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simulation are presented in a supplemental file. At this time, simulated data and code to

fit the model can be requested by emailing the corresponding author.

Abstract

1.

While the quantity, quality, and variety of movement data has increased, methods that
jointly allow for population- and species-level movement parameters to be estimated are
still needed. We present a formal data integration approach to combine individual-level
movement and population-level distribution data. We show how formal data integration
can be used to improve precision of individual and population level movement
parameters and allow additional population level metrics (e.g., connectivity) to be
formally quantified.

We describe three components needed for an Integrated Movement Model (IMM): a
model for individual movement, a model for among-individual heterogeneity, and a
model to quantify changes in species distribution. We outline a general IMM framework
and develop and apply a specific stochastic differential equation model to a case study of
telemetry and species distribution data for golden eagles in western North American
during spring migration.

We estimate eagle movements during spring migration from data collected between 2011
and 2019. Individual heterogeneity in migration behavior was modeled for two sub-
populations, individuals that make significant northward migrations and those that
remained in the southern Rocky Mountain region through the summer. As is the case
with most tracking studies, the sample population of individual telemetered birds is not
representative of the population, and underrepresents the proportion of long-distance

migrants in. The IMM was able to provide a more biological accurate subpopulation
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structure by jointly estimating the structure using the species distribution data. In
addition, the integrated approach a) improves accuracy of other estimated movement
parameters, b) allows us to estimate the proportion of migratory and non-migratory birds
in a given location and time, and c) estimate future spatio-temporal distributions of birds
given a wintering location, which provide estimates of seasonal connectivity and
migratory routes.

We demonstrate how IMMs can be successfully used to address the challenge of
estimating accurate population level movement parameters. Our approach can be
generalized to a broad range of available movement models and data types, allowing us
to significantly improve our knowledge of migration ecology across taxonomic groups,
and address population and continental level information needs for conservation and

management.

Keywords: movement model, species distribution data, telemetry data, integrated data model,

connectivity, migration, golden eagle

1 Introduction

Our ability to address the effects of climate and land-use change on biodiversity and

ecosystem health depends on our ability to predict how animal populations respond to changes in

environmental conditions (Urban et al. 2016). To date, most forecasts of potential shifts in

distributions are based on static patterns of habitat associations. However, an often ignored, yet

critical, component for predicting these responses is the robust quantification of animal

movement patterns (Nathan 2008; Flack et al. 2022).
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The introduction of the global positioning system (GPS) in the early 1990’s began to
revolutionize our ability to track wildlife. Tracking technology now allows us to collect large
quantities of information about an individual with increasing precision and frequency for
extended periods of time. This exponential increase in the availability of tracking data has
coincided with an equally important advance in the statistical methods available for analyzing
these data. These new methods have ranged in their focus, from estimating the true movement
path given coarse data with measurement error (Buderman et al. 2015; Johnson et al. 2008a,
2008b; Jonsen, Flemming, and Myers 2005), to the size and location of the home-range of an
individual (Fleming et al. 2015; Nilsen et al. 2008; Worton 1989) (e.g., MCP, KDE), and the
preferential use of target resources on the landscape (Avgar et al. 2016; Manly, McDonald, and
Thomas 2004; Thurfjell, Ciuti, and Boyce 2014) (RSF, SSF). Similarly, there is a growing
interest in estimating underlying, or latent, behavioral states based on movement quantities
related to locations of an individual through time, typically referred to in the movement literature
as hidden Markov-models (McClintock et al. 2012). These advances in data collection and
analysis have increased our understanding of the ecology and evolution of migratory behavior
(Mueller et al. 2013; Gu et al. 2021), conservation of at risk species and populations (Liang et al.
2023), connectivity of migratory populations (Alheit and Bakun 2009; Kot et al. 2022), optimal
habitats to prioritize for conservation (Yi et al. 2022), movement of pathogens (Takekawa et al.
2023), and ways in which species respond to climate change (Youngflesh et al. 2021; Horton et

al. 2023).

Despite the amazing progress in the field of movement ecology, there still are significant
challenges to continuing to advance our ability to better quantify movement. Movement behavior

is a multi-scale, adaptive response that is influenced by both biotic interactions and abiotic
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5
environmental factors (Nathan et al., 2008). Quantifying movement is especially complex for
migratory species, due to variation among multiple subpopulations within the species range, each
of which makes unique movements that span continental and global scales. As a result,
individual tracking data still have fundamental limitations when the goal is to understand
movement behavior across the entire distributional range of a species (e.g., continental).
Individual tracking data are typically limited to relatively small sample sizes of tagged
individuals and are almost always collected on a non-representative spatial subset of animals,
relative to the entire range of the given species. Unfortunately, the cost and effort required to tag
a balanced and representative sample of the variation in animal movement decisions is
unattainable for all but a handful of range-restricted or non-migratory species. Thus, while
tracking data provides critical fine-scale insights into movement behavior of individuals, they are
not collected in ways that make inference about the movement and dynamics among multiple
subpopulations feasible, simple, or straightforward. The consequence of these challenges is that
continent- or region-wide insights regarding animal movement patterns are lacking for most at-
risk species, and rarely are formally integrated into conservation planning. Overall, advances in
this field are thus limited by our current inability to quantify and scale individual variation in

movement behavior to population levels.

One potential solution to address the challenge of scaling from individuals to population
level movements is to simultaneously quantify the global distribution of a species in space and
time, as well as the variation in movement behavior across individuals and subpopulations. The
relationship between individual behavior and population patterns has long fascinated ecologists
(i.e., Turchin 1997; Wilson, Hanks, and Johnson 2018). For decades, mathematicians and

biologists have considered scaling up individual movement models to population level models.
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112 Early work on this includes the work of Turchin (1998), with more recent work including that of
113 Wilson et al., (2018) and Potts and Borger (2023). In general, these approaches do not jointly
114  model both individual and species distribution data, which are often derived from occurrence
115  data. Instead, they are either solely mathematical exercises (i.e., Turchin 1997) meant to motivate
116  population level models, often taking the form of differential equations — or — studies of
117  individual tracking data (i.e., Wilson et al., 2018) with the additional goal to scale results from a
118  study of individual data up to an understanding of the resulting long-term patterns that would
119  arise from species distributions. Hierarchical modeling approaches have also tried to link
120  population-level processes and individual behavior (Scharf and Buderman 2020). However,
121 inference is still limited to descriptions of the average behavior of the population of sampled
122 individuals with transmitters. These methods do not jointly model independent sources of species
123 distribution data with individual tracking data, and thus do not facilitate the combination of these

124  two modern data streams.

125 One solution to fully scale individual-level data to the global, population-level scale is to
126  integrate fine-scale tracking data with information about the global spatio-temporal distribution
127  of the species and how it changes through time. Fine-scale estimates of intra-annual changes in
128  species distributions have only recently become feasible due to the large-scale collection of

129  species occurrence data and the development of temporally varying species distribution models.
130  New platforms such as eBird (Sullivan et al. 2009), iNaturalist, and many others have

131  empowered data collection with the help of thousands of volunteer contributors. Along with

132 historic records and systematic surveys, these data form the backbone for efforts to quantify

133 species distributions. Species’ distribution models are commonly used to assess species status,

134  quantify patterns of diversity, and understand ecological drivers affecting species. However,
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135 aside from a few applications (e.g., Supp et al. 2015; Fuentes et al. 2023), records of species

136  occurrences and associated species distribution models have not been seen as a source of

137  movement data. These data can provide key information about the aggregation of individual

138  movements throughout the year and have the potential to bridge gaps in individual tracking data
139  that are collected non-representatively across the entire range and full annual cycle of a species.
140  Formally integrating individual movement data and population-level, species distribution

141  patterns will require new analytical methods that can link the two scales of inference throughout

142  aspecies’ range and throughout the full annual cycle.

143 Our goal is to formalize a framework for the integrated modeling of species distributional
144  data and individual tracking data to scale individual-level patterns to population-level processes
145  across a species range and full annual cycle. Following the work of others, we define formal data
146  integration as harnessing multiple data types to simultaneously estimate a common underlying
147  state variable or process (Miller et al. 2019; Zipkin et al. 2019). The key here is that two types of
148  data are used to estimate a common set of parameters, using a single integrated estimation

149  framework. Other examples in the ecological sciences of formal data integration include models
150  to estimate demographic processes, species distributions (Dorazio et al. 2012; Miller et al. 2019;
151  Fletcher et al. 2019), population and community dynamics (Doser et al. 2022), and other

152 ecosystem processes (Zipkin et al. 2021). These efforts have addressed how data are shared to
153  make joint inference (Pacifici et al. 2017), methods to account for observation uncertainty and
154  heterogeneity in survey effort (Dorazio et al. 2012; Miller et al. 2019; Zulian et al. 2021), and
155  robust methods for cross-validation and designing optimal survey efforts for ecological models

156  (Reich et al. 2018; Zulian et al. 2021).
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157 To this point, attempts to combine inferences from individual tracking data and
158  distribution data have not fully leveraged the statistical advances made in each field because they
159  do not formally integrate the two data-sources (e.g., McCabe et al. 2021; Meehan et al, 2021).
160  This leads to limitations such as failing to leverage information on speed and tortuosity available
161  from tracking data or only using species distribution data to train or validate an individual-based
162  movement or flow models (e.g., Fuentes et al., 2023; Tonelli et al., 2023). We describe the
163  components of a formal integrated model for combining individual tracking and temporal
164  distribution data. We then present an example of a hierarchical model that follows this general
165 framework, and we illustrate its use through an integrated analysis of golden eagle (Aquila
166  chrysaetos) tracking and species distribution data. Our approach addresses the current limitations
167  in quantifying population-scale movement processes allowing us to facilitate spatiotemporal

168 inference regarding how, when, and why animals move across large spatial and temporal scales.

169 2 Materials and Methods

170 2.1 General Framework for Integrated Movement Models

171 To fill this need, we propose a framework for integrated modeling of individual tracking and

172 species distribution data. As we argue in the previous section, combining these data types to

173 simultaneously estimate individual and population level movement patterns can unlock

174  additional information and improve our inferences. Our ability to develop an integrated estimator

175  requires three important statistical components:

176 1. A movement model for individual tracking data. This statistical model should allow
177  for inference on processes of particular interest for the study and be appropriate for the data

178  collected. Modern models for telemetry tracking data can capture autocorrelation in such data
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179  (Eisenhauer et al., 2022, Hooten et al., 2017, Johnson et al., 2008, Russell et al., 2018), varying
180 levels of accuracy in the telemetry observations (Brost et al., 2015; Jonsen et al., 2020), and

181  changing behavior over time (Eisenhauer et al., 2022; Glennie et al., 2022; Hanks et al., 2015),
182  among other features. It is critical for integrated movement modeling that the statistical model
183  chosen should be general enough to capture the range of behavior present in the whole

184  population being modeled. This could be done either through a suite of related models, or a

185  singular model with enough flexibility to model variation in movement behavior across the

186  whole population.

187 2. A model for the among-individual heterogeneity in movement behavior within a
188  population. Behavior of individuals within and across populations of the same species is often
189  highly variable, some of which can be explained by measurable factors, such as age and sex, but
190  alarge proportion of which is not directly explainable by using easily measured features. In

191  migratory species, two individuals with the same measurable characteristics may exhibit very
192  different movement behavior over the full annual cycle; for example, one might migrate early
193  while the other migrates late, or they may migrate to two different breeding grounds but share an
194  area during winter. Our ability to quantify this variation in behavior is critical to improving our
195  understanding of migratory connectivity (driven by variation in movement to and from breeding
196  grounds), the landscape of risk (driven by variation in timing and routing of migrations),

197  energetic tradeoffs (driven by migratory timing and habitat selection along the migratory route),
198  and other behaviors. Without individual-level tracking data, it is in many cases impossible to
199 identify multiple behavior patterns that result in the observed population-level pattern.

200  Accounting for multiple movement behavioral patterns in individual tracking data is typically

201 done by incorporating random effect modeling (i.e., Hooten et al., 2016; Scharf and Buderman
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202  2020). However, an alternative and appealing framework that has rarely been used in movement
203  modeling is a discrete mixture model, in which individuals can belong to different modes of
204  movement behavior (i.e., Mastrantonio 2022, Eisenhauer et al. 2022).
205 3. A movement model that quantifies changes in the species distribution. An integrated
206  model for individual and species distribution data requires a statistical model for the species
207  distribution data that can predict changes in relative abundance at high spatial and temporal
208  resolutions, and that is formally linked to the population level movement model arising from the
209 individual model for telemetry data. In particular, the model for species distribution data should
210  be a function of the same parameters that control the individual telemetry data model (from #1
211 above), or the scaled-up population model (from #2 above). This formal link — where parameters
212 are shared and simultaneously estimated from information in both data types — is what defines an

213  integrated movement model.
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Figure 1: The Integrated Movement Modeling (IMM) Framework involves (1) modeling
individual telemetry data, (2) specifying a model for how individual movement behavior
varies within the population, and then deriving the population dynamics that result from

these models, and (3) modeling species distribution data conditioned on these population
dynamics.

Integrafed Movement Mnﬂeling: Formal Integration of I.nl'.'li\.'il'.‘ILlal.Teler'matryI Data and Species Distribution Data

" 1. Model Telemetry Data x!, ~ [xF |07 3. Model Species Distribution Data 7. (x) ~ [m |f;(x)]
- Capture dynamics : : e ' - Model depends on

population dynamics
-Model relative
abundance over time:

4 - Model individual ! 1 H i
variation ' ‘

2. Model Heterogeneity In Individual Movement and Resulting Population Dynamics f; (x)

- Subpopulation dynamics from individual variation
- Full population dynamics from weighted average of subpop:

': - Subpopulation Madel
o P(Animali is in subpop.p) = w,
- Individual Variation Within Subpop.
07 ~[67 v
214 Together, these three models form an integrated model for both species’ distribution data

215  and individual tracking data, with a shared process that captures various movement at both the
216  individual level (with heterogeneity) and the population level. One must then be able to estimate
217  shared parameters that govern movement and population dynamics. In many cases, models that
218  are needed to capture heterogeneity in individual movement behavior across a population will be
219  hierarchical in nature, and thus Bayesian approaches to estimation will often be the most

220  straightforward for integrated movement modeling. We now propose one general class of

221  movement models that can serve as the basis for integrated movement modeling for a relatively
222 wide range of animal systems. We will develop a general modeling framework for integrated
223 movement modeling, starting from a model for individual movement and moving up to the

224 population level. This approach is illustrated in Figure 1. The specific models for telemetry,
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225  subpopulation structure, and species distribution data are kept general in this section, but we

226  define them specifically for our case study in the next section.

227 To model heterogeneity among individuals in a population, we consider a mixture model
228  approach in which there are multiple groups, or subpopulations, of animals. In principle, these
229  subpopulations can differ in any aspect of movement behavior (i.e., subpopulations could be
230  defined by the location they originate from), and individuals within a subpopulation can also

231 have different behavior (i.e., onset of migration may differ among individuals).

232 Let xi’Z be the telemetry location for the i animal in subpopulation p at time . We
233 propose a general model for this data to be

234 xh~[xb|xk_,, 67, vy, 0, #(1)

235  As is standard in movement modeling, we model animal locations conditional on previous

236  locations in time (here we consider a Markovian model, conditioned only on the previous

237  observed time) and also dependent on individual specific parameters Hf , subpopulation

238  parameters y,,, and variance (observation error) parameters o,,. This model form is general

239  enough to encompass integrated step selection function models (e.g., Avgar et al. 2016), Markov
240  chain models (e.g., Wilson et al. 2018), many standard stochastic differential equation models

241  (e.g., Preisler et al. 2004; Preisler et a. 2014; Eisenhauer et al. 2022), and others.

242 To model variation among individuals, we consider a general model in which the

243  individual-specific parameters depend on the subpopulation-level parameters

07~ [0y, .42
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244  For example, this could be a standard random effects model in which the individual-specific
245  movement parameters are normally distributed around a shared subpopulation mean. Together

246  with a model for how individuals are structured into these subpopulations,

P
P(Animal i is in subpop.p) = w, ,z w, =1,#(3)
p=1
247  we have a complete model for a population of animals with individual and subpopulation

248  heterogeneity in movement behavior.

249 We now consider a model for the population dynamics of the spatio-temporal distribution
250  of this population, built probabilistically from the individual model and subpopulation structure
251  above. Assume that at time t = 0 that each subpopulation’s spatial distribution is defined by a

252 general spatial distribution

[x5] = T (). #(4)

253 Then under the assumption that this initial distribution is independent of (2) above, the
254  population dynamics can be obtained by marginalizing over individual and subpopulation

255  dynamics in the individual movement model (1)
o) = | [ 110,10 0p] - [oly] - A2, 0)dydo . #(5)
6Jy

256 In our example analysis, we show one approach that allows this integration to be done
257  analytically. This is a discrete time model for the dynamics of a subpopulation of animals

258  moving under the movement model, together with individual heterogeneity, proposed above. The

259  resultis ftp (x; 12 ap), the spatial distribution of the p™ subpopulation at time ¢, conditioned on
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260  an initial spatial distribution and the population level parameters governing individual
261  movement. Then the full population distribution is just the weighted sum of these subpopulation

262  distributions

P
100 = D wy - £ (55%,0,) - #(6)
p=1

263  This full spatio-temporal population distribution can then be used as the mean in a model of the

264  observed species distribution data

e~ [ | f (), 7). #(7)
265

266 Where 1 are parameters related to the observation error (i.e., variance and/or correlation) of the
267  observed species distribution data {r, 75, ..., Ty }. Together these models provide a formal

268  approach for integrated individual and species distribution data.

269 2.2 Case Study: Golden Eagle Spring Migration in the Western North America

270 We now illustrate this framework for formal integration of individual tracking and
271 species distribution data through an analysis of spring migratory behavior of golden eagles that
272 had been tagged with satellite transmitters while in the conterminous western United States

273 (U.S)).

274 The golden eagle has a Holarctic distribution, occurring throughout most of North
275  America, Europe, Asia, and parts of northern Africa (Katzner et al. 2022). In the eastern U.S.,

276  golden eagles have been extirpated as a breeding species but individuals from eastern Canada
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277  regularly overwinter (Katzner et al. 2020). Currently, numbers of golden eagles in the western
278  U.S. tentatively are stable but likely will decline as anthropogenic mortality increases (Millsap et
279  al. 2022). Golden eagles in the U.S. are protected under the Bald and Golden Eagle Protection
280  Act (BGEPA; 16 U.S.C. 668-668c), which prohibits take, defined as "pursue, shoot, shoot at,
281  poison, wound, kill, capture, trap, collect, molest or disturb," unless the take is incidental to
282  otherwise lawful activities authorized by permit from the U.S. Fish and Wildlife Service
283  (USFWS). Examples of situations where incidental take may occur but possibly be authorized by
284  permit are collisions with turbines at wind energy projects (Beston et al. 2016) and electrocutions
285  on power line poles (Mojica et al. 2018). Take of a wild golden eagle must by offset by saving or
286  creating (e.g., by improving reproductive success) 1.2 golden eagles elsewhere; the mitigation
287  offset ratio is greater than equivalent due to the golden eagle’s tentative population status.
288  However, the number of golden eagles that can be taken under permit is strictly limited, at two
289  spatial scales: the Eagle Management Unit (EMU; large scale, each unit encompassing about
290  one-third of coterminous U.S. states) and Local Area Population (LAP; area within 174 km of
291  the site or activity to which a permit applies) (U.S. Fish and Wildlife Service 2016). Dynamic
292  movement of golden eagles across these spatial scales is not well understood and could influence
293  estimates of the eagle’s population size within these areas. Utility of the coarse-scale EMUs for
294  determining upper thresholds for permitted take is uncertain; interconnected subregional
295  populations may exist that could better serve as single population management units for

296 incidental-take permitting decisions.

297 To inform golden eagle management decisions including limits on permitted take, the
298  USFWS worked with a network of collaborators to amass telemetry data from >600 golden

299  eagles tracked via satellite or GSM (Global System for Mobile Communications) transmitters in
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300 the conterminous western U.S. (Millsap et al. 2022). Main objectives of the work were to
301  estimate annual survival and identify major causes of mortality. Subsets of the data have been
302  used to address other management information gaps, such as movement behavior, e.g.,
303  identifying major migration corridors (Bedrosian et al. 2018, Brown et al. 2017), describing non-
304  routine, long-distance movements (Poessel et al. 2016), and documenting juvenile dispersal
305  (Murphy et al. 2017) and natal dispersal distance (Murphy et al. 2019). However, these
306  individual-level results are difficult to scale to the entire population, or to sub-populations such
307 as EMUs and LAPs, and do not provide detailed information on the relative number of
308 individuals that are being exposed to risk, or the relative importance of identified migratory
309 pathways, stopover areas, or wintering grounds. To fill these information gaps, the Cornell Lab
310 has closely collaborated with the USFWS Division of Migratory Bird Management’s National
311  Raptor Program to validate and integrate eBird relative abundance information for golden eagles,
312  to inform population size estimates and policy germane to incidental take permitting. No reliable
313  framework exists for integrating these sources of information to ascertain relative exposure risk
314  along migratory pathways and stopover areas, or to identify which subregional populations are
315 interconnected such that they could be managed as single population management units for

316 incidental-take permitting decisions.

317  2.2.1 Golden Eagle Data Description

318 We aggregated telemetry data from 136 golden eagles tracked by the USFWS via satellite
319  telemetry between 2011 and 2019; individual eagles in our sample were represented by data from
320  1-8 spring migration seasons each. Eagles were tagged in the Colorado Plateau, Rocky

321  Mountain (south of Montana), Central Great Plains, Southern Great Plains, and Texas Trans-

322 Pecos regions, encompassing roughly the eastern one-half of the species’ range in the
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323  coterminous western U.S. Most (77.9%) were tagged with satellite transmitters when they were
324  large (7- to 8-week old) nestlings; these permanently dispersed from natal areas by the end of
325  their first year of life (Murphy et al. 2017). Others (22.1%) were trapped and tagged when in
326  their second year of life or older; including some that were settled on breeding territories when
327 24 years of age (Murphy et al. 2019). Transmitters were solar Argos/GPS 45-g and 70-g platform
328  terminal transmitter units (Microwave Telemetry, Inc., Columbia, MD); each was attached in a
329  backpack configuration via “Y-harness” constructed of Teflon ribbon (Murphy et al. 2017).
330  Transmitters collected GPS locations hourly each day during at least 0900-1600 H; PTT location
331  accuracy was + 19 m. Our dataset for a given eagle included a single “daily” location for each
332 24-hour period, derived by averaging all GPS locations available for the period. In this analysis,
333  we consider only the spring migration, and thus subset each available year of telemetry data to
334  the time between Julian day 50 (February 19) and Julian day 105 (April 15). While this window
335 does not capture the entire migratory season for the species, it does contain most of the migration

336 detectable in the telemetry data as well as the eBird species distribution data.

337 As we are considering just the spring migration, we treated each year of data from a bird

338 as being independent of all other years of data for that individual (hereafter, each sample will be

339 referred to as a bird year). We also defined each bird year as being part of one of two

340  subpopulations, with the first subpopulation being all bird-years where the bird did not pass

341  north of the 51-degree Latitude line and the second subpopulation being all bird years where the

342  bird moved north of this latitude within our spring window. This resulted in 336 bird years in the
343  first subpopulation and 18 bird years in the second subpopulation. These daily telemetry data are
344  the individual telemetry data we will use in our Integrated Movement Model. Figure 2 shows

345  daily telemetry data, with arrows pointing to successive days for each bird. Figure 2a shows all
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Figure 2: Daily spring GPS locations for 136 golden eagles in the western U.S and Canada,
with lines connecting sequential locations. The birds are divided into two subpopulations: (a)
those that spend the spring (Julian day 50 (February 19) and Julian day 105 (April 15) south
of the 51-degree latitude line (dashed line) and (b) those that move north of the line. Note
that colors repeat due to the number of individuals.

{a) Subpopulation 1 {b) Subpopulation 2
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346  tracked birds in the first subpopulation (those that did not cross the 51-degree latitude line) and
347  Figure 2b shows all tracked animals in the second subpopulation (those who did cross north of

348  the 51-degree latitude line).

349 For species distribution data, we used eBird relative abundance information from 2019
350  (Fink et al. 2019, 2021). The Cornell Lab of Ornithology has developed the Adaptive Spatio-
351  Temporal Exploratory Model (AdaSTEM; Fink et al. 2014; Fink, Damoulas, & Dave 2013),

352 which processes huge numbers of individual citizen-science records, accounts for spatial

353  heterogeneity in sampling effort, observer skill, and rarity of species to estimate the relative

354  abundance of a species over space and time (Fink, Damoulas, & Dave 2013). This eBird relative
355  abundance information is available at a 2.8x2.8km resolution, for each week of the year,

356  throughout the entire distributional range of a given species. We subset the relative abundance
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Figure 3: Weekly distribution of golden eagles in the western U.S. and Canada during spring
2019, obtained from eBird status and trends.

Julian Day 45 Julian Day 52 o Julian Day 59

e e i i |

Julian Day 87 Julian Day 34 JulianDay 101 =

357 down to just the western U.S., aggregated to 100-km resolution, and normalized the gridded
358 relative abundance to sum to unity. This weekly, normalized, eBird relative abundance is the
359  species distribution data we will use in our Integrated Movement Model. Figure 3 presents this

360  weekly species distribution data, showing the partially-migrating nature of golden eagles, with
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361  some of the population migrating north to Alaska and northwestern Canada, while some of the

362  population remains in the western U.S.
363  2.2.2 A Hierarchical Integrated Movement Model for Golden Eagles

364 We now illustrate our integrated movement modeling framework from Eq. 1-7 on the

365  spring telemetry and eBird relative abundance data of golden eagles. The class of individual

366 models we will consider are stochastic differential equation (SDE) models, with movement

367  governed by a potential function (Preisler et al., 2004; Eisenhauer et al., 2022; Russell et al.,

368  2018). This class of models is particularly appealing for modeling migratory behavior because
369  potential functions provide a straightforward approach to modeling movement along gradients or

370 toward summer/winter ranges, however, as mentioned, other movement models could be used.

371 To model heterogeneity among individuals in a population, we consider a mixture model
372 approach in which there are multiple groups, or subpopulations, of animals. In theory, these

373  subpopulations can differ in any aspect of movement behavior, such as timing of migration,

374  distance, duration, or number of geographic centroids; however, for this example we will focus
375  on the location of geographic centroids. We will, for simplicity, assume that movement behavior
376  is fixed over time; this does not mean that an individual’s locations are fixed through time, but
377  that the parameters describing the subpopulation’s behavior do not change over time. In our

378  example analysis in the following section, we consider only movement during the spring

379  migration season — a time frame in which this assumption is appropriate.
380  2.2.2.1 An SDE Model for Tracking Data

381 We will first define an SDE for individual telemetry data, which will correspond to Eqgs.

382  1-3 in our general framework. Let xiz; be the telemetry location for the i-th animal in
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383  subpopulation p at time £. We modeled movement using an SDE, with movement in a quadratic

384  potential function centered around an attractive point mf which is specific to animal i. Let
dxb, = —2B,(xh, —mP)dt + o, dW" #(8)

385  where =2, (xft — m?) is the negative gradient of a quadratic potential function H(x) =

2 . . : . o
386 ﬁ(x — mf) evaluated at the location of animal i. In this SDE, an animal’s mean movement at
387  any given time is directly towards the attractive central location mf, with random variation

388  around that mean modeled using two-dimensional standard Brownian motion (W?t)).

389 To make SDEs numerically tractable for statistical inference, we consider a discrete
390  Euler-Maruyama approximation to the continuous time SDE (Eisenhauer et al., 2022; Russell et
391 al., 2018). This results in the following time-discretized model, where A is the time-step between

392  observations.

xboa=xb —28,(xh —m)A+ €, €. ~N(0,Ac2T)#(9)

393  Variations of the above general framework have been used in multiple studies of animal

394 movement to study a wide range of movement behaviors (Preisler et al., 2013; Eisenhauer et al.,

395  2022; Russell et al., 2018).

396 This model is a model for individual telemetry data and corresponds to Eq. 1 in our
397  general framework. For each animal there is an unknown attractive point mf, and for each
398  subpopulation there are population level parameters f and o,,. If we were fitting this model

399 alone to the telemetry data, the unknown parameters could be estimated using ordinary least
400  squares or maximum likelihood methods (Preisler et al., 2004; Russell et al., 2018; Eisenhauer et

401  al., 2022). However, once we pair this model with a population-level model for the species



bioRxiv preprint doi: https://doi.org/10.1101/2024.06.19.599581; this version posted June 22, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

22
402  distribution data, the resulting integrated movement model will be hierarchical and will be best

403  fit using Bayesian methods.

404 Following Eq. 2 in our general framework, we can assume that the individual-level

405  attractive points {mf} for individuals belonging to each subpopulation are located in relatively
406  similar spatial locations They can then be modeled in a typical hierarchical fashion where the
407  individual-level attractive points arise from a 2-dimensional Gaussian distribution with a shared

408 mean and covariance
mP~N(u,, Z,).#(10)

409  Allowing for multiple subpopulations is achieved by using a mixture of Gaussian distributions to
410  describe the population; mixture models are a flexible framework and are not limited to just two
411  mixtures of the same distribution. The mixture model would impose a statistical structure on Eq.

412 3 in our general framework.
413  2.2.2.2 An SDE Model for Population Dynamics

414  We now develop a model for the movement (or diffusion) of a population of birds under the
415  specific movement model in Egs. 9-10. This corresponds to Eq. 4-6 in our general framework. If
416  we assume that the initial distribution at time t = 0 of the p-th subpopulation is 2-dimensional

417  Gaussian with

75 ~N(gpo, Hpo)#(11)

418  and additionally marginalize over the distribution of attractive points (10), then the distribution
419  of the p-th subpopulation at time ¢ can be found sequentially using standard multivariate normal

420  distribution theory combining Eqgs. (9)-(11)
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T}l Gt Hpt"'N(ngA ’ Hpt+A)r #(12)
Gptin = 9pe (1 —28,A) + 2B,Ap,, #(13)
Hyeon = AG2I+ 4B20%E, + (1 — 28,) H,e, #(14)

Under this model, at each successive time step, the subpopulation distribution moves from its
initial distribution closer to a stationary distribution defined by the distribution of subpopulation

attractive points (Eq. 10).

At any given time, we assume that the full population is a weighted sum of the

subpopulation distributions (Eq. 7), with weights {w,,} summing to 1
T, = z w,m; . #(15)
P

The population dynamics under this model assume a population of animals, divided into
subpopulations, with individuals in each subpopulation having relatively similar spatial locations
of attractive points (Eq. 10) and each individual moving in a quadratic potential function
centered on their individual attractive point (Eq. 9). The population dynamics are extremely
straightforward to calculate in this model, as at any given time the population distribution is a

weighted mixture of 2-dimensional Gaussian densities with means {g,,} and covariance

matrices {H pt} that can be deterministically calculated using Eqs. 12-14.

The key need for integrated movement modeling is a clear approach for scaling from individual
to population level dynamics. In this example we address this need through a hierarchical
random effects approach, which makes population dynamics very computationally efficient to

compute and is one strong advantage of our probability-based approach for population dynamics
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437  (Egs. 4-6). There are other possible approaches, such as scaling from individual SDEs to their
438  population distribution Fokker-Plank equations (Gardiner 2009) or scaling grid-based movement
439  models like step selection functions to population-level differential equations (Fricks and Hanks
440  2018; Potts and Borger 2022), but the approach we propose here is notable for the simplicity of

441  the calculations required for the population dynamics.
442  2.2.2.3 An SDE Model for Species Distribution Data

443 We now propose a model for species distribution data at a given time, which has a mean
444  equal to the population distribution in (15). At time ¢, we assume that the species distribution

445  data is in gridded form, with sd;(x) being the proportion of the population at the grid cell with
446  center x at time t. We assume that the species distribution data is normalized, and thus sums to 1
447  over all spatial grid cells (i.e., relative abundance). We want a probability model for sd, =

448  {sd.(xy),sd:(x;),...sd;(xy)}, the vector of observed species distribution relative abundances,
449  with mean equal to the population distribution in (15). We propose a multinomial distribution for
450  a scaled version of the species distribution data. Let N be a positive integer and let .;Elt =

451  round(N - sd;) be a vector of closest integers to the scaled species distribution data. We

452  propose modeling this quantity as

—

sd,~Multinomial(N, m,)#(16)

453  where m; is given by (15). In this model, the scaling factor N is best thought of as a dispersion or
454  variance parameter, with smaller N leading to higher variance in the species distribution

455  probabilities. This provides a model for species distribution data that has a mean given by the
456  population model resulting from a population of individuals moving under our SDE model, with

457  aflexible variance, N, that can capture an appropriate level of mismatch between the species
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458  distribution and our model. Together, (9)-(16) provide an example of a set of models that satisfy

459  the requirements for an integrated movement model.
460  2.2.2.4 Fitting the Integrated Movement Model

461 As the JMM described above is a hierarchical model, we chose to take a Bayesian
462  approach to inference. For each subpopulation, we assign vague Gaussian and Inverse Wishart

463  priors to the subpopulation-level mean and covariance of these movement centers:
up~N(0,10151), Z,~IW (3, D). #(17)

464  As the movement parameter [ must be non-negative, we assign it a vague truncated normal
465  prior, constrained to be greater than zero and assign an inverse gamma prior for the variance

466  parameter o
B,~TN(0,10'%) - 1y _o), #(18)
62~1G(10,100). #(19)

467  We assign a Poisson prior to the scaling (or dispersion) parameter N from the species distribution

468  model, and vague priors to the initial subpopulation distribution means and covariances:
N~Pois(1000)#(20)
9,0~N(O0, 105D), H,,~IW(3, D). #(21)

469  For the population weights {w;,w,}, we assign a uniform prior to w,, with the constraint that

470  each population contain at least 10% of the population mass:

wy~Unif (0.1,0.9). #(22)
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We fit this model using a custom Markov chain Monte Carlo sampler, coded in R, with
adaptive tuning using the log-adaptive approach of Shaby and Wells (2010). We ran the sampler
for 4,500,000 iterations and assessed convergence visually. This chain took under 48 hours to
run on a single computer with a 16-core Intel I9 processor with clock speed 3.2GHz. Details on
the MCMC algorithm have been provided in Appendix A. We also conducted a simulation study,
by simulating both telemetry and species distribution data from the IMM model with all
parameters set at the posterior means; details of this simulation study are in Appendix B and

code and data to replicate the simulation are provided as supplemental material.

3 Results
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(a) Attraction to Movement Center

Subpop. 1
— Subpop. 2

(c) Movement Center Subpop. 1

Figure 4: Posterior distributions from selected parameters from the integrated movement
model analysis of the golden eagle datasets. Subpopulation-specific posterior means (a) and
standard deviations (b) for attraction to individual movement centers. The movement centers
{m}} for subpopulation 1 are centered in the conterminous U.S. (c), while the corresponding
movement centers for subpopulation 2 are spread along the migratory route to Alaska (d).
We estimate 34% of the total population is in subpopulation 1 (e). The dispersion parameter
N has posterior mean of 354 (f).
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Figure 4 shows results from fitting the integrated movement model to golden eagles in the
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western U.S. and Canada. Figure 4a-b shows posterior distributions for parameters f3,,, the
subpopulation-specific strength of attraction to an individual-movement center, and 2, the
subpopulation-specific variance parameter that captures both observation error and variation in
observed locations around the mean movement in equation (9). These estimates reveal that birds
in the north-moving subpopulation (p=2) are more highly attracted to their movement centers
than are birds from subpopulation 1 but also show more stochastic variability in their movement.
Figures 4c-d show the estimated distributions of movement centers (i.e., the estimated Gaussian
distribution of mf from Eq. 10, defined by the posterior mean estimates of the mean parameters
U, and variance-covariance matrix X,,) for subpopulations 1 and 2, with subpopulation 2

showing movement centers distributed along a migration pathway to the Northwest of the initial

Figure 5: Observed biweekly distribution of golden eagles in the western U.S. during spring
2019 according to the eBird Status & Trends data (al-4). Posterior mean of the distributions
of subpopulation 1 (b1-4) and 2 (c1-4). Pointwise posterior predictive mean of the observed
golden eagle distribution belonging to subpopulation 1 (d1-4) and 2 (el-4).

(d) eBird S&T Attributed (e) eBird S&T Attributed

(a) eBird S&T Data (b) Subpop. 1 (c) Subpop. 2 to Subpop. 1 to Subpop. 2
=
b
= - - L % ‘
o —_i‘*_ g | = 1 T raEaa —:_ R oy 2 | T - Ty
8 \ -
= .
@ | T ey = S R S = N I R B I TP MR
Z " H‘h ,

species distribution mass. Figure 4e shows the posterior distribution of w;, the proportion of
individuals estimated to be in subpopulation 1, and Figure 4f shows the posterior distribution for

the scaling/dispersion parameter N for the species distribution data (see Eq. 16).



bioRxiv preprint doi: https://doi.org/10.1101/2024.06.19.599581; this version posted June 22, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

29
494 To illustrate the estimated subpopulation behavior, Figure 5a shows a triweekly subset of
495  the eBird species distribution data and Figures 5b-c show posterior mean subpopulation
496  distributions for both subpopulations (Eq. 12-14). Figures 5d-e show the pointwise posterior
497  predictive mean percent of the observed eBird species distribution attributed to each
498  subpopulation over time. This was calculated pointwise for each pixel, with the shown posterior

o~

4 . .
L, where Py is the posterior

P1gtP2g

499  predictive mean percent for the g-th pixel calculated as

500  mean subpopulation distribution for subpopulation 1, and p, is the posterior mean

501  subpopulation distribution for subpopulation 2. Figures 5d-e illustrate how the integrated

502 movement model provides a formal approach for splitting an observed species distribution into
503  multiple subpopulation distributions, each with their own dynamics informed by observed

504 telemetry data.
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Figure 6: Comparison on the percentage of birds assigned to the migratory subpopulation is
misrepresented by the typical biased sampling of animals in telemetry studies (a) and the
attraction to individual movement centers for each subpopulation (b) using just telemetry
data, just species distribution data, and the integrated movement model.

(a) Proportion in Subpop. 1 (b) Attraction to Movement Centers

& .

. -

Telemetry Species Integrated ao Telemetry Species Integrated Telemetry Species Integrated
Distribution Distribution Distribution
505 In Figure 6 we illustrate how inference from the integrated model differs from a single

506  data source alone. First, telemetry data are almost seldom collected in a way that is

507 representative of the full population. In Figure 6a, we calculate the proportion of birds in our
508 non-migratory subpopulation using just the telemetry data. This inference is done using a

509  Bayesian approach with subpopulation membership modeled as a Bernoulli random variable
510  with proportion w; of birds in subpopulation 1 having the same prior (22) as in our integrated
511  analysis. As the telemetry data have a large proportion of non-migrating birds, the estimated
512  proportion of birds in this subpopulation is over 95%. However, once we jointly model the

513 telemetry data with the species distribution data, the estimated proportion in subpopulation 1 is
514  34% in our study region. Similarly, in Figure 6(b) we compare estimates of the subpopulation
515 movement parameters §; and [, from the telemetry data alone, obtained by fitting the model

516  defined by Eqgs. 9-10 and 17-18 with comparable estimates from the full integrated model. The
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517  inclusion of species distribution data results in estimates of lower attraction to the individual

518 movement centers — this is especially evident in subpopulation 1.

519 Figure 7 shows full probabilistic predictions of where animals who winter in a defined
520  spatial location (i.e., a management unit) will occur over the course of the spring migratory

521  season, something that would be impossible without an understanding of the spatial distribution
522  of subpopulations such as we obtained from our integrated analysis. Figure 7 shows the posterior
523  mean spatio-temporal distribution of the location of an animal beginning in central New Mexico
524  (shown by the black “X”) over the temporal range of our study. The predictions result from using

525  the estimated spatial proportion of birds in each of the two modeled subpopulations at the

Figure 7: Predictions of the spatial distribution of the population of birds beginning at the

[ 2

grid cell marked with an “x” through spring migration.

Week 7 Week 9 Week 11 Week 13

526  marked location (see Figure Sel) to weight the dynamics of each subpopulation, given that birds
527  in that subpopulation start in the marked location. This is accomplished through application of
528 the dynamics in equations (12)-(14), using posterior mean values for all parameters except for
529 the initial distribution parameters {g,, 920, H19, H20} Which are chosen so that more than 99% of
530 the entire initial subpopulation resides within 100km of the starting location marked by the black
531  “X” (by fixing g, to be the center of the grid cell and Hy,, to be a diagonal matrix with diagonal

532  entries chosen so that the edges of the grid cell correspond to the 0.005 and 0.995 quantile of the
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Figure 8: Proportion of individuals in subpopulation 2 though spring migration at two
different spatial locations (b).
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533  marginal Gaussian distribution in both the latitude and longitude directions). The predictions

534  show that a large number of birds are predicted to remain near the initial location, with a smaller,
535  but still significant, number of birds migrating North. In Figure 8 we show posterior mean

536  estimates of the proportion of birds in a given spatial location (shown by purple points) that are
537  in subpopulation 2, the more migratory subpopulation. In the light point in Canada, we estimate a
538 large early pulse of migrators moving through the location, while the dark point in Montana

539  shows an increasing proportion of migrators through the spring migration.

540

541 4 Discussion

542 In this manuscript, we demonstrate a general framework for Integrated Movement
543  Modeling that combines both individual telemetry and species distribution data. We show how
544  this approach addresses the challenge of simultaneously quantifying movement dynamics at the

545  level of whole species’ distributions while accounting for variation in movement behavior across
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546  individuals and subpopulations. By applying this approach to spring migration of golden eagles
547  in the western U.S, we demonstrate that the joint inference from both individual and species
548  distribution data has benefits that are not possible when making inference from just one data

549 stream.

550 There are several main takeaways from our modeling approach that come from the

551  golden eagle case study. First are the unique results that are obtained from the integrated

552 movement model, which contrast those available from each dataset individually. Foremost is the
553  ability to directly estimate population-level parameters including the overall proportion of

554  migratory versus non-migratory individuals within the modeled range. For golden eagles, we
555  estimated that about 34% of the golden eagle western population belongs in subpopulation 1,
556  which is generally stationary throughout the migratory season. However, we would have

557  estimated that about 95% of the population is in subpopulation 1 if we had based our inferences
558  solely on telemetry data, a sample we know is not randomly chosen from the whole population.
559  This occurs because a disproportionate number of telemetered individuals remained south of 51-
560  degrees latitude, which is inconsistent with seasonal changes in the distributional range of the

561  species (Figure 3).

562 We are also able to uniquely generate fine-scale estimates of vital population level

563  processes, such as the proportion of individuals in a given location that belong to a subpopulation
564  and how this changes through time. This type of information has important implications for

565  determining habitat management targeted at different subpopulations (e.g., residents vs migrants)
566  and for identifying critical habitat types that are being used by all members of a population. Our
567 integrated framework allows us to estimate the degree to which factors that differ across space

568 and time may disproportionately affect a given subpopulation. For example, when assessing the
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569  environmental impact of a wind energy development project, we would like to be able to
570 differentiate the potential impact to year-round resident eagles separately from migratory
571  individuals. Similarly, we can generate information that is critical for the field of migration
572 ecology, such as estimates of the spatial distribution of a given population of birds that originated
573  from a specified starting location as they progress through the spring migration. This type of
574  fine-scale, connectivity information has been shown to be biased if based solely on tracking data,
575  without any additional data sources (Rushing et al. 2021). These predictions of migratory
576  pathways consider the estimated spatial proportion of birds in each of the two modeled
577  subpopulations, and the movement dynamics of each subpopulation, given that birds start in the
578  marked location. This information is critical for environmental impact assessments, such as
579  predicting the spatial overlap with proposed land use changes for individuals that may not
580 normally be considered residents of the area of interest. Predictions such as this can help
581  practitioners and managers obtain a more comprehensive measure of the spatio-temporal region
582 that is relevant for wildlife under their jurisdiction, as it provides quantified predictions of where
583  birds that winter in user-defined spatial regions could be over the course of a migratory season.
584  These are just some examples of information that are critical for wildlife conservation and
585  management that can only be obtained by using an integrated model or are improved by jointly

586  using both individual and species distribution data.

587 Here we focus solely on movement during the spring migration. Extending our modeling
588 approach to the full annual cycle of a migratory species is possible but would require that our
589  model be expanded to allow attractive points of each animal {mf} to change over time, to

590 coincide with migratory, wintering, and summering behavior. Extensions to our model such as

591 this are highly feasible given that our modeling framework is very computationally efficient.
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592  However, achieving this extension would require additional model development to adequately

593  capture the timing and variation of migration across a species’ range.

594 Similarly, in our case study we only considered the case where we had two pre-defined
595  subpopulations and pre-assigned each individual bird-year of tracking data to one of the

596  subpopulations. This captured the most obvious variation in migratory patterns of the data we
597  considered here, but for many other scenarios it would be more realistic to consider both a larger
598  number of subpopulations and to model each bird’s assignment to one subpopulation

599  stochastically. Selection of one of several plausible models, each with a different number of

600  subpopulations, could be done by using information criteria such as WAIC or DIC (Hooten and
601  Hobbs 2015), and placing a prior on each bird’s subpopulation assignment would result in a

602  straightforward mixture model extension of our existing model. As the number of subpopulations
603  increases, identifiability of subpopulations could be challenging, and we recommend that

604  researchers contemplating such analyses consider prior distributions that help identify different
605  subpopulations, for example, by ordering subpopulations by overall size, as is commonly done in
606  Bayesian nonparametric statistics. In addition, we modeled each bird year as independent of all
607  other bird years. However, to capture correlation among bird years from the same bird, one could

608  consider a time series prior on the attractive points {mf}, with correlation between successive

609  years.

610 Independent of potential extensions, the framework we propose leverages existing data and
611  methodologies across disciplines to make unique and robust inferences, allowing us to scale
612  individual movement behaviors to the population level. This approach has the potential to fill

613  critical information needs in the field of migration ecology, but most importantly, provide
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information critically needed to help conserve and manage species of wildlife that are declining

worldwide.
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