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Abstract 24 

1. While the quantity, quality, and variety of movement data has increased, methods that 25 

jointly allow for population- and species-level movement parameters to be estimated are 26 

still needed. We present a formal data integration approach to combine individual-level 27 

movement and population-level distribution data. We show how formal data integration 28 

can be used to improve precision of individual and population level movement 29 

parameters and allow additional population level metrics (e.g., connectivity) to be 30 

formally quantified.   31 

2.  We describe three components needed for an Integrated Movement Model (IMM): a 32 

model for individual movement, a model for among-individual heterogeneity, and a 33 

model to quantify changes in species distribution. We outline a general IMM framework 34 

and develop and apply a specific stochastic differential equation model to a case study of 35 

telemetry and species distribution data for golden eagles in western North American 36 

during spring migration. 37 

3. We estimate eagle movements during spring migration from data collected between 2011 38 

and 2019. Individual heterogeneity in migration behavior was modeled for two sub-39 

populations, individuals that make significant northward migrations and those that 40 

remained in the southern Rocky Mountain region through the summer. As is the case 41 

with most tracking studies, the sample population of individual telemetered birds is not 42 

representative of the population, and underrepresents the proportion of long-distance 43 

migrants in. The IMM was able to provide a more biological accurate subpopulation 44 
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structure by jointly estimating the structure using the species distribution data. In 45 

addition, the integrated approach a) improves accuracy of other estimated movement 46 

parameters, b) allows us to estimate the proportion of migratory and non-migratory birds 47 

in a given location and time, and c) estimate future spatio-temporal distributions of birds 48 

given a wintering location, which provide estimates of seasonal connectivity and 49 

migratory routes.  50 

4. We demonstrate how IMMs can be successfully used to address the challenge of 51 

estimating accurate population level movement parameters. Our approach can be 52 

generalized to a broad range of available movement models and data types, allowing us 53 

to significantly improve our knowledge of migration ecology across taxonomic groups, 54 

and address population and continental level information needs for conservation and 55 

management.  56 

Keywords: movement model, species distribution data, telemetry data, integrated data model, 57 

connectivity, migration, golden eagle 58 

1 Introduction 59 

Our ability to address the effects of climate and land-use change on biodiversity and 60 

ecosystem health depends on our ability to predict how animal populations respond to changes in 61 

environmental conditions (Urban et al. 2016). To date, most forecasts of potential shifts in 62 

distributions are based on static patterns of habitat associations. However, an often ignored, yet 63 

critical, component for predicting these responses is the robust quantification of animal 64 

movement patterns (Nathan 2008; Flack et al. 2022).  65 
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The introduction of the global positioning system (GPS) in the early 1990’s began to 66 

revolutionize our ability to track wildlife. Tracking technology now allows us to collect large 67 

quantities of information about an individual with increasing precision and frequency for 68 

extended periods of time. This exponential increase in the availability of tracking data has 69 

coincided with an equally important advance in the statistical methods available for analyzing 70 

these data. These new methods have ranged in their focus, from estimating the true movement 71 

path given coarse data with measurement error (Buderman et al. 2015; Johnson et al. 2008a, 72 

2008b; Jonsen, Flemming, and Myers 2005), to the size and location of the home-range of an 73 

individual (Fleming et al. 2015; Nilsen et al. 2008; Worton 1989) (e.g., MCP, KDE), and the 74 

preferential use of target resources on the landscape (Avgar et al. 2016; Manly, McDonald, and 75 

Thomas 2004; Thurfjell, Ciuti, and Boyce 2014) (RSF, SSF). Similarly, there is a growing 76 

interest in estimating underlying, or latent, behavioral states based on movement quantities 77 

related to locations of an individual through time, typically referred to in the movement literature 78 

as hidden Markov-models (McClintock et al. 2012). These advances in data collection and 79 

analysis have increased our understanding of the ecology and evolution of migratory behavior 80 

(Mueller et al. 2013; Gu et al. 2021), conservation of at risk species and populations (Liang et al. 81 

2023), connectivity of migratory populations (Alheit and Bakun 2009; Kot et al. 2022), optimal 82 

habitats to prioritize for conservation (Yi et al. 2022), movement of pathogens (Takekawa et al. 83 

2023), and ways in which species respond to climate change (Youngflesh et al. 2021; Horton et 84 

al. 2023).  85 

Despite the amazing progress in the field of movement ecology, there still are significant 86 

challenges to continuing to advance our ability to better quantify movement. Movement behavior 87 

is a multi-scale, adaptive response that is influenced by both biotic interactions and abiotic 88 
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environmental factors (Nathan et al., 2008). Quantifying movement is especially complex for 89 

migratory species, due to variation among multiple subpopulations within the species range, each 90 

of which makes unique movements that span continental and global scales. As a result, 91 

individual tracking data still have fundamental limitations when the goal is to understand 92 

movement behavior across the entire distributional range of a species (e.g., continental). 93 

Individual tracking data are typically limited to relatively small sample sizes of tagged 94 

individuals and are almost always collected on a non-representative spatial subset of animals, 95 

relative to the entire range of the given species. Unfortunately, the cost and effort required to tag 96 

a balanced and representative sample of the variation in animal movement decisions is 97 

unattainable for all but a handful of range-restricted or non-migratory species. Thus, while 98 

tracking data provides critical fine-scale insights into movement behavior of individuals, they are 99 

not collected in ways that make inference about the movement and dynamics among multiple 100 

subpopulations feasible, simple, or straightforward. The consequence of these challenges is that 101 

continent- or region-wide insights regarding animal movement patterns are lacking for most at-102 

risk species, and rarely are formally integrated into conservation planning. Overall, advances in 103 

this field are thus limited by our current inability to quantify and scale individual variation in 104 

movement behavior to population levels.  105 

One potential solution to address the challenge of scaling from individuals to population 106 

level movements is to simultaneously quantify the global distribution of a species in space and 107 

time, as well as the variation in movement behavior across individuals and subpopulations. The 108 

relationship between individual behavior and population patterns has long fascinated ecologists 109 

(i.e., Turchin 1997; Wilson, Hanks, and Johnson 2018). For decades, mathematicians and 110 

biologists have considered scaling up individual movement models to population level models. 111 
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Early work on this includes the work of Turchin (1998), with more recent work including that of 112 

Wilson et al., (2018) and Potts and Borger (2023). In general, these approaches do not jointly 113 

model both individual and species distribution data, which are often derived from occurrence 114 

data. Instead, they are either solely mathematical exercises (i.e., Turchin 1997) meant to motivate 115 

population level models, often taking the form of differential equations – or – studies of 116 

individual tracking data (i.e., Wilson et al., 2018) with the additional goal to scale results from a 117 

study of individual data up to an understanding of the resulting long-term patterns that would 118 

arise from species distributions. Hierarchical modeling approaches have also tried to link 119 

population-level processes and individual behavior (Scharf and Buderman 2020). However, 120 

inference is still limited to descriptions of the average behavior of the population of sampled 121 

individuals with transmitters. These methods do not jointly model independent sources of species 122 

distribution data with individual tracking data, and thus do not facilitate the combination of these 123 

two modern data streams. 124 

One solution to fully scale individual-level data to the global, population-level scale is to 125 

integrate fine-scale tracking data with information about the global spatio-temporal distribution 126 

of the species and how it changes through time. Fine-scale estimates of intra-annual changes in 127 

species distributions have only recently become feasible due to the large-scale collection of 128 

species occurrence data and the development of temporally varying species distribution models. 129 

New platforms such as eBird (Sullivan et al. 2009), iNaturalist, and many others have 130 

empowered data collection with the help of thousands of volunteer contributors. Along with 131 

historic records and systematic surveys, these data form the backbone for efforts to quantify 132 

species distributions. Species’ distribution models are commonly used to assess species status, 133 

quantify patterns of diversity, and understand ecological drivers affecting species. However, 134 
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aside from a few applications (e.g., Supp et al. 2015; Fuentes et al. 2023), records of species 135 

occurrences and associated species distribution models have not been seen as a source of 136 

movement data. These data can provide key information about the aggregation of individual 137 

movements throughout the year and have the potential to bridge gaps in individual tracking data 138 

that are collected non-representatively across the entire range and full annual cycle of a species. 139 

Formally integrating individual movement data and population-level, species distribution 140 

patterns will require new analytical methods that can link the two scales of inference throughout 141 

a species’ range and throughout the full annual cycle.  142 

Our goal is to formalize a framework for the integrated modeling of species distributional 143 

data and individual tracking data to scale individual-level patterns to population-level processes 144 

across a species range and full annual cycle. Following the work of others, we define formal data 145 

integration as harnessing multiple data types to simultaneously estimate a common underlying 146 

state variable or process (Miller et al. 2019; Zipkin et al. 2019). The key here is that two types of 147 

data are used to estimate a common set of parameters, using a single integrated estimation 148 

framework. Other examples in the ecological sciences of formal data integration include models 149 

to estimate demographic processes, species distributions (Dorazio et al. 2012; Miller et al. 2019; 150 

Fletcher et al. 2019), population and community dynamics (Doser et al. 2022), and other 151 

ecosystem processes (Zipkin et al. 2021). These efforts have addressed how data are shared to 152 

make joint inference (Pacifici et al. 2017), methods to account for observation uncertainty and 153 

heterogeneity in survey effort (Dorazio et al. 2012; Miller et al. 2019; Zulian et al. 2021), and 154 

robust methods for cross-validation and designing optimal survey efforts for ecological models 155 

(Reich et al. 2018; Zulian et al. 2021).  156 
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To this point, attempts to combine inferences from individual tracking data and 157 

distribution data have not fully leveraged the statistical advances made in each field because they 158 

do not formally integrate the two data-sources (e.g., McCabe et al. 2021; Meehan et al, 2021). 159 

This leads to limitations such as failing to leverage information on speed and tortuosity available 160 

from tracking data or only using species distribution data to train or validate an individual-based 161 

movement or flow models (e.g., Fuentes et al., 2023; Tonelli et al., 2023). We describe the 162 

components of a formal integrated model for combining individual tracking and temporal 163 

distribution data. We then present an example of a hierarchical model that follows this general 164 

framework, and we illustrate its use through an integrated analysis of golden eagle (Aquila 165 

chrysaetos) tracking and species distribution data. Our approach addresses the current limitations 166 

in quantifying population-scale movement processes allowing us to facilitate spatiotemporal 167 

inference regarding how, when, and why animals move across large spatial and temporal scales.  168 

2 Materials and Methods 169 

2.1 General Framework for Integrated Movement Models 170 

To fill this need, we propose a framework for integrated modeling of individual tracking and 171 

species distribution data. As we argue in the previous section, combining these data types to 172 

simultaneously estimate individual and population level movement patterns can unlock 173 

additional information and improve our inferences. Our ability to develop an integrated estimator 174 

requires three important statistical components: 175 

1. A movement model for individual tracking data. This statistical model should allow 176 

for inference on processes of particular interest for the study and be appropriate for the data 177 

collected. Modern models for telemetry tracking data can capture autocorrelation in such data 178 
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(Eisenhauer et al., 2022, Hooten et al., 2017, Johnson et al., 2008, Russell et al., 2018), varying 179 

levels of accuracy in the telemetry observations (Brost et al., 2015; Jonsen et al., 2020), and 180 

changing behavior over time (Eisenhauer et al., 2022; Glennie et al., 2022; Hanks et al., 2015), 181 

among other features. It is critical for integrated movement modeling that the statistical model 182 

chosen should be general enough to capture the range of behavior present in the whole 183 

population being modeled. This could be done either through a suite of related models, or a 184 

singular model with enough flexibility to model variation in movement behavior across the 185 

whole population.  186 

2. A model for the among-individual heterogeneity in movement behavior within a 187 

population. Behavior of individuals within and across populations of the same species is often 188 

highly variable, some of which can be explained by measurable factors, such as age and sex, but 189 

a large proportion of which is not directly explainable by using easily measured features. In 190 

migratory species, two individuals with the same measurable characteristics may exhibit very 191 

different movement behavior over the full annual cycle; for example, one might migrate early 192 

while the other migrates late, or they may migrate to two different breeding grounds but share an 193 

area during winter. Our ability to quantify this variation in behavior is critical to improving our 194 

understanding of migratory connectivity (driven by variation in movement to and from breeding 195 

grounds), the landscape of risk (driven by variation in timing and routing of migrations), 196 

energetic tradeoffs (driven by migratory timing and habitat selection along the migratory route), 197 

and other behaviors. Without individual-level tracking data, it is in many cases impossible to 198 

identify multiple behavior patterns that result in the observed population-level pattern. 199 

Accounting for multiple movement behavioral patterns in individual tracking data is typically 200 

done by incorporating random effect modeling (i.e., Hooten et al., 2016; Scharf and Buderman 201 
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2020). However, an alternative and appealing framework that has rarely been used in movement 202 

modeling is a discrete mixture model, in which individuals can belong to different modes of 203 

movement behavior (i.e., Mastrantonio 2022, Eisenhauer et al. 2022).  204 

3. A movement model that quantifies changes in the species distribution. An integrated 205 

model for individual and species distribution data requires a statistical model for the species 206 

distribution data that can predict changes in relative abundance at high spatial and temporal 207 

resolutions, and that is formally linked to the population level movement model arising from the 208 

individual model for telemetry data. In particular, the model for species distribution data should 209 

be a function of the same parameters that control the individual telemetry data model (from #1 210 

above), or the scaled-up population model (from #2 above). This formal link – where parameters 211 

are shared and simultaneously estimated from information in both data types – is what defines an 212 

integrated movement model. 213 
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Together, these three models form an integrated model for both species’ distribution data 214 

and individual tracking data, with a shared process that captures various movement at both the 215 

individual level (with heterogeneity) and the population level. One must then be able to estimate 216 

shared parameters that govern movement and population dynamics. In many cases, models that 217 

are needed to capture heterogeneity in individual movement behavior across a population will be 218 

hierarchical in nature, and thus Bayesian approaches to estimation will often be the most 219 

straightforward for integrated movement modeling. We now propose one general class of 220 

movement models that can serve as the basis for integrated movement modeling for a relatively 221 

wide range of animal systems. We will develop a general modeling framework for integrated 222 

movement modeling, starting from a model for individual movement and moving up to the 223 

population level. This approach is illustrated in Figure 1. The specific models for telemetry, 224 

Figure 1: The Integrated Movement Modeling (IMM) Framework involves (1) modeling 
individual telemetry data, (2) specifying a model for how individual movement behavior 
varies within the population, and then deriving the population dynamics that result from 
these models, and (3) modeling species distribution data conditioned on these population 
dynamics.
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subpopulation structure, and species distribution data are kept general in this section, but we 225 

define them specifically for our case study in the next section. 226 

To model heterogeneity among individuals in a population, we consider a mixture model 227 

approach in which there are multiple groups, or subpopulations, of animals. In principle, these 228 

subpopulations can differ in any aspect of movement behavior (i.e., subpopulations could be 229 

defined by the location they originate from), and individuals within a subpopulation can also 230 

have different behavior (i.e., onset of migration may differ among individuals). 231 

Let ���
�  be the telemetry location for the ith animal in subpopulation p at time t. We 232 

propose a general model for this data to be 233 

���
� ~����

�������
� , ��

�, ��, ��	#�1
  234 

As is standard in movement modeling, we model animal locations conditional on previous 235 

locations in time (here we consider a Markovian model, conditioned only on the previous 236 

observed time) and also dependent on individual specific parameters ��
�, subpopulation 237 

parameters ��, and variance (observation error) parameters ��. This model form is general 238 

enough to encompass integrated step selection function models (e.g., Avgar et al. 2016), Markov 239 

chain models (e.g., Wilson et al. 2018), many standard stochastic differential equation models 240 

(e.g., Preisler et al. 2004; Preisler et a. 2014; Eisenhauer et al. 2022), and others. 241 

To model variation among individuals, we consider a general model in which the 242 

individual-specific parameters depend on the subpopulation-level parameters 243 

��
�~���

����	. #�2
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For example, this could be a standard random effects model in which the individual-specific 244 

movement parameters are normally distributed around a shared subpopulation mean. Together 245 

with a model for how individuals are structured into these subpopulations, 246 

��Animal � is in subpop. �
 �  � , !  � � 1
�

���

, #�3
  

we have a complete model for a population of animals with individual and subpopulation 247 

heterogeneity in movement behavior.  248 

We now consider a model for the population dynamics of the spatio-temporal distribution 249 

of this population, built probabilistically from the individual model and subpopulation structure 250 

above. Assume that at time # � 0 that each subpopulation’s spatial distribution is defined by a 251 

general spatial distribution 252 

���
�	 � %�

���
. #�4
  

Then under the assumption that this initial distribution is independent of (2) above, the 253 

population dynamics can be obtained by marginalizing over individual and subpopulation 254 

dynamics in the individual movement model (1) 255 

%�
�'�; ��, ��) � * *+���

�

	
�,, �, ��, ��	 - �����	 - %��� 

� �,
.,.� 
�

. #�5
  

In our example analysis, we show one approach that allows this integration to be done 256 

analytically. This is a discrete time model for the dynamics of a subpopulation of animals 257 

moving under the movement model, together with individual heterogeneity, proposed above. The 258 

result is %�
�'�; ��, ��), the spatial distribution of the pth subpopulation at time #, conditioned on 259 
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an initial spatial distribution and the population level parameters governing individual 260 

movement. Then the full population distribution is just the weighted sum of these subpopulation 261 

distributions 262 

%���
 � !  � - %�
�'�; ��, ��)

�

���

. #�6
  

This full spatio-temporal population distribution can then be used as the mean in a model of the 263 

observed species distribution data 264 

1�~+1�|%���
, 34. #�7
  

 265 

Where 3 are parameters related to the observation error (i.e., variance and/or correlation) of the 266 

observed species distribution data 61�, 1�, … , 1
8. Together these models provide a formal 267 

approach for integrated individual and species distribution data.  268 

2.2 Case Study: Golden Eagle Spring Migration in the Western North America 269 

We now illustrate this framework for formal integration of individual tracking and 270 

species distribution data through an analysis of spring migratory behavior of golden eagles that 271 

had been tagged with satellite transmitters while in the conterminous western United States 272 

(U.S.).  273 

The golden eagle has a Holarctic distribution, occurring throughout most of North 274 

America, Europe, Asia, and parts of northern Africa (Katzner et al. 2022).  In the eastern U.S., 275 

golden eagles have been extirpated as a breeding species but individuals from eastern Canada 276 
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regularly overwinter (Katzner et al. 2020). Currently, numbers of golden eagles in the western 277 

U.S. tentatively are stable but likely will decline as anthropogenic mortality increases (Millsap et 278 

al. 2022). Golden eagles in the U.S. are protected under the Bald and Golden Eagle Protection 279 

Act (BGEPA; 16 U.S.C. 668-668c), which prohibits take, defined as "pursue, shoot, shoot at, 280 

poison, wound, kill, capture, trap, collect, molest or disturb," unless the take is incidental to 281 

otherwise lawful activities authorized by permit from the U.S. Fish and Wildlife Service 282 

(USFWS). Examples of situations where incidental take may occur but possibly be authorized by 283 

permit are collisions with turbines at wind energy projects (Beston et al. 2016) and electrocutions 284 

on power line poles (Mojica et al. 2018). Take of a wild golden eagle must by offset by saving or 285 

creating (e.g., by improving reproductive success) 1.2 golden eagles elsewhere; the mitigation 286 

offset ratio is greater than equivalent due to the golden eagle’s tentative population status. 287 

However, the number of golden eagles that can be taken under permit is strictly limited, at two 288 

spatial scales: the Eagle Management Unit (EMU; large scale, each unit encompassing about 289 

one-third of coterminous U.S. states) and Local Area Population (LAP; area within 174 km of 290 

the site or activity to which a permit applies) (U.S. Fish and Wildlife Service 2016). Dynamic 291 

movement of golden eagles across these spatial scales is not well understood and could influence 292 

estimates of the eagle’s population size within these areas. Utility of the coarse-scale EMUs for 293 

determining upper thresholds for permitted take is uncertain; interconnected subregional 294 

populations may exist that could better serve as single population management units for 295 

incidental-take permitting decisions. 296 

To inform golden eagle management decisions including limits on permitted take, the 297 

USFWS worked with a network of collaborators to amass telemetry data from >600 golden 298 

eagles tracked via satellite or GSM (Global System for Mobile Communications) transmitters in 299 
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the conterminous western U.S. (Millsap et al. 2022). Main objectives of the work were to 300 

estimate annual survival and identify major causes of mortality. Subsets of the data have been 301 

used to address other management information gaps, such as movement behavior, e.g., 302 

identifying major migration corridors (Bedrosian et al. 2018, Brown et al. 2017), describing non-303 

routine, long-distance movements (Poessel et al. 2016), and documenting juvenile dispersal 304 

(Murphy et al. 2017) and natal dispersal distance (Murphy et al. 2019). However, these 305 

individual-level results are difficult to scale to the entire population, or to sub-populations such 306 

as EMUs and LAPs, and do not provide detailed information on the relative number of 307 

individuals that are being exposed to risk, or the relative importance of identified migratory 308 

pathways, stopover areas, or wintering grounds. To fill these information gaps, the Cornell Lab 309 

has closely collaborated with the USFWS Division of Migratory Bird Management’s National 310 

Raptor Program to validate and integrate eBird relative abundance information for golden eagles, 311 

to inform population size estimates and policy germane to incidental take permitting. No reliable 312 

framework exists for integrating these sources of information to ascertain relative exposure risk 313 

along migratory pathways and stopover areas, or to identify which subregional populations are 314 

interconnected such that they could be managed as single population management units for 315 

incidental-take permitting decisions.  316 

2.2.1 Golden Eagle Data Description 317 

We aggregated telemetry data from 136 golden eagles tracked by the USFWS via satellite 318 

telemetry between 2011 and 2019; individual eagles in our sample were represented by data from 319 

1-8 spring migration seasons each.  Eagles were tagged in the Colorado Plateau, Rocky 320 

Mountain (south of Montana), Central Great Plains, Southern Great Plains, and Texas Trans-321 

Pecos regions, encompassing roughly the eastern one-half of the species’ range in the 322 
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coterminous western U.S. Most (77.9%) were tagged with satellite transmitters when they were 323 

large (7- to 8-week old) nestlings; these permanently dispersed from natal areas by the end of 324 

their first year of life (Murphy et al. 2017). Others (22.1%) were trapped and tagged when in 325 

their second year of life or older; including some that were settled on breeding territories when 326 

≥4 years of age (Murphy et al. 2019). Transmitters were solar Argos/GPS 45-g and 70-g platform 327 

terminal transmitter units (Microwave Telemetry, Inc., Columbia, MD); each was attached in a 328 

backpack configuration via “Y-harness” constructed of Teflon ribbon (Murphy et al. 2017). 329 

Transmitters collected GPS locations hourly each day during at least 0900-1600 H; PTT location 330 

accuracy was ± 19 m. Our dataset for a given eagle included a single “daily” location for each 331 

24-hour period, derived by averaging all GPS locations available for the period. In this analysis, 332 

we consider only the spring migration, and thus subset each available year of telemetry data to 333 

the time between Julian day 50 (February 19) and Julian day 105 (April 15). While this window 334 

does not capture the entire migratory season for the species, it does contain most of the migration 335 

detectable in the telemetry data as well as the eBird species distribution data. 336 

As we are considering just the spring migration, we treated each year of data from a bird 337 

as being independent of all other years of data for that individual (hereafter, each sample will be 338 

referred to as a bird year). We also defined each bird year as being part of one of two 339 

subpopulations, with the first subpopulation being all bird-years where the bird did not pass 340 

north of the 51-degree Latitude line and the second subpopulation being all bird years where the 341 

bird moved north of this latitude within our spring window. This resulted in 336 bird years in the 342 

first subpopulation and 18 bird years in the second subpopulation. These daily telemetry data are 343 

the individual telemetry data we will use in our Integrated Movement Model. Figure 2 shows 344 

daily telemetry data, with arrows pointing to successive days for each bird. Figure 2a shows all 345 
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tracked birds in the first subpopulation (those that did not cross the 51-degree latitude line) and 346 

Figure 2b shows all tracked animals in the second subpopulation (those who did cross north of 347 

the 51-degree latitude line). 348 

For species distribution data, we used eBird relative abundance information from 2019 349 

(Fink et al. 2019, 2021). The Cornell Lab of Ornithology has developed the Adaptive Spatio-350 

Temporal Exploratory Model (AdaSTEM; Fink et al. 2014; Fink, Damoulas, & Dave 2013), 351 

which processes huge numbers of individual citizen-science records, accounts for spatial 352 

heterogeneity in sampling effort, observer skill, and rarity of species to estimate the relative 353 

abundance of a species over space and time (Fink, Damoulas, & Dave 2013). This eBird relative 354 

abundance information is available at a 2.8x2.8km resolution, for each week of the year, 355 

throughout the entire distributional range of a given species. We subset the relative abundance 356 

Figure 2: Daily spring GPS locations for 136 golden eagles in the western U.S and Canada, 
with lines connecting sequential locations. The birds are divided into two subpopulations: (a) 
those that spend the spring (Julian day 50 (February 19) and Julian day 105 (April 15) south 
of the 51-degree latitude line (dashed line) and (b) those that move north of the line. Note 
that colors repeat due to the number of individuals. 
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down to just the western U.S., aggregated to 100-km resolution, and normalized the gridded 357 

relative abundance to sum to unity. This weekly, normalized, eBird relative abundance is the 358 

species distribution data we will use in our Integrated Movement Model. Figure 3 presents this 359 

weekly species distribution data, showing the partially-migrating nature of golden eagles, with 360 

Figure 3: Weekly distribution of golden eagles in the western U.S. and Canada during spring 
2019, obtained from eBird status and trends. 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2024. ; https://doi.org/10.1101/2024.06.19.599581doi: bioRxiv preprint 



20 

 

some of the population migrating north to Alaska and northwestern Canada, while some of the 361 

population remains in the western U.S. 362 

2.2.2 A Hierarchical Integrated Movement Model for Golden Eagles 363 

We now illustrate our integrated movement modeling framework from Eq. 1-7 on the 364 

spring telemetry and eBird relative abundance data of golden eagles. The class of individual 365 

models we will consider are stochastic differential equation (SDE) models, with movement 366 

governed by a potential function (Preisler et al., 2004; Eisenhauer et al., 2022; Russell et al., 367 

2018). This class of models is particularly appealing for modeling migratory behavior because 368 

potential functions provide a straightforward approach to modeling movement along gradients or 369 

toward summer/winter ranges, however, as mentioned, other movement models could be used. 370 

To model heterogeneity among individuals in a population, we consider a mixture model 371 

approach in which there are multiple groups, or subpopulations, of animals. In theory, these 372 

subpopulations can differ in any aspect of movement behavior, such as timing of migration, 373 

distance, duration, or number of geographic centroids; however, for this example we will focus 374 

on the location of geographic centroids. We will, for simplicity, assume that movement behavior 375 

is fixed over time; this does not mean that an individual’s locations are fixed through time, but 376 

that the parameters describing the subpopulation’s behavior do not change over time. In our 377 

example analysis in the following section, we consider only movement during the spring 378 

migration season – a time frame in which this assumption is appropriate.  379 

2.2.2.1 An SDE Model for Tracking Data 380 

We will first define an SDE for individual telemetry data, which will correspond to Eqs. 381 

1-3 in our general framework. Let ���
�  be the telemetry location for the i-th animal in 382 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2024. ; https://doi.org/10.1101/2024.06.19.599581doi: bioRxiv preprint 



21 

 

subpopulation p at time t. We modeled movement using an SDE, with movement in a quadratic 383 

potential function centered around an attractive point 9�
� which is specific to animal i. Let 384 

.:��
� �  ;2<�':��

� ; 9�
�).# = ��.>��

� #�8
  

where ;2<�':��
� ; @�

�) is the negative gradient of a quadratic potential function A�:
 �385 

<': ; @�
�)�

 evaluated at the location of animal i. In this SDE, an animal’s mean movement at 386 

any given time is directly towards the attractive central location @�
�, with random variation 387 

around that mean modeled using two-dimensional standard Brownian motion (>��
� 
).  388 

To make SDEs numerically tractable for statistical inference, we consider a discrete 389 

Euler-Maruyama approximation to the continuous time SDE (Eisenhauer et al., 2022; Russell et 390 

al., 2018). This results in the following time-discretized model, where Δ is the time-step between 391 

observations. 392 

:����
� � :��

� ; 2<�':��
� ; @�

�)Δ = C��
� , C��

� ~D'E, Δ��
�F)#�9
  

Variations of the above general framework have been used in multiple studies of animal 393 

movement to study a wide range of movement behaviors (Preisler et al., 2013; Eisenhauer et al., 394 

2022; Russell et al., 2018).  395 

This model is a model for individual telemetry data and corresponds to Eq. 1 in our 396 

general framework. For each animal there is an unknown attractive point @�
�, and for each 397 

subpopulation there are population level parameters <� and ��. If we were fitting this model 398 

alone to the telemetry data, the unknown parameters could be estimated using ordinary least 399 

squares or maximum likelihood methods (Preisler et al., 2004; Russell et al., 2018; Eisenhauer et 400 

al., 2022). However, once we pair this model with a population-level model for the species 401 
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distribution data, the resulting integrated movement model will be hierarchical and will be best 402 

fit using Bayesian methods. 403 

Following Eq. 2 in our general framework, we can assume that the individual-level 404 

attractive points 6@�
�8 for individuals belonging to each subpopulation are located in relatively 405 

similar spatial locations They can then be modeled in a typical hierarchical fashion where the 406 

individual-level attractive points arise from a 2-dimensional Gaussian distribution with a shared 407 

mean and covariance 408 

@�
�~D'H�, I�). #�10
  

Allowing for multiple subpopulations is achieved by using a mixture of Gaussian distributions to 409 

describe the population; mixture models are a flexible framework and are not limited to just two 410 

mixtures of the same distribution. The mixture model would impose a statistical structure on Eq. 411 

3 in our general framework. 412 

2.2.2.2 An SDE Model for Population Dynamics 413 

We now develop a model for the movement (or diffusion) of a population of birds under the 414 

specific movement model in Eqs. 9-10. This corresponds to Eq. 4-6 in our general framework. If 415 

we assume that the initial distribution at time # � 0 of the p-th subpopulation is 2-dimensional 416 

Gaussian with  417 

J�
�~D'K��, L��)#�11
  

and additionally marginalize over the distribution of attractive points (10), then the distribution 418 

of the p-th subpopulation at time t can be found sequentially using standard multivariate normal 419 

distribution theory combining Eqs. (9)-(11) 420 
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J���
� |K��, A��~D'K���� , L����), #�12
  

K���� � K��'1 ; 2<�Δ) = 2<�ΔH�, #�13
  

L���� �  Δ��
�F = 4<�

�Δ�I� = '1 ; 2<�)�L��, #�14
  

Under this model, at each successive time step, the subpopulation distribution moves from its 421 

initial distribution closer to a stationary distribution defined by the distribution of subpopulation 422 

attractive points (Eq. 10).  423 

At any given time, we assume that the full population is a weighted sum of the 424 

subpopulation distributions (Eq. 7), with weights 6 �8 summing to 1 425 

J� � !  �J�
�

�

. #�15
  

The population dynamics under this model assume a population of animals, divided into 426 

subpopulations, with individuals in each subpopulation having relatively similar spatial locations 427 

of attractive points (Eq. 10) and each individual moving in a quadratic potential function 428 

centered on their individual attractive point (Eq. 9). The population dynamics are extremely 429 

straightforward to calculate in this model, as at any given time the population distribution is a 430 

weighted mixture of 2-dimensional Gaussian densities with means 6K��8 and covariance 431 

matrices ML��N that can be deterministically calculated using Eqs. 12-14.  432 

The key need for integrated movement modeling is a clear approach for scaling from individual 433 

to population level dynamics. In this example we address this need through a hierarchical 434 

random effects approach, which makes population dynamics very computationally efficient to 435 

compute and is one strong advantage of our probability-based approach for population dynamics 436 
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(Eqs. 4-6). There are other possible approaches, such as scaling from individual SDEs to their 437 

population distribution Fokker-Plank equations (Gardiner 2009) or scaling grid-based movement 438 

models like step selection functions to population-level differential equations (Fricks and Hanks 439 

2018; Potts and Borger 2022), but the approach we propose here is notable for the simplicity of 440 

the calculations required for the population dynamics. 441 

2.2.2.3 An SDE Model for Species Distribution Data 442 

We now propose a model for species distribution data at a given time, which has a mean 443 

equal to the population distribution in (15). At time t, we assume that the species distribution 444 

data is in gridded form, with O.���
 being the proportion of the population at the grid cell with 445 

center � at time t. We assume that the species distribution data is normalized, and thus sums to 1 446 

over all spatial grid cells (i.e., relative abundance). We want a probability model for PQ� �447 

6O.����
, O.����
, … O.����
8, the vector of observed species distribution relative abundances, 448 

with mean equal to the population distribution in (15). We propose a multinomial distribution for 449 

a scaled version of the species distribution data. Let N be a positive integer and let PQR
� �450 

STUV.�D - PQ�
 be a vector of closest integers to the scaled species distribution data. We 451 

propose modeling this quantity as 452 

PQR
�~WUX#�VT9�YX�D, J�
#�16
  

where J� is given by (15). In this model, the scaling factor N is best thought of as a dispersion or 453 

variance parameter, with smaller N leading to higher variance in the species distribution 454 

probabilities. This provides a model for species distribution data that has a mean given by the 455 

population model resulting from a population of individuals moving under our SDE model, with 456 

a flexible variance, D, that can capture an appropriate level of mismatch between the species 457 
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distribution and our model. Together, (9)-(16) provide an example of a set of models that satisfy 458 

the requirements for an integrated movement model.  459 

2.2.2.4 Fitting the Integrated Movement Model 460 

As the JMM described above is a hierarchical model, we chose to take a Bayesian 461 

approach to inference. For each subpopulation, we assign vague Gaussian and Inverse Wishart 462 

priors to the subpopulation-level mean and covariance of these movement centers: 463 

H�~D�E, 10��F
, I�~Z[�3, F
. #�17
  

As the movement parameter < must be non-negative, we assign it a vague truncated normal 464 

prior, constrained to be greater than zero and assign an inverse gamma prior for the variance 465 

parameter ��: 466 

<�~\D�0,10��
 - 1������, #�18
  

��
�~Z]�10,100
. #�19
  

We assign a Poisson prior to the scaling (or dispersion) parameter N from the species distribution 467 

model, and vague priors to the initial subpopulation distribution means and covariances: 468 

D~�T�O�1000
#�20
  

K��~D�E, 10��F
, ^��~Z[�3, F
. #�21
  

For the population weights 6 �,  �8, we assign a uniform prior to  �, with the constraint that 469 

each population contain at least 10% of the population mass: 470 

 �~_V�%�0.1,0.9
. #�22
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We fit this model using a custom Markov chain Monte Carlo sampler, coded in R, with 471 

adaptive tuning using the log-adaptive approach of Shaby and Wells (2010). We ran the sampler 472 

for 4,500,000 iterations and assessed convergence visually. This chain took under 48 hours to 473 

run on a single computer with a 16-core Intel I9 processor with clock speed 3.2GHz. Details on 474 

the MCMC algorithm have been provided in Appendix A. We also conducted a simulation study, 475 

by simulating both telemetry and species distribution data from the IMM model with all 476 

parameters set at the posterior means; details of this simulation study are in Appendix B and 477 

code and data to replicate the simulation are provided as supplemental material. 478 

3 Results  479 
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Figure 4 shows results from fitting the integrated movement model to golden eagles in the 480 

Figure 4: Posterior distributions from selected parameters from the integrated movement 
model analysis of the golden eagle datasets. Subpopulation-specific posterior means (a) and 
standard deviations (b) for attraction to individual movement centers. The movement centers 
69�

�8 for subpopulation 1 are centered in the conterminous U.S. (c), while the corresponding 
movement centers for subpopulation 2 are spread along the migratory route to Alaska (d). 
We estimate 34% of the total population is in subpopulation 1 (e). The dispersion parameter 
D has posterior mean of 354 (f).
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western U.S. and Canada. Figure 4a-b shows posterior distributions for parameters <�, the 481 

subpopulation-specific strength of attraction to an individual-movement center, and ��
�, the 482 

subpopulation-specific variance parameter that captures both observation error and variation in 483 

observed locations around the mean movement in equation (9). These estimates reveal that birds 484 

in the north-moving subpopulation (p=2) are more highly attracted to their movement centers 485 

than are birds from subpopulation 1 but also show more stochastic variability in their movement. 486 

Figures 4c-d show the estimated distributions of movement centers (i.e., the estimated Gaussian 487 

distribution of 9�
� from Eq. 10, defined by the posterior mean estimates of the mean parameters 488 

`� and variance-covariance matrix Σ�) for subpopulations 1 and 2, with subpopulation 2 489 

showing movement centers distributed along a migration pathway to the Northwest of the initial 490 

species distribution mass. Figure 4e shows the posterior distribution of  �, the proportion of 491 

individuals estimated to be in subpopulation 1, and Figure 4f shows the posterior distribution for 492 

the scaling/dispersion parameter D for the species distribution data (see Eq. 16).  493 

Figure 5: Observed biweekly distribution of golden eagles in the western U.S. during spring 
2019 according to the eBird Status & Trends data (a1-4). Posterior mean of the distributions 
of subpopulation 1 (b1-4) and 2 (c1-4). Pointwise posterior predictive mean of the observed 
golden eagle distribution belonging to subpopulation 1 (d1-4) and 2 (e1-4).   
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To illustrate the estimated subpopulation behavior, Figure 5a shows a triweekly subset of 494 

the eBird species distribution data and Figures 5b-c show posterior mean subpopulation 495 

distributions for both subpopulations (Eq. 12-14). Figures 5d-e show the pointwise posterior 496 

predictive mean percent of the observed eBird species distribution attributed to each 497 

subpopulation over time. This was calculated pointwise for each pixel, with the shown posterior 498 

predictive mean percent for the b-th pixel calculated as  
����

���� �����
,   where ���c  is the posterior 499 

mean subpopulation distribution for subpopulation 1, and ���c  is the posterior mean 500 

subpopulation distribution for subpopulation 2.  Figures 5d-e illustrate how the integrated 501 

movement model provides a formal approach for splitting an observed species distribution into 502 

multiple subpopulation distributions, each with their own dynamics informed by observed 503 

telemetry data. 504 
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 In Figure 6 we illustrate how inference from the integrated model differs from a single 505 

data source alone. First, telemetry data are almost seldom collected in a way that is 506 

representative of the full population. In Figure 6a, we calculate the proportion of birds in our 507 

non-migratory subpopulation using just the telemetry data. This inference is done using a 508 

Bayesian approach with subpopulation membership modeled as a Bernoulli random variable 509 

with proportion  � of birds in subpopulation 1 having the same prior (22) as in our integrated 510 

analysis. As the telemetry data have a large proportion of non-migrating birds, the estimated 511 

proportion of birds in this subpopulation is over 95%. However, once we jointly model the 512 

telemetry data with the species distribution data, the estimated proportion in subpopulation 1 is 513 

34% in our study region. Similarly, in Figure 6(b) we compare estimates of the subpopulation 514 

movement parameters <� and <� from the telemetry data alone, obtained by fitting the model 515 

defined by Eqs. 9-10 and 17-18 with comparable estimates from the full integrated model. The 516 

Figure 6: Comparison on the percentage of birds assigned to the migratory subpopulation is 
misrepresented by the typical biased sampling of animals in telemetry studies (a) and the 
attraction to individual movement centers for each subpopulation (b) using just telemetry 
data, just species distribution data, and the integrated movement model. 
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inclusion of species distribution data results in estimates of lower attraction to the individual 517 

movement centers – this is especially evident in subpopulation 1. 518 

Figure 7 shows full probabilistic predictions of where animals who winter in a defined 519 

spatial location (i.e., a management unit) will occur over the course of the spring migratory 520 

season, something that would be impossible without an understanding of the spatial distribution 521 

of subpopulations such as we obtained from our integrated analysis. Figure 7 shows the posterior 522 

mean spatio-temporal distribution of the location of an animal beginning in central New Mexico 523 

(shown by the black “X”) over the temporal range of our study. The predictions result from using 524 

the estimated spatial proportion of birds in each of the two modeled subpopulations at the 525 

marked location (see Figure 5e1) to weight the dynamics of each subpopulation, given that birds 526 

in that subpopulation start in the marked location. This is accomplished through application of 527 

the dynamics in equations (12)-(14), using posterior mean values for all parameters except for 528 

the initial distribution parameters 6b��, b��, A��, A��8 which are chosen so that more than 99% of 529 

the entire initial subpopulation resides within 100km of the starting location marked by the black 530 

“X” (by fixing b�� to be the center of the grid cell and A�� to be a diagonal matrix with diagonal 531 

entries chosen so that the edges of the grid cell correspond to the 0.005 and 0.995 quantile of the 532 

Figure 7: Predictions of the spatial distribution of the population of birds beginning at the 
grid cell marked with an “x” through spring migration. 
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marginal Gaussian distribution in both the latitude and longitude directions). The predictions 533 

show that a large number of birds are predicted to remain near the initial location, with a smaller, 534 

but still significant, number of birds migrating North. In Figure 8 we show posterior mean 535 

estimates of the proportion of birds in a given spatial location (shown by purple points) that are 536 

in subpopulation 2, the more migratory subpopulation. In the light point in Canada, we estimate a 537 

large early pulse of migrators moving through the location, while the dark point in Montana 538 

shows an increasing proportion of migrators through the spring migration.  539 

 540 

4 Discussion 541 

In this manuscript, we demonstrate a general framework for Integrated Movement 542 

Modeling that combines both individual telemetry and species distribution data. We show how 543 

this approach addresses the challenge of simultaneously quantifying movement dynamics at the 544 

level of whole species’ distributions while accounting for variation in movement behavior across 545 

Figure 8: Proportion of individuals in subpopulation 2 though spring migration at two 
different spatial locations (b).
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individuals and subpopulations. By applying this approach to spring migration of golden eagles 546 

in the western U.S, we demonstrate that the joint inference from both individual and species 547 

distribution data has benefits that are not possible when making inference from just one data 548 

stream.  549 

There are several main takeaways from our modeling approach that come from the 550 

golden eagle case study. First are the unique results that are obtained from the integrated 551 

movement model, which contrast those available from each dataset individually. Foremost is the 552 

ability to directly estimate population-level parameters including the overall proportion of 553 

migratory versus non-migratory individuals within the modeled range. For golden eagles, we 554 

estimated that about 34% of the golden eagle western population belongs in subpopulation 1, 555 

which is generally stationary throughout the migratory season. However, we would have 556 

estimated that about 95% of the population is in subpopulation 1 if we had based our inferences 557 

solely on telemetry data, a sample we know is not randomly chosen from the whole population. 558 

This occurs because a disproportionate number of telemetered individuals remained south of 51-559 

degrees latitude, which is inconsistent with seasonal changes in the distributional range of the 560 

species (Figure 3).  561 

We are also able to uniquely generate fine-scale estimates of vital population level 562 

processes, such as the proportion of individuals in a given location that belong to a subpopulation 563 

and how this changes through time. This type of information has important implications for 564 

determining habitat management targeted at different subpopulations (e.g., residents vs migrants) 565 

and for identifying critical habitat types that are being used by all members of a population. Our 566 

integrated framework allows us to estimate the degree to which factors that differ across space 567 

and time may disproportionately affect a given subpopulation. For example, when assessing the 568 
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environmental impact of a wind energy development project, we would like to be able to 569 

differentiate the potential impact to year-round resident eagles separately from migratory 570 

individuals. Similarly, we can generate information that is critical for the field of migration 571 

ecology, such as estimates of the spatial distribution of a given population of birds that originated 572 

from a specified starting location as they progress through the spring migration. This type of 573 

fine-scale, connectivity information has been shown to be biased if based solely on tracking data, 574 

without any additional data sources (Rushing et al. 2021). These predictions of migratory 575 

pathways consider the estimated spatial proportion of birds in each of the two modeled 576 

subpopulations, and the movement dynamics of each subpopulation, given that birds start in the 577 

marked location. This information is critical for environmental impact assessments, such as 578 

predicting the spatial overlap with proposed land use changes for individuals that may not 579 

normally be considered residents of the area of interest. Predictions such as this can help 580 

practitioners and managers obtain a more comprehensive measure of the spatio-temporal region 581 

that is relevant for wildlife under their jurisdiction, as it provides quantified predictions of where 582 

birds that winter in user-defined spatial regions could be over the course of a migratory season. 583 

These are just some examples of information that are critical for wildlife conservation and 584 

management that can only be obtained by using an integrated model or are improved by jointly 585 

using both individual and species distribution data. 586 

Here we focus solely on movement during the spring migration. Extending our modeling 587 

approach to the full annual cycle of a migratory species is possible but would require that our 588 

model be expanded to allow attractive points of each animal 6@�
�8 to change over time, to 589 

coincide with migratory, wintering, and summering behavior. Extensions to our model such as 590 

this are highly feasible given that our modeling framework is very computationally efficient. 591 
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However, achieving this extension would require additional model development to adequately 592 

capture the timing and variation of migration across a species’ range. 593 

Similarly, in our case study we only considered the case where we had two pre-defined 594 

subpopulations and pre-assigned each individual bird-year of tracking data to one of the 595 

subpopulations. This captured the most obvious variation in migratory patterns of the data we 596 

considered here, but for many other scenarios it would be more realistic to consider both a larger 597 

number of subpopulations and to model each bird’s assignment to one subpopulation 598 

stochastically. Selection of one of several plausible models, each with a different number of 599 

subpopulations, could be done by using information criteria such as WAIC or DIC (Hooten and 600 

Hobbs 2015), and placing a prior on each bird’s subpopulation assignment would result in a 601 

straightforward mixture model extension of our existing model. As the number of subpopulations 602 

increases, identifiability of subpopulations could be challenging, and we recommend that 603 

researchers contemplating such analyses consider prior distributions that help identify different 604 

subpopulations, for example, by ordering subpopulations by overall size, as is commonly done in 605 

Bayesian nonparametric statistics. In addition, we modeled each bird year as independent of all 606 

other bird years. However, to capture correlation among bird years from the same bird, one could 607 

consider a time series prior on the attractive points 6@�
�8, with correlation between successive 608 

years.  609 

Independent of potential extensions, the framework we propose leverages existing data and 610 

methodologies across disciplines to make unique and robust inferences, allowing us to scale 611 

individual movement behaviors to the population level. This approach has the potential to fill 612 

critical information needs in the field of migration ecology, but most importantly, provide 613 
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information critically needed to help conserve and manage species of wildlife that are declining 614 

worldwide.  615 
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