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Abstract— Connected and Automated Vehicles (CAVs) have
the potential to enhance traffic safety and efficiency. In contrast,
aligning both vehicles’ utility with system-level interests in
scenarios with conflicting road rights is challenging, hindering
cooperative driving. This paper advocates a game theory
model, which strategically incorporates deceptive information
within incomplete information vehicle games, operating under
the premise of imprecise perceptions. The equilibria derived
reveal that CAVs can exploit deceptive strategies, not only
gaining advantages that undermine the utility of the other
vehicle in the game but also posing hazards to the overall
benefits of the transportation system. Vast experiments were
conducted, simulating diverse inbound traffic conditions at an
intersection, validating the detrimental impact on efficiency
and safety resulting from CAVs with perception uncertainties,
and employing deceptive maneuvers within connected and
automated transportation systems. Finally, the paper proposes
feasible solutions and potential countermeasures to address the
adverse consequences of deception in connected and automated
transportation systems. It concludes by calling for integrating
these insights into future research endeavors and pursuing to
fully realize the potential and expectations of CAVs in enhancing
the whole traffic performance.

I. INTRODUCTION

Autonomy and connection are two important directions

of future intelligent vehicle development [1], [2]. Connected

and Automated Vehicles (CAVs) can communicate with other

traffic participants, sharing perception and control informa-

tion [3], [4]. This ability enables intelligent vehicles to have

a perception ability beyond their own range, as well as to

understand the intentions of other vehicles, which has the

potential to achieve cooperative driving [5]. Despite ongoing

debate regarding the societal benefits of Autonomous Vehi-

cles (AVs) as compared to Human-Driven Vehicles (HDVs)

[6], CAVs are widely acknowledged for their potential to

enhance traffic safety, energy efficiency, and mobility sig-

nificantly. This is attributed to their theoretical capability to

eliminate human errors and facilitate cooperative operations.

Some traffic scenarios have been deeply explored, such

as cooperative car-following [7]. Multiple adverse issues,
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Fig. 1. CAV deception behavior in typical conflicting scenarios.

such as perception noise, physical errors, and communication

delays in CACC, have been considerably addressed [8].

However, even with perfect communication, CAV also have

the potential to become unprecedented disruptors in the

future owing to their vulnerability to cyber threats, hack-

ing, and misinformation [9]. Their use by various entities

could lead to deceptive practices aimed at seeking selfish

or harmful objectives, especially in complex scenarios like

intersections [10], on-ramps [11], and merging lanes. These

scenarios, unlike CACC, present conflicting utilities, compli-

cating optimal strategies. Negotiation-based game theory has

effectively addressed issues. However, vehicle interactions

are not always harmonious and cooperative, especially when

the interests of different vehicles clash or local optima

conflict with overall benefits, making competition inevitable.

Vehicles may use deceptive strategies in various scenarios,

prompting other vehicles to become confused and adjust their

strategies, thereby gaining advantages, as shown in Fig. 1.

Without vehicle connectivity, decisions rely solely on

single-vehicle perception. Inter-vehicle communication al-

lows for decision-making based on shared signals and ob-

servations, highlighting the importance of balancing trust

and deception. Deception modeling in real-world conflicts is

complex, with game-theoretic and learning-driven methods

being the primary approaches in existing literature [12].

Game theory is critical for analyzing decision-making in

interactive conflicts involving AVs [13]. It studies deception

in games where actions or outcomes are reported to other

players, often through signaling games where signals can be

honest, deceptive, or absent. In multi-vehicle conflicts, sig-
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naling games model defensive deceptions aimed at mislead-

ing attackers [14]. Carroll et al.[15] employed deceptive sig-

naling games to study network defense, focusing on scenarios

where attackers discern system types, forcing defenders to

send signals, deceptive or genuine. Their findings suggest

deception as a strategic equilibrium for defenders, often

more effective than truthful signals. Yavin et al. [16] inves-

tigated pursuer-evader deception, analyzing strategies based

on player positions and distances, with the evader disrupting

signals to the pursuer. The goal was to identify the most

effective pursuit strategies against misleading or incomplete

information. Modeling interactive decision conflict through

game theory can clarify multi-agent interactions through

mathematical proofs and simulation analyses, improving

decision-making transparency and application transferability

[17]. However, the complexity and uncertainty of networks

and game theory’s reliance on common sense assumptions

present challenges in real-world applications.

Recent studies have integrated learning-based defensive

deception techniques, such as machine learning (ML) and

reinforcement learning (RL), for creating decoys and fab-

ricating information to mislead attackers [18]. ML-based

approaches offer improved predictions about attackers or

create highly similar deceptive objects using extensive avail-

able data [19]. Nadeem et al. [20] employed machine

learning algorithms to train on historical network attack

data in software-defined networks, developing high-quality

honeypots. This ML-based method aims to identify potential

malicious connections and attack destinations. Furthermore,

RL has been applied to study defensive deception games. Uti-

lizing RL or Deep RL [21], its reward function is employed

to formulate players’ utility functions, enabling agents to

determine optimal strategies similar to other attack-defense

games. In RL-based game formulations, players employ RL

to ascertain optimal strategy, where the RL reward function

considers gains and losses based on the player’s beliefs

about the opponent’s actions. Nguyen et al. [22] proposed an

embedded RL-based online deception method, considering

the dynamic alteration of attacker strategies and tactics in

response to defensive actions while maintaining a balance

between availability and security. Learning-based methods

address insufficient interaction between a single attacker and

defender, extending to multi-agent interaction processes. At

the same time, the accuracy of learning-based deception tech-

niques depends on the availability of data on the interaction

processes of conflicting agents. In practice, such data is often

inaccessible to defenders, significantly limiting the training

and exploration of learning-based approaches.

In the intricate decision-making games of CAVs, the

strategic use of deceptive information can have profound

effects. Considering imprecise vehicle perceptions, this paper

strategically incorporates deceptive information into CAV

interactions at unprotected intersections. Key contributions

include:

1) Utilizing game theory, analyze the effect of incomplete

information, in scenarios of perception uncertainty, cooper-

ative connection, and deception on CAV decision-making

games, emphasizing the negative impact of deception on

overall traffic.

2) Highlight how CAVs with societal attributes and

human-like deceptive behaviors aim to maximize their utility,

ultimately leading to deviation from optimal actions by all

traffic participants.

3) Simulation experiments show that deception by a CAV

harms system benefits, even worse than AV solely decision-

making scenarios, and emphasize the need for robust strate-

gies to mitigate the adverse effects of deceptive tactics.

The remaining part of this paper is arranged as follows.

Section II describes the focused scenario and the game

theory behind it. In Section III, we analyzed the impact of

perception error, connectivity, and deceptive behavior on the

game and its equilibria. In addition, Section IV introduces

the simulation experiments and discussions on the results.

Finally, Section V concludes the paper.

II. SCENARIO AND MODEL

Our research focuses on the scenario where two vehicles

compete for the right to pass through the same roadblock,

typically occurring at an unprotected signal-free intersection,

as shown in Fig. 2.

Fig. 2. A typical conflicting intersection where two vehicles compete
for passing. That they do not give way to each other can lead to unsafe
collisions.

To eliminate interference and focus on the main issue, we

assume that both road approaches have the same grades and

width (L). The two CAVs participating in the game are con-

sistent in size (length l), power mobility, perception ability,

etc., except for their strategies. The actual distances between

the vehicle heads and the entrances of the intersection are

dA (for vehicle A) and dB (for vehicle B), respectively.

We use a single decision process to represent the game

between two CAVs. This allows us to avoid planning com-

plex speed changes and precise acceleration control. The

currently popular reservation-based intersection management
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strategy for multiple vehicles also has a similar approach

[23], but without consideration of deception. Each approach

has a decision point with the same distance (see Fig. 2) from

the intersection, similar to the decision point set by FHWA

for human drivers in MUTCD, where each incoming CAV

makes a single decision when it reaches.

Two decisions (Σ) can be planned for each vehicle (N =
{A,B}), keeping speed to pass or slowing down to yield:

ΣA = {pass, yield} (1a)

ΣB = {pass, yield} (1b)

We consider both safety and efficiency in the game pay-

offs:

U = S+E (2a)

S =

{
0, risk-free

−R, risky
(2b)

E =
x
v
− tc (2c)

The utility (U) of each agent consists of two parts. S stands

for safety, which gives a large negative number representing

a penalty (−R) to each vehicle causing a collision risk (i.e.,

two CAVs occupying a conflict block simultaneously). On

the other hand, the gap between the expected time of entering

the intersection (x/v) and the actual time of entering the

intersection (tc) at speed v is employed as the efficiency term

(E) in utility.

Similar to a simple chicken game, this game will produce

four different playoffs, as shown in Table I.

TABLE I

NORMAL-FORM GAME PLAYOFFS OF TWO AGENT CAVS COMPETING

FOR THE RIGHT OF WAY AT AN INTERSECTION.

(UA,UB) A: Pass A: Yield

B: Pass (−R,−R) ( dA

v − L+dB+l
v ,0)

B: Yield (0, dB

v − L+dA+l
v ) (−D,−D)

In a conflict, there is a restriction on the difference of

distances between the two vehicles and the entrances of the

intersection (see (3)), which ensures the negativity of E.

|dA −dB|< L+ l (3)

When both CAVs choose to pass, each vehicle enters the

intersection at the same speed v, which does not cause a

delay. However, the presence of two vehicles at a conflicting

intersection can lead to a significant collision risk. Therefore,

both agents receive a large negative utility as penalties for

this outcome.

Alternatively, when vehicle A chooses to pass and vehicle

B decides to yield, there will be no delay and no safety risk

for passing through the intersection, leading to a zero utility

for vehicle A. On the other hand, vehicle B has to wait until

vehicle A drives entirely out of the intersection, which results

in a time delay ( dB

v − L+dA+l
v ), though no safety penalty is

given to it. Oppositely, when vehicle A decides to give way

to vehicle B, it suffers from a time delay ( dA

v − L+dB+l
v ) but

no safety penalty either.

The special situation is when both agents decide to yield.

In order to maintain the completeness of the game model, a

moderate negative number (−D) is given to both CAVs as

the playoff. The total utility of the intersection (Utot =UA+
UB) will be much greater than the penalty for collision risk

but less than the shortest delay time for decisive decision-

making, shown as (4). It may be subject to change in different

situations.

−R �−2D <−L+ l −|dA −dB|
v

(4)

This yield decision by both CAVs resulted in further

gameplay closer to the intersection and at lower speeds,

causing delays for both sides. However, we will not further

discuss and design the playoff for this situation in detail, and

the reasons will be explained in the following sections.

III. GAME ANALYSIS

For CAV decision-making in an ideal situation, interacting

vehicles know ego and each other’s precise and accurate

positions. Control can be implemented through specific traf-

fic rules, such as first come, first go, the same as human

traffic regulations. Even more precise and targeted planning

and control can be conducted, which is also the potential of

CAV to improve the traffic system. However, the gap between

reality and ideals makes it necessary to consider situations

beyond. For example, [24] considers the driver’s irrational

behavior. Our work regards the imprecise observation of

intelligent connected vehicles and focuses on analyzing the

deceptive behavior in response.

In this section, we will rely on the game model we

proposed in Section II to analyze pure or mixed strategies

in ideal, imprecisely perceptual, cooperatively connecting,

and deceptively competing scenarios, as well as the impact

of these equilibria on the safety and efficiency of the entire

intersection. The comparison of the decision-making process

between four situations is presented in Fig. 3. This analysis

considers the variations in the information perceived and

received by the interacting vehicles, Vehicle A and Vehicle

B, under different circumstances. Factors such as the com-

pleteness and accuracy of the information will influence the

strategies these vehicles adopt to maximize their benefits.

Consequently, this leads to divergent impacts on the overall

traffic system.

A. Ideal situation

In an ideal situation, both vehicles at the intersection

know each other’s exact locations. Moreover, the locations of

decision points are also perceived by both CAVs. Each has

complete information of whether the other has completed the

decision and the specific choice. Therefore, for the vehicle

that makes the decision first, there are two options (pass or

yield), and we will analyze them by sequence.
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Fig. 3. The game process comparison of four situations with two conflicting CAVs. Specifically, this paper considers the ideal, imprecise perception,
cooperative connection, and deception scenarios.

1) case 1: The first vehicle decides to pass. The utility

of the second decision-making vehicle choosing to yield is

higher than that of choosing to pass (−R < −L+l−|dA−dB|
v ).

Therefore, giving way to the leading vehicle is its dominant

strategy.
2) case 2: The first vehicle decides to yield. This time,

oppositely, the utility of the second decision-making vehicle

choosing to pass is higher (−D < 0). Therefore, when the

other CAV gives way, the ego vehicle should not hesitate to

continue passing through the intersection.
Considering the above two cases, due to the unique

dominant strategy for the other agent, the vehicle that makes

the decision first will choose to pass to gain more excellent

utility (−L+l+|dA−dB|
v < 0). The whole process can be seen

in Fig. 4.
Therefore, the ideal equilibrium is one of the two pure

strategy Nash equilibria of the chicken game shown in Table I

(depending on which agent makes the decision first). This

can also maximize the overall efficiency of intersections

(Utot
max =−L+l−|dA−dB|

v ). In addition, the pure strategy equilib-

rium complies with the first come, first go traffic regulation,

facilitating integration into HDVs and mixed traffic.

B. Perception uncertainty
Automated vehicle (AV) collects surrounding information

through sensors to achieve self-localization and traffic partic-

ipants’ observation to assist decision-making. However, due

to the imperfection of sensors, there is inherent uncertainty in

the observation, which has led to multiple accidents involving

AVs. This calls for enhancing the reliability and accuracy of

these sensor systems to mitigate risks and improve the overall

safety of AVs [25].

Fig. 4. The ideal game process of two conflicting vehicles at an intersection.
Dominant strategies of each sub-game are marked by red lines.

As the detection and measurement of the other vehicle is

not entirely precise, AVs make decisions with uncertainty.

In our game theory model, compared to the ideal situation,

AVs making decisions with perceived uncertainty in reality

forms an incomplete information game, as shown in Fig. 5.

We first consider the leading vehicle. Due to the fact

that the vehicle making decisions afterward is currently

driving normally, based on the ego vehicle’s observation,

this vehicle is believed to have completed the decision and

decided to pass with a certain probability (p ∈ (0,0.5)). The

complementary probability (1− p) suggests that it has not

made a dicision yet.

1) case 1: The lagging vehicle is believed to pass. If the

other vehicle is observed to complete a pass decision, the

ego vehicle should choose a dominant strategy of yield. It is

a local Nash Equilibrium generated from the chicken game

in the ideal situation with complete information (see Table I).
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Fig. 5. The incomplete information game of two conflicting AVs at an
intersection. The uncertainty of observation results in the decision-making
vehicle not knowing whether the opponent, who is driving normally, has
decided to pass or has yet to make a choice.

2) case 2: The lagging AV is considered undecided yet.

If the ego vehicle believes a delayed decision from the

other, it will need to consider the vehicle’s perception error

and decision-making. No pure strategy equilibrium can be

expected. We then assume that the ego AV takes a mixed

strategy with a certain probability (x) of choosing to yield

while the complementary probability (1− x) of choosing to

pass.

Therefore, for the vehicle that makes the decision first,

based on its perception ability and analysis of the other

vehicle, the probabilities of choosing to yield and pass are:

Σ1 = pass
Σ1

= (1− p)(1− x) (5a)

Σ1 = yield
Σ1

= p+(1− p)x (5b)

Considering the second decision-making AV, although

there are perception uncertainties in distance and localiza-

tion, it can accurately understand the yield intention based on

the observed vehicle’s deceleration behavior. Consequently,

if the first AV opts to yield, the game reverts to a complete

information state, prompting the second AV to adopt passing

as its dominant strategy.

When the second vehicle is making decisions, and the first

vehicle is driving normally, based on the symmetry of equal

perception ability, the probability of determining that the first

vehicle has made a pass decision is 1− p.

Similarly, it can be assumed that the lagging AV takes

a mixed strategy with a certain probability (y) of choosing

to yield, while the complementary probability (1 − y) of

choosing to pass, under the condition of believing the first AV

undecided. Therefore, the probabilities of the second vehicle

choosing to yield and pass are:

Σ2 = pass
Σ2

= p(1− y) (6a)

Σ2 = yield
Σ2

= 1− p+ py (6b)

Therefore, under such circumstances, the optimal strategy

for the lagging vehicle is to:

argmax
y

⎧⎨
⎩− L+ l −|dA −dB|

v
y

+(1− p)(1− x)(−R)(1− y)

⎫⎬
⎭ (7)

By solving this, we get:

y = 0, if x > 1− L+ l −|dA −dB|
vR(1− p)

(8a)

y = 1, if x < 1− L+ l −|dA −dB|
vR(1− p)

(8b)

y ∈ [0,1], if x = 1− L+ l −|dA −dB|
vR(1− p)

(8c)

On the other hand, for the vehicle making decisions first,

the optimal strategy is to:

argmax
x

⎧⎨
⎩− L+ l + |dA −dB|

v
x

+ p(1− y)(−R)(1− x)

⎫⎬
⎭ (9)

By solving this, we get:

x = 0, if y > 1− L+ l + |dA −dB|
vRp

(10a)

x = 1, if y < 1− L+ l + |dA −dB|
vRp

(10b)

x ∈ [0,1], if y = 1− L+ l + |dA −dB|
vRp

(10c)

The game equilibria under perception errors can be de-

rived by combining (8) and (10). When the observation is

precise, and there is a clear gap between two vehicles (p <
L+l+|dA−dB|

vR ), there exists an equilibrium that (x = 0,y = 1),
which is consistent with the first come, first go rule in ideal

situations.

As perception precision decreases or the distance between

two vehicles narrows (i.e. making a vague picture of who

leads and who falls behind) (p ≥ L+l+|dA−dB|
vR ), one more

pure strategy equilibrium (x = 1,y = 0) and a mixed strategy

equilibrium (x = 1− L+l−|dA−dB|
vR(1−p) ,y = 1− L+l+|dA−dB|

vRp ) will

show up. Due to the increased probability of being penalized

for safety issues, vehicles that make decisions first tend

to make a more conservative choice, and pure strategy

equilibrium will dominate. As for the mixed strategy, x ≈ 1

makes it similar to the pure yield strategy, preventing it from

passing the intersection without deceleration.

AV can have more confidence in the perception results

when the sensor precision is high enough over a threshold

due to the tiny probability of being penalized by collision.

In most cases, the leading AV decides to pass and only

yields when the other agent is perceived as leading. This

leads to a total utility of the intersection between optimal

and second-optimal, as a transition from a perfect situation

to an imprecisely perceived situation:

Utot
sec =−L+ l + |dA −dB|

v
<Utot

max (11)
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AV can have more confidence in the perception results

when the sensor precision is high enough over a threshold

due to the tiny probability of being penalized by collision.

In most cases, the leading AV decides to pass and only

yields when the other agent is perceived as leading. This

leads to a total utility of the intersection between optimal

and second-optimal as a transition from a perfect situation

to an imprecisely perceived situation:

Utot
sec <Utot

av <Utot
max (12a)

Utot
av = max

{
Utot

sec,U
tot
tr (p)

}
(12b)

Utot
tr (p) =− p(1− p)R− p

L+ l + |dA −dB|
v

− (1− p)2 L+ l −|dA −dB|
v

(12c)

Taking a conservative strategy to avoid conflict actively

also conforms to our observation of most automated vehicles

operating on the road nowadays. However, it can be seen that

this caused by perception uncertainty harms the utility of the

leading vehicle and leads to a decrease in overall benefits in

efficiency and safety.

C. Connectivity and deception

CAVs enhance AVs’ capabilities via cooperative percep-

tion, decision-making, and control. Collaborative CAVs can

not only compensate for a single vehicle’s sensor blind spots

through multi-view information but also improve precision

in observing the same object through information fusion.

Taking distance measurement as an example, two vehicles

with the same perception ability make two independent and

shared observations of the same vehicle’s position, which

reduces the variance while maintaining unbiasedness:

μavg
co =

μA +μB

2
= μA = μB (13a)

(σavg
co )2 =

(
σA

)2
+
(
σB

)2

4
=

(
σA

)2

2
=

(
σB

)2

2
(13b)

Therefore, the cooperative perception can reduce the prob-

ability of misjudging the decision-making status of the other

agent (pco < p). For vehicles that make decisions first, a

smaller pco leads to more choices of pass when the other

agent’s decision status cannot be determined, which is a pure

strategy of (x = 0,y = 1).

Furthermore, if decision information can be shared be-

yond perception to achieve complete information, the game

between two CAVs will tend towards an ideal situation.

Only when the vehicle that makes the decision first observes

the wrong relationship, even with the help of cooperative

perception, will it choose the equilibrium strategy of yield

(while the second vehicle would decide to pass, which is also

the second optimal strategy for the overall intersection utility

Utot
sec). With such help, the total utility of the intersection will

be closer to the ideal situation:

Utot
tr <Utot

co <Utot
max (14a)

Utot
co =− pco

L+ l + |dA −dB|
v

− (1− pco)
L+ l + |dA −dB|

v

(14b)

From this, connectivity is effective and promising in

eliminating the reduction of utility caused by single AV

perception errors. However, under human-like autonomous

driving decision-making development, we cannot expect ev-

ery CAV to handle conflicts cooperatively. For the CAV

falling behind, although the first come, first go strategy is

beneficial for the overall traffic at the intersection, it pays

all the cost and suffers from wait and delay. It likely sends

incorrect leading messages through the V2V connectivity in

a deceptive manner, prompting the leading vehicle to brake

and yield.

1) case 1: Through cooperative decision-making. The

most effective way is often the weakest to attack. Inspired

by that yield is a dominant strategy for the lagging vehicle

to avoid delays and improve efficiency, the lagging CAV

will send information to the other CAV that the decision of

pass has been made, thereby forcing the previously leading

vehicle to yield and wait longer. This is a pure strategy Nash

equilibrium in the chicken game (see Table I) with complete

information, while the total utility is not optimal.

2) case 2: Through cooperative perception. Deviated lo-

cation information can be transmitted to the other CAV,

prompting it to yield. It is more difficult to distinguish

from the normal perception than directly sharing incorrect

decision-making status information. Compared to (13), such

deception still improves the precision of perception but

reduces the accuracy:

μavg
de =

μA +μB +bias
2

= μavg
co +

bias
2

(15a)

(
σavg

de

)2
=

(
σA

)2
+
(
σB

)2

4
= (σavg

co )2 (15b)

From the comparison between cooperative and deceptive

perception, we can obtain that under the attack of deceptive

information, the probability of the leading vehicle making

incorrect judgments on the decision-making status of the

lagging vehicle has significantly increased (pco < p < pde).

A larger pde has a less probability to satisfy the re-

quirement of pde <
L+l+|dA−dB|

vR . Even if it can be met, this

condition raises the probability of the first deciding vehicle

yielding, subsequently diminishing the total utility of the

intersection.

Utot
sec ≤Utot

de <Utot
av <Utot

max

Utot
de = max

{
Utot

sec,U
tot
tr (pde)

} (16)

Due to the fact that CAVs will always deceive for advan-

tage in a connected condition, hurting the overall utility of

the intersection to even worse than AVs without connectivity,

each CAV’s belief in the other’s decision-making status and
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Fig. 6. From left to right, (a)-(d) show the decisions of both vehicles changing with true value gaps under ideal condition, imprecise perception, cooperation,
and deception, respectively. Accordingly, (e)-(h) represent the utility of both vehicles under the corresponding decisions.

location information decreases to zero. This is in line with the

characteristics of cheap talk games. As a result, each CAV

relies only on the information it perceives, and the role of the

vehicle-to-vehicle connectivity will be significantly reduced.

IV. EXPERIMENT

In this section, we introduce our simulation experiment to

intuitively and quantitatively show the impact of vehicle per-

ception uncertainty, connectivity, and deception on decision-

making games at a conflicting intersection.

The parameters for the simulation experiments are listed

in Table II.

TABLE II

PARAMETERS USED IN SIMULATION EXPERIMENTS.

Parameter Value
Road width L 10 m
Vehicle length l 5 m
Vehicle speed v 40 km/h
Equivalent time for safety penalty R 10000 s
Delay caused by both yield D 2 s
Measurement error std σ 0.1m

A conflict will exist in this intersection when there is a L+
l = 15m difference in distance between two vehicles and the

intersection entrances. We consider the leading vehicle and

cover situations where the lagging vehicle is 0∼ 20m behind.

We repeated N = 30 random trials for uncertain scenarios,

and the average results are shown in Fig. 6.

In an ideal conflicting situation, the leading vehicle will

always decide to pass while the lagging vehicle will give

way out. And if the gap between them is larger than 15m,

both vehicles will choose to pass with the awareness of no

conflict. The leading vehicle’s utility keeps at zero while the

lagging vehicle’s utility linearly increases from zero distance

to a larger gap (see Figure. 6 (a) and (e)).

In the presence of perception errors, the observation results

of each vehicle are set to have a Gaussian error with a

standard deviation of 0.1m. This makes the 95% confidence

interval of the perception result around ±0.2m, consistent

with the ability of cutting edge AVs [26]. When two vehicles

are close, the leading vehicle cannot accurately determine the

location relationship, leading to its active yield decision. This

causes longer waiting times, resulting in a negative utility of

the leading vehicle, and even worse, with the gap between

increases. When the gap is large enough, and the probability

of misjudgment is below the threshold, both vehicles will

resume the first come, first go strategy. In addition, when

the gap increases to around 15m, the lagging vehicle will

sway between pass and yield due to uncertainty, where

conflicting traffic leads to a probability of collision accidents

(see Figure. 6 (b) and (f)).

Cooperative perception can effectively compensate for

decreased utility caused by perception errors. Smaller uncer-

tainty helps to achieve a lower probability of misjudgment,

thereby reducing the range of distance between two vehicles

with which the leading vehicle will actively decide to yield

and that of potential accidents (see Figure. 6 (c) and (g), with

larger utility and lower collision probability).

However, transmitting deceptive information can reduce

the system-level benefits. Location information with an offset

of 0.2m is set to be transmitted from the lagging vehicle

to the leading vehicle, causing a significant deviation in

the leading vehicle’s judgment of the location relationship

between the two vehicles. As a result, deceptive information

leads to the larger gap range with which the leading vehicle

actively yields and a higher probability of collision at the

critical gap of 15m (see Figure. 6 (d) and (h)).
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V. CONCLUSION

In summary, this paper has introduced a game theoretical

framework for analyzing CAV interactions, explicitly exam-

ining the repercussions of vehicle perception uncertainty and

adversarial deception on the traffic system. The strategic

use of CAVs’ deception to optimize individual utility has

been theoretically demonstrated to potentially compromise

the efficiency and safety of the overall traffic system, par-

ticularly in conflicting intersections. This paradox highlights

the inherent conflict between single-vehicle optimization and

the broader system-wide benefits, weakening the advantages

brought by vehicle-to-vehicle connectivity. In addition, ex-

tensive simulation experiments have been conducted to un-

derscore the detrimental impact of such deceptive maneuvers.

Furthermore, we plan to delve into the decision-making

process, exploring the equilibrium between signaling strate-

gies and reception beliefs through signaling games. Expand-

ing the scope to diverse scenarios will provide a more com-

prehensive understanding of how these characteristics impact

macroscopic traffic networks. Moreover, ongoing real-world

experiments are poised to validate our theoretical derivations.

Inspired by [27], future research is expected to leverage

machine learning methods for accurately identifying irra-

tional drivers and cooperative vehicles, thereby improving

decision-making for CAVs. Even without intentional decep-

tion, addressing mechanisms to counteract similar behaviors

can address problems like communication delays. Therefore,

we advocate integrating considerations of incomplete infor-

mation in CAV studies, employing verification mechanisms,

recognition methods, robust control, and other strategies

to mitigate the adverse effects on intelligent transportation

systems.
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