Observation of Deuterated Double-Perovskite Hydroxide CoSn(OH)6 Nanocubes

Menuka Adhikari, Starfari T McClain, Rekha George, Sivasankara Rao Ede, Hui Wu, William D Ratcliff, Liurukara Sanjeewa, Cheng Li, Zhiping Luo

Proceedings

Observation of Deuterated Double-Perovskite Hydroxide CoSn(OH)₆ Nanocubes

Menuka Adhikari¹, Starfari T. McClain¹, Rekha George¹, Sivasankara Rao Ede¹, Hui Wu², William D. Ratcliff², Liurukara Sanieewa³, Cheng Li⁴, and Zhiping Luo^{1,*}

Electrochemical water splitting is considered as one of the most viable, effective and eco-friendly approaches in renewable energy conversion and storage. The oxygen evolution reaction (OER) is one of the critical reactions and this reaction is kinetically sluggish because of its complex four-electron transfer. Currently, IrO_2 and RuO_2 are serving as the most effective OER catalysts; however, the cost associated with these noble-metal catalysts curtails the scalability of this technology [1, 2]. Hence, it is of great scientific and technological importance to find highly efficient catalysts from earth-abundant materials.

Perovskites possess diversified structures with tunable properties [3]. Perovskite-related transition metal-based catalysts have drawn significant interests of the scientific community because of their low cost, earth abundance, and excellent electrochemical properties. Specifically, cobalt-based catalysts such as perovskite oxide $SrCoO_3$, $CaCoO_3$, double perovskite $PrBaCo_2O_{5+\delta}$, double perovskite hydroxide $CoSn(OH)_6$, and spinel Co_3O_4 have been explored as excellent OER catalysts for electrochemical water splitting. Song et al. tuned the electrochemical property of $CoSn(OH)_6$ nanomaterials by creating nanoporous structures *via* selective electrochemical etching process [4]. They have found that initiation of etching process due to presence of crystal defects because of oxygen vacancies; while electronic doping effect of $CoSn(COM)_6$ in this compound was not yet further identified.

In this research, we study the crystalline and electronic structures of CoSn(OH)₆ for high OER performance. To use neutron powder diffraction (NPD) to experimentally determine the atomic positions, it is needed to replace hydrogen (H) with deuterium (D).

The $CoSn(OH)_6$ nanocubes were synthesized by taking 1.5:2 molar mixture of $Co(NO_3)_2 \cdot 6H_2O$ and $Na_2SnO_3 \cdot 3H_2O$. The precursor sodium stannate $Na_2SnO_3 \cdot 3H_2O$ is hydrous, and its X-ray diffraction (XRD) pattern is shown in Fig. 1a. A pure product of $CoSn(OH)_6$ was obtained, and the SEM image is shown in Fig. 2a, with defined cubic shape and uniform size distribution. To synthesize deuterated sample, we could use anhydrous $CoCl_2$, while anhydrous sodium stannate is not commercially available. We calcinated the hydrous precursor at a high temperature of 800 °C for 16 h. Although it is almost thoroughly transformed to Na_2SnO_3 as shown in Fig. 1b, a small peak composed of (101)/(003) of the hydrous phase at 18.7° could not be eliminated, possibly due to the reversed transformation during cooling by absorbing moisture from the atmosphere. Further work is needed to completely eliminate the H for NPD. Using the near anhydrous sodium stannate as the precursor, the synthesized $CoSn(OD)_6$ nanoparticles are shown in Fig. 2b. They are still in the form of nanocubes, though in a smaller size [5].

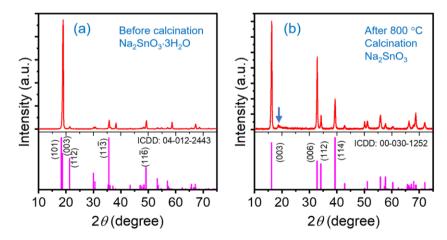


Fig. 1. XRD patterns of hydrous sodium stannate precursor before (a) and after calcination (b).

¹Department of Chemistry, Physics and Materials Science, Fayetteville State University, Fayetteville, North Carolina, United States

²NIST Center for Neutron Research. National Institute of Standards and Technology, Gaithersburg, Maryland, United States

³University of Missouri Research Reactor, University of Missouri, Columbia, Missouri, United States

⁴Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States

^{*}Corresponding author: zluo@uncfsu.edu

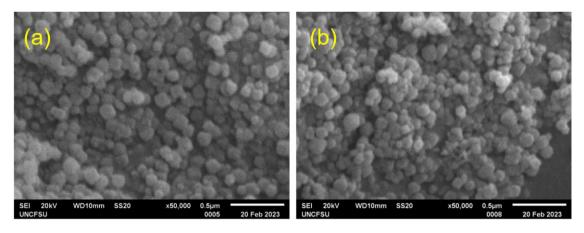


Fig. 2. SEM image of CoSn(OH)₆ (a) and CoSn(OD)₆ (b) nanoparticles.

References

- 1. SR Ede and Z Luo, J. Mater. Chem. A. 9 (2021), p. 20131. doi:10.1039/D1TA04032D
- 2. SR Ede et al., ACS Catal. 11 (2021) 4327. https://doi.org/10.1021/acscatal.1c00465
- 3. G George, SR Ede and Z Luo in "Fundamentals of Perovskite Oxides: Synthesis, Structure, Properties and Applications" (CRC Press, Boca Raton, Florida).
- 4. F Song et al., Energy Environ. Sci. 9 (2016), p. 473. https://doi.org/10.1039/C5EE03453A
- 5. This project was supported by NSF PREM Program DMR-1827731 for partnership between IMREL at FSU and CHRNS at NIST (supported by NSF DMR-1508249).