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Abstract. The multiple-diffusion domain (MDD) model em-
pirically describes the diffusive behavior of noble gases in
some terrestrial materials and has been commonly used to
interpret “°Ar/3°Ar stepwise degassing observations in K-
feldspar. When applied in this manner, the MDD model can
be used to test crustal exhumation scenarios by identifying
the permissible thermal paths a rock sample could have un-
dergone over geologic time, assuming the diffusive prop-
erties of Ar within the mineral are accurately understood.
More generally, the MDD model provides a framework for
quantifying the temperature-dependent diffusivity of noble
gases in minerals. However, constraining MDD parameters
that successfully predict the results of step-heating diffusion
experiments is a complex task, and the assumptions made
by existing numerical methods used to quantify model pa-
rameters can bias the absolute temperatures permitted by
thermal modeling. For example, the most commonly used
method assumes that no domains lose more than 60 % of
their gas during early heating steps (Lovera et al., 1997).
This assumption is unverifiable, and we show that the Lovera
et al. (1997) procedure may bias predicted temperatures to-
wards lower values when it is violated. To address this po-
tential bias and to provide greater accessibility to the MDD
model, we present a new open-source method for constrain-
ing MDD parameters from stepwise degassing experimen-
tal results, called the “MDD Tool Kit” (https://github.com/
dgorinl/mddtoolkit, last access: 11 October 2024). This soft-
ware optimizes all MDD parameters simultaneously and re-
moves any need for user-defined E, or regression fitting
choices used by other tools. In doing so, this new method
eliminates assumptions about the domain size distribution.

To test the validity of our thermal predictions, we then use
the MDD Tool Kit (https://github.com/dgorin1/mddtoolkit)
to interpret “*Ar/3°Ar results from the Grayback Fault, AZ,
USA. Although the resulting thermal histories are consis-
tently ~ 60-75 °C higher than those found in previous stud-
ies, they agree with independent observations from apatite
fission track, zircon fission track, and (U—Th)/He.

1 Introduction

40Ar/3Ar thermochronology is a valuable tool for study-
ing Earth’s crustal exhumation because it constrains a min-
eral’s continuous thermal history through geologic time (Mc-
Dougall and Harrison, 1999). While “°Ar/3° Ar geochronol-
ogy was initially developed to quantify crystallization tim-
ing of rapidly cooled igneous rocks (Turner, 1968), its ap-
plication to thermochronology did not begin in earnest until
Dodson’s (1973) quantitative description of closure theory,
which allowed one to determine when a mineral cooled be-
low a mineral-specific “closure temperature” for radiogenic
40Ar retention (Reiners, 2005). During this early period of
thermochronology research, minerals and isotopic systems
with disparate closure temperatures were combined to con-
strain a given rock’s permissible thermal histories (e.g., Wag-
ner, 1977). While this approach yielded valuable insight into
Earth’s surface processes (McDougall and Harrison, 1999),
it requires multiple mineral phases — which are not always
present — to coexist in a sample. Further, the thermal histo-
ries inferred from this technique are discontinuous, with one
age—temperature measurement for each mineral phase, thus
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limiting the ability to quantify cooling rates at specific times
(McDougall and Harrison, 1999) and potentially introduc-
ing biases. Additionally, this approach does not fully accom-
modate the complexity of the diffusive properties observed
in some minerals (Zeitler, 1987; McDougall and Harrison,
1999).

Since the late 1960s, it had been understood that com-
plex retention properties pose challenges for interpreting the
thermal histories of some samples. More specifically, the re-
sults of some stepwise degassing experiments were not con-
sistent with volume diffusion from a single domain in some
minerals, requiring a new interpretative framework (Zeitler,
1987; Lovera et al., 1989). Progress came first with Zeitler’s
(1987) observations in K-feldspar that the anomalous be-
havior seen in **Ar/3°Ar age spectra and associated Ar-
rhenius plots could be explained by outward diffusion of
3 Ar from several “domains” (distinct, non-interacting ge-
ometries in which volume diffusion takes place) of vary-
ing sizes simultaneously. A formalism for this model, called
the multiple-diffusion domain (MDD) model, was then de-
scribed by Lovera et al. (1989). This model enabled more
nuanced interpretations of sample-specific diffusion kinetics
— and thereby thermal histories — of minerals.

While this model has received criticism (e.g., Villa, 1994;
Parsons et al., 1999; Popov and Spikings, 2020; Popov
et al., 2020a, b; Spikings and Popov, 2021), it has largely
been adopted by the thermochronology community since the
2000s due to its ability to constrain time—temperature (—7")
histories that are consistent with both an observed *°Ar/3 Ar
age spectrum and calculated diffusion kinetics of a given
sample (Reiners, 2005; Harrison and Lovera, 2014). How-
ever, we show that the method used by Lovera et al. (1997)
to tune the MDD model parameters to match the results of
a step-heating diffusion experiment potentially introduces a
systematic bias towards colder temperatures through geo-
logic time. This was recognized, but not addressed, at the
time of their publication, likely due to insufficient comput-
ing power to resolve the issue (Lovera et al., 1997).

2 The MDD model

The MDD model is best understood through analogy to vol-
ume diffusion through a single domain. In this simple case,
the temperature-dependent diffusivity is described by

D(T) Dy -k

5 :a—z.gﬁ, (])

a

where T is the absolute temperature (K), D is diffusivity at
T (cm?s™ 1), Dy is diffusivity at infinite T, E, is activation
energy (kJ mol~1), R is the gas constant (kJ mol~!' K~ 1), and
a is the radius of the diffusion domain (cm) (see Table 1 for
variable definitions).

This relationship is typically determined empirically for
noble gas diffusion in minerals through a stepwise degassing
diffusion experiment. In such experiments, the diffusant is
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first produced in situ by a proton or neutron irradiation to en-
sure a homogeneous initial distribution. The sample is then
placed under static vacuum where it is repeatedly heated to a
known temperature, and the quantity of the diffusant is mea-
sured (Fechtig and Kalbitzer, 1966; McDougall and Harri-
son, 1999). By assuming a geometry for the diffusion do-
main, the fractional loss at each step can be used to cal-
culate a corresponding C% with the equations of Fechtig
and Kalbitzer (1966) or Crank (1975). Ginster and Reiners
(2018) summarized and propagated measurement uncertain-
ties through these equations, and we use their forms in this
work (Table 2).

When consistent with volume diffusion through a single
diffusion domain, a step-heating experiment will produce a
linear Arrhenius relationship between calculated values of
log(a%) and % In these cases, a linear regression can then be

fit to the results to determine E, and % (Lovera et al., 1997)
0

for a sample. Several mineral—diffusant pairs such as 3He
in apatite and >He in olivine exhibit such behavior (Shuster
et al., 2004).

However, not all minerals exhibit diffusive behavior con-
sistent with volume diffusion from a single diffusion domain.
The diffusive behavior of some minerals appears to be more
consistent with diffusion from several non-interacting do-
mains of varying sizes, within a given mineral, diffusing si-
multaneously. This behavior was later identified and roughly
quantified by Gillespie et al. (1982) and Zeitler (1987) in K-
feldspar, orthoclase, and microcline and then formalized by
Lovera et al. (1989).

In contrast to the single-diffusion domain model, the MDD
model can be imagined as a series of non-interacting diffu-
sion domains of varying diffusive length scale (e.g., different
radii, a) that all diffuse simultaneously. The choice of ge-
ometry for the domains is somewhat arbitrary, as it remains
unclear what these diffusion domains physically represent in
a mineral sample (Harrison and Lovera, 2014; Parsons et al.,
1999). Some authors use a plane sheet, while others prefer a
spherical or cylindrical geometry. Regardless of this choice,
it is assumed that each diffusion domain has the same geom-
etry, E,, and Dg. Therefore, a diffusion domain can be de-
scribed completely by three parameters: (i) E; (common to
all domains), (ii) its pre-exponential term (%)i, and (iii) the
proportion of the total gas it contains (¢). Thus, a multiple-
diffusion domain model with n domains has 2n — 1 free pa-
rameters because Y ;_;¢, = .

An inherent challenge in applying this model is that each
of these 2n — 1 parameters need to be optimized to accurately
predict the results of a given diffusion experiment. Because
authors using the MDD model fit as many as 10 domains,
this optimization is regularly performed on 19-dimensional
vectors or larger, making the exercise nontrivial.
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Variable Description Units
MDD model

D Diffusivity em? !
Dg Diffusivity at infinite temperature cm?s~!
E, Activation energy kJ mol~!
R Gas constant kImol—1 K~!
T Absolute temperature K

a Radius of diffusion domain cm

b; Proportion of total gas contained in domain i -
Lovera et al. (1997) optimization method

n Number of domains in an MDD model -

q Goodness-of-fit probability used by Lovera et al. (1997) -
Xiovera Misfit statistic used by Lovera et al. (1997) -

(a—z)i Observed pre-exponential term for heating step i s1
(a%)i Modeled pre-exponential term for heating step i g1

o Observed pre-exponential uncertainty (1 SD) for heating step i g1

N Number of heating steps included in optimization -

ap Grain size of reference domain (Lovera et al., 1997) cm
MDD Tool Kit

X2 Misfit statistic used in MDD Tool Kit defined in Eq. (4) -

Pofrac Misfit statistic used in MDD Tool Kit defined in Eq. (5) -

M; Measured 32 Ar released at heating step i mol

M; Modeled 39 Ar released at heating step i mol
Mot Measured total 39 Ar released during experiment mol
Mot Modeled total 39 Ar released during experiment mol

F; Measured fraction of My released at heating step i -

F; Modeled fraction of Mo released at heating step i -
Differential evolution

X Vector of MDD model parameters -

X’ Offspring vector of X -

g Generic misfit function -

Xbest Vector in population with lowest value of g(X;) -

Xy Random vector selected from population -

B Value between 0.5 and 1.0 used to scale the difference between two X values —

U; Intermediate vector defined in Eq. (6) -
Thermal paths

nge Misfit statistic used to determine best-fitting thermal path defined in Eq. (7) -
(AgeMeasured)i  Measured 40Ar/39Ar Ma
(AgeModeled)i  Modeled *0Ar/3% Ar Ma
(OAgereasurea )i Observed age uncertainty (1 SD) for heating step i Ma

2.1 Critiques of the MDD model

Validating the MDD model’s assumptions is beyond this pa-
per’s scope; here we briefly review the assumptions and their
prior critiques. The foundational assumption of the MDD
model is that the transport of “°Ar within minerals over ge-
ologic time occurs primarily by volume diffusion. This as-
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sumption predicts that low *°Ar concentrations should exist
near the outer edge of a crystal (i.e., for a boundary condi-
tion of nearly zero *°Ar concentration external to the crys-
tal) and that higher concentrations should exist towards the
mineral interior, translating to apparently younger and older
40Ar/39 Ar ages in those locations, respectively. Studies have
documented such spatial correlations (Flude et al., 2014).

Geochronology, 6, 521-540, 2024
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Table 2. Equations used by the MDD Tool Kit (https://github.com/dgorin1/mddtoolkit) to calculate f, the fractional loss from each domain
during each heating step in a stepwise degassing experiment (Crank, 1975; Ginster and Reiners, 2018).

Geometry Equation Validity
. f=1 %Z?o n% exp ( = ‘;ZD’) All f values
Sphere (radius a) Fal- % exp (_,ZZZD,) 085< f <1
f%% 2D _ 3 0<f<0.85

T

. f=1- %Z?om exp[—(2n + 1)2712%] All f values
Plane sheet (half-width a) fal- % exp (ﬂ42u]2t 045< f <1
f%% o 0< f<0.60

However, others have shown that polyphasic samples can vi-
olate this expectation (Popov and Spikings, 2020); such min-
erals are not suitable candidates for MDD modeling.

It is also assumed that diffusive behavior observed dur-
ing laboratory step-heating experiments is the same as under
natural conditions over geologic time. The MDD model pro-
poses that the diffusive behavior of Ar within some minerals
can be described by numerous non-interacting, infinite sheets
simultaneously diffusing within the same mineral. As evi-
dence, Lovera et al. (2002) argued that a correlation between
the “OAr/3°Ar age spectra and log(r/ro) plots (see Lovera
et al., 2002, for a description of log(r/rg) plots) validates,
or is at least consistent with, these assumptions. They find,
however, that only ~40 % of K-feldspars demonstrate suf-
ficient correlation for MDD modeling and suggest that the
remaining samples have been affected by recrystallization or
other mineral inclusions (Lovera et al., 1997). Other authors
have gone further, asserting that recrystallization within min-
erals is nearly always responsible for this behavior (Popov
and Spikings, 2020; Popov et al., 2020a, b; Spikings and
Popov, 2021). While complex mineralogy is likely respon-
sible in some cases, detailed petrologic examinations and a
strong correlation between an *°Ar/3° Ar age spectrum and a
log(r/rp) plot can increase confidence that the MDD model
framework is applicable to an individual sample. Indeed,
such petrologic investigations are commonplace in MDD
studies of K-feldspars (e.g., Wong et al., 2023).

Others have questioned the primary assumption that Ar
diffusion under laboratory conditions functions the same way
as natural diffusion over geologic time by suggesting that
mineral structures may be altered during diffusion experi-
ments. Popov et al. (2020a) observed the development of
cracks within crystals during some experiments. However,
Lovera et al. (1993) performed a double-irradiation experi-
ment where they measured the diffusion kinetics of a grain
up to ~ 850 °C, re-irradiated, it and then successfully repro-
duced the diffusion kinetics of the first experiment, indicating
that cracking or other annealing effects were not a primary
cause of MDD behavior in that sample. The Lovera et al.
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(1993) study also indicated that the diffusion kinetics of the
mineral were not altered by heating during the diffusion ex-
periment.

Some further MDD model assumptions are made which
require knowledge of the physical structure of the domains.
For example, it is assumed that Ar is instantaneously re-
moved from the mineral after reaching a domain boundary,
that diffusion in each domain is isotropic, that the domains
are all formed at the same time, and that the parent isotope,
40K s uniformly distributed within each domain (Parsons
et al., 1999; Lovera et al., 1989). Because it is unclear what
the diffusion domains physically represent within a min-
eral, these assumptions are currently unverifiable. Although
it is unsatisfying that a physical representation of the diffu-
sion domains is not clearly identifiable within K-feldspar and
other minerals, the MDD model need not be rejected as a tool
for thermochronology. Indeed, ample evidence suggests that
the MDD model reliably predicts thermal histories supported
by independent thermochronological data (e.g., Warnock and
Zeitler, 1998; Reiners and Farley, 1999; Axen et al., 2000;
Spell et al., 2000; Kirby et al., 2002; Reiners et al., 2004;
Shirvell et al., 2009). Though empirical, the MDD model re-
mains a useful tool for constraining such histories through
geologic time.

3 Existing optimization methods

The Lovera et al. (1997) method for identifying MDD model
parameters is the only published algorithm for this purpose
that we are aware of and has been used in many studies (e.g.,
Harrison et al., 1995; Quidelleur et al., 1997; Grove et al.,
2003; Weirich et al., 2012; Wong et al., 2023). The routine
begins by defining a reference domain which is used to cal-
culate an Ej, by fitting an uncertainty-weighted linear regres-
sion to the loglo(a%) values resulting from a subset of the
low-temperature heating steps in an Arrhenius plot corrected
for excess Ar released from fluid inclusions (Harrison et al.,
1994); the resultant E, is assumed to be applicable to all do-
mains. This is done because — even in samples exhibiting
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MDD-like behavior — these diffusivities tend to approximate
a line (Fig. 1a).

To determine the number of points to include in
the uncertainty-weighted linear regression, the lowest-
temperature heating steps are sequentially added to the re-
gression. After adding each step, a chi-square misfit static
is calculated and is then used to calculate a goodness-of-fit
probability (g) (Lovera et al., 1997). These relationships are
described as follows:

. 2
N [ log,o(3): —log o(2)i
5 10,2)i 1002)i
Xlovera = Z . P . > (2
i=l1 !
= gamm N-2 X2 3)
q _g q 2 ’ 2 )

where gammgq is the incomplete gamma function, (a%)i is

the observed pre-exponential term, (c%)i is the modeled pre-
exponential term, o is the uncertainty in the observed pre-
exponential term, and N is the number of steps included
(Lovera et al., 1997; Press, 2007). This calculation is re-
peated until the value of ¢ - N is maximized. Once the E,
is determined from the above process, this value is held fixed
while a Levenberg—Marquardt method (Press, 2007) is used
to adjust the gas fraction (¢) and loglo(%) for each domain
to minimize the above chi-square quantity. The reader is di-
rected to Appendix B of Lovera et al. (1997) and the refer-
enced sections of Press (2007) for additional information.
While this routine is generally robust and capable of ac-
curately quantifying E, in synthetic data experiments where
the kinetics are defined, it fails to do so when the smallest
domains lose greater than 60 % of their gas in early heating
steps (Fig. 1). Thus, use of this routine makes the implicit
assumption that no domains diffuse most of their gas during
the initial heating steps. When this assumption is violated,

the regression will overestimate E, and loglo(%) (Fig. 1).
0
Because there is currently no way to know the domain size

distribution a priori, it is not possible to know whether this as-
sumption is valid for any given sample (Lovera et al., 1997).

Furthermore, Lovera et al. (1997) found evidence that the
variability of predicted E, values from different aliquots of
the same mineral decreased when they were able to use a
higher percentage of the total gas released in their linear re-
gressions. Simply put, the more gas included in the calcu-
lation, the less variation in predicted E,. This observation
suggests that a routine which maximizes the fraction of 3°Ar
used in the fitting exercise might lead to more precise esti-
mates of diffusion kinetics.

4 The MDD Tool Kit approach
With the increased computational power since the publica-

tion of the original routine for optimizing these models, we
apply SciPy’s implementation of the differential evolution al-

https://doi.org/10.5194/gchron-6-521-2024

gorithm to fit all the diffusion kinetics parameters simultane-
ously (Storn and Price, 1997; Lampinen, 2002; Qiang and
Mitchell, 2014; Virtanen et al., 2020). This algorithm is a
population-based genetic algorithm for optimizing over con-
tinuous search spaces in high dimensions with nonlinear and
non-differentiable misfit functions (Storn and Price, 1997).

4.1 Differential evolution

Our implementation of SciPy’s differential evolution is a
method for iteratively improving a randomly selected “pop-
ulation” of guesses until the best-fitting diffusion kinetics
are found (Fig. 2). The algorithm improves these guesses
by combining elements of the most successful vectors with
those remaining. In this case, success refers to the value
of a misfit statistic calculated between the guess’s forward-
modeled gas releases and the observed results. Through this
process, each successive generation achieves a misfit equal
to or lower than the previous one.

We apply two such misfit statistics to the data analyzed
in this study: one error-weighted, X2, and another where all
points are weighted equally (%frac). Our x 2 misfit accounts
for the uncertainty in the ° Ar measurements by performing
its calculations in units of moles so that the measurement
uncertainty can readily be included. This is accomplished by
multiplying the forward-modeled gas fractions (F;) by the to-
tal number of moles released during the experiment. Because
this value is not directly measured, we add it as a parame-
ter to our model (J\;Itot) and allow our optimization algorithm
to solve for it when using this misfit statistic. We allow the
model to choose any A;Imt value within 30 of the observed
value. Our x 2 misfit statistic is thereby defined as follows:

N A A 2
M; — FiM
2 i 1 tHtot
X E ( o ) “)

i=1

By contrast, %, weights all heating steps equally, regard-
less of their associated measurement uncertainty. This misfit
reports a percent difference between the measured and mod-
eled gas fraction released at each step and is defined as fol-
lows:

N

Fi—F;
%Frac = Z l F. ' , (5)
i=1 !

where F; is the measured gas fraction at a given heating step,
and F; is the modeled gas fraction at a given heating step.
Regardless of which misfit statistic is used, differential
evolution optimizes the parameters in the same way and
begins by generating its initial population. Given a vec-
tor of parameters to be tuned for an n-domain model,

tion of candidate vectors is quasi-randomly generated using
the Latin hypercube method (Iman et al., 1981). These vec-
tors ideally capture the full range of the sample space. To
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Figure 1. (a) Arrhenius plot resulting from synthetic Experiment A. Gray circles show the expected an values calculated from the pre-
determined diffusion kinetics (Table 4), and transparent gray circles show the heating steps excluded from the fitting exercise. Black circles
represent the values predicted by the MDD Tool Kit (https://github.com/dgorin1/mddtoolkit) method. (b) Same as (a) except showing the
expected an values calculated from the pre-determined diffusion kinetics for Experiment B. (¢) Value of g - N as the number of points
included in the uncertainty-weighted linear regression increases for Experiment A. The Lovera et al. (1997) algorithm for determining E,
maximizes the value of this function to determine the appropriate number of points to include. The black dot indicates this value. (d) The
predicted E, as one increases the number of points included in the unweighted linear regression. The black point indicates the E, selected
by the Lovera et al. (1997) algorithm for Experiment A. In this case, the algorithm selects the correct E,. (e) Same as panel (c) but showing
the results for synthetic Experiment B. (f) Same as panel (d) but for synthetic Experiment B. In this case, the Lovera et al. (1997) algorithm

underestimates the correct Ej,.

Table 3. Parameter search ranges used in this publication. These
values can be adjusted in the open-access code.

Parameter Search range

Mot (mol) (Miot — 30, Miot +30)

Eqa (K mol™1) (50, 500)
in(2%) s (—5.50)
¢ (normalized units) (0, 1)

avoid user bias, we prescribe search ranges much larger than
we imagine to be realistic for each variable based on prior
work (Table 3; Lovera et al., 1997).

From here, the improvement process is iterative. To begin,
a target vector, X ;, which is to be potentially improved, is se-
lected. Next, a multi-step process attempts to replace X; with
an improved offspring vector, X}, as defined by the misfit
function, g. First, the best-fit vector, Xpeg (i.€., lowest value

Geochronology, 6, 521-540, 2024

of g(X;)), in the current population is copied and modified
by adding a scaled value of the difference between two other
randomly selected vectors in the population (X, and X, ) as
follows:
Ui = Xpest + B(Xr, — Xpy). (6)

Here, g is a uniformly random value between 0.5 and 1.0.
Next, U; is combined with Xpeg to produce the offspring
vector X}. This combination is performed by, for each el-
ement of U;, sampling a uniform distribution on [0,1) and
replacing the element of X; with the corresponding element
of U; if the value is less than 0.7, the default recombination
constant (see Storn and Price, 1997; Virtanen et al., 2020). In
this roundabout way, the trial vector’s generation is informed
by the existing population.

At this point, X; has been generated, and if g(X ;) <
g(X;), X; is replaced with X’ in the population. Once the
above improvement steps have been performed for every vec-

https://doi.org/10.5194/gchron-6-521-2024
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Figure 2. (a) Results of an MDD Tool Kit (https://github.com/dgorin1/mddtoolkit) optimization applied to Wong et al. (2023) sample GR-27
demonstrating the iterative nature of the improvement using the %q;,c misfit statistic shown in Arrhenius space. (b) Same as (a), but shown
in the space where the optimization is performed — the fractional release at each heating step. Red circles show the optimization halted after 8
iterations (%fac = 15.06), blue circles show the same optimization halted after 28 iterations (%5 = 8.33), and black circles show the same
optimization results after complete convergence after 18 419 iterations (%fyc = 1.82). The number of iterations is independently determined
by the differential evolution algorithm using the convergence criteria outlined by Virtanen et al. (2020). The gray circles show the observed

results.

Table 4. Setup and results of synthetic diffusion experiment optimizations. Experiments A and B are the same except that a domain with
ln(%)l has been added to Experiment B. To redistribute the gas, 1 % was removed from all other domains such that ¢; = 0.01.

Experiment A

Optimization results A Experiment B

Optimization results B

Mot (x10712) 521
Ey () 200.2
1n(%)1 19.45
In(22), 16.18
In(=2)3 13.93
ln(%)4 8.89
In(:2%)s 8.09
In(22)6 7.51
In(22), 6.98
By
ln(aT)S -
é1 0.025
53 0.097
#3 0.082
b4 0.226
b5 0.127
b6 0.273
7 0.170
o -

5.21 5.21 5.21
200.0 200.2 200.3
19.42 23.8 23.81
16.14 19.45 19.46
13.90 16.18 16.19

8.88 13.93 13.94

8.18 8.89 8.89

7.58 8.09 8.04

7.02 7.51 7.49

- 6.98 6.97
0.025 0.01 0.01
0.097 0.025 0.025
0.082 0.096 0.096
0.214 0.082 0.082
0.109 0.224 0.233
0.252 0.125 0.129
0.220 0.270 0.266

- 0.168 0.160

tor in the population, we advance a generation, and popula-
tion metrics are calculated. Based on the results of these met-
rics, either another generation is calculated or the algorithm
returns the best-fit vector from the population.

5 Synthetic data experiments

Synthetic step-heating diffusion experiments allow for the
validation of optimization methods like those described
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above. For a given set of diffusion kinetics parameters, one
can calculate the expected number of moles released at each
step, and these release fractions can then be used as an in-
put to the optimization algorithm to search for the known
diffusion kinetics parameters. If the correct parameters are
returned, the optimization algorithm is validated. To eval-
uate the ability of our differential evolution routine (Storn
and Price, 1997) in comparison to existing methods (Lovera,
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1992; Lovera et al., 1997), we present the results of two such
synthetic data experiments (Fig. 1).

5.1 Synthetic data methods

In calculating the number of moles released for each step of
a given heating schedule, two assumptions were made. First,
E, was assumed to be common to all domains (Lovera et al.,
1997). Second, we required the ln(%)i values of all domains
to differ by at least 0.25 natural log units. For the purposes of
this experiment, any two domains with ln(%)i values differ-
ing by less than 0.25 were considered to be well represented
by a model with one fewer domain.

To guide our choices for the synthetic heating schedule and
prescribed diffusion kinetics parameters, we used existing
literature on K-feldspar diffusion experiments (e.g., Lovera
et al., 1997). We begin by defining Experiment A where the
heating schedule and M, were selected from the Lovera
et al. (1997) N13 K-feldspar experiment because this exper-
iment has been published many times (e.g., Lovera et al.,
1997; Harrison and Lovera, 2014; Reiners et al., 2017) and
because it represents a typical K-feldspar diffusion experi-
ment. E, was prescribed by randomly sampling from a Gaus-
sian distribution with a mean of 192.5kJ mol~! and & of 25,
mirroring the Lovera et al. (1997) database of K-feldspar E,
values. The ln(%) i values were selected uniformly randomly
from a range of 5-25 natural log units. Finally, the ¢; values
were prescribed randomly, requiring only that the sum of the
gas fractions equal 1. The largest of these ¢; values were in-
tentionally placed in the largest domains, reflecting common
K-feldspar behavior.

Experiment B was then designed to intentionally violate
the assumption made by the Lovera et al. (1997) fitting algo-
rithm that no domain should significantly degas during early
heating steps. This was done by taking the kinetics from Ex-
periment A, removing 1 % of the total gas from each domain,
and then placing this gas in a new highly diffusive domain
with 1n(§)1 =23.4, and ¢; = 0.01.

To calculate the fractional releases and number of moles
released after each heating step, we began with the equa-
tions for plane sheet geometry outlined in Ginster and Rein-
ers (2018), which relate each heating step’s duration and
temperature as well as the domain’s ln(%)i to a fractional
release from that domain ((Fgom);). To determine the to-
tal gas fraction released for a sample from each heating
step (F;), and not just for a specific domain ((Fgom)i), wWe
summed the contributions from each domain as follows:
F;, = Z?: 1(Fdom)i¢;. In finding the number of moles re-
leased at each step, we calculated M; = F; - My, where
M, is the total number of atoms measured in the Lovera
et al. (1997) N13 K-feldspar experiment. To approximate
uncertainties, we simply multiplied the percent error in the
40Ar/39 Ar age from each step of the N13 experiment by M;.

Using these synthetic degassing datasets, we attempted to
solve for the prescribed diffusion kinetics of both experi-
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ments using our MDD Tool Kit (https://github.com/dgorinl/
mddtoolkit) optimization method (Lovera et al., 1997). Be-
cause K-feldspar is known to melt above 1100°C (Luo
et al., 2014), we excluded all calculated heating steps above
1100 °C in our misfit calculations.

5.2 Synthetic data results and discussion

The MDD Tool Kit (https://github.com/dgorin1/mddtoolkit)
method successfully quantified the diffusion kinetics of Ex-
periments A and B, returning the correct E, to within
0.02kJmol~! (Table 4, Fig. 1). While the MDD Tool Kit
routine did not perform as well in capturing ¢¢—_g this is
unsurprising since a higher percentage of the gas in those
domains was released during the high-temperature steps ex-
cluded from the fitting exercise.

The Lovera et al. (1997) algorithm correctly quantified the
E, of Experiment A, but it underestimated that of Experi-
ment B by 9% (Table 4). While we did not implement a
Levenberg—Marquardt method (Press, 2007) to solve for each
ln(%)i and ¢; value, these parameters could not be correct
given the incorrectly predicted E,.

Our synthetic experiment results clearly demonstrate that
the Lovera et al. (1997) algorithm can underestimate E,
(Fig. 1). Any sample that contains at least one domain which
loses a significant portion of its gas during initial heating
steps is prone to this bias. Importantly, this error is not bidi-
rectional; the Lovera algorithm will systematically underes-
timate Ej,. In contrast, because the optimized E, does not
depend on a linear regression but instead fits E, as a free
parameter, the MDD Tool Kit method appears to avoid this
bias. This finding suggests that the use of the MDD Tool Kit
to reanalyze any MDD model thermochronology study based
on the Lovera approach would either produce similar results
or systematically higher temperatures through geologic time.

6 Case study: Wong et al. (2023) field validation of
the MDD model

To assess the accuracy of the MDD model, Wong et al.
(2023) conducted a field validation study of K-feldspar
40Ar/39 Ar thermochronology at the Grayback normal fault
block, AZ, USA. This field site is well studied, and sev-
eral independent thermochronometers have been used there
to measure geothermal gradients for application to models of
continental extension (Howard and Foster, 1996; Wong et al.,
2015).

The field validation primarily relies on four samples from
various stratigraphic positions within the Tea Cup pluton,
which intruded into the overlying ~1.4Ga Ruin Gran-
ite at ~70Ma (Banks et al.,, 1972). Samples originally
from ~ 12 km below the paleo-surface are accessible since
these formations were tilted ~90° to the east during mid-
Oligocene extension of the Grayback Fault (Banks et al.,
1972; Wong et al.,, 2023). The straightforward stratigra-
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phy and availability of independent thermochronometry data
make this location optimal for the validation study.

Wong et al. (2023) found good agreement between their
best-fitting “°Ar/3? Ar t—T results and existing estimates of
the paleo-geothermal gradient prior to mid-Oligocene exten-
sion (Howard and Foster, 1996; Wong et al., 2015, 2023).
A secondary assessment was provided by fission track and
(U—-Th)/He ages in zircon and apatite. Although the ob-
served ages generally do not directly overlap in time with the
K-feldspar MDD histories, the results do not preclude one
another. In total, their study appears to validate the MDD
model. To determine whether the MDD Tool Kit (https:
//github.com/dgorin1/mddtoolkit) method of fitting diffusion
kinetics is consistent with these independent observations,
we reanalyze their “°Ar/3 Ar stepwise degassing data using
our new method.

6.1 Methods
6.1.1 Diffusion kinetics

In determining the diffusion kinetics of each sample, Wong
et al. (2023) used a modified version of the Lovera et al.
(1997) fitting algorithm. Their primary modification was to
fit an unweighted linear regression to the beginning heating
steps from each sample to determine E, and In & Instead

of using the goodness-of-fit metric of Lovera et al (1997),
Wong et al. (2023) varied how many heating steps they in-
cluded in the regression and explored the resultant effect of
E, on the constrained r—T path. They then chose the resul-
tant E; which most closely agreed with independent ther-
mochronological data, noting that the choice of E, mainly af-
fected the absolute temperature predictions and not the form
of a r—T history. Although this was a routine choice given
the tools available at the time of their publication, such user-
defined choices may introduce bias, a concern that the MDD
Tool Kit (https://github.com/dgorin1/mddtoolkit) inherently
circumvents.

In our application of the MDD Tool Kit (https://github.
com/dgorin1/mddtoolkit) to Wong et al. (2023) diffusion ex-
periment results, we apply both the x2 and %fy,c misfit statis-
tics defined above. As previously described, heating steps
greater than 1100°C were excluded from our misfit calcu-
lations.

6.1.2 Thermal paths

When applying K-feldspar MDD modeling, a number of
thermal histories are generated using a Monte Carlo approach
to predict an **Ar/3° Ar age spectrum for each prescribed 7—
T path and using the sample’s apparent diffusion kinetics. A
misfit is then calculated between the modeled and measured
40Ar/3° Ar age spectra to determine the fitness of a particular
t-T path.

https://doi.org/10.5194/gchron-6-521-2024

In our study, we generated 30 000 thermal paths per sam-
ple and calculated radiogenic *°Ar production and diffusive
loss for each r—T path using a Crank—Nicolson discretiza-
tion of the diffusion equation for an infinite sheet geometry
(Crank, 1975). We then focus our analysis on the 100 best-
fitting +—T paths for each sample based on the following mis-
fit statistic:

X/ige _ 1 Z ((AgeMeasured)l (AgeModeled)l ) , @)
i=1 (GAgeMedsured)

where N is the number of steps included in the thermal mod-
eling, and o is the reported uncertainty in the final “°Ar/3 Ar
age. As is common practice, Wong et al. (2023) ignored
measurements thought to be contaminated with excess “CAr
(40ArE; Lovera et al., 2002); for comparison with their re-
sults, we exclude the same data.

6.2 Results

Our predicted E, values (Tables 5-7, Fig. 3), regardless of
misfit statistic, are systematically higher than those found by
Wong et al. (2023) and are at the upper range of those pub-
lished in the Lovera et al. (1997) database of K-feldspar dif-
fusion experiments (Fig. 1). Given the bias inherent to the
regression fitting method (Fig. 1), it is not surprising that our
predicted E, values are systematically higher, since the val-
ues of E, were optimized using the entire dataset, rather than
prescribed by linear regression to a subset of user-defined
heating steps tuned to agree with independent thermochrono-
logical data. And, although we defined a large search space
for E,, we find a smaller inter-sample range in predicted
E, than published by Wong et al. (2023), consistent with
the Lovera et al. (1997) observation that the variation of K-
feldspar E, values decreases when more gas is included in
the E, calculation (Tables 5-7; Fig. 3).

Despite this finding, the choice of misfit statistic appears
to influence the calculated diffusion kinetics of a given sam-
ple. In our analysis, choosing a x2 misfit instead of the %ac
misfit statistic led to intra-sample differences in the predicted
E, between 4.4-22.4kJ mol~! (Tables 8 and 5, respectively).
For example, there is a 22.4kJ mol~! difference between the
best-fit E, value for sample GR-2 when using the x? mis-
fit compared to the %, misfit (Table 6). This disparity may
provide an estimate of the uncertainty in the E,, with the true
E, lying anywhere between those values. We recommend
that investigators using the MDD Tool Kit consider model
fits generated by both the X2 and the %, misfit statistics as
equally plausible, given the lack of justification for choosing
one over the other.

An additional noteworthy model behavior emerged dur-
ing our analysis. In three cases, the MDD Tool Kit (https:
//github.com/dgorin1/mddtoolkit) identified at least one re-
tentive domain that exhibited no gas diffusion throughout
the simulated experiment, as indicated in Tables 4—7. The
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Table 5. Results from sample GR-1.

Sample GR-1 diffusion kinetics

Wong et al. (2023) results

%2 (this work) Yofrac (this work)

Eq (K
In( 3)1
In(2%),
ln(i5 0
ln( )4
ln(

In( 5’ )6
ln( 7)7
ln( 7)8

187.1 233.7 211.3
14.63 22.8 23.1
12.57 20.5 19.3
10.75 18.3 17.0

7.85 16.3 14.8

7.76 14.50 12.8

6.05 12.1 10.1

3.77 10.2 8.2

1.14 44 1.9
0.049 0.022 0.001
0.088 0.044 0.026
0.094 0.073 0.056
0.111 0.080 0.090
0.096 0.058 0.085
0.127 0.145 0.148
0.101 0.187 0.196
0.033 0.391 0.398

Table 6. Results from sample GR-2.

Sample GR-2 diffusion kinetics

Wong et al. (2023) results

%2 (this work)  %frac (this work)

Ea(mol)
ln( ol
ln( )2
In(29 )3
In(=2)4
In(= )5
In( 3)6
In( 0)6
ln(i5 0
ln( )9
?1
(053
@3
¢4
?s
b6
@7
o
b9

182.0 233.8 221.2
17.36 25.7 232
15.43 23.0 20.5
13.65 21.2 18.9
11.76 19.4 17.7
8.49 17.4 16.0
8.46 15.5 14.2
6.53 12.2 11.0
4.44 10.2 9.1
1.79 59 49
0.036 0.009 0.011
0.092 0.022 0.045
0.096 0.066 0.052
0.074 0.081 0.067
0.05 0.074 0.072
0.119 0.064 0.069
0.145 0.134 0.121
0.076 0.157 0.154
0.312 0.393 0.410

total ¢ value(s) of these domains typically equaled the gas
quantity contained in the heating steps above 1100 °C. While
the result that no gas diffused from the most retentive do-
main (or domains) during the simulated experiment may ap-
pear to suggest a poor model choice, this is not necessarily
the case. Since K-feldspar begins to melt above 1100 °C, the
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MDD model is simply not applicable above this temperature.
Furthermore, any domain retaining all its gas during simula-
tion will yield identical release fractions, thereby making the
model’s fit insensitive to retentivities above a specific thresh-
old (assuming all other parameters remain constant). Given
our deliberate inclusion of a wide search space for each diffu-
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Table 7. Results from sample GR-27.

Sample GR-27 diffusion kinetics

Wong et al. (2023) results )(2 (this work)  %ofpqc (this work)

Eq ()
In( 3)1
In(20),
ln(ﬁ 0
111( )4
In(20 )5
In( S )6
111( )6
ln( )8
91

[0%)

@3

04

@5

o6

@7

(o]

159.5 231.9 211.3
11.2 26.3 23.3
9.9 212 18.2
7.5 19.4 16.7
52 17.4 15.0
5.0 14.6 12.6
2.9 12.0 10.1
2.0 9.9 8.1
—0.1 6.1 4.3
0.124 0.015 0.013
0.064 0.092 0.098
0.109 0.077 0.070
0.117 0.053 0.050
0.102 0.114 0.103
0.104 0.130 0.121
0.112 0.171 0.168
0.268 0.348 0.377

Table 8. Results from sample GR-8.

Sample GR-8 diffusion kinetics

Wong et al. (2023) results xz (this work) ~ ogrqc (this work)

Ea(mol)
ln( ol
ln( )2
In(29 )3
In(=2)4
In(= )5
In( 3)6
In( 0)6
ln(i5 0
ln( )9
?1
(053
@3
¢4
?s
b6
@7
o
b9

182.0 224.8 229.2
14.9 242 25.0
13.5 21.1 219
11.9 19.3 19.8
10.2 17.5 17.8

7.5 15.6 15.9
7.5 13.7 13.6
5.5 11.4 11.8
4.3 9.0 10.0
2.7 —4.1 7.5

0.053 0.009 0.008

0.152 0.048 0.050

0.111 0.125 0.136

0.080 0.109 0.106

0.075 0.082 0.085

0.074 0.058 0.062

0.143 0.118 0.081

0.061 0.260 0.107

0.252 0.191 0.365

sion parameter and the stochastic nature of our optimization

algorithm, such behavior is to be expected.
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6.3 Reinterpretation of field calibration

Although our reinterpretation of these data largely finds —T
paths of similar form to those of Wong et al. (2023), our ab-
solute temperature predictions are about ~ 60-75 °C higher
(Fig. 4). To demonstrate that our approach yields results that
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GR-1

GR-2

8

10
104T (K1)

Figure 3. Arrhenius plots showing our reanalysis of Wong et al.
(2023) samples with both the Xz and g, misfit statistics. Red
lines represent the diffusion kinetics of each individual domain, and
their thicknesses are proportional to the domain’s ¢ value. Gray cir-
cles show the experimental results, and black dots show the MDD
model predictions. All E, values are given in kJ mol 1.

are equally permissible, we compare them to the independent
t—T constraints that exist at the Grayback Fault.

Wong et al. (2023) proposed three criteria to assess the
validity of an MDD model: (i) the thermal histories should
be consistent with the stratigraphic heights of the samples;
(ii) the form of the predictions should match prior work, in-
cluding the timing, rate, and duration of cooling events; and
(iii) the absolute temperatures should agree with those pre-
dicted by previous estimates of the pre-extensional geother-
mal gradient (Howard and Foster, 1996; Wong et al., 2015).
The constrained t—T paths shown in Wong et al. (2023) and
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Figure 4. Resulting best-fit thermal pathways and 40Ar-39Ar age
spectra from our reanalysis of the Wong et al. (2023) field valida-
tion of the MDD method in K-feldspar. Blue shaded regions in the
thermal history plots correspond to the x2 misfit statistic. The or-
ange shaded regions correspond to the %jg,c misfit statistic. More
specifically, the shaded regions represent a 1o deviation from the
median of the top 100 best-fitting thermal paths for a given sample
(plotted in bold). The dotted line and gray regions represent Wong
et al. (2023) predictions for the same samples. The 40Ar/39 Ar age
spectrum plots show the predicted 40Ar/39Ar ages for the median
%2 (blue) and Yofrac (orange) thermal paths. Gray boxes represent
the measured values from Wong et al. (2023). Heating steps ex-
cluded from the modeling exercise are made transparent.

our reanalysis of the same dataset using the MDD Tool Kit
(https://github.com/dgorin1/mddtoolkit) both meet these cri-
teria (Fig. 4).
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The predicted r—T paths for all four samples generally
align with their respective stratigraphic positions; samples
from higher stratigraphic heights reflect the oldest portions
of the thermal histories (Fig. 4). Our findings reveal that
the sample situated at the highest stratigraphic level (GR-1)
cooled below its Ar closure temperature around ~ 55 Ma, in-
dicating relatively rapid cooling between ~ 70-55 Ma. This
trend is consistent with the Howard and Foster (1996) inter-
pretation that the most shallow depths of the pluton experi-
enced rapid cooling as it equilibrated with ambient tempera-
tures.

MDD results for the next sample (GR-2), slightly deeper
than GR-1, suggest a gradual cooling rate of approximately
~5°CMa~! between ~55-30 Ma, consistent with the pre-
diction of ~4-6°CMa~! by Howard and Foster (1996).

The two samples at the lowest stratigraphic levels, GR-27
and GR-8, exhibit similar temperature histories. The median
pathway for GR-27 calculated with the x? misfit indicates
slightly higher temperatures compared to GR-8, despite the
latter occupying a slightly lower stratigraphic depth. How-
ever, given that their thermal pathways are within 1o of each
other, it suggests that this technique may not be capable of re-
solving subtle differences between these samples. Moreover,
the presence of significant Arg (Lovera et al., 2002) in sam-
ple GR-8 introduces additional uncertainty into its Paleogene
thermal history. Despite the presence of Arg (Lovera et al.,
2002), both of these deep stratigraphic samples demonstrate
rapid cooling commencing at around ~ 27-28 Ma, consistent
with the predicted timing of this cooling based on apatite fis-
sion track (AFT) ages (Howard and Foster, 1996).

Finally, all four of our newly calculated MDD models
predict similar absolute temperatures to those estimated for
the paleo-geothermal gradient along the Tea Cup pluton
prior to onset of extension along the Grayback Fault. The
paleo-gradient has been estimated from temperature predic-
tions made at 27 Ma at a variety of paleodepths using AFT
(Howard and Foster, 1996). While our estimates are consis-
tently warmer than those calculated by Wong et al. (2023),
they are still within the uncertainty bounds of the predicted
thermal gradient (Fig. 5). The overall agreement between
the rates and timing of cooling, as well as the relationship
between relative temperatures over time and the samples’
stratigraphic order, indicates that the MDD Tool Kit (https:
//github.com/dgorin1/mddtoolkit) generates r—7 results that
are not excluded by the existing geologic and independent
thermochronology data.

7 Conclusions

The multiple-diffusion domain model for “°Ar/3°Ar ther-
mochronology is valuable because it allows one to constrain
a mineral’s continuous thermal history through geologic time
(McDougall and Harrison, 1999). However, the methods pre-
viously used to empirically fit stepwise degassing data re-
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Figure 5. Predicted paleotemperatures at 27 Ma from samples GR-
2, GR-27, and GR-8. The gray symbols represent Wong et al. (2023)
results, the orange symbols represent our results from the %g;,c mis-
fit statistic, and the blue symbols represent our results from the X2
misfit statistic.

quired unverifiable assumptions about the grain size distri-
bution of a sample. Further, the commonly used method of
quantifying E, by fitting an uncertainty-weighted linear re-
gression to the lowest-temperature degassing steps of an ex-
periment does not reliably return the correct values but in-
stead inadvertently introduces a user bias. When this method
fails to predict the correct value, it underestimates the true
value. To address these limitations, we present a new numer-
ical routine that does not require fitting a linear regression
to a user-defined subset of heating steps to quantify a sam-
ple’s E,. Our new method utilizes a differential evolution
algorithm to robustly search the MDD parameter space and
solve for all parameters simultaneously. The code, entitled
MDD Tool Kit (https://github.com/dgorinl/mddtoolkit), is
open-source, pip-installable, and available on GitHub (https:
//github.com/dgorin1l/mddtoolkit). To evaluate its validity,
we apply this new method to reinterpret the dataset published
in the Wong et al. (2023) field validation of the *°Ar/3 Ar K-
feldspar MDD system at the Grayback Fault. The diffusion
kinetics fit by the MDD Tool Kit (https://github.com/dgorinl/
mddtoolkit) predict T paths that are consistent with inde-
pendent observations and geologic constraints and, on aver-
age, 60-75 °C warmer than those previously published. We
attribute this temperature difference to biases potentially in-
troduced by the previously used modeling strategies.

Appendix A: Supplemental tables
For completeness, we include the optimization inputs used to

reanalyze the experiments performed by Wong et al. (2023)
(Tables A1-A4).
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Table A1. Sample GR-1 input (Wong et al., 2023).

Step Temperature ~ Duration  3?Arreleased Measurement uncertainty Included in diffusion
number °O) (hours) (mol) (mol; 1o)  kinetics optimization? (1: yes, 0: no)
0 500 0.250 2.54E-16 8.40E-19 1
1 500 0.417 1.95E-16 7.58E-19 1
2 550 0.250 4.44E-16 1.22E-18 1
3 550 0.333 3.50E-16 1.05E-18 1
4 550 0.500 3.58E-16 8.48E-19 1
5 600 0.250 7.40E-16 1.29E-18 1
6 600 0.333 1.89E-16 7.23E-19 0
7 600 0.500 8.21E-16 1.57E-18 1
8 650 0.250 1.37E-15 1.87E-18 1
9 650 0.333 1.19E-15 1.59E-18 1
10 650 0.500 1.18E-15 1.43E-18 1
11 700 0.250 1.77E-15 2.23E-18 1
12 700 0.333 1.54E-15 1.75E-18 1
13 750 0.250 2.68E-15 2.59E-18 1
14 750 0.333 2.06E-15 2.29E-18 1
15 800 0.250 3.24E-15 2.84E-18 1
16 800 0.333 2.37E-15 2.58E-18 1
17 850 0.250 3.19E-15 2.79E-18 1
18 850 0.333 2.34E-15 2.40E-18 1
19 900 0.250 2.99E-15 3.27E-18 1
20 900 0.333 2.27E-15 2.22E-18 1
21 950 0.250 2.76E-15 2.62E-18 |
22 950 0.333 2.17E-15 2.14E-18 1
23 1000 0.250 2.86E-15 2.47E-18 1
24 1000 0.333 2.34E-15 2.47E-18 1
25 1050 0.250 3.34E-15 3.08E-18 1
26 1050 0.333 2.51E-15 2.30E-18 1
27 1100 0.250 4.76E-15 3.70E-18 1
28 1100 0.500 4.01E-15 3.26E-18 1
29 1100 1.000 4.41E-15 2.98E-18 1
30 1100 2.000 4.54E-15 3.74E-18 1
31 1100 3.333 3.73E-15 7.08E-18 1
32 1180 0.233 2.29E-14 8.27E-18 0
33 1200 0.233 1.41E-14 7.50E-18 0
34 1215 0.233 4.24E-15 3.30E-18 0
35 1230 0.233 1.07E-15 1.46E-18 0
36 1260 0.233 1.44E-16 6.39E-19 0
37 1310 0.233 4.61E-17 4.30E-19 0
38 1370 0.233 2.87E-17 3.34E-19 0
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Table A2. Sample GR-2 input (Wong et al., 2023).

Step Temperature ~ Duration  3°Arreleased Measurement uncertainty Included in diffusion
number °O) (hours) (mol) (mol; 1o)  kinetics optimization? (1: yes, 0: no)

500 0.250 6.43E-16 1.22E-18 1
1 500 0.417 4.82E-16 1.09E-18 1
2 550 0.250 1.11E-15 1.62E-18 1
3 550 0.333 8.51E-16 1.41E-18 1
4 550 0.500 8.55E-16 1.47E-18 1
5 600 0.250 1.79E-15 2.02E-18 1
6 600 0.333 1.51E-15 1.79E-18 1
7 600 0.500 1.62E-15 2.12E-18 1
8 650 0.250 2.94E-15 2.47E-18 1
9 650 0.333 2.59E-15 2.83E-18 1
10 650 0.500 2.54E-15 2.81E-18 1
11 700 0.250 3.58E-15 2.98E-18 1
12 700 0.333 2.80E-15 2.49E-18 1
13 750 0.250 4.49E-15 3.20E-18 1
14 750 0.333 3.17E-15 2.08E-18 1
15 800 0.250 4.10E-15 2.59E-18 1
16 800 0.333 2.83E-15 2.30E-18 1
17 850 0.250 3.57E-15 3.04E-18 1
18 850 0.333 2.54E-15 2.42E-18 1
19 900 0.250 3.09E-15 2.67E-18 1
20 900 0.333 2.30E-15 2.23E-18 1
21 950 0.250 2.77E-15 2.38E-18 1
22 950 0.333 2.15E-15 2.61E-18 1
23 1000 0.250 2.99E-15 2.92E-18 1
24 1000 0.333 2.57E-15 2.73E-18 1
25 1050 0.250 3.82E-15 3.57E-18 1
26 1050 0.333 3.15E-15 3.13E-18 1
27 1100 0.250 4.97E-15 3.45E-18 1
28 1100 0.500 4.89E-15 3.55E-18 1
29 1100 1.000 5.39E-15 3.80E-18 1
30 1100 2.000 5.82E-15 3.99E-18 1
31 1100 3.333 5.15E-15 3.53E-18 1
32 1180 0.233 1.36E-14 5.42E-18 0
33 1200 0.233 1.95E-14 6.50E-18 0
34 1215 0.233 1.32E-14 5.65E-18 0
35 1230 0.233 4.09E-15 3.01E-18 0
36 1260 0.233 5.86E-16 1.14E-18 0
37 1310 0.233 1.16E-16 5.24E-19 0
38 1370 0.233 3.83E-17 2.94E-19 0
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Table A3. Sample GR-8 input (Wong et al., 2023).

Step Temperature ~ Duration  3°Arreleased Measurement uncertainty Included in diffusion
number °O) (hours) (mol) (mol; 1o)  kinetics optimization? (1: yes, 0: no)
0 500 0.250 8.31E-16 1.64E-18 1
1 500 0.417 6.20E-16 1.28E-18 1
2 550 0.250 1.45E-15 1.90E-18 1
3 550 0.333 1.11E-15 1.64E-18 1
4 550 0.500 1.15E-15 1.51E-18 1
5 600 0.250 2.39E-15 2.21E-18 1
6 600 0.333 2.15E-15 2.20E-18 1
7 600 0.500 2.30E-15 2.62E-18 1
8 650 0.250 4.23E-15 3.29E-18 1
9 650 0.333 3.66E-15 3.21E-18 1
10 650 0.500 3.81E-15 3.02E-18 1
11 700 0.250 5.43E-15 3.41E-18 1
12 700 0.333 4.46E-15 3.56E-18 1
13 750 0.250 6.65E-15 2.86E-18 1
14 750 0.333 4.52E-15 4.01E-18 1
15 800 0.250 5.59E-15 3.13E-18 1
16 800 0.333 3.76E-15 2.88E-18 1
17 850 0.250 4.29E-15 2.93E-18 1
18 850 0.333 3.13E-15 2.72E-18 1
19 900 0.250 3.82E-15 3.08E-18 1
20 900 0.333 2.68E-15 3.01E-18 1
21 950 0.250 3.35E-15 2.68E-18 1
22 950 0.333 2.71E-15 2.66E-18 1
23 1000 0.250 3.54E-15 3.49E-18 1
24 1000 0.333 2.96E-15 2.67E-18 1
25 1050 0.250 4.02E-15 3.14E-18 1
26 1050 0.333 3.29E-15 2.90E-18 1
27 1100 0.250 4.75E-15 3.75E-18 1
28 1100 0.500 5.01E-15 2.75E-18 1
29 1100 1.000 5.95E-15 3.19E-18 1
30 1100 2.000 7.04E-15 3.86E-18 1
31 1100 3.333 6.73E-15 3.29E-18 1
32 1170 0.233 1.25E-14 5.57E-18 0
33 1185 0.233 1.20E-14 6.19E-18 0
34 1200 0.233 7.56E-15 4.37E-18 0
35 1215 0.233 2.91E-15 2.59E-18 0
36 1235 0.233 6.00E-16 1.31E-18 0
37 1280 0.233 6.11E-17 3.71E-19 0
38 1370 0.233 2.11E-17 2.49E-19 0
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Table A4. Sample GR-27 input (Wong et al., 2023).

Step Temperature ~ Duration  3°Arreleased Measurement uncertainty Included in diffusion
number °O) (hours) (mol) (mol; 1o)  kinetics optimization? (1: yes, 0: no)
0 500 0.250 1.23E-15 2.19E-18 1
1 500 0.417 8.07E-16 1.55E-18 1
2 550 0.250 1.66E-15 2.25E-18 1
3 550 0.333 1.07E-15 1.56E-18 1
4 550 0.500 9.55E-16 1.46E-18 1
5 600 0.250 1.72E-15 1.91E-18 1
6 600 0.333 1.41E-15 1.92E-18 1
7 600 0.500 1.87E-15 1.86E-18 1
8 650 0.250 4.23E-15 3.52E-18 1
9 650 0.333 3.69E-15 2.82E-18 1
10 650 0.500 3.65E-15 3.31E-18 1
11 700 0.250 4.40E-15 3.73E-18 1
12 700 0.333 3.60E-15 2.76E-18 1
13 750 0.250 4.62E-15 3.53E-18 1
14 750 0.333 3.32E-15 2.79E-18 1
15 800 0.250 4.02E-15 3.26E-18 1
16 800 0.333 2.94E-15 2.38E-18 1
17 850 0.250 3.85E-15 2.81E-18 1
18 850 0.333 2.96E-15 2.35E-18 1
19 900 0.250 4.62E-15 3.34E-18 1
20 900 0.333 3.71E-15 2.78E-18 1
21 950 0.250 5.26E-15 3.46E-18 1
22 950 0.333 3.82E-15 4.29E-18 1
23 1000 0.250 4.68E-15 2.43E-18 1
24 1000 0.333 3.41E-15 2.96E-18 1
25 1050 0.250 4.61E-15 3.73E-18 1
26 1050 0.333 3.78E-15 3.05E-18 1
27 1100 0.250 6.47E-15 4.04E-18 1
28 1100 0.500 5.98E-15 3.31E-18 1
29 1100 1.000 6.76E-15 3.86E-18 1
30 1100 2.000 7.55E-15 4.27E-18 1
31 1100 3.333 6.95E-15 4.17E-18 1
32 1170 0.233 2.40E-14 9.26E-18 0
33 1185 0.233 1.78E-14 6.38E-18 0
34 1200 0.233 8.52E-15 5.10E-18 0
35 1215 0.233 2.82E-15 2.87E-18 0
36 1235 0.233 5.46E-16 1.04E-18 0
37 1280 0.233 4.93E-17 4.16E-19 0
38 1370 0.233 1.88E-17 2.55E-19 0
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