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Abstract. We discuss robust estimations for the variance of

normally distributed random variables in the presence of in-

terference. The robust estimators are based on either ranking

or the geometric mean. For the interference models used, es-

timators based on the geometric mean outperform the rank-

based ones in both mitigating the effect of interference and

reducing the statistical error when there is no interference.

One reason for this is that estimators using the geometric

mean do not suffer from the “heavy tail” phenomenon like

the rank-based estimators do. The ratio of the standard de-

viation over the mean of the power random variable is sen-

sitive to interference. It can thus be used as a criterion to

combine the sample mean with a robust estimator to form

a hybrid estimator. We apply the estimators to the Arecibo

incoherent scatter radar signals to determine the total power

and Doppler velocities in the ionospheric E-region altitudes.

Although all the robust estimators selected deal with light

contamination well, the hybrid estimator is most effective in

all circumstances. It performs well in suppressing heavy con-

tamination and is as efficient as the sample mean in reducing

the statistical error. Accurate incoherent scatter radar mea-

surements, especially at nighttime and at E-region altitudes,

can improve studies of ionospheric dynamics and composi-

tion.

1 Introduction

In radar signal processing and in many other applications,

the data samples can often be modeled as a constant su-

perimposed on a normally distributed random variable. The

variance of the random process is an important parameter in

such applications. In some cases, the variance represents the

power of the undesired noise. In other cases, the variance is

the desired signal power, such as in our study here on in-

coherent scatter radar (ISR) signals. Our broad objective is

to explore methods that estimate the variance in a normally

distributed random variable accurately in the presence of in-

terference. The general problem falls under robust statistics

(e.g., Huber and Ronchetti, 2009; Wilcox, 2017). Specifi-

cally, we attempt to optimize ISR signal processing using

robust estimators.

An ISR, with a large aperture and high transmitting power,

measures the electron concentration and other state variables

in the ionosphere. Its versatility makes it the most impor-

tant ground-based instrument for ionospheric studies. Sev-

eral major ISRs started operation in the 1960s. Readers are

referred to Evans (1969) for the principle, capabilities, and

comparisons of the early facilities. An ISR typically trans-

mits a binary-phase code to increase the signal-to-noise ra-

tio. The received signal consists of sequences of altitude-

dependent in-phase and quadrature voltage samples, which,

upon decoding, can be used to obtain a variety of ionosphere

parameters such as electron density and electron and ion tem-

peratures (e.g., Zhou et al., 1997; Isham et al., 2000; Hysell

et al., 2014). An essential characteristic of the voltage sam-

ples is that they are normally distributed, with the variance

proportional to the electron density at the corresponding al-

titude. Because an ISR measures the tiny amount of power

scattered off the electrons and ions in space, averaging over

1000 samples is essential to derive ionospheric parameters.

In the absence of interference, a simple arithmetic average of

the voltage samples squared provides the best estimator for

the total power or power spectral density estimates, which
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form the foundation for the derivation of various ionospheric

and atmospheric variables. It is well known, however, that

the sample mean is susceptible to outliers. In many cases,

it is necessary to use other estimators to obtain meaningful

averages.

The ISR signal is subject to both active and passive inter-

ference. The former can be from other radars and TV sta-

tions. The latter can be from scattering off ships, satellites,

and other objects. The most significant interference source

for ISRs is micro-meteors, although they are the desired sig-

nal in the context of meteor studies (e.g., Zhou et al., 1995;

Chau et al., 2007; Li et al., 2023). Meteor echoes come in di-

verse strengths and durations and provide the physical basis

for constructing the interference model in our simulations.

The incoherent scatter radar signal provides a textbook case

for a normally distributed random variable that exists in na-

ture. The high sensitivity of an ISR makes it susceptible to

various types of interference. ISR signals thus provide a good

test bed to evaluate the performance of various estimators.

In the following section, we discuss the statical character-

istics of various estimators and compare their performance

through theoretical analysis and numerical simulations for

different interference scenarios. The aim here is to find an

estimator that performs well with and without interference.

In Sect. 3, we compare the performance of several estima-

tors for total ISR power and Doppler velocity processing. We

show that the hybrid estimator performs best for practically

all the interference scenarios, and it is essentially as effective

as the sample mean in reducing the statistical error.

2 Characteristics and comparison of mean power

estimators

2.1 Signal and interference models

Let X be an independent identically distributed normal ran-

dom variable having N =N1N2 data samples organized as

X =











x11 · · · x1N1

...
. . .

...

xN21 · · · xN2N1











.

For radar and many other digital sampling systems,

X ∼N(0,σ 2) can be regarded as voltage samples. Y =
{

1
N1

∑N1

n1=1x
2
1n1
, 1
N1

∑N1

n1=1x
2
2n1
, . . ., 1
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repre-

sents the power random variable with N2 elements. Each el-

ement in Y is a sample mean of N1 raw power variables, X2.

The expectation of Yi is σ 2
0 , which is the variance of X. We

strive to estimate σ 2
0 most accurately, given samples of X.

As there are many types of variances, we will call estimating

σ 2
0 “power estimation” to be specific and to minimize confu-

sion. In the absence of interference, Yi can be shown to have

a gamma probability density distribution (pdf):

f
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are the shape and scale parameters, re-

spectively, and the support of y is (0,∞) (e.g., Wikipedia,

2024b). The corresponding cumulative distribution function
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where γ (s,x)=
∫ x

0 t
s−1e−tdt is the lower incomplete

gamma function. Distribution function f (y) can also be

viewed as a N1-degree chi-squared distribution scaled by

N1. The variance of Yi is
2σ 4

0

N1
. The distribution functions

at N1 = 1, 2, and 8, which we will study in more de-

tail, are f
(

y; 1
2
,2σ 2

0
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= e

− y

2σ2
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, respectively. At large N1, the pdf is

approximately normal, f
(

y; N1
2
,

2σ 2
0

N1

)

∼N
(

σ 2
0 ,

2σ 4
0

N1

)

. Of par-

ticular interest is the case of N1 = 2, which corresponds to

the in-phase and quadrature samples in a radar system.

The interference is also modeled as a gamma distribu-

tion with a shape parameter of k = 4 and scale parameter

(aησ0)
2/k, which has a mean of a2

ησ
2
0 . Since we are mainly

concerned with the signal shape parameter being 1/2 and 1,

a larger shape parameter in the interference model makes

it easier to differentiate between interference and signal, as

the interference is more concentrated around a higher mean

value. The interference is equally likely to occur at each data

point, with a probability of pη = 0.01, and is always additive

to the signal. The total interference power relative to the sig-

nal power is thus pηa
2
η . We will mainly consider three cases

of interference with aη = 2, 6, and 18 to represent low, mod-

erate, and strong interference, respectively.

2.2 Estimators and their characteristics in the absence

of interference

The most common estimators are the sample mean, geomet-

ric mean, and median. The sample mean of Y is the arith-

metic average of N2 samples, i.e., AN ≡ 1
N2

∑N2

i=1Yi , where

Yi is the sample mean ofX2 averaged overN1 samples. With

a known shape parameter, the sample mean is the uniformly

minimum-variance unbiased estimator (UMVUE) and max-

imum likelihood estimator (e.g., Siegrist, 2022; Wikipedia,
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2024a). The geometric mean,GN ≡
(

∏N2

i=1Yi

)1/N2

, and me-

dian, DN ≡ med(Y1, . . .YN2
), are more resistant to outliers

but not effective in reducing the statistical fluctuations. Al-

though the three basic estimators are largely at the opposite

ends of efficiency vs. robustness, they can serve as building

blocks for other estimators. In the following, we discuss the

three basic estimators and compare them with a weighted

mean, a hybrid estimator, and two trimmed estimators.

The effectiveness of a power estimator, Z, in reducing the

statistical fluctuation is measured by the normalized variance

R2(Z)≡
Nσ 2

z

2µ2
Z

, (3)

where σ 2
z and µZ are the variance and mean of the power

estimator while the absolute error is of importance in some

cases as well. For the sample mean estimator, AN , its dis-

tribution is expressed by Eq. (1) with N1 replaced by N .

E(An) is σ 2
0 and the variance is 2σ 4

0 /N . The theoretical ex-

pectation of R2(An) is thus 1 for the sample mean, which

is the lowest that one can obtain. The inverse of R2(Z) is

the efficiency of the estimator. It is of interest to note that

since N averages can be expressed as the weighted means of

N1 and N −N1 samples, it follows that the convolution of

two gamma distributions remains a gamma distribution. This

convolution invariance property is also true of most com-

monly used distributions, including binomial, Poisson, nor-

mal, and chi-squared distributions. In general, if the distribu-

tion function of the sum or mean remains the same type for

different numbers of samples, it is convolution invariant.

The median and its variance do not appear to have a closed

form for N1 and N2 in general, although there are closed

forms for specific N1 and large N . Here we derive the theo-

retical results for N1 = 1, 2, 8, and large N . For large N2 and

an ascending ranking order K relatively close to N2/2, Zhou

et al. (1999) show that ranking has an asymptotic normal dis-

tribution, with a variance of σ 2
N2K

= K(N2−K)
N3

2 f
2(µr)

, where µr is

the ranking value (e.g., K =N2/2 for median) and f (µr) is

the pdf for the rank random variable, i.e., Eq. (1) for our study

here. For the median estimator, the normalized variance is

R2(DN )=
N1

8f 2(µr;N1/2,2/N1)µ2
r

. (4)

The median can be solved from F(µr)= 1/2. For N1 = 1,

the median is 2ierf2
(

1
2

)

σ 2
0 = 0.4549σ 2

0 , where ierf is the in-

verse of the error function 2√
π

∫ x

0 e
−t2dt . For N1 = 2, the me-

dian is µr = σ 2
0 ln2 = 0.6931σ 2

0 . The median for N1 = 8 is

0.9180σ 2
0 , which can be solved from γ (4,4µr)= 3. For large

N1, the pdf tends toward normal and the median tends to-

ward σ 2
0 . The R2(DN ) values for N1 = 1, 2, 8, and 100 and

N = 10000 are 2.7206, 2.0814, 1.6848, and 1.5760, respec-

tively. In the limiting case of N1 and N2 tending toward in-

finity, R2(DN )= π/2, indicating that it takes π/2 times the

number of samples for the median operator to achieve the

same error as the sample mean. Zhou et al. (1999) also show

that taking the 79.7 % largest value gives the smallest R2 at

1.5432. (in Zhou et al., 1999, π/2 in Eqs. 24 and 26 should

have been 2/π .)

In Table 1, we list the R2 values and the absolute errors

for eight estimators in the null-interference case. The sec-

ond column is the mean of each estimator without scaling

for σ0 = 1 (the mean is proportional to σ 2
0 ). To compare the

different estimators on the same scale, the mean is divided

by the respective estimator so that all the estimators in all the

cases have a mean of 1 for all subsequent computations in the

other columns in Tables 1 and 2. The values not in parenthe-

ses listed in the two tables are at least 100 000 Monte Carlo

simulations with N = 10000 for all estimators except HN .

The values in parentheses in Table 1 are theoretical predic-

tions that we can derive.

The mean and variance of the geometric mean (GN ) can be

obtained by first finding the expectation and variance of one

element, Y
1//N2

i , in the product. The expectation of Y
1//N2

i is

E
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)
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∞
∫
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Assuming that Yi’s are independent, the expectation, second

moment, and variance of the geometric mean are, respec-

tively,
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The normalized variance for the geometric mean, R2(GN ),

is thus

R2(GN )=
N1N2

2


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This equation is precise for all N1 and N2. E(GN ) and

R2(GN ) values for N = 10000 and N1 = 1, 2, 8, and 100

are listed in Table 1. We are not aware of a precise distribu-

tion function for GN in general. For the asymptotic case of
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Table 1. Monte Carlo simulations and theoretical values (in parenthesis) of the mean, R2, and absolute error for eight estimators when there

is no interference.

Method N1 Mean (theory) R2 |Error|

AN 1 1.0000 (1) 1.0020 (1) 0.0113

N = 10000 2 1.0000 (1) 0.9994 (1) 0.0112

8 1.0000 (1) 1.0077 (1) 0.0113

100 1.0000 (1) 0.9945 (1) 0.0113

DN 1 0.4549; (0.4549) 2.7149; (2.7206) 0.0186

N = 10000 2 0.6930 (ln2); 2.0927; (2.0814) 0.0162

8 0.9176 (0.9180) 1.6980; (1.6848) 0.0147

100 0.9917 (1) 1.5614; (1.5760) 0.0150

GN 1 0.2808; (0.2808) 2.4841; (2.4672) 0.0178

N = 10000 2 0.5615; (0.5616) 1.6487; (1.6447) 0.0144

8 0.8780; (0.8780) 1.1377; (1.1352) 0.0120

100 0.9901; (0.9901) 1.0028; (1.0100) 0.0114

T95 1 0.7589; (0.7590) 1.1480; (1.1423) 0.0121

N = 10000 2 0.8424; (0.8430) 1.0901; (1.0898) 0.0117

8 0.9317; (0.9320) 1.0434; (1.0431) 0.0116

100 0.9839; (0.9835) 1.0198; (1.0178) 0.0114

TMAD8 1 0.8742 1.6973 0.0147

N = 10000 2 0.8425 1.0769 0.0117

8 1.0000 1.0075 0.0113

100 1.0000 0.9984 0.0113

TGEO4 1 0.9979 1.0185 0.0114

N = 10000 2 0.9884 1.0763 0.0117

8 0.9987 1.0210 0.0114

100 1.0000 0.9984 0.0113

WN 1 0.9576 1.0419 0.0115

N = 10000 2 0.9563 1.0431 0.0115

8 0.9888 1.0167 0.0114

100 1.0000 0.9995 0.0113

HN 1 0.9576 1.0102 0.0360

N = 1000 2 0.9563 1.0178 0.0356

8 0.9888 1.0001 0.0357

100 1.0000 1.0052 0.0358

large N2, Zhou et al. (1999) show that the geometric mean

tends toward the normal distribution, with the variance as

Var(GN )
∣

∣

N2→∞ =
E2(GN )σ

2
ln

N2
, (11)

where σ 2
ln is the variance of ln(y). σ 2

ln is known to equal the

trigamma function (ψ1

(

N1
2

)

; e.g., Wikipedia, 2024a). Thus,

R2(GN )
∣

∣

N2→∞ =
N1σ

2
ln

2
=
N1

2
ψ1

(

N1

2

)

. (12)

For the trigamma function, ψ1

(

1
2

)

= π2

2
, ψ1(1)= π2

6
,

and other ψ1

(

N1
2

)

values can be found from the re-

currence relation ψ1(z+ 1)= ψ1(z)− 1/z2. The asymp-

totic R2(GN ) for N1 = [1,2,8,100] and N = 10000 is

[2.4674,1.6449,1.3529,1.010], respectively. They are accu-

rate to the third decimal place compared to the exact values

obtained from Eq. (10) for N2 = 10000. For large N1 and

N2, R2(GN )∼ 1+ 1
N1

, which gives the number of initial av-

erages, N1, needed to achieve a certain level of efficiency for

the geometric mean. The expectation of GN for large N2 is

found to be

E(GN )
∣

∣

N2→∞ ∼ σ 2
0

(

1 +
2

N1N2

)

e
− 1
N1

− 1
3(N1+2/N2)N1

∼ σ 2
0 e

− 1
N1

− 1

3N2
1

(13)
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Table 2. Mean and R2 values for low, moderate, and strong interference. The interference occurrence rate is pη = 0.01 for all three interfer-

ence scenarios.

Method N1 aη = 2 aη = 6 aη = 18 Avg

Mean R2 Mean R2 Mean R2 R2

AN 1 1.0400 1.0166 1.3599 4.8437 4.2393 36.507 14.122

N = 10000 2 1.0400 1.0091 1.3600 4.8794 4.2404 36.127 14.005

8 1.0400 1.0136 1.3601 4.8697 4.2391 36.015 13.966

100 1.0400 1.0193 1.3600 4.8984 4.2396 36.411 14.110

DN 1 1.0237 2.7454 1.0239 2.7388 1.0238 2.7317 2.7486

N = 10000 2 1.0290 2.1082 1.0294 2.1277 1.0295 2.1273 2.1211

8 1.0394 1.7302 1.0555 1.9460 1.0554 1.9503 1.8755

100 1.040 1.6002 1.2779 8.9737 3.4042 111.64 40.738

GN 1 1.0278 2.4724 1.0488 2.5614 1.0717 1.6730 2.2356

N = 10000 2 1.0316 1.6650 1.0701 1.8519 1.1167 2.2247 1.9139

8 1.0375 1.1544 1.1467 2.0017 1.3376 5.1570 2.7710

100 1.0399 1.0310 1.3147 4.3308 2.9238 42.091 15.818

T95 1 1.0358 1.1711 1.0430 1.2202 1.0430 1.2239 1.2051

N = 10000 2 1.0380 1.1079 1.0561 1.2533 1.0562 1.2498 1.2037

8 1.0394 1.0594 1.1450 3.5711 1.7359 94.667 33.099

100 1.0400 1.0394 1.3243 4.8256 3.7994 41.530 15.798

TMAD8 1 1.0284 1.7843 1.0080 1.6774 1.0080 1.6714 1.7110

N = 10000 2 1.0398 1.0910 1.0056 1.1300 1.0020 1.0801 1.1004

8 1.0399 1.0143 1.1085 3.1179 1.0003 1.0893 1.7405

100 1.0400 1.0193 1.3601 4.9145 4.2330 39.909 15.281

TGEO4 1 1.0380 1.0343 1.0087 1.1344 0.9993 1.0159 1.0615

N = 10000 2 1.0280 1.0885 0.9996 1.1170 0.9981 1.0328 1.0794

8 1.0400 1.0287 1.0758 2.4126 1.0032 1.1384 1.5266

100 1.0400 1.0310 1.3600 4.9090 3.9775 54.270 20.070

WN 1 1.0390 1.0625 1.0074 1.1054 1.0001 1.0429 1.0703

N = 10000 2 1.0400 1.0558 1.0115 1.1304 1.0098 1.0415 1.0759

8 1.0400 1.0246 1.1078 3.1480 1.0001 1.0996 1.7574

100 1.0391 1.0223 1.3501 4.9301 4.0907 41.158 15.703

HN 1 1.0392 1.0236 1.0162 1.1090 1.0092 1.0462 1.0596

N = 1000 2 1.0377 1.0447 1.0124 1.1290 1.0112 1.0447 1.0728

8 1.0407 1.0199 1.1247 3.3169 1.0101 1.1043 1.8206

100 1.0409 1.0231 1.3648 4.9272 4.1395 41.780 15.910

using the approximation ln(0(z))∼ z ln(z)− z− 1
2

ln(z)+
1

12z
+ 1

2
ln(2π) (Wikipedia, 2024b). The variance of GN at

large N2 is

Var(GN )
∣

∣

N2→∞ =
E2(GN )σ

2
ln

N2

=
ψ1

(

N1
2

)

N2
σ 4

0 e
− 2
N1

− 2

3N2
1 .

(14)

In Table 1, we list the theoretical values of the geometric

mean and R2 and their comparisons with the simulated val-

ues. We see that the theoretical values agree with simulations

very well for all three basic estimators in the various scenar-

ios.

As the median and other ranks are not efficient in reducing

the statistical fluctuation, one can average the data within a

certain percentile range, which is known as the trimmed or

truncated mean. Since interference is additive, we will only

be concerned with one-sided trimming below a fraction of

β. Let b be the integer value of βN2. The trimmed mean

at β is Tβ ≡ 1
b

∑b
j=1sort(Yi)j , where sort(Yi) is Yi sorted

into ascending order. Let F(yβ)= β, µβ = 1
β

∫ yβ
0 yf (y)dy

and σ 2
β = 1

β

∫ yβ
0 y2f (y)dy−µ2

β . Stigler (1973) shows that

the asymptotic mean and variance of Tβ for large N2 is

E(Tβ)= µβ and σ 2
T =

[

σ2
β
β

+ 1−β
β (yβ−µβ)2

]

N2
, respectively. The
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normalized variance for the trimmed mean is thus

R2(Tβ)=N1

σ 2
β + (1 −β)(yβ −µβ)2

2βµ2
β

. (15)

In the following examples, N = 10000, β = 0.95, and σ0 =
1. If N1 = 2, then yβ = 3.843, µβ = 0.7590, σ 2

β = 0.7747,

and R2(T95)= 1.1423. If N1 = 2, we have yβ = 2.995,

µβ = 0.8422, σ 2
β = 0.5027, and R2(T95)= 1.0898. When

N1 is 8, then yβ = 1.9384, µβ = 0.9320, σ 2
β = 0.1645, and

R2(T95)= 1.0431. For N1 = 100, we have yβ = 1.2435,

µβ = 0.9835, σ 2
β = 0.0153, and R2(T95)= 1.0178. As seen

in Table 1, the R2 values agree with the simulation very well.

It is of interest to note that R2 is not 1/0.95 = 1.05 as intu-

ition might suggest. It varies from 1.142 atN1 = 1 to 1.018 at

N1 = 100. When N1 = 1, the tail is long and has more vari-

ations, leading to a large R2 value – a tail-wagging-the-dog

situation. More averaging makes the tail more stable and R2

smaller. This phenomenon, and the effects of a “fat tail” or

heavy tail, are extensively discussed by Resnick (2007) and

Taleb (2022).

To estimate a parameter robustly, we can attempt to iden-

tify outliers and exclude them from the average. Most of

the outlier classifying methods involve estimating a nomi-

nal deviation and using it in a threshold to detect outliers.

The median absolute deviation (MAD), defined as MAD =
med(|Yi − med(Y )|), is most frequently used to detect out-

liers (Huber and Ronchetti, 2009). Since only a small frac-

tion of the ISR data is contaminated most of the time, we

will classify a data point having 8 MADs above the median

as an outlier. The sample mean of all non-outlier points is

referred to as the TMAD8 estimator. When there is no interfer-

ence, R2(TMAD8) is 1.6973, 1.0769, 1.0075, and 0.9984 for

N1 = 1, 2, 8, and 100, respectively. There is a significant im-

provement in R2 from N1 = 1 to N1 = 8 because averaging

reduces the number of spurious outliers significantly in the

trimmed mean as discussed above. At N1 = 1, the propor-

tion of flagged outliers is about 0.2 %, while at N1 = 8 the

effective rate of flagged outliers is 0.0012 %. We note that

Rousseeuw and Croux (1993) present two robust estimators

that are more efficient than MAD, although more compu-

tationally intensive. With a normalized variance larger than

1.2, their estimators are better suited for heavy contamina-

tion.

As the geometric mean is resistant to outliers as well, it

may also conceivably be used to classify outliers. We de-

fine the geometric deviation as σG ≡GNe
σln(y)−GN , where

σlog(y)= std(ln(y)). The dimensionless eσlog(y) is known as

the geometric standard deviation. σG is zero if all samples

in Y are a constant and increase in proportion with Y , al-

though σ 2
G does not have the usual properties of the variance

as commonly defined. We average all the data points 4 geo-

metric deviations below the geometric mean and refer to the

estimator as TGEO4. TGEO4 and TMAD8 are chosen to have al-

most the same normalized variance at N1 = 2, as they flag

out the same number of outliers in the absence of interfer-

ence. When N1 = 1, TGEO4 has a far better R2 value in the

null-interference case.

Weighted means can also be used to mitigate the effect

of outliers and interference. In this method, values far away

from the expected mean are weighted less than those points

around the mean. The weighting function we choose is wi =

e
− (yi−mG4)

2

40σ2
G4 , where mG4 and σG4 are the sample mean and

standard deviation of the TGEO4 estimator discussed above.

The mean values of WN for various N1 are listed in Table 1.

In the null-interference case,R2(WN ) is no larger than 1.046,

or the efficiency is no less than 95.6 %. If the constant 40 is

changed to 60, the worstR2 becomes 1.031, but the weighted

mean is less effective in mitigating the effect of outliers. The

mean and standard deviation of TGEO4 are chosen because of

their general accuracy and computing efficiency.

Knowing whether interference exists can help mitigate its

effect. For a gamma distribution, we cannot associate the ex-

istence of outliers with interference with certainty, as there

are outliers even when there is no interference. Since the ex-

pectation of R2 for the sample mean is known in the null-

interference case, a deviation from the expectation indicates

that the underlying process may contain interference. As the

sample mean performs best when there is no interference, an

expedient strategy to reduce the variance is to combine the

sample mean when no interference is detected with another

estimator that is effective in mitigating the interference. We

have used N = 10000 for the asymptotic case for all the es-

timators discussed above. In combining different estimators,

a smaller N value is preferred so that the combined estima-

tor will not be dominated by the interference-mitigating es-

timator in the presence of interference. We can also define a

mixed R2 that uses the mean of the TGEO4 estimator and the

normally defined variance. Such a mixedR2 is more sensitive

to outliers, but its variance is larger. Simulations show it does

not cause a material difference from R2(AN ) using the sam-

ple mean and standard deviation. Because of its simplicity,

we choose R2(AN ) as the criterion to determine if the data

samples follow the desired process. The decision rule for this

hybrid estimator,HN , is that if R(AN ) is less than 2 standard

deviations above the mean, it uses the sample mean, other-

wise the weighted mean is used. The performance of such

a combined or hybrid estimator compares well to the other

estimators. In Table 1, N is 1000 for the hybrid estimator,

HN .

As seen in Table 1, all the order-based estimators (DN ,

T95, and TMAD8) perform better as N1 increases. The tail-

wagging-the-dog phenomenon discussed for T95 above is

also applicable to DN and TMAD8, as they also truncate the

largest values. Although TGEO4 is also a trimmed mean, the

tail does not control R2 in the same manner as in the order-

based estimators because the length of the tail depends on

the largest values. Large sample values increase the geomet-

ric deviation, which diminishes the chance of a large sam-
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ple value being counted as an outlier. Compared to TMAD8,

TGEO4 flags out fewer outliers at N1 = 1 but more outliers at

N1 = 8. At very largeN1 (e.g., 100), the pdf of Yi is approxi-

mately normal, and all the estimators perform equally well at

the theoretical best. It is of interest to note that R2(WN ) for

the weighted mean is not a strong function of N1. The hybrid

estimator R2 is always less than 1.02, making the efficiency

better than 98 % for all N1’s when there is no interference.

2.3 Comparison of estimators in the presence of

interference

In Table 2, we list the mean and R2 values with three levels

of noise for the eight estimators discussed above. The total

noise power is the mean of AN subtracted from 1, which is

set as the signal power. In the low-noise case, aη = 2, the to-

tal noise power is 4 % of the signal power. We see that the

expectation of the sample mean is 1.04 irrespective of N1, as

the power is additive. In this case of low interference power,

the performance of all the estimators does not differ from

the null-interference case significantly. For moderate- and

high-noise cases, all the estimators perform very poorly at

N1 = 100, as practically all the Yi’s are contaminated. TMAD8

performs the best at N1 = 8 and 100 for aη = 18. In gen-

eral, rank-based estimators do better than geometric-mean-

based estimators when a large portion of data is contami-

nated. Large N1 is akin to having a higher percentage of in-

terference and therefore should be avoided. The strong inter-

ference case is easier to deal with than the moderate case is,

as it has a very distinct distribution from the signal distribu-

tion. The most challenging case is the moderate interference

case, aη = 6. All the estimators perform worse than in the

other two interference scenarios. For the moderate case of

interference, the weighted mean performs the best atN1 = 1,

while TGEO4 does the best at N1 = 2.

The last three robust estimators, all of which are based on

the geometric mean, have about the same performance. They

perform better than the rank-based estimators at N1 = 1 and

2. The averages of the R2 values for the three noise levels

are listed in the last column in Table 2. On balance, the hy-

brid estimator performs best for the two cases of small N1. It

should be noted that simulations for the hybrid estimator are

based on N = 1000 in Table 2 but on N = 10000 for other

estimators. It is almost certain that the hybrid estimator per-

forms the same as WN does at modest and strong interfer-

ence. At low interference levels, HN outperforms WN be-

cause of the inclusion of the sample mean. Thus, the hybrid

estimator combiningWN andAN would always perform bet-

ter than WN . The reason that R2(HN ) is not always smaller

than R2(WN ) in some cases in Table 2 is because the statis-

tics at N = 1000 are slightly inferior to those at N = 10000.

Similarly, an estimator combining TGEO4 with AN will out-

perform TGEO4 for the sameN . Although the performance of

the estimators will change if the underlying assumptions are

changed, HN , TGEO4, and WN are the preferred estimators

because of their interference-mitigating ability, efficiency in

reducing statistical fluctuation, and computational efficiency.

When pη is less than 0.005,WN (by extension, the combina-

tion of WN and AN ) outperforms TGEO4 for all interference

levels. In cases of prevalent contamination (e.g., pη > 10 %)

one can combine order-based estimators (such as the median

or trimmed mean) with the sample mean.

3 Application to incoherent scatter radar signal

processing

In this section, we apply four estimators to incoherent scat-

ter total power and Doppler velocity processing and compare

their performance. The example incoherent scatter radar data

were taken at the Arecibo Observatory, Puerto Rico, on 11–

12 September 2014. The total power is used to derive the

electron density. The Doppler velocity is the same as the neu-

tral wind velocity below about 115 km, but it also depends on

the electric field and ion-neutral collision frequency above

this altitude. Readers are referred to Zhou et al. (1997) and

Isham et al. (2000) for further description of the Arecibo ISR,

especially concerning E-region signal processing.

3.1 Total power processing

The most common way to obtain the total power and hence

electron density in the ionosphere using an ISR is to transmit

a 13-baud Barker code with a total pulse length duration less

than 52 µs. Barker code is chosen because of its minimized

sidelobe. The lack of longer Barker codes is not a severe lim-

itation due to the finite correlation time of the ionosphere.

The 13-baud Barker data we use here have a baud length

of 2 µs, making the range resolution 300 m. In-phase and

quadrature voltage samples from each pulse are stored for

post-processing. An inter-pulse period of 10 ms was used so

that range aliasing is negligible. As the antenna was pointing

vertically, range and altitude are interchangeable here. Al-

though the sampling range in the data was from 60 to 766 km,

we mostly focus on the altitude range from 90 to 150 km,

where interference is most severe. The raw voltage samples

were decoded using a matched filter.

Figure 1 shows the averaged power returns as a function

of time and altitude using the sample, trimmed, TGEO4, and

hybrid means. Because the radar samples are in in-phase and

quadrature pairs and larger N1 contaminates more data sam-

ples, N1 is chosen to be 2. The last panel shows the normal-

ized standard deviation R(AN ) for the sample mean, whose

expectation is 1 when there is no interference. For each data

point, we first average 250 pulses using the method indi-

cated in the title and then average four such groups arith-

metically for a total of 1000 pulses. Using a smaller number

of pulses makes the memory requirement less stringent and

the trimmed mean more efficient. The ionosphere signal is

largely characterized by smooth temporal and spatial varia-
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Figure 1. Range–time–intensity (RTI) plots of incoherent scatter total power returns on 11–12 September 2014. The first four panels,

starting from the top, are the power return of the sample mean, the trimmed mean at the 95 % level, the trimmed mean based on the geometric

deviation, and a hybrid method, respectively. The last panel is the normalized standard deviation.

tions during the daytime and by thin horizontal layers, known

as sporadic E’s, around 100 km at nighttime. The study of

sporadic E layers and the associated dynamics have attracted

much attention and are active areas of research (e.g., Math-

ews, 1998; Larsen et al., 2007; Wang et al., 2022; Kunduri et

al., 2023). Two types of interference seen in Fig. 1 are rep-

resented in boxes A and B in the top panel. Box A is likely

another radar operating at the same inter-pulse period (IPP)

as that of the Arecibo ISR or is an internal system prob-

lem. Vertical lines in box B and other similar vertical lines

that are confined to ∼ 90–120 km are meteoric echoes. The

altitude extension of meteor echoes is because fast-moving

meteor heads cannot be decoded by the matched filter. They

do not extend beyond 120 km in altitude in our case because

meteor echoes are detected below about 115 km (Zhou and

Kelley, 1997). The normalized standard deviation R(AN ) is

displayed in the bottom panel in Fig. 1.

The top panel in Fig. 1 shows the result of arithmetically

averaging 1000 pulses (i.e., the sample mean). All types of

interference show up prominently, as the method does not fil-

ter out any contamination. The trimmed mean (second panel)

cleans up the first part of the heavy contamination in box A

but is not effective against the second part, most likely be-

cause more than 5 % of the pulses were contaminated. TGEO4

and the hybrid method largely filters out the contamination

in box A and reveal the underlying sporadic layer despite the

heavy contamination. Although TGEO4 appears to handle all

the contamination as well as the hybrid method does, it is

slightly inferior to the latter in reducing statistical error, as

seen in the later part of this section. The only residue con-

tamination not filtered out is around 22:30 LT. None of the

methods is effective in removing it completely, and all three

robust estimators appear to perform the same. As the total

power of the interference is relatively low, interference may

permeate most of the pulses, making it very difficult to re-

move it from each pulse. For this type of interference, one

way is to find the mean at non-ionosphere heights and sub-

tract it from the entire profile. Noise samples are available

at Arecibo. Background noise is not subtracted here to focus

on the effect of robust estimators in this study. The trimmed
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Figure 2. (a) The square of the relative error in the sample mean

method normalized to that of the hybrid method. (b) The normalized

variance. The yellow color in (a) indicates that the sample mean has

a larger error than the hybrid method.

mean, TGEO4, and hybrid methods are all effective at remov-

ing meteor interference, which typically does not last more

than 50 ms at Arecibo, i.e., 5 pulses (Zhou and Kelly, 1997).

Other than the most obvious interference highlighted in

boxes A and B, no other contamination appears to be obvi-

ous. The R value in the region indicated by box C has ele-

vated values, indicating likely contamination. Yet there ap-

pears to be little difference between the sample mean result

in the top panel of Fig. 1 and the results from the robust esti-

mators. One effect of the interference is that it increases the

statistical error, which is more difficult to see from the RTI

plot. To estimate the statistical error, we use the difference

in the power minus the average power of the surrounding 15

points in height and 5 points in time as a proxy for the er-

ror. The square ratio of the sample mean error to the error in

the hybrid method is displayed in Fig. 2a. The corresponding

R(AN ) is displayed in Fig. 2b. Larger statistical error from

the sample mean in the region indicated by box C in Fig. 1

is quite evident. Although R(AN ) is not linearly related to

the error, elevated R(AN ) is a robust indicator of contamina-

tion. This is also evidenced from 01:00 to 03:00 LT in Fig. 2,

where sporadic elevations of R(AN ) and statistical errors are

seen to be correlated.

An estimator needs to be efficient when there is no inter-

ference. Figure 3 shows the ratio of the sample mean and T95

errors to the hybrid error as well as the corresponding stan-

dard deviation R(AN ) averaged between 07:00 to 13:00 LT,

during which period contamination is minimal above 120 km

(as seen in Fig. 2). The error in the hybrid estimator is virtu-

ally the same as that in the arithmetic average. The error in

the T95 estimator is 1.036 times the error in the hybrid esti-

mator, which is in good agreement with the simulated value

of
√

1.09/1.018 = 1.035. Similarly, the error in TGEO4 is

Figure 3. Mean relative errors (in base-2 logarithms) of the sample

mean, trimmed mean, and TGEO4 normalized to that of the hybrid

method (red and blue lines, respectively). The black line is 6 times

the logarithm (base 2) of the mean R. The time duration averaged

for all the lines in the figure is from 07:00 to 13:00 LT on 12 Septem-

ber 2014.

slightly smaller than that in T95, which is also in good agree-

ment with the simulation results shown in Table 1. The mean

R(AN ) correlates with the elevated error in the region of 90–

120 km. We also note that the mean R(AN ) above 120 km

is 0.997, which is slightly below the expected value of 1.

Although the deviation is small, it is statistically significant.

This may be caused by the bias in the receiving channels or

the finite dynamic range of the analog-to-digital converters.

3.2 Power spectrum processing and Doppler velocity

comparisons

The power spectral density (PSD) of an ISR is obtained by

transmitting a coded long pulse (CLP), 440 µs in our case.

The baud length is 2 µs, making the bit number of the pulse

220. The inter-pulse period is 10 ms as in the Barker data.

The bit sequence is random for each transmitted pulse. The

PSD is obtained by the Fourier transform of the data multi-

plied by the complex conjugate of the code. The characteris-

tics of the CLP are discussed by Sulzer (1986). The averaging

of the PSD at each frequency component is identical to that

of the total power in the above section, which can be viewed

as the center frequency component.

Figure 4 shows the Doppler velocity derived from the four

estimators using the phase of the auto-correlation function.

The vertical ion drift in the altitude range of 90–150 km is

typically less than 50 ms−1 above Arecibo. Below 120 km,

the plasma drift is the same as the neutral wind because of

the complete coupling between ions and neutral molecules.

During the daytime, there are sufficient signals above 95 km

to obtain continuous spatial and temporal velocities. During

the nighttime, it is only possible to obtain velocities within

thin ionization layers. While ion velocity with fine height and

time resolutions is of great geophysical interest (e.g., Zhou
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Figure 4. Vertical ion velocities obtained using the four estimators. The estimators, from top to bottom, are the sample mean, trimmed mean

(at 95 %), TGEO4, and hybrid mean, respectively.

et al., 1997; Hysell et al., 2014), our focus here is to study

the relative accuracy of the velocities obtained from different

estimators.

Comparisons of the velocity results largely follow those of

the total power. The sample mean fails in boxes A and B. Ad-

ditionally, during the sunrise hours when the ionospheric sig-

nal is low and the meteoric interference is strong, the sample

mean can only yield valid velocities occasionally while the

robust estimators can obtain the velocities continuously in al-

titude and time. As in the total power estimation, the trimmed

mean does not yield valid results in the second part of box A

from 21:30 to 22:30 LT, while the hybrid and TGEO4 methods

appear not to be affected by the interference very much.

To compare the statistical fluctuations, we use the altitu-

dinal difference in the velocity divided by the square root

of 2 as a proxy for velocity error. Figure 5 shows the alti-

tude variation in the velocity error during 08:00–10:00 LT as

well as 14:30–16:30 LT on 12 September. All the robust esti-

mators have essentially the same error at each altitude, while

the sample mean has a much larger error around 100 km. The

error in the sample mean converges to those of the robust esti-

mators above 145 km. The diminishing error difference in the

sample mean with increasing altitude is due to the long pulse

length (440 µs) used. A characteristic of the CLP pulse is that

the interference at one altitude is uniformly spread across the

entire bandwidth randomly at other altitudes. A meteor echo

at 100 km increases the spectral power fluctuations with di-

minishing strength up to 166 km. Meteoric influx peaks at

06:00 LT and varies strongly with the local time. The daily

variation in meteoric flux is quantitatively analyzed by Zhou

et al. (1995) and Li and Zhou (2019). It can also be quali-

tatively seen in Fig. 2b. The larger error in the sample mean

during 08:00–10:00 LT is a reflection of the strong meteoric

flux. Although the afternoon period suffers from meteoric in-

terference and radio contamination, as seen in Fig. 2, both of

them are weak. Statistical averaging of 6000 pulses is able

to even out the spectral power fluctuation to such a degree

that all the estimators produce the same velocity. For spec-

tral processing, the most important factor is the total amount

of noise power, while the percentage of pulses contaminated

is often more important in total power processing.

Overall, we see that the TGEO4 and hybrid estimators ac-

curately and consistently improve velocity and total power

measurements over the sample mean, which are important

for studying the E-region dynamics and composition. The

availability of nighttime velocities will help reduce the large
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Figure 5. Doppler velocity errors for the sample mean, trimmed

mean, TGEO4, and hybrid method on 12 September 2014 for 08:00–

10:00 LT (a) and 14:30–16:30 LT (b).

error in the measurement of atmospheric tides in the E region

(Zhou et al., 1997; Gong et al., 2013). Accurate measurement

of the power spectrum and total power will facilitate all E-

region studies, especially those concerning the climatology

and dynamics of sporadic E and intermediate layers (Zhou et

al., 2005; Hysell et al., 2009; Raizada et al., 2018; Gong et

al., 2021). Of particular importance are the vertical wind and

ion composition of the E region, which have not been studied

much due to a lack of quality data.

4 Summary and conclusion

We have discussed several robust estimators to compute the

variance of a normally distributed random variable, X, to

deal with interference. This variance is the same as the mean

of the power variable, X2. The effectiveness of an estimator

is described by the normalized standard deviation, R. We de-

rive the theoretical R values for the median, geometric mean,

and trimmed mean of gamma distributions, which result from

averaging the power random variables. We discuss and com-

pare another four estimators through simulations for various

interference scenarios. Robust estimators found in the lit-

erature are typically rank-based (e.g., the median, trimmed

mean, and median absolute deviation). We have used the ge-

ometric mean and geometric deviation as two basic param-

eters in assessing the likelihood of a data point being con-

taminated. The methods based on the geometric mean have

two advantages over the rank-based ones: they are less sus-

ceptible to the large uncertainties in the tail part of the dis-

tributions and they are computationally more efficient. For

the interference model used, the TGEO4 estimator, which is

based on the geometric mean, is particularly effective as a

stand-alone estimator when there is no initial average. An-

other effective estimator based on the geometric mean is the

weighted mean. The R value of the sample mean can be used

to assess whether the process conforms to the expected dis-

tribution. This knowledge allows us to combine the sample

mean with other robust estimators to mitigate contamination

and achieve statistical accuracy.

We apply three robust estimators to incoherent scatter

power and velocity processing, along with the traditional

sample mean estimator. We show that the performance of

estimators with real data agrees well with simulations. In

the total power processing, the trimmed mean performs

mostly well except when the contamination is very heavy.

The TGEO4 estimator performs almost as well as the hybrid

method in mitigating interference. The hybrid method per-

forms the best at mitigating interference as well as at re-

ducing statistical errors. For Doppler velocity processing, the

same conclusion can be drawn in cases of frequent interfer-

ence. When the interference is weak, all the robust estimators

appear to perform well. For the Arecibo ISR data, the sample

mean has larger statistical errors even for data that may not

appear to contain obvious interference. This highlights the

need for robust estimation to process or reprocess decades

of E-region data taken at Arecibo. The hybrid estimator is

most advantageous under all circumstances. This conclusion

is likely applicable to other incoherent scatter radars as well.

While the interference characteristics differ at each radar site,

the study provides a foundation to optimize robust estima-

tion, which is an essential step in many data processing ap-

plications.
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