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ABSTRACT: Saturated oxygen-containing heterocycles are present
in numerous natural products and biologically active compounds.
While the oxa-Pictet—Spengler reaction conventionally serves as a
traditional synthetic strategy for preparing arene-fused tetrahydro- o De QAD
pyrans (THPs), existing methods typically involve harsh conditions. H

Disclosed herein is the development of a mild photocatalytically acyclic ether ~ “spring-loaded” fused THPs
triggered oxa-Pictet—Spengler reaction of ethers providing a
synthetic approach to fused THP compounds. The tuned dual
photo/hydrogen-atom transfer (HAT) catalysis enables site- and
chemoselective C—H functionalization at the benzylic ether, which results in the formation of a benzoate acetal intermediate. The
key intermediate is then exposed to subsequent Lewis acid catalysis, thus facilitating oxocarbenium ion generation and ring closure.
Notably, this combination strategy successfully addresses concerns related to the overoxidation inherent in photocatalytic systems.

chemoselective C-H activation + net cross-dehydrogenative coupling

KEYWORDS: photocatalysis, C—H activation, oxocarbenium, oxa-Pictet—Spengler reaction, heterocycles

he prevalence of saturated heterocycles within the realm potential of DDQ_ limits its compatibility with various

of biologically active molecules underscores their functionalities. Consequently, there exists a need for innovative
privileged status as essential chemical motifs." Among these, alternatives, specifically those utilizing commercially available
cyclic ethers stand out for their abundance in natural products, reagents under milder reaction conditions.
many of which exhibit intriguing bioactivities.” Notably, fused Photocatalysis has emerged as a potent strategy in synthetic
tetrahydropyran (THP) structures recur in diverse compounds organic chemistry that features mild photoexcitation processes
ranging from aromatic fused variations, like isochroman,® to and single-electron redox pathways.M This technology has
more complex saturated ring systems. Exemplary instances facilitated bond disconnections previously unattainable
include compounds like trolliusol A,* trichodermanone C,* and through traditional two-electron chemistry. Notably, C—H
plagiogyrin B° (Figure 1A). A common approach for the activation stands out as a robust strategy within photocatalysis
synthesis of isochromans involves the oxa-Pictet—Spengler eliminating the need for prefunctionalization or harsh
reaction of arenes,” an intramolecular variant of the Friedel— conditions."® In recent studies, several photocatalytic methods
Crafts reaction. In contrast to the prototypical Pictet—Spengler have been explored for the oxidation of benzylic ether to access
reaction,” characterized by the formation of an easily accessible oxocarbenium ions, which has proved invaluable for benzyl
iminium ion intermediate, the traditional approach for the oxa- group deprotection and facilitating intermolecular nucleophilic
Pictet—Spengler requires strong acids and/or harsh conditions addition.'® In many cases, researchers have commonly
to generate oxocarbenium ions from the corresponding alcohol employed conditions that include a synergetic combination
and aldehyde substrates (Figure 1B). While there exists of visible light photocatalyst and bromotrichloromethane
historical precedent for transforming the corresponding acetate (BrCCl,) as a terminal oxidant.'”

acetal into the oxocarbenium species, this pathway also
typically entails the application of strongly acidic conditions.”
Noteworthy advancements have been reported in recent
literature, including the development of an imidodiphosphate
catalyst for an enantioselective version of the transformation."’

In alternative approaches, scientists have employed cross-
dehydrogenative coupling (CDC) strategies in this field of
chemistry."" As a demonstrative example, benzylic or allylic
ethers can be directly oxidized using 2,3-dichloro-$,6-dicyano-
1,4-benzoquinone (DDQ) as the mediator to generate the key
oxocarbenium intermediate and enable subsequent inter'”/
intramolecular nucleophilic addition. However, the oxidizing

In our preliminary study, the BrCClj-mediated conditions
were applied to a benzylic ether substrate harboring an
additional nucleophilic aryl group, which resulted in the site-
selective oxidation of the benzylic ether favorably over the
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Figure 1. (A) Fused THP-containing natural products. (B)
Traditional oxa-Pictet—Spengler reaction for isochromans. (C)
Challenges of photocatalysis for this system and a blueprint of the
new approach. (D) This work: site-selective photocatalytic oxidation
of acyclic ether and mild Lewis acid-mediated oxa-Pictet—Spengler
reaction.

Table 1. Optimization of Reaction Conditions

OMe  PC-1 (0.2 mol %)
(BzO),
n-BuSH (40 mol%) Bi(OTf)3
EtOAc, 4A MS (C/?

o pn blue LEDs o/cl)gzph

1a
entry deviation from above conditions yield (%)“'b

1 none 86 (82)

2 PC-2 instead of PC-1 18

3 PC-3 instead of PC-1 16

4 1.0 mol % of PC-1 72

S TBPB instead of (BzO), 9

6 A instead of n-BuSH 78

7 B instead of n-BuSH 64

8 C instead of n-BuSH 24

9 20 mol % of n-BuSH 75

10 MeCN instead of EtOAc 80

11 DCE instead of EtOAc 0

12 TFA instead of Bi(OTf), 17

F F
PC-1 PC-2 PC-3
5 o . o HS_ _Me S
~07 Bz ~07 Bz HS\)kOMe Mo \©\Me
(BzO), TBPB A B c

“Reaction conditions unless otherwise indicated: 1a (0.1 mmol),
terminal oxidant (0.2 mmol; TBPB = fert-butylperbenzoate), PC (0.2
umol), and solvent (0.05 M; DCE = 1,2-dichloroethane) irradiated
(456 nm) for 15 h. "'H NMR yield using 1,3,5-trimethoxybenzene as
internal standard. Isolated yield given in parentheses.

other benzylic position (Figure 1C, left). The generated
oxocarbenium intermediate underwent an oxa-Pictet—Spengler
reaction to provide the desired isochroman. However, the
desired product suffered from overoxidation because of the
highly activated doubly benzylic position. This intriguing
observation led to a meticulous exploration of alternative
reagents that would provide the desired reaction selectivity. In
this context, we envisaged that employing a different type of
terminal oxidant could result in the formation of a more stable
acetal intermediate. This spring-loaded intermediate would
refrain from oxocarbenium ion formation until exposed to an
acetal-activating reagent, thereby effectively mitigating the
overoxidation concern (Figure 1C, right). As such, we
envisioned that a combination of photocatalysis and hydro-
gen-atom transfer (HAT) catalysis'® would enable the
introduction of a functional group at the ether a-position.
Additionally, a Lewis acid-mediated oxocarbenium ion
formation from the resulting intermediate would enable ring
closure, thereby completing the mild oxa-Pictet—Spengler
transformation (Figure 1D).

7950

In our reaction design, the employment of an approprlate
terminal oxidant and a thiol-type HAT catalyst'” could site-
selectively generate a radical at the benzylic ether position.”’
Concurrently, the oxidant-derived benzoate radical counterpart
would couple to the ether radical to yield the crucial
intermediate acetal. This benzoate acetal, while largely
unreactive under the initial conditions, could subsequently be
exposed to a Lewis acid catalyst to form the oxocarbenium
species, thereby providing access to the ring-closure
process.”'*'°*'" ' We hypothesized that the strategic utilization
of this spring-loaded acetal approach would effectively mitigate
the overoxidation issue inherent in a photocatalytic oxa-
Pictet—Spengler reaction.

On the basis of this plan, we selected la as a model
substrate, which bears a benzylic ether moiety, along with
another electron-rich aromatic ring on the other side. After
screening reaction conditions, the desired isochroman product
2a was isolated in 82% yield over two steps (86% NMR yield)
when Ir-dF (PC-1), benzoyl peroxide [(BzO),], and 1-
butanethiol were used under blue LED irradiation (456 nm)
followed by bismuth triflate-mediated oxa-Pictet—Spengler

https://doi.org/10.1021/acscatal.4c01595
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Table 2. Substrate Scope of Photo- and Lewis acid-catalyzed Oxa-Pictet—Spenglerf

(BzO),
PC-1 (0.2 mol %)
n-BuSH (40 mol%)

Bi(OTf)s (g? X=0,S, NPG
EtOAc, 4A MS R = aryl, heteroaryl
xR blue LEDs (456 nm) xTor
step | step Il
electrophile scope
OMe OMe OMe OMe
OMe 2d, R = OMe, 66% OMe
2e, R = Br, 66%
2f, R=Cl, 75%
OMe 2g,R=F, 83%
Br 2h, R = CO5Et, 67% N
o A o) X o N L 2. o X
0 e ® | )/ | ;L 2i, R = CF, 38% (66%)° 07 Naphih | )
R
2a, 82% 2b, 64% 2¢, 61% 2j, 31% 2K, 26%P
nucleophile scope
o]
OMe OMe MeO Me (NXO 0
MeO
] TMSOTf
OMe 0 stepl Et;N
OMe
DCE, 0 °C
0~ “Ph ) ’
0o~ >ph 0~ >ph 0" >ph 0" "Ph
[¢) Ph
21, 80% 2m, 72% 2n, 32% 20, 33% 2p, 57% 1q 2q, 63%°
linkage scope
OMe OMe OMe OMe OMe OMe
Me o) Ph Ph o Ph 0 Ph o Ph o Ph S PMP Cbz PMP
2r,77%, 7:1 dr 2s, 74%, 7:1 dr 2t 1.4:1 2t 2u, 52% 2v, 38%¢ 2w, 62%°
67%
diversification of products
OMe OH o)
n-BuSH, NaH PhI(OAc),
DMF, 140 °C MeCN/H,0 (3/1) oH
84% 47%
o) Ph o) Ph o Ph
2a 3 4

“Step I: 36 h. “Bi(OTf), (2.2 mmol), 24 h. “Reacted at 0.3 mmol scale, step II: solvent removal in vacuo; TMSOTf (0.96 mmol), Et;N (1.08

mmol), DCE (0.2 M), 0

0 °C, 4 h. “Ratio determined by 'H NMR analysis. “Sulfide or amine (0.2 mmol), (BzO), (0.4 mmol), TPPT (0.4 ymol),

and DCE (0.025 M), irradiated with 470 nm LEDs for 1 h; Bi(OTf); (20 umol). fReaction conditions unless otherwise indicated: step I = ether
(0.2 mmol), (BzO), (0.4 mmol), PC-1 (0.4 umol), n-BuSH (80 umol), and EtOAc (0.05S M) irradiated with 456 nm LEDs for 15 h; step II =
solvent removal in vacuo, Bi(OTf); (20 ymol) and solvent (DCE, 0.025 M), S h. DCE = 1,2-dichloroethane, PMP = 4-methoxyphenyl, TMS =
trimethylsilyl, TPPT = triphenylpyrylium tetrafluoroborate, and DMF = N,N-dimethylformamide.

(Table 1, entry 1). The use of other photocatalysts, such as
PC-2 and PC-3, provided lower yields of the products (entries
2 and 3). Higher photocatalyst loading also lowered the
desired reactivity, potentially because of the termination of the
photocatalytic cycle resulting from radical—radical homocou-
pling of overgenerated benzoate radicals (entry 4). The
replacement of the terminal oxidant (BzO), with tert-butyl
perbenzoate led to a significant decrease in the yield (entry S).
A brief survey of thiol HAT catalysts showed that methyl
thioglycolate was a viable alternative for this reaction system,
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whereas secondary alkyl and aryl thiols were not suitable
(entries 6—8). A reduction of the thiol catalyst loading to 20
mol % afforded 2a in a decent yield of 75% (entry 9).
Switching the solvent from EtOAc to MeCN resulted in a
comparable yield (entry 10), whereas the formation of the key
intermediate acetal was not observed when the first step was
performed in DCE (entry 11). Use of trifluoroacetic acid
instead of Bi(OTf); also afforded the product, albeit in a low
yield (entry 12).

https://doi.org/10.1021/acscatal.4c01595
ACS Catal. 2024, 14, 7949—-7955


https://pubs.acs.org/doi/10.1021/acscatal.4c01595?fig=tbl2&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.4c01595?fig=tbl2&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.4c01595?fig=tbl2&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.4c01595?fig=tbl2&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.4c01595?fig=tbl2&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.4c01595?fig=tbl2&ref=pdf
pubs.acs.org/acscatalysis?ref=pdf
https://doi.org/10.1021/acscatal.4c01595?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Catalysis

pubs.acs.org/acscatalysis

Scheme 1. (A) Control Experiments, (B) TEMPO Trapping, (C) and Proposed Catalytic Cycle

A. Control experiments C. Proposed catalytic cycle
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With the optimal reaction conditions in hand, an extensive
exploration of the substrate scope was conducted (Table 2).
Initially, substituents on the electrophilic side of compound 1
were surveyed. Both o-methoxy benzyl and m-bromo benzyl
ethers furnished the products in decent yields (2b, 2c). The
incorporation of electron-donating, electron-withdrawing
groups, and halogen substituents at the para-position of the
phenyl was tolerated, which afforded moderate to good yields
(2d—2i). Naphthyl and pyridyl groups were also tolerated,
albeit with diminished yields (2j, 2k). The investigation then
extended to the nucleophile side. 2,3-Dimethoxyphenyl and
3,5-dimethoxyphenyl groups provided the highly substituted
isochroman products in 80% yield (21) and 72% yield (2m),
respectively. The 2,5-substitution pattern also afforded the
product, albeit with reduced productivity (2n). Carbon- and
nitrogen-based substituents at position 3 of the phenyl group
were also tolerated and furnished a diverse array of
isochromans (20, 2p). Attempts to synthesize furanone-fused
THP (2q) using a siloxyfuran substrate faced challenges, which
resulted in the formation of a silylbenzoate (see the Supporting
Information). This prompted us to employ a furanone-type
substrate in the first step followed by alternative conditions
utilizing trimethylsilyl triflate and triethylamine to successfully
access 2q. Importantly, this synthetic sequence represents a
novel approach to furanone-fused THP products.

Further exploration focused on the scope of the linkage
between the nucleophile and oxocarbenium moiety was
conducted. The impact of methyl substitution at the other
ether-a-position on the ring closure step was investigated,
which resulted in a good yield and relatively high
diastereoselectivity (2r). Similarly, a phenyl-substituted version
demonstrated comparable outcomes (2s). It is pertinent to
note that this substrate possesses an additional benzylic ether
position, which, despite its presence, exhibited no reactivity.
Substrates containing an aryl ring-based linkage afforded the
corresponding tricyclic products, albeit with poor regioselec-
tivity (2t and 2t’). Additionally, a one-carbon-longer chain was
evaluated and produced the seven-membered cyclic ether
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product (2u). Finally, sulfide- and carbamate-protected amine
substrates were explored. Standard conditions proved to be
ineffective for these substrates. Instead, by leveraging the
electron-rich PMP group, alternative reaction conditions
utilizing a highly oxidizing pyrylium photocatalyst (TPPT,
triphenylpyrylium tetrafluoroborate) led to the desired
reactivity, which afforded isothiochroman compound 2v and
tetrahydroisoquinoline product 2w (for the proposed mecha-
nism, see the Supporting Information). To highlight the
synthetic utility of these products, standard product 2a was
demethylated in high yield (3) and subsequently oxidized to
fused dienone 4.

We also investigated the mechanism of this transformation
by starting with control experiments (Scheme 1A). The
omission of irradiation or oxidant from the standard conditions
led to no desired product, thereby suggesting that the reaction
is a light-driven process and that benzoyl peroxide is essential
for the desired reactivity. Interestingly, a lower yield of the
product was obtained in the absence of a photocatalyst,
whereas none of the reactivity was observed when both thiol
catalyst and photocatalyst were omitted. This observation
suggested that, in the presence of thiol catalyst, photoinduced
homolytic cleavage of benzoyl peroxide generates two benzoate
radicals, which can engage in hydrogen atom abstraction and
radical coupling to furnish the acetal.”> A lower reaction
efficiency was also observed in the absence of thiol catalyst,
presumably because of photoinduced energy transfer from PC-
1* to benzoyl peroxide, which led to homolytic cleavage (for
the proposed mechanism, see the Supporting Information).”?
The omission of the Lewis acid in step II afforded none of the
product. The reaction mixture after step I was investigated
through NMR and ESI-HRMS analyses, which indicated that §
is formed and stable in the absence of an activating agent, like
Lewis acid. Furthermore, addition of one equivalent of
TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl] to the
standard conditions also suppressed product formation
(Scheme 1B), thereby suggesting a radical mechanism.
Additionally, this reaction mixture contained adduct 6, as

https://doi.org/10.1021/acscatal.4c01595
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detected by ESI-HRMS, which supported the intermediacy of
the benzylic ether radical. Finally, a Stern—Volmer fluores-
cence quenching experiment was performed with the reaction
components, and only benzoyl peroxide demonstrated
significant quenching, thereby suggesting an oxidative quench-
ing cycle (see the Supporting Information). From these
experiments, we propose the following as the predominant
mechanism (Scheme 1C). Benzoyl peroxide (E, 4 = ~—0.8 V
vs SCE)** can be reduced by excited PC-1%* (E, ,, Ir'™*/Ir"V =
—1.21 V vs SCE)* to provide benzoate ion and benzoate
radical. Then, oxidized photocatalyst PC-1°* can generate thiyl
radical from thiol HAT agent through proton-coupled electron
transfer (PCET) to benzoate anion.”” The thiyl radical can
selectively abstract a hydrogen atom at the benzylic ether
position of 1 to furnish benzylic ether radical I. Radical—radical
cross-coupling between I and the benzoate radical provides key
intermediate II, the acetal moiety of which is stable in the
slightly acidic conditions because of the benzoic acid generated
in situ. Radical-polar crossover of radical I may be also possible,
and the benzoate anion could attack the resultant carbocation
to afford acetal II. However, the absence of fully cyclized
products during the photocatalyzed step disfavors the
formation of carbocation intermediates. Additionally, the
reaction proceeds efficiently in MeCN (Table 1, entry 10),
and Ritter reaction-type products are not observed under those
conditions. In step II, bismuth-mediated elimination of the
benzoate group of II affords oxocarbenium ion III, which
smoothly undergoes an oxa-Pictet—Spengler reaction with the
internal nucleophilic arene to furnish the final product 2.

We have developed a two-step HAT /photocatalyzed oxa-
Pictet—Spengler reaction of ethers. This mild protocol features
a site-selective HAT at a benzylic ether position and
subsequent radical cross-coupling with a benzoate radical to
afford the key acetal intermediate. In the second step of the
process, the intermediate undergoes an oxa-Pictet—Spengler
reaction via oxocarbenium species in the presence of bismuth
triflate. The exploitation of this spring-loaded strategy
successfully mitigated the overoxidation issue inherent in
photocatalytic oxa-Pictet—Spengler reactions. Notably, this
methodology transforms acyclic ethers through cyclization
under mild conditions, thereby efficiently providing access to
isochromans, as well as other saturated cyclic core-fused THP
products.
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