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ABSTRACT

The Southwestern Laurentia large igneous province (SWLLIP) comprises voluminous,
widespread ca 1.1 Ga magmatism in the southwestern United States and northern Mexico. The
timing and tempo of SWLLIP magmatism and its relationship to other late Mesoproterozoic
igneous provinces have been unclear due to difficulties in dating mafic rocks at high precision.
New precise U-Pb zircon dates for comagmatic felsic segregations within mafic rocks reveal
distinct magmatic episodes at ca. 1098 Ma (represented by massive sills in Death Valley, Cali-
fornia, the Grand Canyon, and central Arizona) and ca. 1083 Ma (represented by the Cardenas
Basalts in the Grand Canyon and a sill in the Dead Mountains, California). The ca. 1098 Ma
magmatic pulse was short-lived, lasting 0.255%7 m.y., and voluminous and widespread, evi-
denced by the >100 m sills in Death Valley, the Grand Canyon, and central Arizona, consistent
with decompression melting of an upwelling mantle plume. The ca. 1083 Ma magmatism may
have been generated by a secondary plume pulse or post-plume lithosphere extension.

The ca. 1098 Ma pulse of magmatism in southwestern Laurentia occurred ~2 m.y. prior
to an anomalous renewal of voluminous melt generation in the Midcontinent Rift of central
Laurentia that is recorded by the ca. 1096 Ma Duluth Complex layered mafic intrusions.
Rates of lateral plume spread predicted by mantle plume lubrication theory support a model
where a plume derived from the deep mantle impinged near southwestern Laurentia, then
spread to thinned Midcontinent Rift lithosphere over ~2 m.y. to elevate mantle temperatures
and generate melt. This geodynamic hypothesis reconciles the close temporal relationships
between voluminous magmatism across Laurentia and provides an explanation for that
anomalous renewal of high magmatic flux within the protracted magmatic history of the
Midcontinent Rift.

INTRODUCTION

The Southwestern Laurentia large igneous
province (SWLLIP) comprises >750,000 km?
of ca. 1.1 Ga mafic dikes, sills, and lava flows
and minor felsic rocks across the southwestern
United States and northern Mexico (Howard,
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1991; Bright et al., 2014). Thick (>100 m) sills
intrude Mesoproterozoic strata of the Pahrump
Group in the Death Valley, California, region
(Wright et al., 1967), the Unkar Group of the
Grand Canyon Supergroup (Timmons et al.,
2012), and the Apache Group of central Ari-
zona (Wrucke, 1990). A variety of radioisotope
chronometers have previously been applied to
date SWLLIP mafic rocks (see the compilation
of Bright et al., 2014), but inherent difficulties

in precise and accurate dating of ancient mafic
rocks have hindered an understanding of the
tempo of SWLLIP magmatism and its correla-
tion to other tectonic and magmatic events of
Laurentia, such as the Midcontinent Rift (MCR).
The temporal resolution achieved by mod-
ern high-precision U-Pb zircon geochronology
underpins the defining traits of large igneous
provinces (LIPs), namely punctuated (<1 m.y.)
episodes of high magmatic flux (Ernst et al.,
2021; Kasbohm et al., 2021). While paucity of
zircon in mafic rocks typically precludes U-Pb
zircon dating, caches of zircon are often hosted
in late-stage felsic differentiates (Krogh et al.,
1987) or can be obtained using novel rock-diges-
tion and mineral separation methods that con-
centrate zircon micro-inclusions (Oliveira et al.,
2022). We present new precise ages for SWL-
LIP rocks in California and Arizona obtained
from zircon crystals extracted from a basalt flow
and localized felsic segregations in mafic sills
(Fig. 1). These new ages are then used to explore
a geodynamic connection between voluminous
magmatic pulses in two Late Mesoproterozoic
(Stenian) LIPs, the SWLLIP and the MCR.

U-Pb GEOCHRONOLOGY

We measured U-Pb dates for zircon crystals
by chemical abrasion—isotope dilution—thermal
ionization mass spectrometry (CA-ID-TIMS;
Mattinson, 2005). Preparation, analytical,
and data-reduction methods and data for all
individual U-Pb analyses are provided in the
Supplemental Material'. Weighted mean ages

Supplemental Material. Full U-Pb geochronology data and additional analytical methods. Please visit https://doi.org/10.1130/GEOL.S.24844002 to access the
supplemental material; contact editing @ geosociety.org with any questions.
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Figure 1. Map of the
sampling region in the
southwest United States,
with Proterozoic geol-
ogy, known locations of
ca. 1.1 Ga mafic rocks
(adapted from Howard,
1991; Bright et al., 2014),
and locations and out-
crop photos of samples
in this study. See Table 1
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interpreted from concordant 2°°Pb/>¥U zircon
dates are reported herein and in Figure 2 with
95% confidence analytical uncertainties, and in
Table 1 with mean square of weighted deviates
(MSWD) values, additional sources of uncer-
tainty, and sample descriptions. Discordant
dates were excluded from age calculations but
have implications for interpreting previously
published, lower-precision data sets (discussed
below and in the Supplemental Material).
Felsic segregations from three diabase
sills intruding the Crystal Spring Forma-
tion in the Death Valley region gave ages of
1097.91 £ 0.29 Ma, 1098.27 £ 0.27 Ma, and
1098.09 £ 0.91 Ma (Fig. 2). A felsic segregation
in a sill in Salt River Canyon, Arizona, gave an
age of 1097.97 4+ 0.12 Ma. In the Grand Can-
yon, felsic segregations from two sills gave ages
of 1098.09 £ 0.34 Ma and 1098.16 + 0.59 Ma,
and the sampled Cardenas Basalt gave an age
of 1082.18 £ 1.25 Ma. A felsic zone within a
diabase sill in the Dead Mountains of Califor-
nia, within the Colorado River trough (Fig. 1;

MoCLL

see also fig. 4B in Howard, 1991) gave an age
of 1082.60 £ 0.30 Ma.

Both ca. 1098 Ma and ca. 1083 Ma episodes
of SWLLIP magmatism are expressed in the
Unkar Group of the Grand Canyon Supergroup.
Previously, sills in the Grand Canyon were con-
sidered coeval feeders of the Cardenas Basalt
(Timmons et al., 2012). Our new ages indicate
that sills intruding the Bass and Hakatai Forma-
tions in western Grand Canyon (Fig. 1) were
emplaced at ca. 1098 Ma, while the Cardenas
Basalt erupted at ca. 1083 Ma. The Cardenas
Basalt flows are conformable with the Dox For-
mation, making their 1082.18 + 1.25 Ma age a
new chronostratigraphic constraint for the Unkar
Group.

Discrepancies between our data and the pre-
vious 1094 + 2 Ma to 1080 £ 3 Ma ages for
SWLLIP mafic rocks established from U-Pb
dating of baddeleyite (Bright et al., 2014) dem-
onstrate the importance of high-precision data
and Pb-loss mitigation offered by zircon CA-
ID-TIMS geochronology for accurately dating

LIPs. Baddeleyite is not amenable to chemi-
cal abrasion (Rioux et al., 2010) and has been
shown to often yield anomalously young dates,
likely due to Pb loss, in studies measuring U-Pb
dates of both zircon and baddeleyite (Gaynor
et al., 2022). While closed-system U-Pb decay
is evaluated by agreement between 2°°Pb/>$U
and 27Pb/*5U dates within analytical uncertainty
(i.e., “concordance”), the apparently concordant,
low-precision baddeleyite analyses for SWLLIP
mafic rocks also encompass ca. 1098 Ma and ca.
1083 Ma discordia trajectories defined by our
more precise CA-ID-TIMS zircon data for sam-
ples K12-132L and MM2021-CAl1, respectively
(Fig. 2; Fig. S2 in the Supplemental Material).
Consequently, the range of ages reported by
Bright et al. (2014) likely stem from inaccurate
206Pp/238U dates due to unmitigated Pb loss that
is hidden by large analytical uncertainties. Con-
cordia upper-intercept regressions for baddeley-
ite data reported by Bright et al. (2014) yield
ages of 1104.6 £ 59.9 Ma, 1085.4 & 12.9 Ma,
1113.8 +43.0 Ma, and 1091.3 4+ 17.9 Ma
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Figure 2. Wetherill Con-
cordia plots of new U-Pb
zircon and previous U-Pb
baddeleyite geochronol-
ogy for Southwestern
Laurentia large igneous
province (SWLLIP) mafic
rocks (ages in Ma). Left
panels show concordant
zircon analyses (filled
ellipses) interpreted for
crystallization ages.
Open ellipses are discor-
dant analyses. Weighted
mean 2°°Pb/%8U ages for
samples are in the bottom
right of each panel with
95% confidence ana-
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Discordia trajectories for ca. 1098 Ma (pink) and ca. 1083 Ma (blue) crystallization with modern Pb-loss show how previously dated SWLLIP
mafic rocks cannot be differentiated into the ca. 1098 Ma or ca. 1083 Ma groups because the imprecise baddeleyite analyses overlap with

both Pb-loss trajectories.

(£95% confidence; Fig. S3), which are unable
to resolve whether these sills were emplaced at
ca. 1098 Ma, ca. 1083 Ma, or during another
unknown episode of magmatism in southwest-
ern Laurentia.

TIMING AND TEMPO OF THE SWLLIP
High-precision U-Pb zircon geochronology
of Stenian (1.2-1.0 Ga) mafic rocks in Califor-
nia and Arizona significantly refines the timing
of SWLLIP magmatism and its relationship to
other Laurentian tectonic and magmatic events.
The 0.75-1.5 x 10¢ km? extent of the SWLLIP
(Bright et al., 2014; Ernst et al., 2021) based on
the regional distribution of ca. 1.1 Ga mafic and
felsic rocks in southwestern Laurentia (Fig. 3)
was previously interpreted to have been emplaced
over ~20 m.y. (see the compilation of Bright
etal., 2014). Our more precise ages reveal punc-
tuated magmatic episodes at ca. 1098 Ma and ca.
1083 Ma. Published ¢y, data sets are consistent
with two distinct pulses of mafic magmatism in
the SWLLIP, as sills in Death Valley, the Grand
Canyon, and western and central Arizona have
eng Values of +3 to +5 (Hammond and Wooden,
1990) while the Cardenas Basalts have lower e,
values of +0.5 to +2 (Larson et al., 1994), as do
sills in western and central Arizona, and south-
western New Mexico (Bright et al., 2014). With
no clear spatial trends in €y, values (Hammond
and Wooden, 1990), we hypothesize that isotopic
differences reflect tapping of different mantle res-
ervoirs during temporally distinct pulses of mag-
matism. Felsic magmatism may have occurred
with each pulse of mafic magmatism, as indicated
by populations of ca. 1098 Ma ages for granitoids

in central Texas and ca. 1083 Ma ages for granit-
oids in southwestern New Mexico and northern
Mexico (Fig. 3), but existing ages for Stenian
felsic rocks in southwestern Laurentia are based
on discordant, pre—chemical abrasion U-Pb zir-
con analyses and should be reassessed by U-Pb
zircon CA-ID-TIMS dating to more robustly
establish their age and relationships to SWLLIP
mafic magmatism.

A prevailing hypothesis for the formation of
the SWLLIP is that a mantle plume pooled under
thin southwestern Laurentia lithosphere (How-
ard, 1991; Bright et al., 2014). Voluminous melt
production is evident in the SWLLIP’s initial ca.
1098 Ma pulse by numerous sills that exceed
thicknesses of 100 m in portions of Death Val-
ley (Wright et al., 1967), the Grand Canyon
(Timmons et al., 2012), and in central Arizona
(Smith and Silver, 1975), and likely more within
the extensive network of Stenian sills imaged
in the Arizona subsurface (Litak and Hauser,
1992) and associated lavas that have likely been
removed by erosion. Our data suggest that the
ca. 1098 Ma pulse was rapid, lasting 0.25755;
m.y. (median £ 95% credible interval of pair-
wise Monte Carlo resampling of ca. 1098 Ma
ages and uncertainties), and thus consistent with
voluminous, widespread, and rapidly emplaced
mafic rocks characteristic of plume-related LIPs
(see Ernst et al., 2021).

The ca. 1083 Ma episode of SWLLIP mafic
magmatism may have been generated by a
secondary pulse caused by a separation of the
plume head at the lower—upper mantle boundary
(Bercovici and Mahoney, 1994) or from regional
extension and/or delamination due to thermo-
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mechanical alteration of the lithosphere dur-
ing plume-lithosphere interaction (Black et al.,
2021). The regional extension hypothesis is con-
sistent with interflow sediments in the Cardenas
Basalts that suggest subsidence and sedimenta-
tion coeval with ca. 1083 Ma Cardenas Basalts
eruption(s), and with the bimodal nature of ca.
1086-1080 Ma magmatism throughout south-
western Laurentia (Fig. 3).

A GEODYNAMIC LINK BETWEEN
SWLLIP AND MCR MAGMATISM?

The precise U-Pb zircon CA-ID-TIMS geo-
chronology on the SWLLIP presented here
can be compared with that of the MCR (i.e.,
Keweenawan LIP) to assess hypothesized geo-
dynamic relationships between these two LIPs
(e.g., Bright et al., 2014; Swanson-Hysell et al.,
2021). Our new ages reveal that ca. 1098 Ma
SWLLIP magmatism was coeval with pro-
tracted MCR magmatism in central Laurentia,
overlapping with the beginning of the MCR’s
“main magmatic stage” (Vervoort et a., 2007),
but a ca. 1083 Ma SWLLIP episode postdated
known MCR magmatism. While mechanisms
for the initiation of the MCR are debated (cf.
Nicholson and Shirey, 1990; Stein et al., 2015),
magmatism within the rift basin occurred from
ca. 1109 Ma to ca. 1084 Ma (Swanson-Hysell
et al., 2019) with intervals of high melt vol-
umes requiring mantle temperatures in excess
of ambient Mesoproterozoic mantle (Hutchin-
son et al., 1990; Gunawardana et al., 2022)
and geochemical signatures consistent with the
influence of an enriched mantle source (Nich-
olson and Shirey, 1990; Shirey, 1997).



TABLE 1. SAMPLE METADATA AND SUMMARY OF U-Pb ZIRCON CA-ID-TIMS GEOCHRONOLOGY FOR STENIAN MAFIC ROCKS
IN THE SOUTHWESTERN LAURENTIA LARGE IGNEOUS PROVINCE, SOUTHWESTERN UNITED STATES

Sample Location

Latitude
(°N)

Description

Longitude
(W)

206Pb/238U age* MSWDt  n/NS$

(Ma)

F2020-5 Panamint Mountains, CA

CS-4 Panamint Mountains, CA

CS-7 Ibex Range, SE CA

MM2021-CA1 Dead Mountains, SE CA

MM21-R52-CB3Z Grand Canyon rm. 52, N AZ

MS17-107-01 Grand Canyon, rm. 107, N AZ

K12-132L

Grand Canyon, rm. 132, N AZ

JT19-AA-01 Salt River Canyon, central AZ

~20-cm-wide felsic segregation hosted in

5-cm-thick medium-grained felsic dike

~5-cm-thick coarse-grained felsic dike that

Felsic zone within subophitic interior of

Pegmatoidal interior of a 57-m-thick

20-cm-wide granophyre pod near the

20-cm-wide granophyre segregation within

~10-cm-wide portion of a subplanar

35.96230
the coarse-grained interior of diabase

sill intruding near the contact of the

argillite and cherty dolomite members

of the Pahrump Group Crystal Spring

Formation in Warm Spring Canyon of

the Panamint Mountains

35.96244
that is layer parallel to the strike of the

host diabase sill 77 m from the base

of the 101-m-thick sill. The sill intrudes

the stromatolite member of the Crystal

Spring Formation in Warm Spring

Canyon of the Panamint Mountains at

a stratigraphically higher position than

the sill of sample F2020-5.

35.81503
cuts obliquely through an ~100-m-thick

sill of coarse-grained diabase intruding

the argillite member of the Crystal

Springs Formation in the central Ibex

Range.

35.08636
an ~80-m-thick diabase sill that is part

of a suite of parallel, steeply dipping,
northeast-striking sheets intruding ca.

1.4 Ga granite in the Dead Mountains

(see also fig. 4B in Howard, 1991).

36.28344
Cardenas basalt lava flow at Nankoweap

Canyon, Grand Canyon river mile 52.

Zircon grains were extracted employing

the bulk phenocryst dissolution methods

of Oliveira et al. (2022), which yielded

zircon microlites (<50 pm; Figure S1

in the Supplemental Material [see text

footnote 1]).

36.23335
margin of a sill intruding the Bass

Formation and Hakatai shale at Bass

Canyon, Grand Canyon river mile 107.

36.35093
an ~50-m-thick sill intruding the Bass

Formation and Hakatai shale at Grand

Canyon river mile 132.

33.80767
vertical felsic dike within a subhorizonal

diabase sill in Salt River Canyon that

intrudes the Apache Group.

116.90123

116.88572

116.38968

114.75425

111.89260

112.33145

112.45621

110.47423

109791 + 0.29 (0.42) [1.17]  0.79 8/8

1098.27 + 0.27 (0.41) [1.16] 0.35 9/9

1098.09 + 0.91 (0.96) [1.45] 1.58 4/5

1082.60 + 0.30 (0.43) [1.16] 1.53 8/16

1082.18 + 1.25 (1.29) [1.68]  0.09 4/8

1098.16 + 0.59 (0.66) [1.28] 0.67 47

1098.09 + 0.34 (0.46) [1.18] 1.53 9/16

109797 + 0.12 (0.32) [1.14] 154 13/13

Note: CA—California; AZ—Arizona; SE—southeast; N—northern; rm.—river mile.

*Weighted mean ages are calculated from n concordant grains guided by Thompson’s Tau rejection criteria. Reported errors on weighted means are +x, +(y), and
=+[z], where x is the internal error at 95% confidence (Including a Student’s-T multiplier) based solely on analytical uncertainties, y additionally incorporates tracer
calibration uncertainty, and z additionally incorporates the 2**U decay constant uncertainty, all propagated in quadrature.

TMSWD—mean square of weighted deviates.

Sn—number of grains used in weighted mean age calculation; N—total number of grains analyzed.

A persistent question regarding the history of
the MCR is: what caused renewal of voluminous
magmatism at ca. 1096 Ma that produced the
massive Duluth Complex layered mafic intru-
sion (one of the largest mafic intrusive com-
plexes on Earth) and comagmatic lavas after a
period of relative magmatic dormancy (Vervoort
et al., 2007), and after Laurentia had drifted
>3000 km since the rift’s initiation (Swanson-
Hysell etal., 2019, 2021)? Swanson-Hysell et al.
(2021) suggested that distal plumes could have
been funneled to the thinned lithosphere under
the MCR via “upside-down drainage” (termi-
nology of Sleep, 1997); however, the previous
chronology of the SWLLIP was too imprecise
to test this hypothesis.

The voluminous, punctuated, initial pulse
of magmatism in southwestern Laurentia, con-

strained by ages between 1098.27 £ 0.27 Ma
and 1097.91 % 0.29 Ma, occurred ~2 m.y. prior
to the 1096.19 & 0.19 Mato 1095.69 + 0.18 Ma
emplacement of the Duluth Complex (Swanson-
Hysell et al., 2021), and buoyant plume heads
can spread ~2000 km during impingement with
the lithosphere (Campbell and Griffiths, 1990).
Interactions of buoyant plumes with continental
lithosphere may be complex (Duvernay et al.,
2022), but time-dependent spreading veloci-
ties can be estimated by plume lubrication the-
ory (Sleep, 1997). Figure 3C shows analytical
results from the model of Sleep (1997) that pre-
dict radial spreading velocities for impinging
mantle plumes derived from the core-mantle
boundary (CMB) and from the mantle transition
zone (MTZ), with upper-mantle plume head
diameters of 1000 km and 300 km, respectively

(Campbell and Griffiths, 1990). The solutions
show dramatically decreasing lateral velocity
with time due to diminishing buoyancy from
flattening and thinning during spreading of
a plume head (e.g., Griffiths and Campbell,
1991), but demonstrate that a 1000-km-diam-
eter plume could spread ~1600 km (~2100 km
total radius) in 2 m.y., consistent with the loca-
tion of the Duluth Complex relative to the SWL-
LIP and the time lag in magmatism revealed by
the precise geochronology. The slower spread-
ing velocities associated with a smaller plume
head (<550 km over 2 m.y.) could not reason-
ably advect plume material from the SWLLIP
to the MCR over ~2 m.y. Laurentia’s ~30 cm/
yr drift during this time (Swanson-Hysell et al.,
2019) would have displaced the MCR ~600 km
eastward during 2 m.y. of plume spreading;
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by Cenozoic extension.
(C) Analytical solutions
predicting spreading of
plume heads with initial
diameters of 1000 km
(sourced from the core-
mantle boundary [CMB])
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and 300 km (sourced from
the mantle transition zone

however, this movement is only significant
relative to the rates of plume spreading after
~0.8 m.y., when a spreading plume under this
scenario would have already been channelized
into the MCR (e.g., Sleep 1997).

CONCLUSIONS

New ages for SWLLIP mafic rocks estab-
lished by CA-ID-TIMS U-Pb zircon dating of
comagmatic felsic segregations refine the timing
of the SWLLIP and resolve temporally distinct
ca. 1098 Ma and ca. 1083 Ma magmatic episodes.
Geochronology of the ca. 1098 Ma primary mag-
matism of the SWLLIP and the ca. 1096 Ma pulse
of magmatism in the MCR is consistent with pre-
dicted lateral plume spreading rates beneath conti-
nental lithosphere. We present a plume-spreading
relationship between SWLLIP and MCR magma-
tism as a hypothesis to be tested by future geo-
chronological studies integrated with geochemical
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data and advanced geodynamic modeling. Our
study reinforces how high-precision U-Pb zircon
geochronology lays a foundation for defining and
correlating ancient magmatic episodes and yields
the temporal resolution needed to test complex
interactions between plume magmatism and con-
tinental lithosphere.
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