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Abstract. We provide a rigorous validation that the infinite Calogero–Moser lattice can be
well-approximated by solutions of the Benjamin–Ono equation in a long-wave limit.
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1. Introduction. The (generalized1) Calogero–Moser system is

ẍj =�↵
X

m�1

"
1

(xj+m � xj)
↵+1 �

1

(xj � xj�m)↵+1

#
.(1)

In the above, j 2 Z, xj 2R, t 2R. The system can be interpreted as the governing
equations for the positions (xj(t)) of infinitely many particles arranged on a line and
interacting pairwise through a power-law force.

Ingimarson and Pego in [7] state that for ↵2 (1,3) and in a certain scaling regime
(the so-called long-wave limit) the system is formally approximated by a Benjamin–
Ono-type equation. Here is a quick summary of their findings. Suppose that u =
u(X, ⌧) solves the (generalized2) Benjamin–Ono equation

1@⌧u+ 2u@Xu+ 3H|D|
↵u= 0.(2)

In (2), H is the Hilbert transform on R and |D|=H@X . We define these as Fourier3

multiplier operators:

dHf(k) :=�i sgn(k) bf(k) and \|D|↵f(k) := |k|↵ bf(k).

The constants 1, 2, and 3 are determined from ↵ by

c↵ :=
p
↵(↵+ 1)⇣↵, 1 := 2c↵, 2 := ↵(↵+ 1)(↵+ 2)⇣↵

and 3 := ↵(↵+ 1)

Z 1

0

1� sinc2(s/2)

s↵
ds.

(3)

⇤Received by the editors January 8, 2024; accepted for publication (in revised form) April 29,
2024; published electronically August 6, 2024.

https://doi.org/10.1137/24M1629869
Funding: This work was supported by the National Science Foundation under grant DMS-

2006172.
†Mathematics, Drexel University, Philadelphia, PA 19104 USA (jdoug@math.drexel.edu).
1It is the Calogero–Moser system when ↵= 2.
2It is the Benjamin–Ono equation when ↵= 2.
3We use the following form of the Fourier transform: F[f ](k):= bf(k):=(2⇡)�1

R
R f(X)e�ikX

dX and
F�1[g](X) := ǧ(X) :=

R
R g(k)eikXdk. We use the Fourier transform to define Sobolev norms in the

usual way: kfkHs :=
qR

R(1 + k2)s| bf(k)|2dk.
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5584 J. DOUGLAS WRIGHT

Here ⇣s :=
P

m�1 1/m
s is the ballyhooed zeta-function.

In [7], the authors show that if u=�@Xv and

exj(t) := j + eyj(t) and eyj(t) := ✏↵�2v(✏(j � c↵t), ✏
↵t),(4)

then

R✏(j, t) := ëxj + ↵
X

m�1


1

(exj+m � exj)↵+1
�

1

(exj � exj�m)↵+1

�
(5)

is formally o(✏2↵�1) as ✏! 0+. We call R✏ the residual, and it indicates the amount
by which the approximation fails to satisfy (1). The scaling in (4) is what is referred
to as the long-wave scaling.

Given the result from [7], one expects that if xj(t) solves (1) and exj(t) is given as
in (4), then xj�exj will be small in some appropriate sense. Indeed, our goal here is to
provide a quantitative and rigorous error estimate on the di↵erence. However, it turns
out to be more natural to validate the approximation in terms of relative displacements
and velocities instead of the position coordinates xj(t), that is, in terms of

rj(t) := xj+1(t)� xj(t)� 1 and pj(t) := ẋj(t).

The reason for this is that the total mechanical energy of (1) is expressed in terms
of these variables and the validation process makes use of that energy (the interested
reader can jump ahead to section 3 to see the details). This is the approach taken in
many previous long-wave approximation results for Hamiltonian lattices (especially
FPUT-type systems; see [11, 2, 3]).

And so if one suspects xj(t) ⇠ exj(t), then some quick formal calculations show
that one expects rj(t)⇠�✏↵�1u(✏(j � c↵t), ✏↵t) and pj(t)⇠ c↵✏↵�1u(✏(j � c↵t), ✏↵t).
These arguments are made precise in our main result, which is the following.

Theorem 1. There exists ↵⇤ 2 (1.45,1.5) such that the following holds for ↵ 2

(↵⇤,3). Let

�↵ :=

(
2↵� 5/2, ↵2 (1,2],

3/2, ↵2 (2,3),

and determine c↵, 1, 2, and 3 as in (3). Suppose that, for some ⌧0 > 0, u(X, ⌧)
solves (2) for |⌧ |  ⌧0 and sup|⌧ |⌧0

ku(·, ⌧)kH6 <1. Then there exist C1,C2, ✏⇤ > 0,
so the following holds for ✏2 (0, ✏⇤].

If the initial data for (1) satisfies

rj(0) =�✏↵�1u(✏j,0) + µ̄j and pj(0) = c↵✏
↵�1u(✏j,0) + ⌫̄j ,

where

kµ̄k`2 C1✏
�↵ and k⌫̄k`2 C1✏

�↵ ,

then the solution of (1) satisfies

rj(t) =�✏↵�1u(✏(j � c↵t), ✏
↵t) + µj(t) and pj(t) = c↵✏

↵�1u(✏(j � c↵t), ✏
↵t) + ⌫j(t),

where

sup
|t|⌧/✏↵

kµ(t)k`2 C2✏
�↵ and sup

|t|⌧/✏↵

k⌫(t)k`2 C2✏
�↵ .
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APPROXIMATION OF CM LATTICES BY BO EQUATIONS 5585

Remark 1. The theorem presents the absolute error made in the approximation.
To compute the relative error we note that the long-wave scaling X = ✏j implies
k✏↵�1u(✏(·� c↵t), ✏↵t)k`2 C✏↵�1/2 (see estimate (4.8) from Lemma 4.3 in [3]). This
leads to a relative error like C✏�↵�↵+1/2 =C✏1�|↵�2|. We do think the error estimates
we compute here are sharp, though we do not have a proof of that.

Remark 2. In our proof, it comes out that we need 2⇣↵+1 � ⇣↵ > 0, and it is
here that the restriction ↵> ↵⇤ comes from. See Figure 1 below. Precisely, ↵⇤ is the
positive solution of 2⇣↵+1 � ⇣↵ = 0. By deploying the tried and true method of using
MAPLE to zoom in on the intersection of the graph of 2⇣↵+1 � ⇣↵ with the ↵-axis,
one finds that ↵⇤ ⇠ 1.478750785. We do not claim the condition 2⇣↵+1 � ⇣↵ > 0 is
necessary, but it does arise in a somewhat natural way.

Remark 3. The use of H6 in the theorem is a worst-case scenario. It works for
all ↵ 2 (↵⇤,3). If one wanted, one could determine a lower regularity condition on u
which would depend on ↵. There is no pressing need for that in this article. One may
wonder if H6 solutions of (2) exist. The short answer is yes. To get more information,
the introduction of [5] gives a terrific overview.

Remark 4. For ↵= 2, there are known connections between special solutions of
(1) and (2), which rely in part on the fact that both systems are integrable. In partic-
ular, in [8] it is shown that the poles of the multisoliton solutions of the Benjamin–Ono
equation satisfy a (finite dimensional) Calogero–Moser system. This remarkable con-
nection between the two systems is seemingly quite di↵erent from the long-wave limit
uncovered in [7] and studied further here. Exploring the similarities and di↵erences
between the two reductions is a very interesting path for future research.

Remark 5. The Benjamin–Ono equation has served as long-wave limit in a variety
of hydrodynamic problems; see [1] for an overview. The article [6] and recent preprint
[9] contain rigorous validations of two di↵erent such limits, similar in some ways to
what we have here.

Here is the plan of attack. First we make the formal estimates on R✏ from [7]
rigorous in section 2. Then we prove a general approximation theorem in section 3.
Last, in section 4 we put things together in the proof of Theorem 1.

2. Rigorous residual estimates. The first task is to make the formal estimate
of the residual R✏ from [7] rigorous. Here is the result.

Proposition 2. If u(X, ⌧) is a solution of (2) with sup|⌧ |⌧0
ku(·, ⌧)kH6 < 1,

then there exist C > 0 and ✏0 > 0 for which ✏2 (0, ✏0] implies

sup
|t|⌧0/✏

↵

kR✏(·, t)k`2 C✏�↵ ,

where

�↵ :=

(
3↵� 5/2, ↵2 (1,2],

↵+ 3/2, ↵2 (2,3).

Proof. The proof is technical, and we break it up into several parts: an analysis
of the acceleration term, another for the force terms, and then a final section where
we put everything together.

Part 1: the acceleration term. The chain rule and (4) give ëxj(t) = a✏(✏(j �
c↵t), ✏↵t), where

a✏ := ✏↵c2
↵
@2
X
v� 2c↵✏

2↵�1@⌧@Xv+ ✏3↵�2@2
⌧
v.
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5586 J. DOUGLAS WRIGHT

Using the relation u=�@Xv along with the formula for 1 from above, we can convert
this to

a✏ =�✏↵c2
↵
@Xu+ ✏2↵�11@⌧u+ ✏3↵�2@2

⌧
v.

The first two terms on the right-hand side constitute the leading order part of a✏ and
will ultimately combine and cancel with terms from the force down below. Thus the
contribution from a✏ to R✏ will stem from ✏3↵�2@2

⌧
v.

With this in mind, we have

sup
|⌧ |⌧0

ka✏ + ✏↵c2
↵
@Xu� ✏2↵�11@⌧ukH1 = sup

|⌧ |⌧0

✏3↵�2
k@2

⌧
vkH1 .

We need to estimate @2
⌧
v in terms of u, but this is somewhat ambiguous since all we

have specified is that u=�@Xv. Here is what to do.4 First we put

v(X, ⌧) :=�

Z
X

0
u(b, ⌧)db+ q(⌧)(6)

for an as yet undetermined scalar function q(⌧). This ensures that u = �@Xv and
q(⌧) is in place to make sure that @2

⌧
v is in H1. Di↵erentiation of v with respect to ⌧

followed by using (2) gives us

@⌧v(X, ⌧) =

Z
X

0

✓
2

21
(@bu

2)(b, ⌧)�
3

1
@b|D|

↵�1u(b, ⌧)

◆
db+ q̇(⌧).

Note that in this computation we have used the fact that H|D|
↵ =�|D|

↵�1@X .
The fundamental theorem of calculus yields

@⌧v(X, ⌧) =
2

21
u2(X, ⌧)�

3

1
|D|

↵�1u(X, ⌧)�
2

21
u2(0, ⌧) +

3

1
|D|

↵�1u(0, ⌧) + q̇(⌧).

We select

q̇=
2

21
u2(0, ⌧)�

3

1
|D|

↵�1u(0, ⌧) and q(0) = 0(7)

so that

@⌧v=
2

21
u2

�
3

1
|D|

↵�1u.(8)

One more ⌧ -di↵erentiation gives us

@2
⌧
v=

2

1
u@⌧u�

3

1
|D|

↵�1@⌧u.

Using the Sobolev inequality and counting derivatives provides us the estimate

k@2
⌧
vkH1 CkukH1k@⌧ukH1 +Ck@⌧ukH↵ .

Taking the Hs norm of both sides of (2) tells us that k@⌧ukHs  C(kuk2
Hs+1 +

kukHs+↵). In turn this gives

k@2
⌧
vkH1 CkukH1

�
kuk2

H2 + kukH1+↵

�
+C

�
kuk2

H↵+1 + kukH2↵

�
.

4Special thanks go to one of the referees for pointing out an error in the first draft related to
this part of the paper and suggesting this remedy.
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APPROXIMATION OF CM LATTICES BY BO EQUATIONS 5587

Since ↵ < 3 and we have assumed a uniform bound on u 2 H6 for |⌧ |  ⌧0, we can
conclude that

sup
|⌧ |⌧0

ka✏ + ✏↵c2
↵
@Xu� ✏2↵�11@⌧ukH1 C✏3↵�2.(9)

Part 2: the force term. The authors of [7] show that

exj+m � exj =m�m✏↵�1A✏mu(X, ⌧) and exj � exj�m =m�m✏↵�1A�✏mu(X, ⌧),

where

Ahu(X, ⌧) :=
1

h

Z
h

0
u(X + z, ⌧)dz.

If we let

Vm(g) :=
1

(m+ g)↵
�

1

m↵
+

↵

m↵+1
g(10)

so that

V 0
m
(g) =�

↵

(m+ g)↵+1
+

↵

m↵+1
,

then the force terms in R✏ can be rewritten as

↵
X

m�1


1

(exj+m � exj)↵+1
�

1

(exj � exj�m)↵+1

�
= F✏(✏(j � c↵t), ✏

↵t),

where

F✏(X, ⌧) :=�

X

m�1

⇥
V 0
m
(�m✏↵�1A✏mu(X, ⌧))� V 0

m
(�m✏↵�1A�✏mu(X, ⌧))

⇤
.

A combination of the fundamental theorem of calculus and Taylor’s theorem im-
plies

V 0
m
(g+)� V 0

m
(g�) = V 00

m
(0)(g+ � g�) +

1

2
V 000
m
(0)(g2+ � g2�) +

Z
g+

g�

Em(�)d�,

where

Em(�) :=

Z
�

0
V 0000
m

(�)(�� �)d�.

This leads to the expansion

F✏ = ↵(↵+ 1)L✏ +
↵(↵+ 1)(↵+ 2)

2
N✏ +M✏,(11)

where

L✏ := ✏↵�1
X

m�1

1

m↵+1
(A✏m �A�✏m)u,

N✏ := ✏2↵�2
X

m�1

1

m↵+1

�
(A✏mu)2 � (A�✏mu)2

�
,

M✏ :=�

X

m�1

Z �m✏
↵�1

A✏mu

�m✏↵�1A�✏mu

Em(�)d�.
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5588 J. DOUGLAS WRIGHT

The terms L✏ and N✏ coincide with their forms in [7]. The remaining term, M✏, is
lumped into a generic o(✏2↵+1) term there.

Part 2a: Estimates for L✏. We follow the blueprint provided by [7]. Using the
fact that dAhu(k) = bu(k)(eikh � 1)/ikh, they show that

bL✏(k) = ✏↵⇣↵ikbu(k) + ✏2↵�1ik|k|↵�1bu(k)

0

@|k|✏
X

m�1

sinc2(|k|✏m/2)� 1

(|k|✏m)↵

1

A .

Let

⌘↵(h) := h
X

m�1

1� sinc2(hm/2)

(hm)↵
.

A key observation from [7] is that ⌘↵(h) is the approximation of

⌘↵ :=

Z 1

0

1� sinc2(s/2)

s↵
ds

using the rectangular rule with right-hand endpoints. As such, limh!0+ ⌘↵(h) = ⌘↵.
Note that ⌘↵ is finite so long as ↵2 (1,3).

Then we have

bL✏(k) = ✏↵⇣↵ikbu(k)� ✏2↵�1⌘↵ik|k|
↵�1bu(k)(12)

+ ✏2↵�1ik|k|↵�1bu(k) (⌘↵ � ⌘↵(✏|k|)) .

What is the error made by approximating ⌘↵(✏|k|) by ⌘↵? To determine this, we need
the following.

Lemma 3. For ↵ 2 (1,2], there exists C > 0 for which |⌘↵(h)� ⌘↵|  Ch for all
h> 0. If ↵2 (2,3), there exists C > 0 for which |⌘↵(h)� ⌘↵|Ch3�↵ for all h> 0.

Proof. If the integral were not improper, this would be an elementary estimate.
But it is. In fact when ↵2 (2,3) it is improper at s= 0 and that is why the estimate
is worse in that setting. Also, when ↵2 (1,2) the derivative of the integrand

f↵(s) :=
1� sinc2(s/2)

s↵

diverges as s! 0+, which complicates things.
First we deal with h� 1. We have

|⌘↵(h)� ⌘↵| ⌘↵ + h
X

m�1

1� sinc2(hm/2)

(hm)↵
.

Since sinc2(s)2 [0,1] for all s2R, we make an easy estimate:

|⌘↵(h)� ⌘↵| ⌘↵ + h
X

m�1

1

(hm)↵
= ⌘↵ + h1�↵⇣↵  (⌘↵ + ⇣↵)hCh.

So h� 1 is taken care of for all ↵2 (1,3).
Now fix h2 (0,1). We break things up:

⌘↵(h)� ⌘↵ = h

d1/heX

m=1

f↵(mh)�

Z
hd1/he

0
f↵(s)ds

| {z }
IN

+ h
X

m�d1/he+1

f↵(mh)�

Z 1

hd1/he
f↵(s)ds

| {z }
OUT

.
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APPROXIMATION OF CM LATTICES BY BO EQUATIONS 5589

For OUT , by standard integral identities and the integral version of the mean
value theorem we have

OUT =
X

m�d1/he+1

 
hf↵(mh)�

Z
mh

(m�1)h
f↵(s)ds

!
= h

X

m�d1/he+1

(f↵(mh)� f↵(sm)) .

Here sm 2 [(m � 1)h,mh]. Then we use the derivative version of the mean value
theorem to get

OUT = h
X

m�d1/he+1

f 0
↵
(�m)(mh� sm),

where �m 2 [sm,mh]. Note that |mh� sm| h.
Routine calculations show that there is a constant C > 0 such that |f 0

↵
(s)| 

Cs�↵�1 for s� 1. Since s�↵�1 is a decreasing function, these considerations lead to

|OUT |Ch2
X

m�d1/he+1

[(m� 1)h]�↵�1 =Ch2
X

m�d1/he

[mh]�↵�1.

Next, h
P

m�d1/he[mh]�↵�1 is the approximation of
R1
hd1/he�h

s�↵�1ds using the

rectangular rule with right-hand endpoints. Since s�↵�1 is decreasing, we know that
h
P

m�d1/he[mh]�↵�1

R1
hd1/he�h

s�↵�1ds. Also, since h 2 (0,1), we have hd1/he �

h� 1/2, and so
R1
hd1/he�h

s�↵�1

R1
1/2 s

�↵�1 = 2↵/↵. Putting these together implies
|OUT |Ch.

For IN , we need to desingularize the integrand at s= 0. Putting

f↵(s) =
1� (s2/12)� sinc2(s/2)

s↵| {z }
g↵(s)

+
1

12
s2�↵

gives

IN =

0

@h

d1/heX

m=1

g↵(mh)�

Z
hd1/he

0
g↵(s)ds

1

A+
1

12

0

@h

d1/heX

m=1

(mh)2�↵
�

Z
hd1/he

0
s2�↵ds

1

A .

Taylor’s theorem tells us that |1�(s2/12)�sinc2(s/2)|/s4 is bounded as s! 0, and as
a byproduct we see that g↵(s) is C1 on the interval [0,2]. Routine error estimates for

approximating integrals with rectangles tells us |h
Pd1/he

m=1 g↵(mh)�
R
hd1/he
0 g↵(s)ds|

Ch.
So what remains is to estimate the singular piece

SING↵ =

������
h

d1/heX

m=1

(mh)2�↵
�

Z
hd1/he

0
s2�↵ds

������
.

Note that if ↵ = 2, then SING↵ = 0, so that case is pretty easy. But the cases
↵2 (1,2) and ↵2 (2,3) require some care.

We know that h
Pd1/he

m=1 (mh)2�↵ is the rectangular approximation ofR
hd1/he
0 s2�↵ds using right-hand endpoints, but it is also the rectangular approxi-

mation of
R
hd1/he
0 (s+ h)2�↵ds using left-hand endpoints. If ↵2 (2,3), then s2�↵ is a

decreasing function and we get the following chain of inequalities:
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5590 J. DOUGLAS WRIGHT

Z
hd1/he

0
(s+ h)2�↵ds h

d1/heX

m=1

(mh)2�↵


Z
hd1/he

0
s2�↵ds.

On the other hand, if ↵2 (1,2), then s2�↵ is increasing and we have

Z
hd1/he

0
(s+ h)2�↵ds� h

d1/heX

m=1

(mh)2�↵
�

Z
hd1/he

0
s2�↵ds.

Either of the chains tells us

SING↵ 

�����

Z
hd1/he

0

�
s2�↵

� (s+ h)2�↵
�
ds

�����

=
1

3� ↵

��(hd1/he)3�↵
� (hd1/he+ h)3�↵ + h3�↵

��


1

3� ↵

��(hd1/he)3�↵
� (hd1/he+ h)3�↵

��+ 1

3� ↵
h3�↵.

The mean value theorem gives (3� ↵)�1
|(hd1/he)3�↵

� (hd1/he + h)3�↵
| = hh2�↵

⇤ ,
where h⇤ is in between hd1/he and hd1/he + h. These numbers are in the interval
[1,3], and so we have (3� ↵)�1

|(hd1/he)3�↵
� (hd1/he + h)3�↵

|  Ch. Therefore,
|SING↵|Ch+Ch3�↵.

Everything all together tells us that h2 (0,1) and ↵2 (1,3) imply |⌘↵(h)� ⌘↵|
Ch+Ch3�↵. If ↵ 2 (1,2], then h h3�↵ and the inequality flips for ↵ 2 (2,3). That
finishes the proof.

With Lemma 3, (12) implies
���bL✏(k)� ✏↵⇣↵ikbu(k) + ✏2↵�1⌘↵ik|k|

↵�1bu(k)
���C✏2↵�1+r↵ |k|↵+r↵ |bu(k)|,

where

r↵ :=

(
1, ↵2 (1,2]

3� ↵, ↵2 (2,3).

This in turn implies (along with the assumed uniform estimate for u) that

sup
|⌧ |⌧0

kL✏ � ✏↵⇣↵@Xu� ✏2↵�1⌘↵H|D|
↵ukH1 C✏2↵�1+r↵ .(13)

Part 2b: Estimates for N✏. Some easy algebra leads to

N✏ = 2✏2↵�2u
X

m�1

1

m↵+1
(A✏mu�A�✏mu)

+ ✏2↵�2
X

m�1

1

m↵+1
(A✏mu+A�✏mu� 2u)(A✏mu�A�✏mu).

We recognize that L✏ is lurking in the first term. That and a little subtraction action
get us to

N✏ � 2✏2↵�1⇣↵u@Xu= 2✏↵�1u (L✏ � ✏↵⇣↵@Xu)

+ ✏2↵�2
X

m�1

1

m↵+1
(A✏mu+A�✏mu� 2u)(A✏mu�A�✏mu).
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APPROXIMATION OF CM LATTICES BY BO EQUATIONS 5591

We take the H1 norm and use triangle and Sobolev:

kN✏ � 2✏2↵�1⇣↵u@XukH1

 2✏↵�1
kukH1kL✏ � ✏↵⇣↵@XukH1

+ ✏2↵�2
X

m�1

1

m↵+1
kA✏mu+A�✏mu� 2ukH1kA✏mu�A�✏mukH1 .

(14)

The estimate (13) tells us that 2✏↵�1
kukH1kL✏ � ✏↵⇣↵@XukH1 C✏3↵�2

kuk21+↵+r↵
.

To control the remaining term in (14), we will use the following estimates (see [4]
for the proof).

Lemma 4. There is C > 0 such that for all h> 0 and s2R,

kAhukHs CkukHs ,

kAhu+A�hu� 2ukHs Ch2
kukHs+2 ,

kAhu�A�hukHs ChkukHs+1 ,

kAhu� ukHs ChkukHs+1 .

We have to deal with terms like A✏m, and so the above result will be helpful when
✏m is “small” but not very useful otherwise. So we break things up:

✏2↵�2
X

m�1

1

m↵+1
kA✏mu+A�✏mu� 2ukH1kA✏mu�A�✏mukH1

= ✏2↵�2
b1/✏cX

m=1

1

m↵+1
kA✏mu+A�✏mu� 2ukH1kA✏mu�A�✏mukH1

+ ✏2↵�2
X

m�b1/✏c

1

m↵+1
kA✏mu+A�✏mu� 2ukH1kA✏mu�A�✏mukH1

= I + II.

The second and third estimates from Lemma 4 give IC✏2↵+1
kuk2

H3

Pb1/✏c
m=1 m2�↵.

A classic “integral comparison” tells us that
Pb1/✏c

m=1 m2�↵
 C✏↵�3. So then I 

C✏3↵�2
kuk2

H3 .
For II, we use the first estimate in Lemma 4 to get II  C✏2↵�2

kuk2
H1P

m>b1/✏c
1

m↵+1 . Then another integral-type estimate tells us
P

m>b1/✏c
1

m↵+1 C✏↵.
So then II C✏3↵�2

kuk2
H1 . Therefore, we have our final estimate for N✏:

sup
|⌧ |⌧0

kN✏ � 2✏2↵�1⇣↵u@XukH1 C✏3↵�2.(15)

Part 2c: Estimates for M✏. We need to treat kM✏kL2 and k@XM✏kL2 separately,
and we start with the former. A standard estimate shows

|M✏|

X

m�1

m✏↵�1
|(A✏m �A�✏m)u| sup

�2Im

|Em(�)|,

where Im is the interval between �m✏↵�1A✏mu and �m✏↵�1A�✏mu.
If we assume �> 0, then

|Em(�)|

Z
�

0
|V 0000

m
(�)||�� �|d� sup

0��

|V 0000
m

(�)|

Z
�

0
|�� �|d�=

1

2
sup

0��

|V 0000
m

(�)|�2.
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5592 J. DOUGLAS WRIGHT

|V 0000
m

(�)| is decreasing, and so sup0��
|V 0000

m
(�)| = |V 0000

m
(0)| = C/m↵+4. So in this

case

|Em(�)|
C�2

m↵+4
.

Similarly, if � 0, then

|Em(�)|

Z 0

�

|V 0000
m

(�)||�� �|d�
1

2
sup

0��

|V 0000
m

(�)|�2


C�2

(m+ �)↵+4
.

In either case we had

|Em(�)|
C�2

(m� |�|)↵+4
.(16)

Note that the constant C here is independent of m.
We have, using Lemma 4 and Sobolev,

� 2 Im =) |�|Cm✏↵�1
kukH1 .(17)

In particular, by ensuring that ✏ is not so large we have

� 2 Im =) |�|m/2.(18)

So (16), (17), and (18) give

sup
�2Im

|Em(�)|

✓
Cm2✏2↵�2

kuk2
H1

(m�m/2)↵+4

◆


C✏2↵�2

m↵+2
kuk2

H1 .(19)

In turn, this gives |M✏|C✏3↵�3
kuk2

H1

P
m�1

1
m↵+1 |(A✏m�A�✏m)u|. Then Lemma 4

leads us to

kM✏kL2 C✏3↵�2
kuk3

H1

X

m�1

1

m↵
C⇣↵✏

3↵�2
kuk3

H1 .

Next, we compute using the fundamental theorem and some algebra

@XM✏ = ✏↵�1
X

m�1

m
⇥
Em(�m✏↵�1A✏mu)A✏m@Xu�Em(�m✏↵�1A�✏mu)A�✏m@Xu

⇤
.

Adding zero takes us to

@XM✏ = ✏↵�1
X

m�1

mEm(�m✏↵�1A✏mu) (A✏m �A�✏m)@Xu

+ ✏↵�1
X

m�1

m
�
Em(�m✏↵�1A✏mu)�Em(�m✏↵�1A�✏mu)

�
A�✏m@Xu

= III + IV.

Using (16) and the same reasoning that led to (18) yields

|III|C✏↵�1
X

m�1

m

�
m✏↵�1A✏mu

�2

m↵+4
|(A✏m �A�✏m)@Xu|

C✏3↵�3
X

m�1

1

m↵+1
|A✏mu|2 |(A✏m �A�✏m)@Xu| .
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APPROXIMATION OF CM LATTICES BY BO EQUATIONS 5593

Sobolev and the first estimate in Lemma 4 imply |A✏mu(X)|CkukH1 , and so

|III|C✏3↵�3
kuk2

H1

X

m�1

1

m↵+1
|(A✏m �A�✏m)@Xu| .

We take the L2 norm of the above, use the third estimate in Lemma 4, and do the
resulting sum to obtain

kIIIkL2 C✏3↵�3
kuk2

H1

X

m�1

1

m↵+1
✏mk@XukH1 C✏3↵�2

kuk3
H2 .

For IV , routine estimates and the mean value theorem give

|IV | ✏2↵�2
X

m�1

m2
|A�✏m@Xu||(A✏m �A�✏m)u| sup

�2Im

|E0
m
(�)|,

where Im is consistent with its definition above. Reasoning analogous to that which
led to (16) can be used to show that |E0

m
(�)|C|�|/(m� |�|)↵+4. And then (17) and

(18) imply sup
�2Im

|E0
m
(�)| C✏

↵�1

m↵+3 kukH1 . So

|IV |C✏3↵�3
kukH1

X

m�1

1

m↵+1
|A�✏m@Xu||(A✏m �A�✏m)u|.

Using Sobolev and the estimates in Lemma 4 in ways we have done above give
kIV kL2  C✏3↵�2

kuk3
H1 . This, in conjunction with the above estimates for kIIIkL2

and kM✏kL2 , results in

sup
|⌧ |⌧0

kM✏kH1 C✏3↵�2.(20)

Part 3: finishing touches. Using the decomposition of F✏ from (11) and adding
and subtracting a lot of terms, we get

a✏ + F✏ = a✏ + ↵(↵+ 1)L✏ +
↵(↵+ 1)(↵+ 2)

2
N✏ +M✏

= a✏ + ✏↵c2
↵
@Xu� ✏2↵�11@⌧u

+ ↵(↵+ 1)
�
L✏ � ✏↵⇣↵@Xu� ✏2↵�1⌘↵H|D|

↵u
�

+
↵(↵+ 1)(↵+ 2)

2

�
N✏ � 2✏2↵�1⇣↵u@Xu

�

+M✏

+ ✏↵
�
�c2

↵
@Xu+ ↵(↵+ 1)⇣↵@Xu

�

+ ✏2↵�1 (1@⌧u+ ↵(↵+ 1)⌘↵H|D|
↵u+ ↵(↵+ 1)(↵+ 2)⇣↵u@Xu) .

The second to last line is zero because of the definition of c↵ in (3). The final line
is zero because u satisfies (2) with the coe�cients as given in (3). And the first four
lines we have estimates for, namely (9), (13), (15), and (20). Thus, we have

sup
|⌧ |⌧0

ka✏ + F✏kH1 C
�
✏2↵�1+r↵ + ✏3↵�2

�
.

For ↵2 (1,2], we have ✏2↵�1+r↵ = ✏2↵  ✏3↵�2, and so

↵2 (1,2] =) sup
|⌧ |⌧0

ka✏ + F✏kH1 C✏3↵�2.
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5594 J. DOUGLAS WRIGHT

For ↵2 (2,3), we have ✏2↵�1+r↵ = ✏↵+2
� ✏3↵�2, and so

↵2 (2,3) =) sup
|⌧ |⌧0

ka✏ + F✏kH1 C✏↵+2.

By design, R✏(j, t) = a✏(✏(j � c↵t), ✏↵t) + F✏(✏(j � c↵t), ✏↵t). Estimate (4.8) from
Lemma 4.3 in [3] states that

G(X)2H1 =) kG(✏·)k`2 C✏�1/2
kGkH1 .(21)

Thus, we have sup|t|⌧0/✏
↵ kR✏(✏(·� t), ✏↵t)k`2 C✏�↵ , with �↵ as in the statement of

the proposition. That does it.

3. A general approximation theorem. The previous section provides a rig-
orous bound on the size of the residual R✏, but this is only part of the approximation
theory. We need to demonstrate that a true solution xj(t) is shadowed by the ap-
proximate solution exj(t) in an appropriate sense. The argument is based on “energy
estimates” and is a direct descendent of the validation of KdV as the long-wave limit
for FPUT lattices in [11] (see also [2, 10, 3]). The estimates are much more transparent
after a change of coordinates. After the recoordinatization, we prove a conservation
law which will imply global in time existence of solutions. Then we prove a general
approximation result.

3.1. Relative displacement/velocity coordinates. As stated in the intro-
duction, we work in terms of relative displacements (rj := xj+1�xj�1) and velocities
(pj := ẋj). Note that if rj = pj = 0, then the system is in the equilibrium configuration
xj = j. A calculation shows that

xj+m � xj =m+ Gmrj and xj � xj�m =m+ G�mrj ,

where

Gmrj :=
m�1X

l=0

rj+l and G�mrj :=
m�1X

l=0

rj�m�l.

Also define operators Sk, �±
m

via

Skfj := fj+k, �+
m
fj := fj+m � fj , and ��

m
fj := fj � fj�m.

Here are a few useful formulas that are not too hard to confirm:

Gm�+1 = �+
m

and S�m
Gmrj = Gmrj�m = G�mrj .

The above considerations allow us to reformulate (1) as a first order system in
terms of rj and pj :

ṙj = �+1 pj and ṗj =
X

m�1

��
m
V 0
m
(Gmr)j ,(22)

where Vm coincides with its definition in the previous section at (10).

3.2. Energy conservation. Let

E :=K + P,
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APPROXIMATION OF CM LATTICES BY BO EQUATIONS 5595

where

K :=
1

2

X

j2Z

p2
j

and P :=
X

j2Z

X

m�1

Vm(Gmr)j .

This quantity corresponds to the total mechanical energy of the system. It is constant
and here is the extremely classical argument.

Di↵erentiate E with respect to t:

Ė =
X

j2Z

0

@pj ṗj +
X

m�1

V 0
m
(Gmr)jGmṙj

1

A .

Eliminate ṗ and ṙ on the right using (22):

Ė =
X

j2Z

0

@pj
X

m�1

��
m
V 0
m
(Gmr)j +

X

m�1

V 0
m
(Gmr)jGm�+1 pj

1

A .

Rearrange the sums:

Ė =
X

m�1

X

j2Z

�
pj�

�
m
V 0
m
(Gmr)j + V 0

m
(Gmr)jGm�+1 pj

�
.

Use Gm�+1 = �+
m

in the second term and the summation by parts formula in the first:

Ė =
X

m�1

X

j2Z

�
��+

m
pjV

0
m
(Gmr)j + V 0

m
(Gmr)j�

+
m
pj
�
= 0.

So E is constant.

3.3. Norm equivalence and global existence. In certain circumstances, the
(square root of the) energy E from the previous section is equivalent to the `2 ⇥ `2

norm. It is trivial that K is equivalent to kpk2
`2
, but the part involving P is not

obvious. Here is the result.

Lemma 5. Suppose that ↵ > 1 such that 2⇣↵+1 � ⇣↵ > 0. Then there exist ⇢ > 0
and a constant C > 1 such that

krk`2  ⇢ =) C�1
krk`2 

p

P Ckrk`2 .

The proof of this will be a consequence of Proposition 8, below. For now, note
that it implies that small initial data for (22) implies global existence of solutions.
Specifically, we have the following.

Corollary 6. Fix ↵ > 1 such that 2⇣↵+1 � ⇣↵ > 0. Then there exist ⇢,C > 0
such that if kr̄, p̄k`2⇥`2  ⇢, then there exists (rj(t), pj(t)) 2 C1(R; `2 ⇥ `2) which
solves (22) and for which (rj(0), pj(0)) = (r̄j , p̄j). Moreover, sup

t2R kr(t), p(t)k`2⇥`2 

Ckr̄, p̄k`2⇥`2 .

We omit the proof, as it is classical. In any case, it is nearly identical to the proof
of Theorem 5.2 of [3].

Remark 6. It is nonobvious that the condition 2⇣↵+1�⇣↵ > 0 is met. In Figure 1,
we plot 2⇣↵+1� ⇣↵ vs. ↵. One sees that there exists a root of 2⇣↵+1� ⇣↵, denoted by
↵⇤, in the interval (1.4,1.5), such that 2⇣↵+1 � ⇣↵ > 0 for ↵ > ↵⇤ and is nonpositive
otherwise. Thus, the condition is nonvacuous.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/0

6/
24

 to
 1

44
.1

18
.7

5.
34

 b
y 

J. 
W

rig
ht

 (j
dw

66
@

dr
ex

el
.e

du
). 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



5596 J. DOUGLAS WRIGHT14 J. D. WRIGHT

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Fig. 1. 2⇣↵+1 � ⇣↵ vs. ↵.

3.3. Norm equivalence and global existence. In certain circumstances, the
(square root of the) energy E from the previous section is equivalent to the `2 ⇥ `2

norm. It is trivial that K is equivalent to kpk2
`2

but the part involving P is not
obvious. Here is the result.

Lemma 1. Suppose that ↵ > 1 such that 2⇣↵+1 � ⇣↵ > 0. Then there exists ⇢ > 0
and a constant C > 1 such that

krk`2  ⇢ =) C�1
krk`2 

p

P  Ckrk`2 .

The proof of this will be a consequence of Proposition 4, below. For now, note
that it implies that small initial data for (22) implies global existence of solutions.
Specifically:

Corollary 2. Fix ↵ > 1 such that 2⇣↵+1 � ⇣↵ > 0. Then there exists ⇢, C > 0
such that if kr̄, p̄k`2⇥`2  ⇢ then there exists (rj(t), pj(t)) 2 C1(R; `2 ⇥ `2) which
solves (22) and for which (rj(0), pj(0)) = (r̄j , p̄j). Moreover sup

t2R kr(t), p(t)k`2⇥`2 

Ckr̄, p̄k`2⇥`2 .

We omit the proof as it is classical. In any case, it is nearly identical to the proof
of Theorem 5.2 of [3].

Remark 6. It is non-obvious that the condition 2⇣↵+1 � ⇣↵ > 0 is met. In Figure
1 we plot 2⇣↵+1 � ⇣↵ vs ↵. One sees that there exists a root of 2⇣↵+1 � ⇣↵, denoted
↵⇤, in the interval (1.4, 1.5), such that 2⇣↵+1 � ⇣↵ > 0 for ↵ > ↵⇤ and is non-positive
otherwise. Thus the condition is non-vacuous.

3.4. Approximation in general. Let

rj(t) = erj(t) + ⌘j(t) and pj(t) = epj(t) + ⇠j(t)

where erj(t) and epj(t) are some given functions which we expect are good approxi-
mators to true solutions rj(t) and pj(t) of (22). Then the “errors” ⌘j(t) and ⇠j(t)

Fig. 1. 2⇣↵+1 � ⇣↵ vs. ↵.

3.4. Approximation in general. Let

rj(t) = erj(t) + ⌘j(t) and pj(t) = epj(t) + ⇠j(t),

where erj(t) and epj(t) are some given functions which we expect to be good approx-
imators to true solutions rj(t) and pj(t) of (22). Then the “errors” ⌘j(t) and ⇠j(t)
solve

⌘̇j = �+1 ⇠j +Res1 and ⇠̇j =
X

m�1

��
m
[V 0

m
(Gm (er+ ⌘))� V 0

m
(Gmer)]j +Res2,(23)

where

Res1 = �+1 epj � ėrj and Res2 =
X

m�1

��
m
V 0
m
(Gmer)j � ėpj .(24)

The functions Res1 and Res2 are, like R✏, residuals and quantify the amount by
which the approximators erj(t) and epj(t) fail to satisfy (22). Ultimately, these will be
expressed in terms of R✏, but for now we leave things general.

Our goal in this section is to show that ⌘j(t) and ⇠j(t) remain small (in `2)
over long-time periods, provided they are initially small. In particular, we prove the
following.

Theorem 7. Suppose that ↵ > 1 with 2⇣↵+1 � ⇣↵ > 0. Assume further that for
some ⌧0,C1, ✏1 > 0 and � > ↵, ✏2 (0, ✏1], imply

sup
|t|⌧0/✏

↵

(kRes1 k`2 + kRes2 k`2)C1✏
� , sup

|t|⌧0/✏
↵

kėrk`1 C1✏
↵(25)

and

k⌘̄, ⇠̄k`2⇥`2 C1✏
��↵.

Then there exist constants C⇤, ✏⇤ > 0 so that the following holds for ✏2 (0, ✏⇤]. If ⌘j(t),
⇠j(t) solve (23) with initial data ⌘̄j, ⇠̄j, we have
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sup
|t|⌧0/✏

↵

k⌘(t), ⇠(t)k`2⇥`2 C⇤✏
��↵.

Proof. We begin by rewriting (23) in a helpful way. For a, b2R, put

Wm(a, b) := Vm(b+ a)� Vm(b)� V 0
m
(b)a

and let

W 0
m
(a, b) := @aWm(a, b) = V 0

m
(b+ a)� V 0

m
(b).

With this (23) becomes

⌘̇j = �+1 ⇠j +Res1 and ⇠̇j =
X

m�1

��
m
W 0

m
(Gm⌘,Gmer)j +Res2 .(26)

The point of introducing Wm here is that now (26) is structurally similar to (22) with
Vm replaced by Wm. Then we hope we can recapture some of the glory of conservation
of E from above but for the error equations.

So for a solution of (26) put

H :=
1

2

X

j2Z

⇠2
j
+
X

j2Z

X

m�1

Wm(Gm⌘,Gmer)j .

This is our replacement for E . The following proposition contains the key properties
of the second term in H, chief of which that under some conditions it is equivalent to
k⌘k2

`2
.

Proposition 8. Fix ↵ > 1 with 2⇣↵+1 � ⇣↵ > 0. Then there exists C > 1 such
that the following hold when kerk`2  1/4 and k⌘k`2  1/4:

C�1
k⌘k`2 

sX

j2Z

X

m�1

Wm(Gm⌘,Gmer)j Ck⌘k`2 ,(27)

X

m�1

mkW 0
m
(Gm⌘,Gmer)k`2 Ck⌘k`2 ,(28)

X

m�1

mk@bWm(Gm⌘,Gmer)k`1 Ck⌘k2
`2
.(29)

Remark 7. Note that Wm(a,0) = Vm(a), and so if erj(t) is identically zero, then
(27) coincides exactly with the estimate in Lemma 5, with ⌘ swapped with r.

Proof. We begin with (27). Taylor’s theorem tells us that Wm(a, b) = ↵(↵+1)a2/
2(m+ b⇤)↵+2 with b⇤ in between b and b+ a. This leads to

↵(↵+ 1)

2(m+ |a|+ |b|)↵+2
a2 Wm(a, b)

↵(↵+ 1)

2(m� |a|� |b|)↵+2
a2.(30)

We have assumed k⌘k`2  1/4. Thus, the classical estimate kfk`1  kfk`2 along
with the triangle inequality tell us

|Gm⌘j | kGm⌘k`1 

m�1X

l=0

k⌘·+lk`1 =mk⌘k`1 m/4.
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5598 J. DOUGLAS WRIGHT

Similarly, kerk`2  1/4 implies |Gmerj |m/4. So we have m� |Gm⌘j |� |Gmerj |�m/2
and m+ |Gm⌘j |+ |Gmerj |� 3m/2, and thus (30) gives

2↵+1↵(↵+ 1)

3↵+2m↵+2
(Gm⌘j)

2
Wm(Gm⌘,Gmer)j 

2↵+1↵(↵+ 1)

m↵+2
(Gm⌘j)

2.

Summing this gets us to

2↵+1↵(↵+ 1)

3↵+2
P2 

X

j2Z

X

m�1

Wm(Gm⌘,Gmer)j  2↵+1↵(↵+ 1)P2,

where

P2 :=
X

j2Z

X

m�1

1

m↵+2
(Gm⌘)2

j
.

Using the definition of Gm and multiplying out the square gives

P2 =
X

j2Z

X

m�1

1

m↵+2

0

@
m�1X

l=0

⌘2
j+l

+ 2
X

0l<km�1

⌘j+l⌘j+k

1

A .

Rearranging sums and doing some computations on the “diagonal part” of the above
gets

X

j2Z

X

m�1

1

m↵+2

m�1X

l=0

⌘2
j+l

=
X

m�1

1

m↵+2

m�1X

l=0

X

j2Z

⌘2
j+l

=
X

m�1

1

m↵+2

m�1X

l=0

k⌘k2
`2
= ⇣↵+1k⌘k

2
`2
.

Therefore,

P2 � ⇣↵+1k⌘k
2
`2
= 2

X

j2Z

X

m�1

1

m↵+2

X

0l<km�1

⌘j+l⌘j+k =: P22.

Rearranging sums gives

P22 = 2
X

m�1

1

m↵+2

X

0l<km�1

X

j2Z

⌘j+l⌘j+k.

We use Cauchy–Schwarz to get

|P22| 2
X

m�1

1

m↵+2

X

0l<km�1

k⌘k2
`2
.

Since
P

0l<km�1 1 =m(m� 1)/2, we obtain

|P22| k⌘k2
`2

X

m�1

m(m� 1)

m↵+2
= (⇣↵ � ⇣↵+1)k⌘k

2
`2
.

Thus,
��P2 � ⇣↵+1k⌘k

2
`2

�� (⇣↵ � ⇣↵+1)k⌘k
2
`2

or rather

(2⇣↵+1 � ⇣↵)k⌘k
2
`2
 P2  ⇣↵k⌘k

2
`2
.

Therefore, 2⇣↵+1 � ⇣↵ > 0 implies that
p
P2 is equivalent to k⌘k`2 .
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APPROXIMATION OF CM LATTICES BY BO EQUATIONS 5599

This in combination with (27) gives

2↵+1↵(↵+ 1)

3↵+2
(2⇣↵+1 � ⇣↵)k⌘k

2
`2


X

j2Z

X

m�1

Wm(Gm⌘,Gmer)j  2↵+1↵(↵+ 1)⇣↵k⌘k
2
`2
.

That is, we have (27).
Next up is (28). The mean value theorem tell us that W 0

m
(a, b) = ↵(↵ + 1)a/

(m+ b⇤)↵+2, where b⇤ lies between b and b+ a. As above, we have kGmerk`1 m/4
and kGm⌘k`1 m/4. So b⇤ would be controlled above by m/2 for all j. Thus,

|W 0
m
(Gm⌘,Gmer)j |

2↵+2↵(↵+ 1)

m↵+2
|Gm⌘j |.

We take the `2 norm and use the triangle inequality

kW 0
m
(Gm⌘,Gmer)k`2 

2↵+2↵(↵+ 1)

m↵+2
kGm⌘k`2 

2↵+2↵(↵+ 1)

m↵+1
k⌘k`2 .

Thus,
X

m�1

mkW 0
m
(Gm⌘,Gmer)k`2  2↵+2⇣↵↵(↵+ 1)k⌘k`2 .

This is (28).
To get (29) is more of the same. We have @bWm(a, b) = �↵(↵ + 1)(↵ + 2)a2/

2(m + b⇤)↵+3 with b⇤ in between b and b + a. Much as we did above, we get the
estimate

|@bWm(Gm⌘,Gmer)j |
2↵+2↵(↵+ 1)(↵+ 2)

m↵+3
|Gm⌘j |

2.

Summing over j and the triangle inequality leads to

k@bWm(Gm⌘,Gmer)k`2 
2↵+2↵(↵+ 1)(↵+ 2)

m↵+3
kGm⌘k2

`2


2↵+2↵(↵+ 1)(↵+ 2)

m↵+1
k⌘k2

`2
.

Then
X

m�1

mk@bWm(Gm⌘,Gmer)k`2  2↵+2↵(↵+ 1)(↵+ 2)⇣↵k⌘k
2
`2

and we are done.

With Proposition 8 taken care of, we can now get into the energy argument at
the heart of the proof of Theorem 7. We begin with di↵erentiation of H to get

Ḣ=
X

j2Z

0

@⇠j ⇠̇j +
X

m�1

W 0
m
(Gm⌘,Gmer)jGm⌘̇j

1

A+
X

j2Z

X

m�1

@bWm(Gm⌘,Gmer)jGmėrj .

Call the terms on the right I and II in the obvious way. Using (26) in I gets

I =
X

j2Z

0

@⇠j

0

@
X

m�1

��
m
W 0

m
(Gm⌘,Gmer)j +Res2

1

A

+
X

m�1

W 0
m
(Gm⌘,Gmer)jGm(�+1 ⇠j +Res1)

1

A .
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5600 J. DOUGLAS WRIGHT

Summing by parts and using Gm�+1 = �+
m

gives some cancellations:

I =
X

j2Z

0

@⇠j Res2+
X

m�1

W 0
m
(Gm⌘,Gmer)jGmRes1

1

A .

Cauchy–Schwarz implies |I| k⇠k`2kRes2 k`2 + |I2|, where

I2 :=
X

m�1

X

j2Z

W 0
m
(Gm⌘,Gmer)jGmRes1 .

The dual of the operator Gm with respect to the `2-inner product is G�m, and so

I2 =
X

m�1

X

j2Z

(G�mW 0
m
(Gm⌘,Gmer)j)Res1 .

Reorder the sum again:

I2 =
X

j2Z

Res1
X

m�1

(G�mW 0
m
(Gm⌘,Gmer)j) .

Then Cauchy–Schwarz and the triangle inequality lead to

|I2| kRes1 k`2
X

m�1

kG�mW 0
m
(Gm⌘,Gmer)k`2  kRes1 k`2

X

m�1

mkW 0
m
(Gm⌘,Gmer)k`2 .

The estimate (28) from Proposition 8 gives

|I2|CkRes1 k`2k⌘k`2 .

Thus, we have

|I|C (kRes1 k`2k⌘k`2 + kRes2 k`2k⇠k`2) .

Now look at II. By using naive estimates we get

|II|
X

j2Z

X

m�1

|@bWm(Gm⌘,Gmer)j |kGmėrk`1  kėrk`1
X

m�1

mk@bWm(Gm⌘,Gmer)k`1 .

Then (29) from Proposition 8 yields

|II|Ckėrk`1k⌘k2
`2
.

So all together

ḢC (kRes1 k`2k⌘k`2 + kRes2 k`2k⇠k`2) +Ckėrk`1k⌘k2
`2
.

Using (27) we have

ḢC (kRes1 k`2 + kRes2 k`2)
p

H+Ckėrk`1H.

The assumptions made on Res1, Res2, and ėr lead to

ḢC✏�
p

H+C✏↵H.

Applying Grönwall’s inequality yields
p
H(t) eC✏

↵
t
p

H(0) +C✏��↵

⇣
eC✏

↵
t
� 1
⌘
.

Then we use (27) one last time to get

k⌘(t), ⇠(t)k`2⇥`2  eC✏
↵
t
k⌘̄, ⇠̄k`2⇥`2 +C✏��↵

⇣
eC✏

↵
t
� 1
⌘
.

Taking the supremum over |t|  ⌧0/✏↵ and using the assumption on the size of the
initial data gives the final estimate in Theorem 7.
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APPROXIMATION OF CM LATTICES BY BO EQUATIONS 5601

4. Proof of Theorem 1. The proof of Theorem 1 is more or less a direct
application of the general approximation theorem, Theorem 7. There are a few small
details to attend to, and that is what we do now.

Proof. (Theorem 1). Fix u(X, ⌧) a solution of (2) subject to the bound described
in the statement of the theorem. Let v(X, ⌧) be given as in (6) and (7). Form exj as
in (4), namely exj(t) := j + ✏↵�2v(✏(j � c↵t), ✏↵t). Then put

erj(t) :=�1 + �+1 exj(t) and epj(t) := ėxj(t).

We first compute Res1 and Res2 as in (24). We have

Res1 = �+1 ep� ėr= �+1 (ėx)� @t
�
�1 + �+1 ex

�
= 0.

For Res2, we compute

Res2 =
X

m�1

��
m
V 0
m
(Gmer)j � ėpj

=
X

m�1

��
m
V 0
m

�
�m+ �+

m
ex)
�
j
� ëxj

=�↵
X

m�1

✓
1

(exj+m � exj)↵+1
�

1

(exj � exj�m)↵+1

◆
� ëxj

=�R✏,

with R✏ as above in (5). Thus, Proposition 2 tells us that the hypothesis on the
residuals, (25), in Theorem 7 is met with � = �↵. Note that in the statement of
Theorem 1 the order of the error is e�↵ , where �↵ = �↵ � ↵.

The fundamental theorem of calculus gives

�+1 (f(✏·))j = f(✏(j + 1))� f(✏j) =

Z
✏j+✏

✏j

fX(X)dX = ✏(A✏fX)(✏j).(31)

If we use this and the relation u=�@Xv, we have

erj(t) =�✏↵�1(A✏u)(✏(j � c↵t), ✏
↵t)

=�✏↵�1u(✏(j � c↵t), ✏
↵t)� ✏↵�1((A✏ � 1)u)(✏(j � c↵t), ✏

↵t).

So (21) and the final estimate in Lemma 4 give us

sup
|t|⌧0/✏

↵

ker(t) + ✏↵�1u(✏(·� c↵t), ✏
↵t)k`2 C✏↵�1/2.(32)

The assumption on the initial conditions in Theorem 1 implies

kr(0) + ✏↵�1u(✏·,0)k`2 = kµ̄k`2 C✏�↵�↵.

It is easy enough to check that ✏↵�1/2
 ✏�↵�↵, and therefore (32) and the triangle

inequality cough up

kr(0)� er(0)k`2 C✏�↵�↵,

which is one of the hypotheses on the initial data in Theorem 7.
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Similarly, we have

epj(t) = c↵✏
↵�1u(✏(j � c↵t), ✏

↵t) + ✏2↵�2v⌧ (✏(j � c↵t), ✏
↵t).

It is straightforward to use (8) and (21) to show kv⌧ (✏(·� c↵t), ✏↵t)k`2 C✏�1/2, and
so

sup
|t|⌧0/✏

↵

kep(t)� c↵✏
↵�1u(✏(·� c↵t), ✏

↵t)k`2 C✏2↵�3/2
C✏�↵�↵.(33)

The assumption on the initial conditions in Theorem 1 tell us

kp(0)� c↵✏
↵�1u(✏·,0)k`2 = k⌫̄k`2 C✏�↵�↵.

Therefore,

kp(0)� ep(0)k`2 C✏�↵�↵,

which is the other hypothesis on the initial data in Theorem 7.
Next, since ėrj(t) = �+1 epj(t), (31) and u=�@Xv give us

ėrj(t) = c↵✏
↵(A✏uX)(✏(j � c↵t), ✏

↵t)� ✏2↵�1(A✏u⌧ )(✏(j � c↵t), ✏
↵t).

An easy estimate provides

kėr(t)k`1  c↵✏
↵
kA✏uX(·, ✏↵t)kL1 + ✏2↵�1

kA✏u⌧ (·, ✏
↵t)kL1 .

Using Sobolev, followed by the first estimate in Lemma 4,

kėr(t)k`1 C✏↵ku(·, ✏↵t)kH2 +C✏2↵�1
ku⌧ (·, ✏

↵t)kH1 .

Then we use (2) and the uniform bound on u to get

sup
|t|⌧0/✏

↵

kėr(t)k`1 C✏↵ +C✏2↵�1
C✏↵.

This gives the estimate on ėr in (25).
We have now checked o↵ all the hypotheses of Theorem 7, and thus its conclusions

hold. And so we find that

sup
|t|⌧/✏↵

kr(t)� er(t)k`2 C✏�↵�↵.

This, together with (32) and the triangle inequality, gives

sup
|t|⌧/✏↵

kr(t) + ✏↵�1u(✏(·� t), ✏↵t)k`2 C✏�↵�↵,

which is the estimate on µ(t) in Theorem 1. The estimate on ⌫(t) follows from

sup
|t|⌧/✏↵

kp(t)� ep(t)k`2 C✏�↵�↵

and (33) in the same way.
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