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Abstract—Machine learning models, in particular deep neu-
ral networks, are currently an integral part of various
applications, from healthcare to finance. However, using
sensitive data to train these models raises concerns about
privacy and security. One method that has emerged to verify
if the trained models are privacy-preserving is Membership
Inference Attacks (MIA), which allows adversaries to de-
termine whether a specific data point was part of a model’s
training dataset. While a series of MIAs have been proposed
in the literature, only a few can achieve high True Positive
Rates (TPR) in the low False Positive Rate (FPR) region
(0.01% ~ 1%). This is a crucial factor to consider for an
MIA to be practically useful in real-world settings. In this
paper, we present a novel approach to MIA that is aimed
at significantly improving TPR at low FPRs. Our method,
named learning-based difficulty calibration for MIA (LDC-
MIA), characterizes data records by their hardness levels
using a neural network classifier to determine membership.
The experiment results show that LDC-MIA can improve
TPR at low FPR by up to 4x compared to the other difficulty
calibration-based MIAs. It also has the highest Area Under
ROC curve (AUC) across all datasets. Our method’s cost is
comparable with most of the existing MIAs, but is orders
of magnitude more efficient than one of the state-of-the-art
methods, LiRA, while achieving similar performance.

1. Introduction

Machine learning has become increasingly important
in many mission-critical domains, such as healthcare,
finance, manufacturing, and cybersecurity. However, these
applications often rely on the use of sensitive data as the
training dataset for ML models. For instance, large-scale
medical images containing private patient information are
used to train CNN models for the recognition of body
organs [38] and brain tumor segmentation [10]. Another
example is that Fu et al. trained a CNN model using real
credit card transaction data from a commercial bank to de-
tect fraudulent behaviors [9]. While machine learning has
proven to be highly effective in these domains, researchers
have cautioned that overfitting can lead to the memoriza-
tion of training data, potentially resulting in the leakage of
sensitive information. To this end, Membership Inference
Attacks (MIA) have been developed to determine whether
a target sample belongs to the training dataset of a target
model.

In most MIAs, the attackers take advantage of the fact
that the target model produces more accurate results on
the data records in their training dataset compared to those
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Figure 1: The figure shows data records of Airplane
and Cat classes in the CIFAR-10 dataset. Each record is
represented by a marker indicating its membership type.
The y-axis shows the calibrated membership scores, and
the x-axis shows the membership scores on the target
model. The membership score is determined as the neg-
ative of cross-entropy loss values. The calibrated mem-
bership score is the difference between a data record’s
membership score on the target model and the reference
model. In traditional MIAs, data samples with higher
membership scores are more likely to be members, while
in difficulty calibration-based MIAs, data samples with
higher calibrated membership scores are more likely to
be members.

drawn from the same distribution but not included in the
training dataset [28], [31], [39]. Shokri et al. proposed
training a shadow model to mimic the behavior of the
target model by learning from the output of the shadow
model when exposed to member and non-member data
records [31]. Later, Yeom et al. discovered that an attacker
can calculate a membership score, such as the entropy
loss value, of a target sample from the target model and
use a threshold to determine membership [39]. However,
previous works [3], [22], [37] point out that the score-
based approach fails to distinguish between members and
non-members with high precisions when the non-member
data records also have low loss values.

To tackle this issue, Watson et al. proposed using a
reference model [37], which is trained on data from the
same distribution as the target model’s training dataset.
By calculating the difference between the loss values ob-
tained from the target and reference models, the reference
model helps calibrate the target model’s behavior on a
data record. This approach is an example of difficulty
calibration-based attacks, one of the most advanced MIAs.
To further improve the attack performance, Carlini et al.
designed a Likelihood Ratio Attack (LiRA) [3]. LiRA uti-
lizes multiple shadow models to estimate the distribution
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of loss values on a target data record for models that are
either trained or not trained on this data sample.

Existing difficulty calibration-based MIAs rely on a
single metric, such as membership or calibrated member-
ship scores, to differentiate between members and non-
members. However, such approaches have certain lim-
itations since single metrics may display variations or
anomalies that make it difficult to distinguish members
from non-members. Therefore, we propose using multiple
metrics and information to analyze from different perspec-
tives simultaneously. Our proposed attack' achieves this
by adopting a learning-based approach that utilizes mul-
tiple features. We aim to achieve high TPRs at low FPRs
and high AUC while minimizing the cost for attackers.

We consider two types of costs in our attack: the
training cost and the data cost. The training cost is mainly
dependent on the number of attacking models and their
complexities, while the data cost involves the amount of
data needed to train them. We strive to minimize both
in our design. As mentioned by Carlini ez al. [3], MIA
can also be used as an auditing tool for ML models. For
example, a company may use MIA to examine all the
training data to detect privacy leakage before releasing a
commercial model. Cost is an important factor in such
scenarios.

In our discussions, we classify data records based on
their difficulty levels. We refer to data records whose
class labels can be easily predicted correctly by both the
target and the reference models easy-to-predict samples,
while those whose labels are difficult to predict correctly
are called hard-to-predict samples. To illustrate this, we
provide an example in Figure 1. There are also some
hard-to-calibrate samples in this figure, which we will
explain in Section 3.2. Based on the figure, we can make
a few important observations. First, suppose we only
consider the membership scores of the target samples on
the target model (as shown on the x-axis). In that case,
many non-members overlap with members because they
are easy-to-predict samples and thus have low membership
scores. The members in this overlap can either be easy-
to-predict or hard-to-predict samples. Using the calibrated
membership scores (as shown on the y-axis) increases the
gap between the easy-to-predict non-members and hard-
to-predict members. However, if we only consider the cal-
ibrated membership scores, the easy-to-predict members
and the hard-to-predict non-members may overlap since
both groups may have low calibrated membership scores.
Therefore, both membership and calibrated membership
scores are useful in distinguishing members from non-
members. Second, if we use a fixed threshold value on
the calibrated membership scores to differentiate between
members and non-members, as Watson et al. did, it may
not work well for both classes since they have different
optimal cut-off points. This indicates that the hardness
levels of data records are not universal across different
classes. Therefore, adopting a more intelligent approach
to determining the threshold values is necessary. Third,
data distribution also plays an important role in determin-
ing how difficult it is for a data record to be correctly
classified, in addition to its intrinsic characteristics. As

1. The implementation of LDC-MIA is available at https://github.com/
horanshi/LDC-MIA.

revealed by Long et al. [22], the more neighbors a data
record has in the training dataset, the easier it is for it
to be correctly classified. This also means that the data
record is more likely to be determined as a member by
attackers, regardless of its membership.

Based on these observations, we propose developing
a classifier that can learn to calibrate difficulty based on
the membership score on the target model, the calibrated
membership score, the label of the target data record, and
its neighborhood information. To train this classifier, we
can use a shadow target model and a reference model
trained with data records that share the same distribution
as those belonging to the target model training dataset.
The shadow target model would mimic the target model’s
behavior in classifying members and non-members. We
call the proposed attack LDC-MIA. The main contributions
of this paper are threefold. (1) The proposed attack signifi-
cantly improves the TPR at low FPR while minimizing the
cost for attackers. We only require one shadow model and
one reference model to improve the TPR. The classifier we
build is a simple model with three fully connected layers.
(2) We conduct a comprehensive characterization of the
data records’ hardness levels and use these characters
to train a neural network for determining membership.
This learning-based calibration approach can be easily ex-
tended to integrate other features without requiring signif-
icant retraining efforts. (3) Through extensive evaluations,
we provide insights into each character’s contributions to
the success of our proposed attack.

We conduct extensive experiments to evaluate the per-
formance of LDC-MIA on various datasets. Specifically,
we measure the TPR at low FPRs ranging from 0.01% to
1%. This metric helps us evaluate the model’s ability to
correctly identify positive instances while minimizing the
number of false positive predictions for practical use. Our
results show that our proposed attack achieves the highest
AUC across all datasets compared to state-of-the-art MIAs
and improves TPR up to 4x. In addition, we measure
the precision-recall curve to analyze how well the model
performs across different recall levels while maintaining
high precision. The results indicate that LDC-MIA consis-
tently produces the highest precision values for different
recall values across all datasets. For instance, LDC-MIA
identifies 52.72% of the members with a precision of 80%,
significantly higher than other MIAs can achieve.

2. Background

2.1. Machine Learning

In the machine learning classification tasks, for a
dataset X that contains data across m classes, a neural
network model fy trained on X is a function capable of
mapping an input data sample = to a probability distri-
bution across n classes. We denote by fp(x) the output
vector from fy, where this vector represents the prediction
posteriors of x across n class, where fg(x), indicates the
prediction posterior value of x for a specific class y.

During the training process of a machine learn-
ing model, for training data (z,y), the loss function
L(fo(x)y,y) is typically defined to calculate the error
between the prediction posterior fy(z), of the training
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data and its ground truth label y. For classification tasks,
the cross-entropy loss is a commonly used loss function:

L(fo(2)y,y) = —log(fo(z)y) (D

The training of neural network models utilizes stochastic
gradient descent [19] to minimize the loss function:

Oigr < 0i =X Y VoL(fo,(2),) )

(z,y)eB

where B is a batch of training data from X, A is the
learning rate for updating the parameters 6 of the neural
network. In this paper, we will denote a trained model
as f. Training a machine learning model involves running
multiple epochs to achieve high generalizability. Also, var-
ious techniques are utilized in the training model process,
such as data augmentation [6], [36] and tuned learning
rates [15], [23], which enhance the model’s ability to
generalize from the training data to unseen data, thereby
ensuring the model’s usefulness in practical applications.

2.2. Membership Inference Attacks

In membership inference attacks, the attacker aims to
identify whether a given target sample is part of the target
model’s training dataset. MIA was first introduced by
Shokri et al. [31], with the trend of increasingly sensitive
data being used to train machine learning models, MIA
has received considerable attention in many scenarios [4],
[25], [26].

Definitions. Given a target model f and target sample z,
the process of MIA can be defined as:

Az, f —{0,1} 3)

where A is the attack function, if the target sample z is
in the training dataset of f, the attack function A outputs
1(i.e., member), otherwise the output of A is 0(i.e., non-
member).

There are some MIAs [28], [39] use the membership
score of the target sample on the target model as the basis
for determining whether it is a member. This membership
score can be the loss, confidence, etc. In this paper, we will
use the cross-entropy loss of the target sample on target
model to calculate the membership score, the membership
score of target sample (x,y) is defined as:

s(f, (,y)) = —L(f(2)y,y) = log(f(x)y) )

where f is the target model.

Difficulty Calibration. One category of the state-of-the-
art MIAs is based on difficulty calibration [3], [21], [37].
These attacks are designed to accurately identify members
by first identifying the easy-to-predict non-members and
then separating them from hard-to-predict members. The
key to their success is their detailed analysis of the sample
hardness of each target sample [3], [37]. To achieve this,
they often use a reference model or shadow model(s) to
compare the membership scores of each target sample on
different models where they are either members or non-
members of the training dataset. A larger score indicates
that the sample is likely to be a member, while a smaller
score indicates that it is more likely to be a non-member.
The intuition behind this approach is that a member data
record may lead to very different outputs on a model

where they are part of the training dataset compared to
another one where they are not in the training dataset.
These differences can be represented by different values,
such as calibrated membership score [37], likelihood ra-
tio [3]. Among these, the calibrated membership score,
proposed by Watson et al., is the easiest to obtain. Given
a target sample z, its calibrated membership score can be
calculated using the following equation:

s (h, g, (z,y)) = s(h, (z.y)) = s(g, (x,9)) ()

where y denotes its predicted label, h represents the target
model, and g represents a reference model that shares the
same model architecture as the target model. To deter-
mine whether a target sample is a member, a pre-defined
threshold is applied on the calibrated membership score.
The specific attack process is illustrated by the equation
below:

A(hag7 (as,y)) =1 [Scal(hmgv (x,y)) > T] (6)

where 1 is an indicator function, 7 is the decision thresh-
old. In other words, if the calibrated membership score
exceeds the threshold 7, the target sample is determined
as a non-member; otherwise, it is determined as a mem-
ber. This approach allows the proposed MIA to identify
members with high TPRs at low FPRs.

3. Attack Methodology

3.1. Adversary knowledge

As with previous MIAs, we assume an attacker using
LDC-MIA has access to certain adversarial knowledge.
Firstly, the attacker has black-box access to the target
model. Secondly, the attacker has an auxiliary dataset with
the same data distribution as the target model’s training
dataset. This auxiliary dataset may or may not overlap
with the target model’s training dataset, and the attacker
does not need to know which part of the auxiliary dataset
is included in the target model’s training dataset. Our
proposed attack method for MIA is also different from
many existing ones, as it does not require knowledge of
the target model’s architecture and the training algorithm
of the target model.

3.2. Design intuition

Recent state-of-the-art attacks [3], [37] have explored
the difficulty level of each data record and applied para-
metric calibration to improve the attack performance in
the low FPR region. These attacks are similar in de-
sign to our proposed method in that each target data
record is individually considered when performing at-
tacks. However, these works provided limited discus-
sions on the impact of calibration on different types of
data records with varying intrinsic properties. Inspired
by this gap, we categorize member and non-member
data records into five categories based on their difficulty
levels for label predictions and calibrations, as shown in
Figure 3: hard-to-predict member/non-member, easy-to-
predict member/non-member, and hard-to-calibrate non-
member. The definition of easy-to-predict and hard-to-
predict samples can be found in section 1. We refer to
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Figure 2: Histogram of the calibrated membership scores
of members and non-members. The calibrated member-

ship scores correspond to those in Figure 3.

the non-members that have high calibrated membership
scores as hard-to-calibrate samples, as their membership
cannot be accurately determined by the existing difficulty
calibration based MIAs. This figure is similar to Figure 1,
and we have divided it into four regions using a fixed
membership score threshold and a fixed calibrated mem-
bership score threshold. By analyzing this figure, we can
get the following insights.

Membership scores on the target model are still useful.
MIAs based on loss utilize the gap in cross-entropy loss
to differentiate between members and non-members. The
basic idea is that members would have smaller loss values
(higher membership scores) while non-members would
have larger ones. Other score-based attacks also follow
a similar approach. However, this type of attack can
only accurately identify non-members that are difficult to
predict. It cannot identify members with high precision.
To solve this problem, difficulty calibration based MIAs
use calibrated membership scores instead. The higher the
calibrated score, the more likely it is that a data record
is member data. These attacks can improve TPR in the
low FPR region, as they can better identify hard-to-predict
members.

Even though FPR can be reduced by carefully select-
ing a threshold for the calibrated scores, it is difficult to
eliminate all of them. In Figure 3, it can be seen that
many non-members overlap with members along the y-
axis. Difficulty calibration based MIAs have improved tra-
ditional MIAs, specifically the TPR in the low FPR region.
This is achieved by identifying hard-to-predict members
more accurately by carefully selecting threshold values for
calibrated membership scores. However, decreasing the
number of false positives remains challenging since many
non-members overlap with members, as demonstrated in
Figure 3. This can be seen more clearly in Figure 2, which
shows the distribution of calibrated membership scores for
members and non-members. In this figure, the calibrated
membership scores are on the x-axis and share the same
values with that of Figure 3. The y-axis shows the number
of members and non-members with corresponding cali-
brated scores. The figure highlights that many members
have low calibrated scores, making them easy-to-predict
members. These members overlap with non-members near
the line where the calibrated score equals 0. Within this
region, the easy-to-predict members overlap with both
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Figure 3: Based on the calibrated membership scores
and membership scores on the target model (VGG-
16), we group the target samples from the CIFAR-10
dataset into five categories: hard-to-predict member/non-
member, easy-to-predict member/non-member, and hard-
to-calibrate non-member.

hard-to-predict and easy-to-predict non-members, as both
groups have similar outputs on the target and the reference
models.

Two important observations can be made from the
figure. Firstly, attackers are likely to encounter easy-to-
predict members in real-world attacks. Therefore, iden-
tifying these samples can significantly improve TPR.
Secondly, existing difficulty calibration based MIAs may
fail to isolate such members from non-members by only
considering the calibrated membership scores. However,
Figure 3 shows that adjusting the thresholds for member-
ship and calibrated membership scores simultaneously can
make it easier to differentiate between members and non-
members. This suggests that the membership scores on the
target model are still useful in addition to the calibrated
membership scores. Based on this observation, we utilize
membership scores on the target model in LDC-MIA to
exclude the hard-to-predict non-members. This not only
helps identify hard-to-predict members but also easy-to-
predict members, thus improving TPR in all FPR regions.
Neighbor information is also important. In Figure 3, it is
clear that there are some hard-to-calibrate non-members.
These samples are not easy-to-predict as they have low
membership scores on the reference model, nor are they
hard-to-predict as they have high membership scores on
the target model. The most plausible explanation for this
phenomenon is that these non-members have more neigh-
bors in the members than other non-member samples.
Neighbors are determined by the similarity between two
data samples. Specifically, we can input two data samples
into a model and compute the cosine similarity of the
output vectors of the last layer before the softmax layer.
If their cosine similarity exceeds a certain threshold, then
they are considered neighbors.

According to Long et al., certain data records are
are more vulnerable to being identified as members by
attackers if they have fewer neighbors in the training
data [22]. This is because such records may display unique
characteristics that the target model can overfit to, making
them easier to identify. On the other hand, data records
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with more neighbors may lead to incorrect membership
inferences by MIAs. Therefore, a non-member data record
with many neighbors in the target model’s training dataset
is more likely to be misidentified as a member than
another non-member sample with fewer neighbors. This
means that if we have two samples with similarly high
membership scores, the one with fewer neighbors is more
likely to be a member. Motivated by this, LDC-MIA
includes neighbor information to differentiate the hard-
to-predict members and hard-to-calibrate non-members in
the upper right region in Figure 3.

We aim to lower the calibrated membership score for
hard-to-calibrate non-members, and to achieve this, we
rescale the calibrated membership scores with neighbor-
hood information. However, there are two challenges we
need to address when calculating the neighborhood infor-
mation. Firstly, attackers do not have access to the training
dataset of the target model and thus are unable to compute
cosine similarities with data samples that are members.
Secondly, attackers have no access to the output vectors
of the last layer before the softmax layer in the target
model, making it impossible to exploit the target model
to compute neighborhood information. To address these
challenges, we make two important assumptions. Firstly,
we assume that if a data sample has more neighbors in
the auxiliary dataset, it will also have more neighbors in
the training dataset of the target model. This assumption
is reasonable since the auxiliary dataset follows the same
distribution as the training dataset. Secondly, we assume
that if two data samples are neighbors using the output
vectors obtained from the target model, they will also
be neighbors using the output vectors obtained from the
reference model. This intuitive assumption holds when the
target and reference models share the same architecture.
Based on these assumptions, we can then leverage the
reference model and the auxiliary dataset to approximate
the neighborhood information of a target data record x:

1
St [cosine_similarity(v, Vaux, ) > 0]

NI(x) = ™)
, where v, is the output vector of the target data record,
Vauz; 15 that of the data records in the auxiliary dataset, n
is the size of the auxiliary dataset, and 6 is the similarity
threshold value to determine neighbors. We use 6 = 0
in our attack. Through our experiments in Section 4, we
verify that setting 6 to O works well for most datasets. The
intuition behind this is that the value of cosine similarity
is greater than 0 when two data records are positively re-
lated. Then, we enhance the membership scores proposed
by Watson et al. [37] with neighborhood information as
follows:

sU(h, g, (z,y)) = [s(h, (2,9))=s(g, (z,9))]-NI(z) (8)

, where h is the target model, and g is the reference model.

We compare the effect of the enhanced membership
score and that of the membership score proposed by
Watson et al. in Figure 4. The MIA follows Watson et
al’s approach of using a threshold on calibrated mem-
bership scores to determine membership. Based on the
figure, it can be observed that the new score can better
distinguish members from hard-to-calibrate non-members
manifested in improved TPRs at the same low FPRs. It is
important to note that we only compared the TPR in the
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Figure 4: Compare TPR in the low FPR region (< 0.01%)
for attacks on the CIFAR-10 dataset using different mem-
bership scores.
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low FPR region because this is the region where MIAs
are considered practical. The comparison results suggest
that neighborhood information is a valuable component in
membership scores.

Different MIA score thresholds are needed for accurately
classifying samples of different labels. One of the main
objectives of an attacker is to achieve high precision in
identifying member data records in the training dataset.
To achieve this goal, the attacker strives to differentiate
between members and non-members as much as possible.
Many existing MIAs rely on a threshold value of the
membership scores to distinguish between members and
non-members. However, the divergence of membership
scores in a target model is influenced not only by the
hardness and neighborhood information of a data record
but also by its assigned label.
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Figure 5: Membership scores of data records with different
labels in CIFAR-10.

This could be attributed to the different distributions
of easy and hard data records across various classes. As
a result, we believe that determining the most suitable
threshold of membership scores for each class can further
enhance the accuracy of MIAs. To illustrate this, we
present an example of the membership scores of data
records in CIFAR-10 belonging to different classes in
Figure 5, using the enhanced calibrated membership score
calculated by Eq 8. In this example, we use the VGG-16
as both our target and reference models. Both models are
trained until they achieve their highest accuracy values on
the test dataset.
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Dhrain —and Dheldout - their ground truth labels in the classifier training are “in” or “out”, respectively. During the
inference phase, we follow the same procedure to obtain the features of the target data sample (Z¢qrget, Ytarget) €XCEpt

that the target model is used rather than the shadow target model.

The figure displays the membership score of different
data records on the y—axis, while the x—axis shows
their labels. The scores for member and non-member data
records are shown in two different colors. It is evident that
the average membership score is higher for members. This
means that if an attacker sets a reasonable threshold value,
they can identify more members accurately, resulting in
high precision. For instance, choosing a threshold of 0.001
can help identify airplanes with high precision without
increasing many false positives. However, this may lead
to low precision for other classes like deer or cats, which
can harm overall precision. Therefore, to maintain overall
precision, the attacker should carefully select a threshold
value for each class.

3.3. Attack Framework

Based on the aforementioned intuitions, we propose
to build a classifier that can determine the membership
of data records. Our ultimate goal is to utilize the dis-
criminatory abilities of neural network models to perform
membership inference attack based on the intuitions we
identified in Section 3.2. The proposed attack consists of
two phases. The first phase is the training phase, in which
a shadow target model h, a reference model g, and an
attack classifier are all trained. The second phase is the
inference phase, in which we obtain the features of each
target data record from the trained reference model and
the target model f and use the features for classification
using the attack classifier. The proposed attack workflow
is illustrated in Figure 6.

In the proposed attack, we use an auxiliary dataset
D, that has the same distribution as the data used for
training the target model. During the training phase, we
first split Dg,. into three distinct parts. 1. D" which

shadow?

is used to train the shadow target model. 2. Dl¢ldout

which contains non-member data records for the shadow

model. 3. Df,’;‘}m which is used to train the reference
model. This way, we can keep a clear separation between
the data used for training the different models.

Training phase. Once all the models are trained, we feed
all the data records in D2 “and Dh¢ldout 1o the shadow
target model and the reference model. We can then obtain
membership scores from both the shadow target model and
the reference model on members and non-members, i.e.,
members’ s(h, (x,y)), non-members’ s(h, (z,y)), mem-
bers’ s(g, (z,y)), and non-members’ s(g, (z,y)). Note
that D%~ contains data records of the members of
the training dataset of the shadow target model, while

heldout contains data records of non-members. This
means that the attacking classifier can observe how both
members and non-members behave on the shadow target
model and the reference model, allowing it to discriminate
different behaviors. The reference model is introduced to
calibrate the membership scores. Members’ membership
scores on the shadow target model are paired with those
on the reference model, and Eq (8) is used to calculate the
calibrated membership score S°*(h, g, (z,y)). To obtain
the neighborhood information of a data record, we exclude
the interference of the training data of the reference model
by using the data records from DU%in —and Dheldout
only. These data records consist of v,,, in Eq (7), which
are obtained from the reference model g. Then, the same
process is carried out for non-members to obtain the

calibrated membership score.

The membership scores obtained from the target
model, as mentioned in Section 3.2, can still be useful
in MIAs. We include these scores as one of the features
to train the attacking classifier, along with the ground truth
label of the data records and the calibrated membership
score. With the help of the ground truth membership infor-
mation, the classifier can learn to predict the membership
of a given data record using these features. After training
the classifier, we apply it to the actual attack during the
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inference phase.

Inference phase. During the inference phase, an attacker
can only access the target model as a black box. This
means that they can only access the membership score of
a target data record (Ziqrget; Ytarget) by using the predic-
tion results of the target model. Just like in the training
phase, we use D2 —and DPeldout 1o obtain neigh-
borhood information. Then, we provide (Ziarget, Ytarget)
to the same reference model that was used during the
training phase and calculate the calibrated membership
score S°U(f, g, (z,y)). Finally, we feed the membership
score, calibrated membrship score, ground truth label
Ytarget 10 the classifier to predict the membership of
(Ztarget, Ytarget)- Our classifier is an MLP model that con-
sists of two hidden layers with ReLLU activation functions,
followed by a softmax layer.

4. Evaluations

In this section, we conduct a series of experiments
to evaluate the performance of the proposed attack on
the most widely used datasets and various target model
architectures. Additionally, we compare LDC-MIA with
several other representative black-box MIA methods [29],
[371, [39].

4.1. Experimental Setup

4.1.1. Datasets. In our experiments, we use the following
datasets that have been often used for image classifica-
tions:

o CIFAR-10 [17]. The CIFAR-10 is a benchmark dataset
used for image classification tasks. Each image is
32x32x3, and there are 60k images categorized into
10 classes with equal distribution per class.

o CIFAR-100 [17]. The CIFAR-100 dataset consists of
100 classes of images, with 32x32x3 sized images and
a total of 60k images. Similar to the CIFAR-10 dataset,
it is also used for image classifications.

o CINIC-10 [7]. CINIC-10 is also a dataset used for im-
age classifications, which includes images from CIFAR-
10 and ImageNet [8]. In this dataset, there is a total
of 27k images across 10 classes, each with a size of
32x32x%3.

In addition to the image dataset, we also use the following

datasets for our experiments:

e Adult [2]. The adult dataset contains information on
people’s income, with 2 classes and 14 features for each
of the 48842 data records.

o Credit [13]. The Credit dataset is often used for binary
classification tasks involving credit scoring. It contains
1000 data records with each consisting of 20 features.
There are two classes of data records in the dataset.

In our evaluations, we split each dataset into six parts:

train heldout train heldout train test
Dtarget’ Dtarget > Dshadow’ Dshadow’ ‘Dref aI;LdldD .
eldout ;

D%?;ﬁt is used to train the target model, while Dy 70%" is

made up of non-members of the target model. Similarly,

D%’,‘L‘;j@w is used to train the shadow target model, and
Dhetdout - contains non-members for the shadow target

model. Df,'(;‘}m is the training dataset for the reference
model, and D! is the test dataset for all the models.
The sizes of all the datasets used in our experiments are
listed in Table 1.

TABLE 1: Datasets division.

Datasets | Digein, | Dgloost | D, | Dliuiim | Dyeg™ | D!
CIFAR-10 | 12500 12500 7500 7500 10000 | 10000
CIFAR-100 | 12500 12500 7500 7500 10000 | 10000
CINIC-10 | 22500 22500 13500 13500 18000 | 90000

Adult 8140 8140 4884 4884 6513 | 16281
Credit 200 200 120 120 160 200

4.1.2. Models. To demonstrate the effectiveness of LDC-
MIA, we select two models of different sizes as target
models on the CIFAR-10 and CIFAR-100 datasets. For
the CIFAR-10 dataset, we choose WideResNet28-10 [40]
and VGG-16 [32]. For the CIFAR-100 dataset, we select
DenseNet-121 [14] and SmallNet. Using SmallNet allows
us to make a fair comparison with the existing MIAs.
For the CINIC-10 dataset, we choose VGG-16 [32]. For
the Adult and Credit datasets, we employ a multi-layer
perceptron (MLP) model as the target model. This model
consists of one hidden layer with ReLLU activation func-
tion, followed by a softmax layer. The training and testing
accuracy of the target models are shown in Table 2.

TABLE 2: Accuracy of target models
on different datasets.

Dataset |  Target Model | Train Accuracy — Test Accuracy
CIFAR-10 WideResNet28-10 98.87% 79.63%
CIFAR-10 VGG-16 97.62% 71.711%
CIFAR-100 DenseNet-121 99.88% 45.04%
CIFAR-100 Smallnet 94.53% 31.27%
CINIC-10 VGG-16 96.16% 60.56%

Adult MLP 92.04% 83.29%

Credit MLP 90.62% 83.23%

We use the same network architecture as the target
model for both the reference model and the shadow tar-
get model. We also explore employing different model
architectures for the reference model and shadow target
model (results are detailed in Section 5). When training
the shadow target model, its validation loss does not need
to be similar to the target model (this non-requirement is
useful in practice since our method does not assume that
the attacker know the target model’s validation loss). The
reference model is trained until it reaches the maximum
validation accuracy. Our proposed MIA classifier is of
multi-layer-perceptron architecture, that consists of two
hidden layers with ReLU activation functions, followed
by a softmax layer. We utilize stochastic gradient descent
(SGD) with a learning rate of 0.1, Nesterov momentum of
0.9, and a cosine learning rate schedule for the training.
The duration of training for each model varies between 20
to 200 epochs, depending on the complexity of the models
and the size of the datasets. All experiments are conducted
on general-purpose machines equipped with Intel Xeon
Silver 4208 CPU@2.10 GHz, Quadro RTX 5000 GPU,
and 16 GB RAM.

4.1.3. Metrics. In our experiments, we use the following
metrics to evaluate the results of the MIAs:

o Full Log-scale ROC. In evaluating the accuracy of
MIAs, precision is an important metric. Carlini et al. [3]
suggest that the TPR should be emphasized in low FPR
regions, as higher TPR in these regions indicates higher
precision of the MIA method. A full log-scale receiver
operating characteristic (ROC) curve can be used for
a clearer comparison of TPR among different MIAs in
low FPR regions.
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Figure 7: Full log-scale ROC curves of MIAsS(LDC-MIA, Yeom et al. [39], Watson et al. [37] and Salem et al. [29])

on different datasets.

« TPR at Low FPR. We also analyze the TPR of vari-
ous MIA methods at a few low FPR points, including
1%, 0.1%, and 0.01%. These values enable numerical
comparisons between different MIA methods.

o Precision-Recall (PR) Curve In real-world scenarios,
attackers are more likely to encounter members that are
easy to predict into the model than those that are hard to
predict, as indicated in Figure 2. Therefore, most MIAs
can achieve high recall by identifying such members.
However, recall only measures the effectiveness of the
model in capturing most of the positive instances, it
does not reflect how accurately the model predicts
positives. Therefore, it is also important to measure
precision values at relatively high recall. We can do
this by looking at the precision values when the recall
value ranges between 0.2 and 0.7. This metric helps us
measure how effectively the model balances between
precision and recall.

« Balanced accuracy and AUC. As with previous MIA
methods [25], [31], [37], we measure the overall per-
formance of LDC-MIA using Balanced accuracy and
AUC. When working with imbalanced datasets, accu-
racy alone can be misleading. Hence, balanced accuracy
is an important metric often used to evaluate the per-
formance of a classification model by considering the
arithmetic mean of TPR and TNR. On the other hand,
AUC quantifies the overall performance of the model
by measuring the area under the ROC curve.

4.1.4. Baselines. In our evaluations, we compared LDC-
MIA with four other MIA methods. Salem er al. [29]
used the posteriors of target data records obtained from
the target model and trained a shadow model to mimic
the target model’s behaviors. They proposed three differ-
ent adversary models, and we compared LDC-MIA with
Adversary 1, which had the best performance. Yeom et
al. [39] performed the attack without any auxiliary model
by using the loss values of the target data records on
the target model. Watson et al. [37] used a reference
model for difficulty calibration when performing MIA.

LiRA [3] aims to exploit statistical differences between
data points labeled as members and non-members to infer
membership status. It requires to train a large number of
shadow models for each target sample. We compare our
work with Salem et al. [29], Yeom et al. [39] and Watson
et al. [37] in Section 4.2 and with LiRA [3] in Section 4.3.

4.2. Main Results

In our evaluations, all the attacks are carried out in the
black-box scenario, and we demonstrate and analyze the
results using various metrics as mentioned in Section 4.1.
To ensure a fair comparison, we used the same auxiliary
dataset and two auxiliary models — one shadow model and
one reference model — in our proposed attack. For other
MIA methods, we use two reference or shadow models if
they employ any.

4.2.1. TPR at low FPR regions. In this experiment,
we compare the TPR-FPR tradeoff of our method LDC-
MIA and three other MIA methods across five datasets.
The ROC curves for all methods over five datasets are
depicted in Figure 7. The figure shows that LDC-MIA
achieves higher TPR at almost all FPRs than other MIA
methods across all datasets. Further, we compare the TPR
values in the low FPR region (i.e., between 0.01% and
1%) with results obtained from an average of 5 runs
in Table 4, The results show that LDC-MIA achieves
better TPRs in the low FPR region. On CIFAR-100 and
CINIC-10 datasets, LDC-MIA outperforms the state-of-
the-art difficulty calibration-based MIA method proposed
by Watson et al., having 4x higher TPRs in low FPRs.

4.2.2. Precision-Recall curve. We compare MIA meth-
ods’ effectiveness by examining the precision and recall
tradeoffs made by our method and three others. The
Precision-recall curves of all MIA methods across five
datasets are depicted in Figure 8. Note that when the
recall is O, the precision values of all MIAs are also 0
in the figure. Our method LDC-MIA reaches the high-
est precision values over most of the recall value range
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Figure 8: Precision-Recall curves of MIAs (LDC-MIA, Yeom et al. [39], Watson et al. [37] and Salem et al. [29]) on

different datasets.

TABLE 3: TPR at Low FPR regions of MIAs across datasets across MIA methods.

\ CIFAR-10 \

CIFAR-100 \

CINIC-10 ‘ Adult ‘ Credit

Attack Method |  WRN28-10 | VGG-16 |  DenseNet-121

SmallNet | | |

(FPR)  |0.01% 0.1% 1% [0.01% 0.1% 1% |0.01% 0.1%

1% |0.01% 0.1%

1% [0.01% 0.1% 1% |0.01% 0.1% 1% |0.01% 0.1% 1%

Salem er al. [29] |0.01% 0.2% 2.5%|0.02% 0.1% 12%|0.02% 02% 2.3% |0.04% 0.3% 2.3% |0.00% 02% 2.3%]0.00% 0.1% 1.0%|0.00% 0.0% 1.5%

Yeom et al. [39] [0.00% 0.0% 0.0%|0.00% 0.0% 0.0%|0.00% 0.0% 2.9% |0.04% 0.2% 1.0% |0.00% 0.0% 0.0%|0.00% 0.0% 0.0%|0.50% 0.5% 3.0%

Watson ez al. [37]]0.24% 1.0% 3.3%|0.04% 0.4% 3.4%|0.01% 09% 6.5% [0.32% 1.1% 5.9% |0.07% 0.4% 4.0%|0.04% 0.4% 2.0%|1.50% 1.5% 4.0%

Ours [0.66% 2.3% 9.1%(0.21% 1.6% 6.7%|1.28% 4.2% 23.2%(0.95% 3.8% 16.4% |0.16% 1.6% 8.7%[0.20% 1.2% 3.9%|2.50% 2.5% 6.5%

TABLE 4: Balanced accuracy and AUC of MIAs on different datasets.

\ CIFAR-10 \

CIFAR-100 \

CINIC-10 ‘ Adult ‘ Credit

Attack Method | WRN28-10 |  VGG-16

| DenseNet-121 |

SmallNet | \ \

| Accuracy AUC | Accuracy AUC | Accuracy AUC | Accuracy AUC |Accuracy AUC | Accuracy AUC | Accuracy AUC

Salem e al. [29] | 69.41% 0.731] 65.19% 0.679| 82.28%

0.885| 66.54%

0.679| 70.14% 0.745| 51.17% 0.514| 54.75% 0.539

Yeom et al. [39] | 68.80% 0.723| 69.81% 0.696| 82.91%

0.900| 84.82%

0.889] 77.12% 0.780| 55.07% 0.542| 60.25% 0.581

Watson et al. [37]‘ 66.20% 0.707‘ 66.18% 0.705‘ 71.10%

0.741 ‘ 73.78%

0.772\ 71.80% 0.768\ 54.86% 0.574\ 59.25% 0.607

Ours | 71.62% 0.794| 67.82%

0.752| 82.94% 0.933| 85.12%

0.918| 75.71% 0.832] 56.27% 0.592| 59.50% 0.640

compared to other MIA methods, across all datasets. For
example, LDC-MIA achieves recall of 77.2% and 49.1%
on DenseNet-121 and SmallNet, with 90% precision, re-
spectively for the CIFAR-100 dataset. For the CINIC-10
dataset, LDC-MIA identifies 52.72% of the members with
a precision of 80%.

4.2.3. Balanced accuracy and AUC. The balanced accu-
racy is the arithmetic mean of sensitivity and specificity,
the higher the better. AUC value indicates the overall
discriminatory power of the model over all possible TPR-
FPR tradeoffs, the higher the better. Table 4 shows the
balanced Accuracy and AUC of all the MIA methods
averaged out of 5 runs. The highest metric values and
the metric values of LDC-MIA have been highlighted.
LDC-MIA achieves the highest AUC values across all
the datasets. Regarding balanced accuracy values, LDC-
MIA has close if not better results compared to the best-
performing MIAs.

4.2.4. Improvement on TPR at various hardness levels.
Data records of different hardness levels may have differ-
ent vulnerabilities to membership inference attacks. There-
fore, we categorize data from different datasets into two
groups based on their membership scores on the reference
model: the hard-to-predict and easy-to-predict samples.
Note that neither the member nor the non-member data
records are in the training dataset of the reference model.
To determine which group each data record belongs to,
we use a threshold value. For non-binary class datasets,
if a data record’s membership score falls in the range
of (—10,0], it is classified as an easy-to-predict sample;
otherwise, it is classified as a hard-to-predict sample. For
binary class datasets such as Adult and Credit, the ranges
for easy-to-predict and hard-to-predict samples are (—5, 0]
and (—oo, —5], respectively. The TPR values of different
MIAs are shown in Figure 9. Note that all the figures
share the same label on y—axis: TPR at 1% FPR. We
can see that LDC-MIA significantly improves the TPR for
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Figure 9: Improvement of MIA performance on target samples of various hardness levels.

both easy-to-predict and hard-to-predict samples across all
datasets. However, for threshold-based MIA, such as the
one proposed by Yeom et al., it could easily misclassify
all member samples. In this experiment, the identification
of both hard-to-predict and easy-to-predict members has
been improved by the combination of calibrated member-
ship score and membership score on the target model in
the classifier.

4.3. Comparison with LiRA

LiRA [3] is a state-of-the-art MIA that can achieve
high TPRs in the low FPR regions. To determine mem-
bership, LiRA calculates the likelihood ratio, which repre-
sents the ratio of the likelihood of a data point being in the
target model’s training dataset to the likelihood of it being
from a different, unknown dataset. The likelihood ratio is
computed based on the output probabilities of N shadow
models and membership is determined based on the like-
lihood ratio. In our experiments, we compare LDC-MIA
with online LiRA. WideResNet28-10 is the target model
and is trained on the CIFAR-10 dataset. We then gradually
increase the number of shadow or reference models used
by LiRA and LDC-MIA and compare the TPRs at 1% FPR
as well as AUCs. The results are shown in Table 5. From

TABLE 5: Performance of LiRA and LDC-MIA on
CIFAR-10 (WRN28-10).

Auxiliary TPR at 1%FPR AUC

Models LiRA LDC-MIA | LiRA  LDC-MIA
N=2 2.38% 9.07% 0.599 0.794
N=4 3.21% 8.21% 0.676 0.806
N=8 5.46% 9.02% 0.656 0.802
N=16 7.12% 9.05 % 0.688 0.807
N=32 15.81% 8.76% 0.757 0.805
N=64 18.33% 9.01% 0.771 0.804

N=128 20.75% 8.59% 0.781 0.801

N=256 21.32% 8.97% 0.792 0.806

the results, we can see that the performance of LDC-MIA
does not change significantly as the number of auxiliary
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models increases, while LiRA’s performance improves
with more auxiliary models. However, the AUC of LDC-
MIA outperforms the LiRA’s, with different numbers of
auxiliary models, from 2 to 256. The better AUC across
the board indicates that our method LDC-MIA, which
uses multiple features, can help to distinguish members
from non-members better on average. When the number
of auxiliary models is no more than 16, the TPRs of LDC-
MIA at an FPR of 1% are higher than those of LiRA.
Note that LiRA achieves better TPRs in the low FPRs
when more than 32 auxiliary models are used; however,
as discussed in the next section, this could lead to cost
concerns.

4.4. Attack Cost

In real-world attacks, the cost of the attack is another
key factor to consider alongside the attack performance. A
cost-efficient approach, sometimes even a less performant
one, may work better for some use cases. Let’s consider
a few scenarios as follows. First, attackers have a lim-
ited budget for an MIA. Not having access to powerful
computation hardware disallows them from training many
shadow models or reference models for a high-cost attack.
Second, MIA is used as an auditing tool to evaluate data
privacy [3]. where a model provider needs to evaluate
many of the training data to ensure a sufficiently low
likelihood of privacy leaks before releasing the model.
For this use case, an MIA approach whose cost is sub-
linear to the number of sample data is preferred. Third, the
aforementioned model provider might need to frequently
update the model training dataset for retraining [11], [24].
Running MIA for data leakage audit every time after
retraining asks for a balanced tradeoff between the utility
and the cost of the MIA approach. Lastly, a less costly
MIA approach may serve better with a tight timeline. For
example, a model provider must release an updated model
by a deadline and finish the MIA data leakage audit on
time. A less costly MIA usually requires less computing
and thus is faster.
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We compare the cost of MIAs by comparing the
cost of computing and the cost of data. We approximate
the compute cost by calculating the training time and
inference time of all auxiliary models used in the MIA
(including shadow and reference models). Note that all
computing experiments run on the same hardware config-
uration. We approximate the data cost of different MIAs as
the number of auxiliary models used because the MIAs
we evaluate take a similar amount of training data for
auxiliary models. Therefore, the more auxiliary models are
used, the larger the data cost for the MIA. Both LDC-MIA
and Salem et al. [29] need to train a neural network-based
MIA classifier in addition to the auxiliary models. These
two classifiers employ a shallow multilayer perception
(MLP) architecture. It takes around 22 seconds to train
such a classifier in all the datasets we experimented with.
This is a significantly small cost compared to training
one shadow model for image classification. Therefore,
these MIA classifiers’ training and inference time are not
included in the discussion below, where we use the task
of attacking CIFAR-10 as an example to demonstrate the
attack costs of different MIAS. Based on the results in
Section 4.3, LDC-MIA does not have much performance
gains from employing additional auxiliary models. Hence,
we calculate the cost of LDC-MIA by including only one
shadow model and one reference model.

Table 6 shows the costs of attacking WideResNet28-10
on the CIFAR-10 dataset. We perform the MIAs on 25k

TABLE 6: The attack costs of different MIAs.

Attack Auxiliary | TPR at | AUC |Training cost|Inference cost (s)
Method Models (N) | 1%FPR (minutes) per attack
Salem et al. [29] 1 2.5% 10.731 19 24
Yoem et al. [39] - 0.0% |0.723 - 19
Watson et al. [37] 1 3.3% [0.707 19 38
Watson er al. [37] 10 3.7% |0.742 189 221
LiRA [3] 16 7.12% |0.688 304 348
LiRA [3] 256 21.32%(0.792 4867 4942
Ours \ 2 ] 9.1% |0.794] 39 \ 43

target samples and show the sum of attack costs of all the
samples. The training cost of the attack does not change
as the number of target samples to attack increases, except
for LiRA. The training cost for LiRA increases linearly
as the number of target samples changes because LiRA
requires training multiple shadow models for each target
sample for a reliable estimate of the likelihood ratio.

Yeom et al. [39] has the least cost among all, as it
requires no auxiliary models and only needs one-time
inference on the target model per target sample. Coming
with the low cost are the low AUC and TPR of this
approach. Our method LDC-MIA has a similar cost to
Salem et al. [29]. Both attacks require training a few
auxiliary models that, once ready, can be used for all
target sample attacks. Then, per target sample, the attack
takes one or two inferences on the target model. The total
cost is in the order of tens of minutes. Watson ef al. [37]
method can opt-in to use multiple reference models for
better attack performance, though with higher training
cost, which is linear to the number of the auxiliary models,
as illustrated in Table 6.

In contrast, for LiRA, the training cost is linear to the
product of the number of auxiliary models and the number
of target samples. For every target sample, LiRA must
train a different set of auxiliary models tailored to that

particular sample. This is different from all other MIAs,
including LDC-MIA. Multiple target samples can reuse
the same auxiliary models in all other MIAs. Thus, the
training cost can be amortized across a batch of target
sample attacks.

4.5. Effect of data augmentation

Data augmentation is a technique that can be used
to increase the size of a dataset by applying different
transformations to existing training data. This technique is
often used to improve the generalization and robustness of
models. By exposing the model to a wider range of data
variations, it can learn to handle different input scenarios,
resulting in better performance. In this experiment, we
applied data augmentation during the training of the target
model and the shadow models (if any). Then, we evaluated
its effect on the MIAs by measuring its AUC and TPR
at 1% FPR values. Since attackers may not have access
to the data augmentation techniques used in the target
model in real-life situations, we train the shadow target
model with random data augmentations. Specifically, we
use horizontal flipping for the shadow (target) model
training and random cropping and rotation for the target
model training. When querying the target model, we use
the original target sample. The experiments are conducted
on the CIFAR-10 and CIFAR-100 datasets. The target
model for CIFAR-10 is VGG-16, and the target model
for CIFAR-100 is SmallNet. The experiment results are
shown in Table 7.

TABLE 7: The impact of data augmentation
\ CIFAR-10 \

CIFAR-100

Attack Method

| wioaug | w/aug | w/oaug |

|AUC TPR|AUC TPR|AUC TPR |AUC TPR

Salem ef al. [29] |0.679 1.2%|0.605 0.2%|0.697 2.3% [0.625 0.6%
Yeom et al. [39] [0.696 0.0%]0.602 0.0%0.889 1.0% |0.802 0.0%
Watson et al. [37]]0.705 3.4%|0.651 1.1%|0.772 5.9% 0.709 2.7%
Ours 0752 6.7%|0.712 3.8%|0.918 16.4%|0.869 12.4%

From the results, it can be observed that both AUC and
TPR decrease when data augmentation is applied. This
is because data augmentation reduces overfitting, thereby
reducing the effect of MIAs [39]. However, LDC-MIA has
not been affected as much as the other MIA methods. This
suggests that our proposed attack is robust against data
augmentation in the target model training.

w/ aug

5. Ablation Study

5.1. Differential Privacy

In order to evaluate the robustness of our proposed
attack, we utilize the concept of differential privacy during
the training of the target model. This technique adds
noise or randomization to the data, which helps protect
individual privacy in datasets. It can be useful in limiting
the effectiveness of many existing MIAs [3], [37], [39].
We use DP-SGD [1], one of the state-of-the-art DP mech-
anisms, for training the target model in our experiments.
DP-SGD adds carefully calibrated noise to the gradients
computed during each iteration. The amount of noise
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added depends on the sensitivity of the gradients and
the desired privacy budget . While a smaller € provides
stronger privacy guarantees, it can also result in noisier
updates. The other two important parameters in DP-SGD
are the clipping bound C' and the noise multiplier o.
The clipping bound is a threshold value applied to
the gradients computed during training. This operation
limits the influence of any single data point on the model’s
parameters. The noise multiplier is a parameter that deter-
mines the amount of noise added to the gradients during
each iteration of the training. In practice, to achieve a spe-
cific privacy budget €, one can adjust the noise multiplier
o and the total number of iterations. In our experiments,
we set C to 10 and vary o from 0.0 to 1.0 to adjust e.
We evaluate the performance of the proposed attack at
different ¢ values (oo, 1000, 100, 10, and 1). The PR
curve and the ROC curve are shown in Figure 10, and the
AUC and TPR are shown in Table 8.
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Figure 10: Effectiveness of using DP-SGD against our
attack with different privacy budgets.
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TABLE 8: Performance of LDC-MIA against DP-SGD
for Smallnet trained on CIFAR-10.

o | &  Modelacc AUC TPR at 0.1%FPR
0 | o 64.51%  0.646 0.3%
02 | 1000  5935%  0.560 0.2%
03 | 100  5256%  0.529 0.1%
0.6 | 10 43.65% 0524 0.2%
1 1 2891%  0.513 0.1%

Figure 10 and Table 8 show that as the desired pri-
vacy budget ¢ increases, both AUC and TPR decrease.
However, in practice, there is a trade-off between privacy
(¢) and utility (the accuracy of the trained model). When
higher privacy is required, adding more noise can sig-
nificantly affect the model’s utility. This is evident from
the model accuracy column in Table 8. In practice, to
preserve model accuracy, reasonable values of ¢, such as
100 or 1000, are more likely to be used. It is observed
that AUC and TPR are not significantly reduced in these
cases. Moreover, even with small ¢ values, the proposed
attack can still achieve high precision values (> 90%) at
low recall, as seen from Figure 10b.

5.2. Overfitting Level of the Target Model

Previous studies [29], [31] have demonstrated that the
performance of MIAs is closely related to the overfitting
level of the target model. Overfitting occurs when the
model fits the training data too well, even with noise
and unique patterns to its training dataset. Several factors
can affect a model’s overfitting level, such as dataset

size and quality, training rounds, model complexity, and
regularization. Typically, increasing the training dataset’s
size helps reduce overfitting, while decreasing it has the
opposite effect. Because a larger and more diverse dataset
allows the model to observe a broader range of variations
and generalize better with less memorization of specific
data points.

In our experiments, we adjust the training dataset
size between 6500 and 12500 to vary the target model’s
overfitting level. Meanwhile, we keep the size of the
training dataset of the reference model Df,g‘}m and that of
the shadow target model D% fixed. We then measure
the impact of the overfitting level by evaluating AUC and
TPR of the proposed attack. The results are shown in
Table 9.

TABLE 9: The effect of overfitting on the target model
of VGG-16 trained on CIFAR-10.

Training dataset size Train Test | LDC-MIA
Acc Gap | AUC  TPR at 1%FPR
6500 37.91 0.787 8.1%
8000 36.28 0.783 7.6%
9500 34.08 0.770 7.3%
11000 29.96 0.761 6.1%
12500 26.91 0.754 5.7%

Table 9 depicts that the overfitting level of the tar-
get model increases as the size of its training dataset
decreases, by looking at the gap between the training
accuracy and test accuracy of the target model. The larger
the gap between these two, the more the model is over-
fitting. We note that in our experiment for our method
LDC-MIA the AUC and TPR at 1% FPR of the MIA
improve slightly as the overfitting level of the target model
increases. Membership inference attack benefits from a
higher level of overfitting, which could mean a higher
level of memorization. The above results align with the
findings on other MIAs in the literature.

5.3. Training Dataset Sizes for the Shadow Target
and the Reference Models

The size of the datasets used to train the shadow
target and reference models is an important factor in our
proposed attack. As discussed in Section 5.2, the training
dataset sizes affect the performance of the trained shadow
target and reference models, leading to performance vari-
ance in the proposed attack. To evaluate this factor, we
divide an auxiliary dataset D,,, consisting of 25k data
records into two parts: D% - for training the shadow
target model and D;g;m for training the reference model.

We set up two configurations to vary the sizes of D%

. shadow
and D74, In the first configuration, we fix DGo7
to be 1/5 of Dy, and vary the size of Dﬁg(}’". In the

train

second configuration, we do the opposite by fixing D,
to be 1/5 of D,y and vary the size of DZL‘ZZW. We
then evaluate the TPR at 1% FPR of LDC-MIA on the
VGG-16 target model trained with the CIFAR-10 dataset.
The results are shown in Figure 11. Note that the two
subfigures have the same label on y—axis.

Figure 11 shows that increasing the size of the
datasets, DZy%5" , and DIL%™, improves the TPR of LDC-

shadow
MIA. Increased size of D% improves the generaliza-

shadow
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Figure 11: The impact of the training dataset sizes of the
shadow target and the reference models.

tion of the shadow target model. The MIA classifier ben-
efits from the better shadow target model due to exposure
to a broader range of membership scores and calibrated
membership scores. On the other hand, the increased size
of Dﬁg‘}”’ improves the reference model, which leads
to the improvement of the MIA classifier through more
accurate calibrated membership scores. Figure 11 also
shows that the effect on the MIA classifier performance

of the size of DY %™ g similar to that of the size of

Dt . shadow
rain
ref

5.4. Model Architectures

Let’s consider a real-world threat scenario where the
attackers do NOT have knowledge about the architecture
of the target model, so they guess an architecture for
auxiliary models. We want to analyze the impact of having
different network architectures in the shadow target model
on the performance of LDC-MIA. To do so we randomly
select two models from VGG-16, ResNet-18, ResNet-34,
and Smallnet as the target and shadow target models while
keeping the reference model’s architecture the same as
the shadow target model. We evaluate the performance of
LDC-MIA using AUC and TPR at 1% FPR as metrics, on
the CIFAR-10 dataset. The results are shown in Figure 12.

Figure 12 suggests that the architecture of the shadow
target model does NOT have much impact on the attack
performance. TPR values of LDC-MIA are the best when
the shadow target model shares the same architecture as
the target model. However, AUC of LDC-MIA can achieve
the highest value when the two model architectures differ
in some cases, as depicted in Figure 12b. For instance,
when the target model is VGG-16, the best-performing
shadow target model uses ResNet-18. These results sug-
gest that for LDC-MIA there is no absolute need to know
the specific model architectures of the target model to
launch an equivalently successful attack. Although we
note that we use a limited number of pre-defined candidate
architectures for guessing in this experiment, therefore the
results are indicative but not comprehensive.

5.5. Model Learning Optimizers

There are more than one optimizers for training the
machine learning models, Some widely-use examples in-
clude SGD, SGDM, and ADAM. Some optimizers provide
better regularization, leading to better generalization and
reduced overfitting. For instance, ADAM, a commonly
used optimizer, is considered helpful in mitigating mem-
orization. We use VGG-16 model on CIFAR-10 dataset

in an experiment to investigate (1) What impact does
the optimizer have on the attack performance? and (2)
Does knowing which optimizer is used in the target model
improve attack performance?

Figure 13 presents the TPR values at low FPR values,
with the target model’s optimizer shown on the x-axis, and
different markers indicating the performance of various
optimizers used in the shadow target model.

Figure 13 indicates that there is no significant effect
on attack performance by varying optimizers for training
the target model. The figure also shows that for every opti-
mizer we test, the attacker can achieve the highest TPR by
applying the same optimizer in the shadow target model
as in the target model. Interestingly, in our experiment
applying SGDM in the shadow target model consistently
achieves better attack performance if the exact optimizer
in the target model is unknown to the attacker.

5.6. Different Features

To evaluate the impact of the features introduced into
the classifier in LDC-MIA, we remove one feature each
time from the model training and compare the perfor-
mance of the resulted classifiers that are trained on all-
but-one features. The MIA classifier in LDC-MIA has
three features — membership scores on the target model,
calibrated membership scores, and labels. We compare the
contribution of each feature to the attack by analyzing
the full log-scale ROC curves. The target model in this
experiment is VGG-16 trained on CIFAR-10. The results
are shown in Figure 14. The figure indicates that removing
any of the features results in degraded attack performance,
and each feature contributes to the attack in different ways.
Firstly, removing the label feature leads to a reduction
in TPR at low FPR. This indicates that the label feature
helps reduce false positives, leading to improved TPR,
especially at low FPR. Secondly, removing the member-
ship score reduces TPR in all FPR regions. This verifies
what we discussed in Section 3.2 — that including the
membership scores not only helps identify hard-to-predict
members but also easy-to-predict members, thus improv-
ing TPR in all FPR regions. Finally, the performance of
the proposed attack significantly degrades by excluding
the calibrated membership scores. This is because the
calibrated membership scores help separate the hard-to-
predict members from the easy-to-predict non-members,
which is a significant portion of the non-members, easily.
Overall, all three features offer unique contributions to the
success of our proposed attack.

6. Related Works

6.1. Membership Inference Attacks

Although membership Inference Attacks (MIA) can
serve as an audit mechanism to verify the privacy of
machine learning models [12], [20], [29], [33], they have
become a major concern for privacy if used by miscreants,
to leak sensitive data in the training dataset of the models.

In traditional MIAs, such as the work by Shokri er
al. [31], attackers utilize the auxiliary dataset to train
several shadow models to mimic the behavior of the target
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training algorithms.
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Figure 14: The ROC curve of LDC-MIA when different
features are removed.

model. By analyzing the output generated by these shadow
models, attackers can train a binary classifier that captures
the difference in confidence scores for members and non-
members of the shadow models. This binary classifier is
then used to infer whether a target sample is a member
or not based on its confidence score obtained from the
target model. Salem et al. [29] proposed a similar attack
using shadow model and classifiers but only using a single
shadow model, which significantly reduces the cost asso-
ciated with executing MIAs. These early techniques set
the foundation for subsequent research by demonstrating
the feasibility of MIAs.

Yeom et al. found that the success of MIAs is posi-
tively correlated with model overfitting, which they lever-
age to identify members by thresholding its membership
score. If the score exceeds a pre-defined threshold, the
sample is deemed a member. There are similar approaches
for MIA by metrics thresholding [5], [28], [33]. Most of
these works, set the threshold through simple statistics,
while our method LDC-MIA uses a machine learning
algorithm to identify more accurate thresholds that are
learned by the algorithm from data.

More advanced MIAs use statistical methods, such
as likelihood ratios and hypothesis testing, to distinguish
subtle patterns in model behaviors trained with certain
samples [3], [22], [37]. Some of these methods use auxil-
iary models to measure the differences in model behavior
with or without a sample Difficulty calibration is intro-
duced to better characterize the differences for different
groups of instances based on their difficulty for MIA.
Watson et al. [37] introduced a calibrated membership
score that improves the attack performance by taking into
account the hardness of individual samples. Carlini et
al. [3] extended this concept by proposing Likelihood
Ratio Attacks (LiRA) that sample dozens to hundreds
of shadow models for each instance to characterize the

differences between models trained with that instance and
those without. In our work, we introduce several features
to characterize the instances and leverage them for better
difficulty calibration. To the best of our knowledge, LiRA
achieves the highest TPRs at low FPRs. However, the
online LiRA attack method requires training hundreds of
auxiliary models for each target sample to achieve opti-
mal attack performance. We consider it to be excessively
expensive for real-world attacks. Our method LDC-MIA is
orders of magnitude less expensive while achieving close
performance in some of the datasets.

6.2. Defense Against MIA

Some defense methods mitigate MIAs by reducing
the excessive memorization of training data by the tar-
get model. For example, training models with DP-SGD
learning algorithm [1], which incorporates differential
privacy related metrics in the learning objective. In our
ablation study, we show that the use of DP-SGD in the
target model indeed impacts the performance of our MIA
method. The downsides of differential-privacy methods
tend to lead to reduced target model accuracy. Addition-
ally, regularization techniques such as dropout [34] and
weight decay [18] defend against MIAs by lowering the
model’s overfitting. Recently, studies such as DMP [30],
SELENA [35], and PATE [27] use knowledge distillation
to defend MIA and demonstrate some success, while study
in [16] shows that distillation alone provides only limited
privacy across a number of domains.

7. Conclusion

In this paper, we delve into the difficulty calibration
based MIAs and propose a novel learning-based attack,
called LDC-MIA. This attack improves the performance of
MIA, particularly the TPRs at low FPRs, by using features
that characterize the hardness levels of data records. To
achieve this, we leverage target samples’ labels, neighbor-
hood information, calibrated membership score, and mem-
bership score on the target model. Our experiments show
that LDC-MIA can achieve state-of-the-art performance in
terms of TPRs at low FPRs, AUC, and precision at high
recall rates while keeping the attack cost relatively low.

8. Acknowledgement

We would like to thank our sheperd and the reviewers
of Euro S&P’24 for their invaluable feedback. This work
is partially supported by an NSF grant CNS-2008468 and
an ONR grant N00014-23-1-2137.

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on December 18,2024 at 16:35:51 UTC from IEEE Xplore. Restrictions apply.



References

(1]

(2]

(3]

(4]

(51

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan,
Ilya Mironov, Kunal Talwar, and Li Zhang. Deep learning with
differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pages 308—
318, 2016.

Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning
Repository, 1996. DOI: https://doi.org/10.24432/C5XW20.

Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas
Terzis, and Florian Tramer. Membership inference attacks from
first principles. In 2022 IEEE Symposium on Security and Privacy
(SP), pages 1897-1914. IEEE, 2022.

Dingfan Chen, Ning Yu, Yang Zhang, and Mario Fritz. Gan-leaks:
A taxonomy of membership inference attacks against generative
models. In Proceedings of the 2020 ACM SIGSAC conference on
computer and communications security, pages 343-362, 2020.

Christopher A Choquette-Choo, Florian Tramer, Nicholas Carlini,
and Nicolas Papernot. Label-only membership inference attacks. In
International conference on machine learning, pages 1964-1974.
PMLR, 2021.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan,
and Quoc V Le. Autoaugment: Learning augmentation policies
from data. arXiv preprint arXiv:1805.09501, 2018.

Luke N Darlow, Elliot J Crowley, Antreas Antoniou, and Amos J
Storkey. Cinic-10 is not imagenet or cifar-10. arXiv preprint
arXiv:1810.03505, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-
Fei. Imagenet: A large-scale hierarchical image database. In 2009
IEEE conference on computer vision and pattern recognition, pages
248-255. leee, 2009.

Kang Fu, Dawei Cheng, Yi Tu, and Liqing Zhang. Credit card
fraud detection using convolutional neural networks. In Neural
Information Processing: 23rd International Conference, ICONIP
2016, Kyoto, Japan, October 16-21, 2016, Proceedings, Part III
23, pages 483-490. Springer, 2016.

Mohammad Havaei, Axel Davy, David Warde-Farley, Antoine
Biard, Aaron Courville, Yoshua Bengio, Chris Pal, Pierre-Marc
Jodoin, and Hugo Larochelle. Brain tumor segmentation with deep
neural networks. Medical image analysis, 35:18-31, 2017.

Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chin-
tala, Utku Diril, Dmytro Dzhulgakov, Mohamed Fawzy, Bill Jia,
Yangqing Jia, Aditya Kalro, et al. Applied machine learning
at facebook: A datacenter infrastructure perspective. In 2018
IEEE International Symposium on High Performance Computer
Architecture (HPCA), pages 620-629. IEEE, 2018.

Xinlei He, Zheng Li, Weilin Xu, Cory Cornelius, and Yang
Zhang. Membership-doctor: Comprehensive assessment of mem-
bership inference against machine learning models. arXiv preprint
arXiv:2208.10445, 2022.

Data).
DOI:

(German  Credit
1994.

Hans  Hofmann. Statlog
UCI Machine Learning Repository,
https://doi.org/10.24432/C5SNC77.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q
Weinberger. Densely connected convolutional networks. In Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition, pages 47004708, 2017.

Robert A Jacobs. Increased rates of convergence through learning
rate adaptation. Neural networks, 1(4):295-307, 1988.

Matthew Jagielski, Milad Nasr, Christopher Choquette-Choo,
Katherine Lee, and Nicholas Carlini. Students parrot their teach-
ers: Membership inference on model distillation. arXiv preprint
arXiv:2303.03446, 2023.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers
of features from tiny images. 2009.

Anders Krogh and John Hertz. A simple weight decay can improve
generalization. Advances in neural information processing systems,
4, 1991.

[19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

[33]

(34]

[36]

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278-2324, 1998.

Zheng Li, Yiyong Liu, Xinlei He, Ning Yu, Michael Backes,
and Yang Zhang. Auditing membership leakages of multi-exit
networks. In Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, pages 1917-1931, 2022.

Yunhui Long, Vincent Bindschaedler, Lei Wang, Diyue Bu, Xi-
aofeng Wang, Haixu Tang, Carl A Gunter, and Kai Chen. Un-
derstanding membership inferences on well-generalized learning
models. arXiv preprint arXiv:1802.04889, 2018.

Yunhui Long, Lei Wang, Diyue Bu, Vincent Bindschaedler, Xi-
aofeng Wang, Haixu Tang, Carl A Gunter, and Kai Chen. A
pragmatic approach to membership inferences on machine learning
models. In 2020 IEEE European Symposium on Security and
Privacy (EuroS&P), pages 521-534. IEEE, 2020.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent
with warm restarts. arXiv preprint arXiv:1608.03983, 2016.

Lucy Ellen Lwakatare, Aiswarya Raj, Ivica Crnkovic, Jan Bosch,
and Helena Holmstrom Olsson. Large-scale machine learning
systems in real-world industrial settings: A review of challenges
and solutions. Information and software technology, 127:106368,
2020.

Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly
Shmatikov. Exploiting unintended feature leakage in collaborative
learning. In 2019 IEEE symposium on security and privacy (SP),
pages 691-706. IEEE, 2019.

Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive
privacy analysis of deep learning: Passive and active white-box
inference attacks against centralized and federated learning. In
2019 IEEE symposium on security and privacy (SP), pages 739—
753. IEEE, 2019.

Nicolas Papernot, Martin Abadi, Ulfar Erlingsson, Ian Good-
fellow, and Kunal Talwar. Semi-supervised knowledge transfer
for deep learning from private training data. arXiv preprint
arXiv:1610.05755, 2016.

Alexandre Sablayrolles, Matthijs Douze, Cordelia Schmid, Yann
Ollivier, and Hervé Jégou. White-box vs black-box: Bayes optimal
strategies for membership inference. In International Conference
on Machine Learning, pages 5558-5567. PMLR, 2019.

Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal Berrang,
Mario Fritz, and Michael Backes. Ml-leaks: Model and data in-
dependent membership inference attacks and defenses on machine
learning models. arXiv preprint arXiv:1806.01246, 2018.

Virat Shejwalkar and Amir Houmansadr. Membership privacy for
machine learning models through knowledge transfer. In Proceed-
ings of the AAAI conference on artificial intelligence, volume 35,
pages 9549-9557, 2021.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly
Shmatikov. Membership inference attacks against machine learning
models. In 2017 IEEE symposium on security and privacy (SP),
pages 3-18. IEEE, 2017.

Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

Liwei Song and Prateek Mittal. Systematic evaluation of privacy
risks of machine learning models. In 30th USENIX Security
Symposium (USENIX Security 21), pages 2615-2632, 2021.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way to
prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929-1958, 2014.

Xinyu Tang, Saeed Mahloujifar, Liwei Song, Virat Shejwalkar,
Milad Nasr, Amir Houmansadr, and Prateek Mittal. Mitigating
membership inference attacks by {Self-Distillation} through a
novel ensemble architecture. In 31/st USENIX Security Symposium
(USENIX Security 22), pages 1433-1450, 2022.

David A Van Dyk and Xiao-Li Meng. The art of data augmentation.
Journal of Computational and Graphical Statistics, 10(1):1-50,
2001.

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on December 18,2024 at 16:35:51 UTC from IEEE Xplore. Restrictions apply.



[37] Lauren Watson, Chuan Guo, Graham Cormode, and Alex Sablay-
rolles. On the importance of difficulty calibration in membership
inference attacks. arXiv preprint arXiv:2111.08440, 2021.

[38] Zhennan Yan, Yigiang Zhan, Zhigang Peng, Shu Liao, Yoshihisa
Shinagawa, Shaoting Zhang, Dimitris N Metaxas, and Xiang Sean
Zhou. Multi-instance deep learning: Discover discriminative local
anatomies for bodypart recognition. /IEEE transactions on medical
imaging, 35(5):1332-1343, 2016.

[39] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh
Jha. Privacy risk in machine learning: Analyzing the connection
to overfitting. In 2018 IEEE 31st computer security foundations
symposium (CSF), pages 268-282. IEEE, 2018.

[40] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks.
arXiv preprint arXiv:1605.07146, 2016.

77

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on December 18,2024 at 16:35:51 UTC from IEEE Xplore. Restrictions apply.



