Cathodoluminescence of Mn4+-doped Lithium Hafnium Fluorides

Menuka Adhikari, Shantae L Mohan, Cheng Li, Hui Wu, Liurukara Sanjeewa, Bhoj Gautam, Zhiping Luo

DECTRIS

ARINA with NOVENA Fast 4D STEM

DECTRIS NOVENA and CoM analysis of a magnetic sample.

Sample courtery: Dr. Christian Liebscher, May-Hanck-Institut für Eisenforschung Gmbbi. In Places and Annahmen.

Meeting-report

Microscopy AND Microanalysis

Cathodoluminescence of Mn⁴⁺-doped Lithium Hafnium Fluorides

Menuka Adhikari¹, Shantae L. Mohan¹, Cheng Li², Hui Wu³, Liurukara Sanjeewa⁴, Bhoj Gautam¹, and Zhiping Luo^{1,*}

The red-emitting Mn⁴⁺-doped fluoride phosphors possessing a narrow red emission are a significant class of materials with high luminescence performance for light-emitting diodes applications. The fluoride hosts with central ion Si⁴⁺, Ti⁴⁺, Ge⁴⁺, Sn⁴⁺, Zr⁴⁺, or Al³⁺ activated with Mn⁴⁺ or rare-earth (RE) elements have been well reported in the literature [1–7]. The Hf-based fluorides doped with RE elements have found application for radiation detection [5,7,8]. Here, we report the cathodoluminescence (CL) of Mn⁴⁺-doped lithium hafnium fluorides. In a typical synthesis, a solution of LiF in methanol and aqueous HfCl₄ were prepared separately. The LiF was dispersed in methanol by sonication. The Mn⁴⁺ precursor K₂MnF₆ was synthesized by following the protocol reported elsewhere [9]. First, the required amount of K₂MnF₆ was dissolved in 1 mL 40% HF and quickly mixed with aqueous HfCl₄ solution. Then, the methanolic solution of LiF was added to the reaction mixture as soon as possible, stirred for 1 min, and precipitated with ethanol. The resulting solid product was separated via centrifugation and washed with ethanol several times. The final product was dried in an oven at 70 °C.

The phase purity and crystalline structure of the sample were examined by X-ray Diffraction (XRD). An example is shown in Figure 1(a), where all of the diffraction peaks match with the orthorhombic crystal structure of Li₄ZrF₈ with a space group *Pnma* (ICDD 04-011-1800) [10]. Since the X-ray scattering factor of Li is ignorable in the presence of heavy Hf, the structure is determined with neutron diffraction. There were no peaks arising from any secondary phases or impurities even after doping with Mn⁴⁺. The morphology of the sample was analyzed by scanning electron microscopy (SEM). The SEM image Fig. 1(b) revealed the formation of aggregated near spherical nanoparticles with an average size of about 100 nm.

The CL properties of the Mn⁴⁺-doped Li₄HfF₈ were investigated by xCLent CL spectrometer equipped on a JEOL field-emission JXA-8530F Electron Probe Microanalyzer (EPMA). To prepare the sample for CL, a small hole was drilled in previously prepared epoxy resin, and the material was filled into the hole and pressed using a hydraulic pellet press. The prepared sample was placed in the EPMA for analysis. The undoped host sample exhibited emission in the blue region with a maximum peak position at 490 nm, while the Mn⁴⁺-doped sample showed a spectrum consisting of two peaks centered at 490 nm and 588 nm, respectively (Fig. 2). The 490 nm peak originates from the host emission, and the 588 nm peak originates from the Mn⁴⁺ emission. All the above results confirmed the successful doping of Mn⁴⁺ in the host for luminescence applications [8, 11].

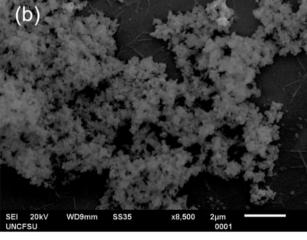


Figure 1. (a) XRD pattern and (b) SEM image of Mn⁴⁺-doped Li₄HfF₈.

¹Department of Chemistry, Physics and Materials Science, Fayetteville State University, Fayetteville, North Carolina, USA

²Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

³NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, USA

⁴University of Missouri Research Reactor, University of Missouri, Columbia, Missouri, USA

^{*}Corresponding author: zluo@uncfsu.edu

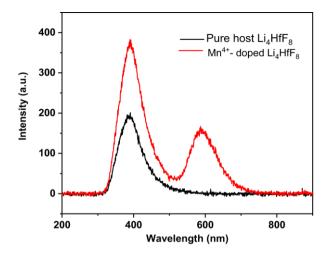


Figure 2. CL spectra of pure host and Mn⁴⁺-doped sample.

References

- 1. G. George et al., J. Mater. Chem. C 6 (2018) 7285-7294. https://doi.org/10.1039/C8TC01651H.
- 2. G. George et al., RSC Adv. 8 (2018) 39296-39306. https://doi.org/10.1039/C8RA07806H.
- 3. G. George, Z. Luo, Current Nanoscience 16 (2020) 321-362. https://doi.org/10.2174/1573413715666190112121113.
- 4. G. George et al., Journal of Alloys and Compounds 857 (2021) 157591. https://doi.org/10.1016/j.jallcom.2020.157591.
- 5. V. Kumar et al., J. Mater. Chem. C 9 (2021) 1721–1729. https://doi.org/10.1039/D0TC05051B.
- 6. V. Kumar, Z. Luo, Photonics 8 (2021) 71. https://doi.org/10.3390/photonics8030071.
- 7. M. Adhikari et al., Advanced Optical Materials 10 (2022) 2201374. https://doi.org/10.1002/adom.202201374.
- 8. Z. Luo et al., Current Nanoscience 13 (2017) 364-372. https://doi.org/10.2174/1573413713666170329164615.
- 9. Y. Jin et al., ACS Appl. Mater. Interfaces 8 (2016) 11194–11203. https://doi.org/10.1021/acsami.6b01905.
- 10. A.T. Chemey, T.E. Albrecht-Schmitt, Acta Cryst E 75 (2019) 139-141. https://doi.org/10.1107/S2056989018018194.
- 11. This project was supported by NSF PREM Program DMR-1827731 (FSU) and DMR-508249 (NIST). The NPD was conducted at ORNL through user proposals of IPTS-30170 and IPTS-31329.