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Abstract: A basic tenet of linear invariant systems is that they are sufficiently described by either the
impulse response function or the frequency transfer function. This implies that we can always obtain
one from the other. However, when the transfer function contains uncanceled poles, the impulse
function cannot be obtained by the standard inverse Fourier transform method. Specifically, when
the input consists of a uniform train of pulses and the output sequence has a finite duration, the
transfer function contains multiple poles on the unit cycle. We show how the impulse function can be
obtained from the frequency transfer function for such marginally stable systems. We discuss three
interesting discrete Fourier transform pairs that are used in demonstrating the equivalence of the

impulse response and transfer functions for such systems. The Fourier transform pairs can be used to
sin(7tk/N)

yield various trigonometric sums involving Sin(ALk/N)

, where k is the integer summing variable and
N is a multiple of integer L.

Keywords: impulse response function; transfer function with singularities; marginally stable systems

1. Introduction

A linear time-invariant (LTI) system is sufficiently described by the unit impulse
response function (IRF). Given an LTI system with an unknown IRF, we can use any input
function to obtain the IRF. A conceptually simple way to determine a system’s IRF is to use
a unit impulse and unit step function as input. However, as a unit impulse has an infinitely
short duration and a unit step function has an infinitely long duration, they are not always
practical to produce in reality. A more practical and convenient input test function is the
rectangular function. For a discrete system, this corresponds to a sequence of uniform

. . 1, n=0,1
pulses. For example, let us have the input to a discrete LTI system as x1 [n] = { 0, otherwise
1,n=0,1,2

0, otherwise

h[n] =[1,0,1, —1, ...], which is an infinite sequence with the repeating pattern underlined.
For an LTI system, the standard method to find the system’s IRF is to inverse Fourier
transform the frequency transfer function H[k|] = Y[k]/X[k]|, where X[k] and Y[k] are the
discrete Fourier transform (DFT) of the input and output sequences, respectively. In this
example, however, inverse discrete Fourier Transform (IDFT) cannot be applied since a
singularity (pole) exists. In this article, we are largely concerned only with the singular
frequency transfer function (SFTF) of marginally stable systems. In general, deconvolution
via IDFT is not doable for SFTF and part of the information is considered lost [1].

To be more general, let the input sequence x[n] have L consecutive unit impulses, i.e.,

x[n]_{l,ogngL—l
0, n>L
values, y[n]. The last non-zero value in y[n] occurs at index L, — 1,i.e.,, y[n] =0, Vn > L,
and y[n] # 0 for n = L, — 1. In this study, we are confined to finite L and L,. To find
the IRFE, h[n], we can carry out a time-domain deconvolution via polynomial division or a

and the corresponding output is v [n] = { . It can be seen that the IRF is

. The corresponding output of an LTI system is a sequence of real
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recursive sum (e.g., [2,3]). Alternatively, the IRF for the above defined x[n] can be found
through the convolution sum y[n] = Y, _, h[m]x[n — m] as

_ Jylnl—yn—1], 0<n<L-1
h[n]{yy[n]yy[anh[nL], n>L" @

Since y[n] = 0 for n > Ly, h[L, + 1] = h[L, — L +1]. h[n] becomes periodic with a period
of L starting at max(Ly —L+1, 0) or sooner, where max is the maximum operator. The
number of independent points in h[n] is M = max(L, + 1, L). h[n] can alternatively be

expressed as
W) = Y2, lmlqln —m) + hn — Ljun — L], @

1, m=0
where q[m] = { -1, m=1 ,and u[m] = {(1)2 i 8 is the unit step function. In general,

0, otherwise
such an LTI system has an infinite IRF.

Fundamental to LTI systems is that they are sufficiently described by either h[n] or
its Fourier transform, the frequency transfer function H[k] (e.g., [3,4]). If h[n] and Hk|
are indeed equivalent in characterizing an LTI system, a logical conclusion is that we can
always obtain one from the other. The fact that we cannot find h[n] from a singular H|k|
via IDFT may not be because H|[k] has incomplete information but because we have not
found the right way to carry it out. Otherwise, we have to admit H[k] and h[n] are not
always equivalent. The problem appears to be simple and yet fundamental to LTI systems.
Although LTI theory is very mature, obtaining IRF from an SFTF has not received much
attention. Despite extensive searches in the Web of Science database and the open internet,
the author cannot find any references on the direct conversion from SFTF to IRF. There are
possibly two reasons for this: (1) we cannot apply DFT or IDFT when there are singularities;
(2) alternative ways, such as polynomial division, can be used to obtain h[n]|. General
discussions on the zeros of the discrete-time system can be found in [5,6]. The stability of
fractional oscillators is analyzed by Li et al. [7]. Schluter and Darup [8] showed that linear
dynamic controllers with integer coefficients are usually unstable. Park et al. [9] discussed
uniformly marginally stable zeros of linear sampled data systems and its application to
stable inversion-based control. In the following, we demonstrate that we can recover h[n|
from HJk] when X[k|, the DFT of the input function, is a sinc function.

To describe the problem more precisely, let us consider the details of H[k]. To perform
the discrete Fourier transform (DFT), we zero-pad x[n] and y[n] to N elements. Let X [k] and
Y[k] be the DFT of the zero-padded sequence of x[n] and y[n], respectively. The N-point
DFT of x[n] is defined as

X[k = YNV xfn]e RN k=0 ... N-1. 3)

<n<L-—
In this article, we restrict our input to x[n] = {(}’Sz Z < ;_11 Forke N={0,1,... N—1},
we have kL_ B
-1 _pmk  1-—W _ sin(7ty Lk)
X[k] = N = — WL—Dk/2 ) 4
K] =) o€ 1— Wk sin(7tynk) @)

where Ty = § and W = e 27N X[k] has zeros at k = 1Y, wherel € {1,...,L —1}. We

denote the set of the zeros of X[k] as k, = {%, e w } Denoting Y[k] as the N-point
DFT of y[n], i.e., Y[k] = Zs”:}l y[n]W", k € N, the frequency transfer function is thus
Y[K] 1— Wk
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The poles, which characterize the stability of a system, are at k,, which are all on the unit
cycle in the corresponding Z-transform and H[0] = Y[0]/L. Such a system is considered to
be marginally stable [10]. IDFT cannot be directly performed on H k] to obtain h[n| when
there are singularities.

If we limit our objective to obtain h[n]| from H k], we may attempt to avoid poles in
H{k]. As we are concerned with discrete operations, we can sample H k] in such a way that
there are no poles. In fact, when N is not divisible by L, H[k] does not necessarily have
a singularity. In this first approach, the inverse transform, however, does not yield h[n],
as shown in Figure 1. In this example, N =17, L =3, y[0:4] = 0,and y[5: N —-1] = 0.
Alternatively, when N is divisible by L, we can assign a large value at k = k, to attempt
for an approximation of /i[n]. We show an example of this second approach in Figure 2,
where N =16, L =2,y[0:6] =1, y[7: N — 1] = 0, and H][k,] = 10'°. The approach does
not work in two aspects. The h[n] computed from the IDFT method yields values propor-
tional H|[k,] we artificially set and it is not even proportionally correct at the beginning
indices. This invalidates the notion that a large enough real value is a reasonable numerical
approximation when there is a zero in the denominator.

N,L,Ly=17 3 5

1
c
= 0
—e fft
o true
-1 © ° —0—0
0 5 10

Figure 1. An example showing that h[n] obtained by IDFT is not correct when N/L is not an integer.
Red stems are the results from IDFT, while blue circles represent the true h[n].

N,L Ly=16 2 7

RS

l o true

[ 1]

gl o000
0 5 10
n

Figure 2. An example showing that hi[n] obtained by IDFT (red) is not correct when H|[k,] is set to
1010, Note that, in this case, the IDFT results, as indicated by the red symbols, are scaled down by
10~. Blue circles represent the true h[n] values.

In the following, we show that when the input function x[n] is a rectangular function
and the output y[#n] is a finite length sequence, h[n] can indeed be recovered from X[k] and
Y[k] when N is divisible by L. Before we delve into the proofs, we outline our method
of obtaining h[n] from H[k| in Section 2. The proof of our method is facilitated by three
interesting discrete Fourier transform pairs, which are discussed in Section 3. Each of the
three DFT pairs is presented as a lemma. Section 4 contains the proof of our method and
we point out some potential questions to be explored further in Section 5.
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2. Summary of the Solution
Let N be divisible by L throughout the following discussion, and we define
2[4 0, k€ ko ©)
= 1-wk _ L—1)k sin(7nk) ’
1-WEL = el snomeii K€ ko

and H; [k] = Y[k|Z[k]. Hy[k] sets the poles of H[k] to zeros but otherwise is the same as
H{k]. Let the N-point IDFT of H; [k] be hy[n], i.e.,

hi[n] = % o Hi KW, 7)
From hy [n], we obtain hy[n] as
ha[n] = hi[n] 4+ hi[n + L], (8)

where L; = znt( )L with int being the integer operator. We construct h3[k| in the

following manner:

_ _ 9
hz[?l] o hz[n+Nh Lh]+gz[ﬂ+N;,+L Lh]’ N = (2m+1) ( )

sl :{ hy[n] — ha [Ny + 1), N = 2mL

where m is a positive integer, L, = int (%) ,and Ny, = int (% Alternatively, h3[n] can be

computed via the following operation:

2 Ly—1 N-1
~ 2 ym] Y F((k, m—n), N =2mL
h3 [n] — m 0 k=1, odd (9a)

1Ly_1 N—l, #ko
N o Bemem oy gL

where Fy(k,n) = W Z[k] (1 + W_le) and F(k,n) = F(k,n) [1 —ef”kcos(nNLk)] Fi-
nally, we duplicate h4[n] from h3[n] and make the following modifications:

I [1’1] _ { hg[ﬂ]+h4[n—M1],
4l = ]’13[Tl]+(h4[l’l—M2}+h4[l’l—M2—L])/2

M1§ TlSNh—l, N =2mL
MzSI’lSNh_—l, NZ(ZWI‘Fl)L

(10)

where M; = N, — L;, My = N — Lj,and N, = NZL. (hy[n] = 0if n < 0).

In the following, we demonstrate that when N > 2(L, +1), h3[n] = h[n] for
n<Y L if N=2mL and I3[n] = hin] forn < NzL — L[} if N = 2m+1)L. We
further demonstrate hy[n] = h[n] for n < N/2if N = 2 mL. In the next section, we present
three Fourier transform pairs that are used for the proofs.

3. Three Fourier Transform Pairs and Their Properties
3.1. Inverse Fourier Transform of Zy[k| and Properties of hy[n]
Defining Z[k] = Z[k](1 — 6[k]), we can rewrite hy [n], defined by (7), as

1 i1, 1 Ly—1
In] = 7)o ylm] + Zmy o ylmlgo[n —m], (7a)
where N N
qolm] =Y, W™ Zgk) =Y " W™ Z[K], (11)
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i.e., qo[m] and Zylk] = Z[k](1 — é[k]) form a DFT pair. In (7a), the index of gy can be
negative. Noting that W—"N = 1 and Z[k] = Z*[N — k], where * is for complex conjugate,
go[m] can be alternatively expressed as follows:

qolm] = 305 (W Z[K] + W NTRZIN — K)) (11a)
. a
= L 7Hcos (i (2m + L — 1)k) Sk
As gqo[m] and y[n] are real, 1y [n] is thus real as well. Since gg[m] is an IDFT, all the DFT/IDFT
properties apply, including the periodicity property, go[m] = qo[N + m].

Lemma 1. If N is divisible by L,

qo[m] = (Ny— — mo,N)d[m, L] — (N — mo,N +1)6[m —1,L], (11b)
where N, = NZE mo, = mod(m, N) is m modulo N, 6[m, L] = {%fﬁé;ﬂzf is the comb
function with a period of L, and 1 is the set of all integers.
Proof. Equation (11) can be written as
qo[m) = TN Ly, Wk Lyl Wk e e
EN N WS v‘(zvzlu

where Zfi IlN /1, indicates that the summation starts at i with an incremental of N/L and

ends at a value up to but not larger than N — 1. Since Wil = WIN/LHL for i € <, the
denominator in each summation does not vary with the summation index. The above
equation can be simplified to

N/L-1 W §[m, L] — W= m=Dkg[m — 1, L]

qo[m] =L) ., T Wk (114d)
If m is divisible by L and for m € N, we have
) ) N-1 )
qo[(i+ DL} —qofiLl] = =L, —— -1 > i> 0. (12)
If m — 1 is divisible by L,
. ) N-2
qo[iL+ L +1] —qo[iL+1] =L, T—l i> 0. (13)
Using the fact that WN=L = W~L, 40[0] through go[L — 1] are
L i 1 1
(0] = 5 :2 T WIF T i ) = Nie (14)
0[1] = —qo[0] = =Ny, (15)
qoll]=0, 1<I<L-1, (16)
As go[m] = go[N + m], the recursive Equations (12) and (13) lead to
Ny — mon, m/L el
qgolm] =< —Nj_+mgn—1, (m—1)/Lel (11e)
0, otherwise

The expression can be alternatively written as Equation (11b). [

Expression (11b) consists of two linear functions in one period for m = [0, N — 1]. Two
example plots of go[m] expressed as the sum of (11) and the closed form of (11a) are shown in
Figure3 for N = 20, L = 2and N = 45, L = 5. Lemma (1) shows that the sum expressed by
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Equation (11a), which happens to be the Fourier transform of Zy[k], has a simple expression.

For instance, letting m = 0, we have Zi\;l’ ko cos (in (L —1)k) sil?(gfl"Lklz) = % Similarly,

letting m = 1 leads to Z,I:];ll’ ko cos (mn(L+1)k) ;1?(%\,53) = -—NZL

N,L=20 2

—© summation

5 ® closed form
Tt 1]

c l | [X) l l
5+
1] 5 10 15
m
N,L=45 5
20 L 4
—© summation
® closed form
10 ®
o 0
-10 |
20 '® * * . A 4
0 10 20 30 40
m

Figure 3. Example plots to show that the summation expressed by (11a) is the same as the closed
form expressed in (11b). Note that 4o consists of two linear functions.

Other than being real and periodic, for i, k, m € I, g¢ has the following properties:
@) N=3qolm) =5, 5V qo[m] = 0;
(i) qo[iL] +qo[N —L—iL]=0;
(iii) qo[iL] = —qo[iL 4+ 1] = Nj_ — (iL)mo,y;
(iv) qo[iL+1]4+4go[N—L—-iL+1]=0;
(v)  qoliL] +qo[N —iL] = —L + NO[(iL)o,n];
(vi) qo[iL+1] +qo[N —iL+1] = L — NS[(iL)e,n]-

q0
q0

Theorem 1. Forl € L = {0, 1 ...L —1}, hy[kL +1] is a linear function of k for kL +1 >
max(L, —L+1,0) and hl[%} —0as N = .

Proof. From Lemma 1, (7a) can be expressed as

L,—1 Ly—1
NIl ~ ym] = E ylm{(Ni- — (1= m) W

din—m, L] — (Ny— — (n—m)g, +1)0[n —m—1,L]}.
Letting ny = kL 4 [ and np = ny + L, we have

il — halm] = X ] [0 = m)yy = 11 = ) )0l = = 1,1] = 8y —m, 1)), (18)

The condition for h; [kL + I] to be a linear function of k is that the above expression is in-
dependent of k. This condition is satisfied when n; > mand ny < N —1as (np — m)e, —
(mq —m)o,n = Land 6[ny —m —1,L] —d6[ny —m,L| = 5[l =m —1,L] — 6]l —m,L]. For
n1 < m, the right-hand side summation of (18) is zero if n1 —m —1 > —L + 1 due to
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dng —m—1,L) —8[ny —m, L] = 0. If max(Ly L+1,0) < n < Ly—2, hi[2L+mq] —
m[L+ny] =h[L+m]—hm] = £, oy[m](6[ng —m —1,L] — 8[n; —m, L]). Combin-
ing the cases for ny > m and n; < m proves the first part of the theorem.

When N — L + L, is even, we have

NI [ZN;I +Ly] Z:Ly 1y m) Zany T ypm ]{(_%+m)5[2NhE+Ly —m,L}+
(%—m—l)é[%—m—l,q}.

For finite L, and bounded y[m], all of the terms in the summation are bounded. As

N = oo, hl[N—Féy_L} = hl[%} — 0 for even N. When (N+ L, — L) or N is odd, the

same argument holds when N is replaced by N — 1. This proves the second part of the
theorem. [

(19)

When N is finite, | [n]| around n = N+§y s typically smaller than around n = N /2.

As the periodic linearity starts at L, — L + 1, the middle point of the linear region is at
N+gy L, which is the converging point of h;[n]. An example hy[n] is shown in Figure 4.

Two additional examples are provided in Section 4.

N, L, Ly=42 3 11

0 10 20 30 40
n

Figure 4. An example of hy[n]. In this example, N = 42, L = 3 and y is a train of 11 contiguous
unit impulses.
3.2. Inverse Fourier Transform of Z[k|é[k + 1, 2]

Let g1[m] and Z[k]|0[k + 1,2] be a DFT pair, i.e.,

mlim) = Yo, WRZKelk+1,2) = Y0 W[k, (20)
Lemma 2. If N/L is an even integer,
N
q1[m] = Z((S[m, L]—=d[m —1,L])by[m], (20a)

where by |[m] = &' [m%N <5- 1} — [m%N > g}

Proof. g;[m] in one period for m € Nis

N/4, m=0:L:(¥—L); ¥+1:L: N-L+1
b =y-n/4,  m=1:L:(¥-L+1); ¥iLiN-L- (21)
0, otherwise
The N-point DFT of g7 1[m] is

N

T gyt Stttk (s )

| Z

Qi [k] =
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The denominators of the four geometric sums are the same. The sums of the geometric
sequences can be reduced to

NZ[k], k= odd

0, k = even (222)

Qulk] = {

That is, g1 1(m) and Q1 [k] form a DFT pair. The IDFT of Q [k] recovers g;_1[m] for m € N:

N-1 m
k=1, odd W kz{k] = q1.1[m]. (20b)

As g1[m] = g1[N + m], a general expression for g1 [m] is Equation (20a), which can be
alternatively expressed as

gi[m] = (6[m — cm, L] — 8[m — 1+ cm, L] )N /4, (20c)

where ¢y, = int(Zmo,y) = FZ’ZM 0

Lemma 2 can also be proven by following the approach used in proving Lemma 1.
Like qo[m], q1[m] is real and periodic. Additional properties of g1 [m] include
i) INZaqulm] =T qalm] =0;
(i) qam=qpN-L+1-—m]
(ii)) q1[iL] = —q;[iL +1] = §bn[iL];

iv) qi[m] = —q [% +m}.

Following (11a), g1 [m] can be expressed as q; [m] = Z,I{\]: _1,1’07;; ° cos (ry(2m+ L —1)k) S;”}SZ\’IVka))

Lemma 2 shows that this sum of trigonometric functions has only three possible values. For

N-1, £k, in(rTyk N—1, #k, in(7rnk
example, Zk:L ojd cos (iy (L — 1)k) Sﬁ%\’;’ug) = %, and Ek:l, o?;d cos (ty (L +1)k) S?(S;TA’]VUB) =

— . Two example plots for go[m] are shown in Figure 5 for N =20, L =2 and N =30, L = 5.

N,L=20 2

—© summation
® closed form

q, (N/L=even)
o

—© summation |
® closed form

q, (N/L=even)

0 5 10 15 20 25
m

Figure 5. Example plots to show that the summation expressed by (20) is the same as the closed form
expressed in (20a). 41 has only three possible values.
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3.3. Inverse Fourier Transform of {1 — ej”kcos(nNLk)} Z[k]
We define
N-1 ,
plm = ¥ Wk {1 - e]”kcos(nNLk)}Z[k}
k=0 . (23)
— YN ok {1 - e]”kcos(nNLk)} Z[K],
ie., go[m] and [1 - ef”kcos(nNLk)} Z[k] form a DFT pair.
Lemma 3. If N/L is an odd integer,
golm) = 300, L) 0fn =1 L) by < Ny ) = ¥elm =Ny L=

6[m — Nyy — 1, L])8'[mo,y = Ny],

where Ny, = % and Nj,_ = %

Proof. As in the proof for Lemma 2, we take the N-point DFT of g,[m]| as expressed by
Equation (23a) for m € N

QZ [k] _ g %:OL:L (ka + W(Nh++1+m)k _ W(m+l)k _ W(Nh++m)k)' (24)

The sums of the geometric sequences can be reduced to

NZ[k](1—e/™cos(nmNLk)), k+#k
Qu[k] = [ }( ¢/ cos(mtn )) 7 ko (24a)
0, k= ko
As Z[k,] = 0, the above equation can be simply written as
Q,[k] = NZ[K] (1 - ef”kcos(nNLk)). (24b)
The IDFT of Q5 [k| leads back to Equation (23a) for m € N, i.e.,
N1 | Y, m=0:L: 8L —L; Ny, +1:L: N—-L+1
k[%) Wk [1 — ef”kcos(nNLk)]Z[k] =N m=1:L:%L_L4+1, Ny, :L:N—L. (25)

0, otherwise

Note that g2[Nj,_]= g, [Ny + 1] = 0. Since g2[m] = g2[N + m]|, a more general expression
for any m is Equation (23a). Alternatively, we can express Equation (23a) as

g2lm] = %[5("1 = ¢'m = Ny, L) = 8(m + ¢y =1 = Nyi.¢'m, L)], (23b)

where ¢/, = &' [mo,y > Ny ] + 30"[ (o, = Nj_ ) U(m4, = Nj,_ + 1)]. In this expression,
we have assigned ¢, = 1/2 at mo,5y = Nj_ or mo,5y = Nj_ + 1 to make g [m] zero at these
two points. Analogous to Equation (20a), Equation (23a) can also be written as

g0 {m + N;_L} = g(—é[m, L]+ 8[m —1,L])by[m], (23¢)

where b}\,[m] = 5/[111%1\] < Nh— — 1] — 5/[N —2L+1> Moy,N = Nh—]- (]
Other than the fact that g7 is real and periodic, additional properties include the
following:
. - i+(N-1 .
(i) 2%23 qo[m] = Zlml(ii )qz [m] =0,Viel;
(i) gqo[m]=q2[N—L+1—m];
(iii) g2[iL] + g2[iL +1] = 0.
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Note that g5 [m] = 2q,[m] for 0 < m < L(min(%, NZZ_L) — 1), where Nj and N, are
used to generate g1[m] and g, [m], respectively, and min is the minimum operator. Like
q1[m], g2[m] has only three values. The lengthiness in Expression (23a) is to account for the
positions of the three values. The number of positive values in g; per period is N/ L, while
there are N/L — 1 positive values in g, per period. Similar to Lemmas 1 and 2, Lemma 3

can also be used to find sums containing % Two example plots of g, [m] are shown

in Figure 6 for N=18, L=2and N=25,L =5.

N,L=18 2

= 5 —© summation | |
g ® closed form
o

1]
a 0
=3

N

o 5

0 5 10 15
m
N,L=25 5
® T —@
10

—_ —© summation

3 s ® closed form

(]

||

g 0

<

~ 5T

o

10|
0 5 10 15 20
m

Figure 6. Example plots to show that the summation expressed by (20) is the same as the closed form

expressed in (20a).

4. Equivalence to the Unit Impulse Response Function
4.1. Relationship of h3[n] and hy[n] with h[n]

Theorem 2. If N > 2(L, +1), h3[n] = h[n] for n < § — L; when ¥ is even; and h3[n] =
h[n] forn < NzL — L, when Y is odd.

Proof. Case 1: % is an even integer.
From the definition of 4 [n] and hy[n], we have

N 2 —L,-1 1 —rLy-1 N-1 itk
by {n n 2] = Yyl 4 Ty Bl ™ (26)

From Equation (9) and Lemma 2, we have

ol = = Yyl In = ] a4 Ly — ) @)

The minimum value for n —mis —L, +1. Whenn +L; —m < 0, q1[n+L; —m]) =
qiIN+n+L—m]=0sinceN+n+L;—m>N—L+2. qi[n—m]=q[n+ L; —m]
0 under the condition that N > 2(Ly—1). Whenn+L;—m > 0Oand n —m < O,
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pin—m] = p[N+n—m] = —ql[%—i-n—m} = —q[n+ L; —m] under the condi-
tion that N > 2(L,+1). Thus, when n —m < 0, g1{n —m] +qi[n+L; —m] = 0 if
N>2(L,+1).Whenn—m>0andn+L; < ¥, g1[n —m] = q1[n + L; — m] as L; is zero
or a multiple of L. Thus,

hln] = 5 Long ylmlanln — ] = Y ylmlaln — m) + hln — Ljuln — 1] (27a)

This is the same as Equation (2). Therefore, if N > 2(L, + 1), hs[n] = h[n] forn < § — L;.

In order to produce M points (corresponding to index n = 0 : M — 1) accurately in
h3[n], the minimum N required is Ny, = 2max (L, +1,L) + 2L, — 2mod(Ly, L) — 1. For
example, if L, = 4, L = 3, Ny, = 4L, — 1 = 15. Since N/ L needs to be an even integer, N
should be 18 to authentically produce the first five elements.

Case 2: ¥ is an odd integer

Similar to Case 1 and applying Equation (10) for odd N/L and Lemma 3, h3[n] can be

written as 1

han] = Y0, yim)(aln — m] + qaln + Ly — m)). 28)

Using the same process as in case 1, h3[n] can be shown to be identical to h[n] for n <
—Ljand N > 2(Ly,+1). O

Corollary 1. hy[n] — hin] for finite nas N — oo.

Proof. For finite L and Ly, ha[n] = h3[n] + ha[n + Ny| = h[n] +hq[n + Np] +hq[n + Nj, + L]
as N — oo for finite n. From Lemma 1, hy[n + Nj,| = hi[n+ Nj, + L;] = 0 for finite n and
L;. Thus, hy[n] — h[n] for finite n as N — oo. The corollary states that h; [n] can be a good
approximation of h[n] if N is sufficiently large. (J

4.2. Relationship of hy[n] with h[n]

Theorem 3. If N > 2(L, + 1) and N/L is even, hy[n] = h[n] for 0 <n < &

Proof. Letn = kMy+ny, where My = N/2 — L;, k = int(n/M,), and n; = mod(n, My).
The recursive Equation (10) for even N /L can be written as

ha[n) = Yo halny + (k — i)M;). (10a)

When k = 0, hy[n] = h3[n] = h[n] for n < & —L;, as demonstrated in Theorem 2.
We just need to consider k > 1 and % —L; <n< % in the following. Note that
mod(ny + (k — i)M;,L) = mod(ny, L) for all integer k and n;. Using property (iv) of g1 [n]
and Equation (27), the above summation results in
2 L1

hy[n] = szy o YIm](qy[n —m] +g1[ny + Ly — ml). (10b)
When ny + L —m < 0, g1[ny +L;—m] = 0as n; +L; —m > —L + 2, which makes
qin —m] =0. Whenn; +L; —m > 0and n —m <0, q1[n — m]= —q[n1 + L; — m]. When
m+L—m>0andn—m >0, q1n—m|] = qi[n; + L; —m] for n < N/2. Thus, for
n—m>0andn < g, g1[n —m] = g1[n + L; — m], which leads to

haln NZ,&? oly m]q1[n —m] = h[n]. (25b)

The above is the same equation as (25a) except the applicable range for n is improved to
n<N/2.0

When % is an odd integer and n < Nj,_ — 1, the following recursive equation appears
to be true:
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hy[n] = hyn] + (hy[n — N + Lj] + ha[n — Ny_ + L — L]) /2. (29)

However, the author is unable to obtain a proof at this point.

4.3. Examples

1,0<n<2

0.3<n<N’ and output y[n] =

In our first example (N /L is even), input x[n] = {

{ 01 50 << " << ;f], with N being 36. h1[n] and hy[n] are plotted in Figure 7A, while h3[n] and

hy4[n] are plotted along with the true impulse response function, h[n], in Figure 7B. As seen
in Figure 7A, hy [n] starts to be periodically linear atindex 3 (i.e., L, — L 4 1). h3[n] is the
same as h[n] =[1,0,0,1,0, —1...] for the first N/2 — int(Ly/L)L = 15 points and hy[n] is
the same as h[n] for the first N/2 = 18 points in agreement with the above discussion. In
1,0<n <3

0,4<n<N’

the second example (N /L is odd), the input is x[n] = { and the output is

yln] = n—1,0<n<8

0,9<n<N '
hin)=[-1,1,1,1,0,2,2,2,1, =5, ...], with the periodic oscillations starting after six data
points. The periodic linearity for h[n] starts at index 6, as seen from Figure 8A. As indicated
in Figure 8A, h3[n] is the same as h[n] for the first (N — L)/2 — int(Ly/L)L = 8 data points.
In this case, N is not large enough for h13[n] to obtain all 10 independent points in hin]. hy[n],
which is computed from Equation (29), is the same as h[n] for the first ~>£ — 1 = 15 points.
In Figure 9, we show an example of relatively large L (80) and L, (149) with N = 4L. The
output sequence, y[n], is an integer array consisting of randomized numbers from 1 to 149.
hy[n] is the same as h[n] for the first 5 = 160 points, while h4[n] equals [n] for the first
% — L; = 80 points.

with N = 36. The impulse response function for this system is

e ; N’L’Ly=‘36 3 5‘ :
(o) —e h1

0) O h2

E . o o [ ]
> kL 1
= o ¢ls 2 ooefoTe ¢log
<

Figure 7. The upper panel is for /i [n] and h,[n] while the lower panel is for hi3[n] and h4[n] and the
true impulse response, h[n]. In this example, N = 36, L = 3 and Ly = 5. Note that /1[n] and h3[n] are the
same for n = 0:14, while h[n] and h4[n] are the same for n = 0:17.
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N,L,Ly=36 4 9
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Figure 8. Same as Figure 7 except that, in this example, N = 36, L =4 and Ly = 6. h[n] and h3[n] are
the same for n = 0:11, while h[n] and h4[n] are the same for n = 0:15.

N, L, Ly=320 80 149 _

200 [ ' '
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-200 © I & ! s | s
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Figure 9. An example plot for h{n], h3[n] and hy[n] with L = 80, L, = 149 and N = 320. Each element
in y[n] is a random integer from 1 to 149.

5. Conclusions

The frequency transfer function, H[k], of a linear time-invariant system is generally
considered to be equivalent to the unit impulse response function i[n]. The normal process
of obtaining the impulse function from the frequency transfer function via the DFT, however,
breaks down when the latter has singularities for discrete systems. This happens when the
input time-domain function is a uniform train of pulses and the transfer function contains
zeros on the unit cycle. We show that the frequency transfer function contains complete
information to determine the IRF in such a case. A broader fundamental question to be
answered is whether the IRF can always be determined from a frequency transfer function
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containing singularities. If the answer is positive, the ensuring question is how to find h[n|
from Hk| with any kind of pole in general.

Our method to obtain &[n] from H[k] involves performing the inverse Fourier trans-
form of the transfer function by excluding the poles to obtain a time-domain function, 11 [n].
We show that a linear combination of /11[n] and its shifts can yield k[n]. It is important to
note that the poles in the transfer function discussed here are all on the unit circle in the
z-domain. Such systems are marginally stable and h[n] is periodic after max(L, — L +1, 0)
points. The number of independent points in h[n], M, is the larger of Ly + 1 or L. Our
method requires the length of the discrete transfer function, N, to be at least 2M to correctly
capture the first M points in h[n]. It is of interest to explore whether it is possible to obtain
the first M points of h[n] using N < 2M.

In demonstrating that /[n] can be obtained using the DFT method, we have explored
three interesting Fourier transform pairs. These DFT pairs are used not only for obtaining
h[n] from H|[k] but can be used to yield various trigonometric sums involving %,
where N is a multiple of integer L and k is the summing integer variable.
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