last time to get
In(8), €@ 2> < el n + C = (70 = 1).

Taking the supremum over |¢t| < 75/e¢* and using the assumption on the size of the
initial data gives the final estimate in Theorem 7. |
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4. Proof of Theorem 1. The proof of Theorem 1 is more or less a direct
application of the general approximation theorem, Theorem 7. There are a few small
details to attend to, and that is what we do now.

Proof. (Theorem 1). Fix u(X,7) a solution of (2) subject to the bound described
in the statement of the theorem. Let v(X,7) be given as in (6) and (7). Form Z; as
in (4), namely Z;(t) :=j + €*2v(e(j — cat),€*t). Then put

F(t) = —1467%,(0) and §(t) =i, (0).
We first compute Res; and Ress as in (24). We have
Res; =0, p—7=0,(2) — 8 (~1+6F) =0.
For Ress, we compute

Resy = Z 0 Vi (GinT); — @

m>1
=Y 0V (mm+ 65D, — 1
m>1
1 1 I3
= —« — — — —T;
gz:l ((xj-&-m -zttt (75— xj—m)a—H) !
= _R€7

with R. as above in (5). Thus, Proposition 2 tells us that the hypothesis on the
residuals, (25), in Theorem 7 is met with § = ,. Note that in the statement of
Theorem 1 the order of the error is e’ where v, = 8, — .

The fundamental theorem of calculus gives

ej+e
(31) 5 (f(e)); = fle(G+1)) — flef) = / fx(X)dX = e(Acfx)(€f).
If we use this and the relation u = —dxv, we have

7i(t) = —e* " (Acu)(€( — cat), €7t)
= —e*tu(e(j — cat), €t) — e H((Ac — Du)(e(j — cat), €¥1).

So (21) and the final estimate in Lemma 4 give us

(32) sup  [[F(8) + € Lule(- — cat), )|l < Ce@ 2,
[t|<To/€>

The assumption on the initial conditions in Theorem 1 implies
[7(0) + >~ tu(e, 0) |2 = [|jall 2 < P

It is easy enough to check that e*~1/2 < ¢f«= and therefore (32) and the triangle
inequality cough up

I7(0) =7(0)e= < CeP—,

which is one of the hypotheses on the initial data in Theorem 7.
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Similarly, we have
Pi(t) = cac tu(e(j — cat),et) + € 20, (e(j — cat), €t).

It is straightforward to use (8) and (21) to show ||v,(e(- — cat), €%t)||2 < Ce= /2 and
S0

(33) sup  [|p(t) — ca€® tu(e(- — cat), €1)||p2 < Ce2*73/2 < CePae,
[t|<7o/e

The assumption on the initial conditions in Theorem 1 tell us
1p(0) = cae® tu(e,0)|l2 = |72 < Ce .
Therefore,
1p(0) = P(0) |2 < CePm,

which is the other hypothesis on the initial data in Theorem 7.
Next, since 7;(¢) = &, p;(t), (31) and u= —dxv give us

?j (t) = ca€®(Acux ) (€(j — cat),e?t) — €227 (Acur ) (€(f — cat), €t).
An easy estimate provides
7 (@)lle < cac®(|Acux (- €t)l| o + € || Acur (-, €t) | poc.
Using Sobolev, followed by the first estimate in Lemma 4,
7)o < Ce[[ul-, ) 2 + C*Hlur (- €%8) | a1
Then we use (2) and the uniform bound on u to get

sup [[F(t)le= < Ce® + C7 < Ce.
jt1 <70/

This gives the estimate on 7 in (25).

We have now checked off all the hypotheses of Theorem 7, and thus its conclusions
hold. And so we find that

sup ||[r(t) = 7(t) |2 < CePo,
[t|<T/ex

This, together with (32) and the triangle inequality, gives

sup |lr(t) + eo‘*lu(e(~ — 1), )|z < Ceﬂ‘f"‘,
[t|<7/e

which is the estimate on u(t) in Theorem 1. The estimate on v(t) follows from

sup [[p(t) = B(t) |2 < O
jtl < e

and (33) in the same way. |
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