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Affine Beilinson-Bernstein localization
at the critical level

By Sam Raskin and David Yang

Abstract

We prove the Frenkel-Gaitsgory localization conjecture describing reg-

ular Kac-Moody representations at critical level via eigensheaves on the

affine Grassmannian using categorical Moy-Prasad theory. This extends

previous work of the authors.
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1. Introduction

1.1. Overview. In [FG06], Frenkel and Gaitsgory formulated a conjectural

analogue of Beilinson-Bernstein localization for the affine Grassmannian using

critical level Kac-Moody algebras and geometric Satake. In this paper, we

prove their conjecture.

We highlight [FG09] and [Rasa] as previous works in this area. The former

proves the affine localization conjecture after passing to Iwahori equivariant

objects on both sides. The latter, due to the first author, proves the full

conjecture for rank 1 groups G.

We refer to the introductions of [FG06], [FG09], and [Rasa] for motivation

and background on the subject. We particularly refer to [Rasa], which is close

in spirit in many ways to the present paper.

1.2. Methods. Our methods have some overlap with [Rasa], but are dif-

ferent in their core. Specifically, as discussed in [Rasa, §1.14], we use a re-

cent general technique for categories with G((t))-actions and then specify to

Kac-Moody representations: categorical Moy-Prasad theory. This subject was

developed by the second author in [Yan21], where it was already used to study

critical level Kac-Moody representations.

Roughly speaking, the major outstanding problem has been to show es-

sential surjectivity and t-exactness of the global sections functor

ΓHecke : D
Heckez
crit (GrG)→ ĝcrit- modreg;

see Section 3.3. The idea is that [Yan21] almost shows that ĝcrit- modreg is

of depth 0. We would then be reduced to checking essential surjectivity on

Iwahori invariants, where it was treated by Frenkel-Gaitsgory.
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The issue is in the almost. Specifically, [Yan21] showed that the subcat-

egory ĝcrit- mod”reg ⊂ ĝcrit- mod generated by ĝcrit- modreg under colimits has

depth 0. But ĝcrit- modreg itself is finicky; for instance, the forgetful functor

ĝcrit- modreg → ĝcrit- mod is not actually conservative. Moreover, it is not a pri-

ori clear that ĝcrit- modreg carries a G((t))-action, so it is not clear that depth

is a meaningful notion for it. We refer to [Rasa, §1.22] for a related discussion.

This paper is dedicated to solving those problems. At the same time, we

also address the t-exactness, which is intimately related to the above subtleties.

This overall strategy is in contrast to [Rasa], which relied heavily on Whit-

taker techniques in place of Moy-Prasad theory.

1.3. Notation and background. Throughout this paper, we fix a field k of

characteristic 0. We also fix a split reductive group G over k and a Borel

subgroup B of G. The unipotent radical of B will be denoted by N , and

the Cartan will be denoted by T . The weight and coweight lattices will be

denoted by X∗(T ) and X∗(T ), respectively. The Lie algebras of G,B, etc. will

be denoted by g, b, etc.

We use category to mean∞-category and DG category to mean presentable

stable category over k. Similarly, all t-structures will be assumed to be right

complete and compatible with filtered colimits (in particular, accessible). We

let DGCat denote Lurie’s symmetric monoidal category of DG categories; we

denote the binary operation of its tensor product by ⊗.

We will frequently invoke the theory of D-modules on infinite-dimensional

spaces developed in [Rasb]. Occasionally, we will also use the theory of ind-

coherent sheaves on such spaces, for which the reader is referred to Section 6

of [Rasc].

We will be interested in group actions on categories, both weak and strong.

We understand group actions on categories to always imply actions on DG

categories. This theory has been developed in [Ber17] and [Rasc]. In general,

when we speak of a group action without further specification, we are referring

to a strong action. We will also need the following notation for convolution.

If C is a category acted on by G (or by some other group), and K ⊆ G is

some subgroup, then we have a convolution functor D(G/K)⊗ CK → C. This

functor will be denoted by
K
? . The overset K will often be omitted when the

subgroup is clear from context.

1.4. Acknowledgements. We thank Dima Arinkin, Sasha Beilinson, Dario

Beraldo, David Ben- Zvi, Roman Bezrukavnikov, Justin Campbell, Kylin Chen,

Vladimir Drinfeld, Gurbir Dhillon, Yuchen Fu, Dennis Gaitsgory, and Ivan

Mirkovic for useful discussions related to this work.
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2. Moy-Prasad preliminaries

2.1. Categorical depth filtration. This subsection and the next give a quick

overview of the results in Sections 2 and 3 of [Yan21]. We recommend looking

there for a more detailed exposition.

Let g((t)) be the Lie algebra of g-valued Laurent series, with its natural

Lie bracket. This is the Lie algebra of the loop group G((t)). Our main tool will

be the categorical representation theory of G((t)), and so we will need a large

supply of categories on which G((t)) acts. For every compact open subgroup

K ⊂ G((t)), we have an action of G((t)) on the (DG-)category D(G((t))/K)

of D-modules on the quotient ind-scheme G((t))/K. Thus, to produce many

categorical representations of G((t)), it suffices to produce a large family of

subgroups.

The Moy-Prasad subgroups will fill this role. Let g = ⊕gα be the weight

decomposition of g, and fix a point x ∈ X∗(T ) ⊗ R as well as a nonnegative

real number r. Then Kx,r and Kx,r+ are defined as the exponentiations of the

Lie subalgebras

kx,r =
⊕

〈α,x〉+i≥r

gαt
i

and

kx,r+ =
⊕

〈α,x〉+i>r

gαt
i.

As shorthand, we write Px for Kx,0. This is always a parabolic subgroup

of G((t)), justifying the notation. We also write Lx for the reductive quotient

Kx,0/Kx,0+.

Let C be a G((t))-category, i.e., a category equipped with a strong G((t))-

action. Then Lemma 2.2 of [Yan21] (which in turn is based on the main

theorem of [BZGO20]) states the following:

Lemma 2.1. Let C be a category acted on by G((t)). Then there is a

natural G((t))-equivariant fully faithful embedding

ax,r : D(G((t))/Kx,r+) ⊗
D(Kx,r+\G((t))/Kx,r+)

CKx,r+ → C

with a continuous G((t))-equivariant right adjoint aRx,r.

We denote the essential image of ax,r by CKx,r+ -gen. In the case where this

is all of C, we say that C is Kx,r+-generated. The following gives an equivalent

characterization of CKx,r+-gen:

Lemma 2.2. The subcategory CKx,r+ -gen ⊆ C is the smallest full subcate-

gory of C which both contains CKx,r+ and inherits a G((t))-action from C.
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Proof. Let D be another full G((t))-subcategory of C which contains

CKx,r+ . Then we must necessarily have CKx,r+ = DKx,r+ , so CKx,r+ -gen =

DKx,r+ -gen ⊆ D, as desired. �

Definition 2.3. Let C be a category acted on byG((t)). The depth filtration

on C is the R≥0-indexed filtration with C≤r the smallest full DG subcategory

of C containing CKx,r+ -gen for every x ∈ X∗(T )⊗ R.

Let us list some properties of the depth filtration.

Proposition 2.4.

(1) For a fixed G, there is a discrete set of rational numbers such that, for

any G((t))-category C, the depth filtration on C can only jump at those

numbers.

(2) The depth filtration is exhaustive; i.e., we have

colimC≤r ∼= C.

(3) Assume that C≤r = C. Then for any other G((t))-category D with D≤r = 0,

we have C⊗G((t)) D
∼= 0.

Proof.

(1) This is Lemma 2.6 of [Yan21].

(2) This is proven in the discussion after Definition 2.5 of [Yan21].

(3) This is Lemma 2.9 of [Yan21]. �

As the depth filtration only jumps at a discrete set of numbers, we can

define C<r to be C≤r−ε for ε > 0 sufficiently small. The quotient of C by C≤r
(resp. C<r) will be denoted by C>r (resp. C≥r.)

2.2. Moy-Prasad generators. The main technical tool of [Yan21] is a con-

struction of 2-categorical generators for each depth. Let us rephrase this result

in a form amenable to our purposes.

Fix some depth r > 0. For any G((t))-category C, we have an action of

D(Kx,r/Kx,r+) (with the convolution monoidal structure) on CKx,r+ . A pri-

ori, Kx,r/Kx,r+ has only the structure of a group, but from unwinding the

definitions we see that in fact it has a k-vector space structure. Thus, the

Fourier-Deligne transform of D-modules (see, e.g., Section 5.1 of [Ber17])

identifies the monoidal category D(Kx,r/Kx,r+) with the monoidal category

D((Kx,r/Kx,r+)∗).

The vector space Kx,r/Kx,r+ is naturally equipped with an Lx action, and

hence so is the dual vector space (Kx,r/Kx,r+)∗. Let (Kx,r/Kx,r+)∗,◦ denote

the locus of GIT-semistable elements, i.e., elements whose Lx orbit does not

contain zero in its closure. Equivalently, (Kx,r/Kx,r+)∗,◦ is the complement of

the preimage of zero along (Kx,r/Kx,r+)∗ → (Kx,r/Kx,r+)∗//Lx. This is an
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open subvariety of (Kx,r/Kx,r+)∗. We define

CKx,r+,◦ ∼= CKx,r+ ⊗
D((Kx,r/Kx,r+)∗)

D((Kx,r/Kx,r+)∗,◦).

Note that the operation of (Kx,r+, ◦)-invariants commutes with both limits

and colimits.

The complement of (Kx,r/Kx,r+)∗,◦, i.e., the closed locus of GIT-unstable

elements, will be denoted by (Kx,r/Kx,r+)∗,us. In analogy with the definition

of CKx,r+,◦, we define

CKx,r+,us ∼= CKx,r+ ⊗
D((Kx,r/Kx,r+)∗)

D((Kx,r/Kx,r+)∗,us).

The relevance of these definitions is explained by the following theorem:

Theorem 2.5 ([Yan21]). Let C be a G((t))-category. Then the subcate-

gories C<r and C≤r coincide if and only if we have, for all x ∈ X∗(T )⊗ R,

CKx,r+,◦ ∼= 0.

Proof. Without loss of generality, we can assume that C≤r = C. By The-

orem 3.2 of [Yan21], we have D(G((t)))Kx,r+,◦ ∼= D(G((t))/Kx,r+)≥r. In par-

ticular, part (3) of Proposition 2.4 implies that

C
Kx,r+,◦
<r

∼= C<r ⊗
G((t))

D(G((t))/Kx,r+)≥r ∼= 0.

We can therefore quotient C by C<r and reduce to the case where C<r ∼= 0. It

remains to show, under our assumptions, that C itself is trivial if and only if

all the categories CKx,r+,◦ are trivial.

The only if direction is now obvious, so let us treat the if direction. Assume

C is not trivial. Then some CKx,r+ is nontrivial. We claim that CKx,r+,◦ ∼=
CKx,r+ , or equivalently, that

CKx,r+,us ∼= C ⊗
G((t))

D(G((t)))Kx,r+,us ∼= 0.

This again follows from part (3) of Proposition 2.4 and Theorem 3.2 of [Yan21].

�

Let us give some properties of the unstable locus. They will come in handy

later when we need variations of Theorem 2.5. We note that Lemma 2.6 is a

key geometric input for Theorem 3.2 of [Yan21] (and hence for Theorem 2.5

as well.)

Lemma 2.6. There is an equality of subvarieties

(Kx,r/Kx,r+)∗,us = Lx ·
( ⋃
y|Kx,r+⊆Ky,r⊆Kx,r

(Ky,r/Kx,r+)⊥
)
.
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Proof. Let p be a point of (Kx,r/Kx,r+)∗,us. By the Hilbert-Mumford

criterion, there is a one-parameter subgroup Gm → Lx which contracts p

to the origin. This subgroup is necessarily a conjugate of a one-parameter

subgroup of T corresponding to some β ∈ X∗(T ). Equivalently, there is some

point q ∈ Lx · p which is contracted by β, so there is an inclusion

q ∈
⊕
〈β,α〉>0

g∗−αt
iα
⊕

.

Then for sufficiently small ε > 0, if we take y = x+ εβ, we have Kx,r+ ⊆
Ky,r ⊆ Kx,r and

q ∈ (Ky,r/Kx,r+)⊥.

This implies the inclusion p ∈ Lx · (Ky,r/Kx,r+)⊥, as desired. �

Lemma 2.7. The variety (Kx,r/Kx,r+)∗,us is the union of a finite number

of Lx-orbits.

Proof. We rewrite the statement in terms of graded Lie algebras. Express

r as a fraction p
q in lowest terms. Then we have a Z/qZ grading on g, defined by

gi =
⊕

〈x,α〉≡ pi
q

(mod 1)

gα.

This grading is compatible with the Lie algebra structure in the sense that

[gi, gj ] ⊆ gi+j .

In this language, the vector space Kx,r/Kx,r+ can be identified with g1,

and Lx can be identified with the exponentiation of g0. The lemma now follows

from Theorem 4 of [Vin76]. �

The rest of this section will be devoted to the case of r = 0. The naive

analogue of Theorem 2.5 would say that C≤0 is trivial if and only if CKx,0+

is trivial for all x. This is easy to prove, but we will need a more refined

statement.

2.3. Categorical representations of reductive groups. First we need to study

the categorical representation theory of (finite type) reductive groups. Let H

be a reductive algebraic group over k with Lie algebra h. (We use the letter H

here to emphasize that it may differ from the group G fixed in the rest of the

paper.) The Borel, Cartan, etc. subgroups ofH will be denoted by BH , TH , etc.

Fix a H-category C. We wish to understand the category of weak invari-

ants CH,w, which is defined to be HomQCoh(H)(Vect, H). Our main lemma re-

lates the categories CH,w ∼= C⊗Hh- mod and (CNH )TH ,w ∼= C⊗HD(H/NH)TH ,w.

The Harish-Chandra isomorphism gives an action of QCoh(t∗h//WH) on CH,w,

where the WH action on t∗h is the dot action. On the other hand, the tangent

vector fields for the right action of TH on H/NH give an action of QCoh(t∗h)

on (CNH )TH ,w.
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Let S be the collection of elements α̌+ 〈ρ, α̌〉+n ∈ Sym th where α̌ ranges

over positive coroots of H and n ranges over positive integers. Then we define

an affine scheme t∗,◦h as Spec of the localization Sym th[S
−1].

Lemma 2.8. There are adjoint functors

Loc : CH,w ⊗
QCoh(t∗h//WH)

QCoh(t∗,◦h ) � (CNH )TH ,w ⊗
QCoh(t∗h)

QCoh(t∗,◦h ) : Γ

with Loc fully faithful. Furthermore, if C has a t-structure compatible with the

H-action, then Γ is t-exact for the t-structures induced by Lemma 2.10.

Proof. To construct Γ and Loc, it suffices to consider the universal case

of C ∼= D(G). In this case, we are looking for an adjoint pair

Loc : h- mod ⊗
QCoh(t∗h//WH)

QCoh(t∗,◦h ) � (D(H/NH))TH ,w ⊗
QCoh(t∗h)

QCoh(t∗,◦h ) : Γ.

These are provided by the global sections and localization functors of [BB81].

By loc. cit., in this case Loc is fully faithful and Γ is t-exact.

For general C, we must still have Γ ◦ Loc ∼= id and so Loc is still fully

faithful. By Lemma A.1 and Lemma A.13, Loc and Γ are right t-exact. As Γ

has left adjoint Loc, we see that Γ must also be left t-exact, as desired. �

Corollary 2.9. The functor

D(H/NH) ⊗
D(NH\H/NH)

CNH → C

is an equivalence.

Proof. By [BZGO20], this functor is fully faithful. Denote the quotient

category by D. We need to show that D is trivial.

A short calculation shows that DNH ∼= 0. Thus, fully faithfulness of Loc

in Lemma 2.8 implies that DH,w⊗QCoh(t∗h//WH) QCoh(t∗,◦h ) is trivial. We claim

that the functor

DH,w → DH,w ⊗
QCoh(t∗h//WH)

QCoh(t∗,◦h )

is conservative. As QCoh(t∗,◦h ) is self dual as a QCoh(t∗h//WH)-module, this

functor can be rewritten as

HomQCoh(t∗h//WH)(QCoh(t∗h//WH),DH,w)

→ HomQCoh(t∗h//WH)(QCoh(t∗,◦h ),DH,w),

which is conservative if the pushforward functor

f∗ : QCoh(t∗,◦h )→ QCoh(t∗h//WH)

generates under colimits. As f : t∗,◦h → t∗h//WH is faithfully flat, the image of

f∗ contains a skyscraper sheaf at each geometric point. And because t∗h//WH
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is smooth, QCoh(t∗h//WH) is generated under colimits by skyscraper sheaves,

giving the conservativeness.

In our case, this shows that DH,w is trivial. By 1-affineness of BH (The-

orem 2.2.2 of [Gai15]), this implies that D is trivial, as desired. �

The t-structures appearing in Lemma 2.8 have the following source:

Lemma 2.10. Let f : SpecB → SpecA be a flat morphism of affine

schemes. Let C be a category equipped with a t-structure and an action of

A- mod. Then there is a unique t-structure on C⊗A-mod B- mod for which the

pullback and pushforward functors

f∗C : C � C ⊗
A-mod

B- mod : fC,∗

are both t-exact. Also, fC,∗ is conservative.

Proof. To show conservativeness, note that this property of a right adjoint

is preserved under tensor product. Thus, it suffices to check that B- mod →
A- mod is conservative, which is obvious. Furthermore, by Barr-Beck-Lurie,

the functor fC,∗ is monadic.

The existence of the desired t-structure will thus follow from t-exactness

of the monad fC,∗ ◦ f∗C . This monad can be identified with the tensor product

functor − ⊗A B : C → C, where B is treated as an A-module. By Lazard’s

theorem, B is a filtered colimit of finite free A-modules. Tensoring by a finite

free A-module is clearly t-exact, so −⊗A B is also t-exact, as desired. �

2.4. Depth zero. Now we can analyze the r = 0 case more fully. Recall

that we denote the Iwahori subgroup by I and its unipotent radical by I0.

Theorem 2.11. Let C be a G((t))-category. We have an equality of sub-

categories
C≤0 = CI0 -gen ⊂ C.

In particular, C≤0 is trivial if and only if CI0 is trivial.

Proof. As I0 is a subgroup of the form Kx,0+, the inclusion CI0 -gen ⊆ C≤0

is clear. By Lemma 2.2, it suffices to show that, for all x ∈ X∗(T ), CKx,0+ ⊆
CI0 -gen.

Note that for sufficiently small ε > 0, the subgroup Kx+ερ̌,0+ does not

depend on ε. (Recall that ρ̌ denotes the half-sum of positive coroots.) Indeed,

unwinding the definitions, we have an equality of Lie algebras

kx+ερ̌,0+ =
⊕

〈α,x+ερ̌,〉+i>0

gαt
i

=
⊕

〈α,x〉+i>0

gαt
i +

⊕
〈α,x〉+i≥0
〈α,ρ̌〉>0

gαt
i

= kx,0+ + (kx,0 ∩ n((t)))
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giving the corresponding identity of subgroups

Kx+ερ̌,0+ = Kx,0+(Px ∩N((t))).

First, we show that CKx+ερ̌,0+ is a subcategory of CI0 -gen. Indeed, Kx+ερ̌,0

will be a conjugate gIg−1 of the Iwahori subgroup, and Kx+ερ̌,0+ will be the

corresponding conjugate gI0g
−1 of I0. We then have

CKx+ερ̌,0+ = gCI0

⊆ CI0 -gen

as desired.

To go from Kx+ερ̌,0+-invariants to Kx,0+-invariants, recall that Lx ∼=
Kx,0/Kx,0+ acts on CKx,0+ . Let Nx denote the subgroup

(Kx,0+(Px ∩N((t))))/Kx,0+

of Lx. As Lx is a reductive group with maximal unipotent subgroup Nx,

Corollary 2.9 is applicable. Thus, we have

CKx,0+ ∼= (CKx,0+)Nx ⊗
D(Nx\Lx/Nx)

D(Lx/Nx)

∼= CKx+ερ̌,0+ ⊗
D(Nx\Lx/Nx)

D(Px/Kx+ερ̌,0+)

⊆ CI0 -gen

giving the theorem. �

Corollary 2.12. Let C be a G((t))-category. Assume that, for all x ∈
X∗(T )⊗ R and r > 0,

CKx,r+,◦ ∼= 0

and also that

CI0 ∼= 0.

Then C must be trivial.

Proof. By Theorem 2.11, we have C≤0
∼= 0. For r > 0, Theorem 2.5 tells

us that C<r ∼= C≤r. As the depth filtration only jumps at a discrete set (part 1

of Theorem 2.4), this implies that C≤r ∼= 0 for all r. And as the depth filtration

is exhaustive (part 2 of Theorem 2.4), we see that C itself must be trivial, as

desired. �

3. Kac-Moody categories

To state the main theorem of this paper, we will need to define various

categories of representations of the affine Lie algebra ĝ. Recall that ĝ is defined

as a central extension of the loop algebra g((t)), and that central characters are

in bijection with invariant bilinear forms on g. For the rest of this paper, we

will only be concerned with critical level representations, i.e., those ĝ-modules
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where the center acts via the character corresponding to negative one half times

the Killing form. Notationally, this will be reflected by a subscript, e.g., ĝcrit.

This section is effectively a quick overview of the results of Sections 6

and 7 of [Rasa], and we will often refer there for proofs.

3.1. The category ĝcrit- mod. Our starting point is the category ĝcrit- mod

constructed in, e.g., [Rasc]. As justification for its name, its heart ĝcrit- mod♥

is the abelian category of discrete critical ĝ-representations. However, we warn

the reader that ĝcrit- mod does not coincide with the derived category of its

heart; rather, it is a “renormalization” of this derived category.

More precisely, consider the subcategory ĝcrit- modc ⊆ D(ĝcrit- mod♥) gen-

erated under finite limits by modules of the form indĝ
k C, where k is the Lie sub-

algebra corresponding to a pro-unipotent compact open subgroup K ⊂ G((t)).

Then ĝcrit- mod is defined1 to be the ind-completion of ĝcrit- modc. Kan exten-

sion gives a functor

ĝcrit- mod→ D(ĝcrit- mod♥)

which induces an equivalence on bounded below subcategories. However,

ĝcrit- mod contains objects in cohomological degree −∞ which are sent to the

zero object in D(ĝcrit- mod♥).

The advantage of this renormalization is that ĝcrit- mod admits a strong

action of G((t)). There is also an additional structure which we will need.

Let Z denote the center of the universal enveloping algebra U(ĝcrit). This is

canonically a pro-vector space, and the Feigin-Frenkel theorem identifies it with

functions on an ind-affine ind-scheme OpǦ, which parametrizes Ǧ-opers on the

punctured formal disc. (For more on opers and Feigin-Frenkel, the reader is

referred to Sections 1 and 5 of [FG06], respectively.)

There is a canonical action of Z on any ĝcrit-module M . Equivalently,

there is a canonical ind-coherent sheaf on OpǦ whose space of global sections

is isomorphic to M . The correct categorical enhancement of this statement

was identified in [Rasc], using the definition of IndCoh∗ in Section 6 of loc. cit.

Theorem 3.1 ([Rasc, Th. 11.18.1]). There is a canonical coaction of

IndCoh∗(OpǦ) on ĝcrit- mod. Furthermore, this coaction is compatible with

the action of G((t)).

We remark that the coaction map

ĝcrit- mod→ ĝcrit- mod⊗ IndCoh∗(OpǦ)

corresponds to restriction of modules along the algebra homomorphism Z ×
U(ĝcrit)→ U(ĝcrit).

1Actually, in [Rasc], a different definition is given which is easier to work with. The two

definitions are equivalent by Lemma 9.13.1 of loc. cit.
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3.2. The category ĝcrit- modreg. There is a natural closed subscheme Opreg

Ǧ
of OpǦ, corresponding to regular opers, i.e., those that extend to the formal

disc. We are interested in studying categories of ĝ-representations for which

the action of Z factors through O(Opreg

Ǧ
). The most famous example of such a

representation is the vacuum module Vcrit, defined as the critical level induction

from g[[t]] of the trivial representation.

The abelian category of such representations is easy to define. However,

as in the previous subsection, there are subtleties of renormalization in defining

the derived category. We will define two categories, denoted by ĝcrit- modreg

and ĝcrit- modreg,naive. Both of these have t-structures with the desired heart,

but they will differ at −∞. As suggested by the notation, ĝcrit- modreg is

the better behaved category and the real target of our investigation, while

ĝcrit- modreg,naive appears as a useful technical intermediate.

First we will define ĝcrit- modreg,naive. Let us recall the notion of a cotensor

product. Let A be a comonoidal category, and take a right A-comodule B and

a left A-comodule C. Then the cotensor product B
A
⊗ C is defined as the

totalization of the cosimplicial category

B⊗ C ⇒ B⊗A⊗ C→→→ B⊗A⊗A⊗ C · · · .

Then we define

ĝcrit- modreg,naive
∼= ĝcrit- mod

IndCoh∗(OpǦ)

⊗ IndCoh∗(Opreg

Ǧ
).

Denote the closed embedding Opreg

Ǧ
→ OpǦ by i. By Lemmas 6.17.1–2 of

[Rasc], we have a pair of adjoint functors

IndCoh∗(Opreg

Ǧ
) � IndCoh∗(OpǦ).

Tensoring, we get another adjoint pair

ĝcrit- modreg,naive � ĝcrit- mod .

We will abuse notation and denote both adjoint pairs by (i∗, i
!).

Theorem 3.2. The functor

i∗ : ĝcrit- modreg,naive → ĝcrit- mod

is comonadic. Thus, ĝcrit- modreg,naive admits a unique t-structure making i∗
t-exact.

Proof. This is part of Proposition 6.6.1. of [Rasa]. �

Let ĝcrit- modcreg ⊆ ĝcrit- modreg,naive denote the full subcategory of objects

M such that i∗M is compact. We define ĝcrit- modreg as the ind-completion of

ĝcrit- modcreg. It comes with a natural t-structure and a functor

p : ĝcrit- modreg → ĝcrit- modreg,naive .
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Theorem 3.3. The functor p is t-exact and induces an equivalence on

eventually coconnective subcategories.

Proof. This is Lemma 6.9.3 of [Rasa]. �

Remark 3.4. One technical problem with the category ĝcrit- modreg is that

it is a priori unclear that it admits a G((t))-action. Once our Theorem 3.10 is

known, there is a clear such action. But for the proof of Theorem 3.10, we will

need to juggle this category with its naive version ĝcrit- modreg,naive, which has

a G((t)) action by virtue of its construction.

3.3. The functor ΓHecke. Now we would like to relate these categories of

Kac-Moody representations to geometric categories. Let GrG denote the affine

Grassmannian G((t))/G[[t]]. To start, note that

HomG((t))(Dcrit(GrG), ĝcrit- modreg,naive) ∼= ĝcrit- mod
G[[t]]
reg,naive,

so the vacuum module Vcrit defines a map Dcrit(GrG) → ĝcrit- modreg,naive.

Combining this with the QCoh(Opreg

Ǧ
) action constructed in the previous sub-

section, we get a map

(1) Dcrit(GrG)⊗QCoh(Opreg

Ǧ
)→ ĝcrit- modreg,naive .

Recall that geometric Satake (see [MV07]) gives a morphism of monoidal

categories

Rep(Ǧ)→ Dcrit(GrG)G[[t]] ∼= EndG((t))(Dcrit(GrG)),

so we get a right action of Rep(Ǧ) on Dcrit(GrG).

There is also a natural action of Rep(Ǧ) on QCoh(Opreg

Ǧ
), coming from a

natural map Opreg

Ǧ
→ BǦ. Such a map is equivalent to the data of a Ǧ-torsor on

Opreg

Ǧ
. By definition, there is a canonical family of opers (and hence a canonical

Ǧ-torsor) on Spec(O(Opreg

Ǧ
)[[t]]); restricting to Opreg

Ǧ
gives the desired torsor.

We now claim that the map (1) naturally factors as

Dcrit(GrG)⊗QCoh(Opreg

Ǧ
)→ Dcrit(GrG) ⊗

Rep(Ǧ)
QCoh(Opreg

Ǧ
)

→ ĝcrit- modreg,naive,

or equivalently, that the map

QCoh(Opreg

Ǧ
)→ HomG((t))(Dcrit(GrG), ĝcrit- modreg,naive) ∼= ĝcrit- mod

G[[t]]
reg,naive

can naturally be lifted to a Rep(Ǧ)-equivariant map.

This is proven rigorously in Sections 7.9–7.11 of [Rasa]. The key tool is the

following theorem of Beilinson-Drinfeld, which immediately implies the above

claim at the level of objects:
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Theorem 3.5 ([BD]). Let V be a finite dimensional object in Rep(Ǧ)♥.

The corresponding objects of D(GrG)G[[t]] and QCoh(Opreg

Ǧ
) are denoted by SV

and PV , respectively. Then

SV ? Vcrit
∼= PV ⊗ Vcrit,

where ? denotes the convolution action of D(GrG)G[[t]] on ĝcrit- modreg,naive.

We will denote Dcrit(GrG) ⊗Rep(Ǧ) QCoh(Opreg

Ǧ
) by D

Heckez
crit (GrG). The

map D
Heckez
crit (GrG)→ ĝcrit- modreg,naive will be denoted by ΓHecke,naive.

We now want to lift ΓHecke,naive to a functor ΓHecke : D
Heckez
crit (GrG) →

ĝcrit- modreg. First, we will show that D
Heckez
crit (GrG) is compactly generated. As

Opreg

Ǧ
→ BǦ is affine, we have a pair of continuous Rep(Ǧ)-equivariant adjoint

functors Rep(Ǧ) � QCoh(Opreg

Ǧ
). These induce a pair of adjoint functors

indHeckez : Dcrit(GrG) � D
Heckez
crit (GrG) : OblvHeckez .

In particular, indHeckez sends compact objects to compact objects. Fur-

thermore, we have the following:

Lemma 3.6. The objects indHeckez(F), for F ∈ Dcrit(GrG) compact, gen-

erate D
Heckez
crit (GrG).

Proof. As Dcrit(GrG) is compactly generated, it suffices to show that the

essential image of indHeckez generates D
Heckez
crit (GrG) under colimits. It follows

from Lemma 5.1 that this property is stable under tensor product, so it suf-

fices to show that the pullback map Rep(Ǧ)→ QCoh(Opreg

Ǧ
) generates under

colimits. This follows as the map Opreg

Ǧ
→ BǦ is affine. �

Corollary 3.7. The functor ΓHecke,naive preserves compact objects.

Proof. By the preceding lemma, it suffices to show that, for any com-

pact F ∈ Dcrit(GrG), the object ΓHecke,naive(indHeckez(F)) lies in ĝcrit- modcreg.

Unwinding the definitions, we find that

ΓHecke,naive(indHeckez(F)) ∼= F ? Vcrit ∈ ĝcrit- modreg .

We would like to show that i∗(F ? Vcrit) ∼= F ? i∗Vcrit is a compact object

in ĝcrit- mod. As i∗Vcrit is compact, it suffices to show that F?− : ĝcrit- mod→
ĝcrit- mod preserves compactness, or equivalently, that its right adjoint is con-

tinuous.

This right adjoint is explicitly identified in Proposition 22.10.1 of [FG06].

Let DF denote the Verdier dual of F, and let invDF ∈ D(G[[t]]\G((t))) denote

the pullback of DF along the inversion map. Then, for any G((t))-category C,
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the functors F ? − : C → CG[[t]] and invDF ? − : CG[[t]] → C form an adjoint

pair. As convolution preserves colimits, we arrive at the desired result. �

We thus get a natural functor D
Heckez
crit (GrG)c → ĝcrit- modcreg. Define

ΓHecke to be its ind-extension. By definition, we have a commutative triangle

D
Heckez
crit (GrG) ĝcrit- modreg

ĝcrit- modreg,naive .

ΓHecke

ΓHecke,naive

Let us recall some facts about ΓHecke.

Theorem 3.8 ([FG06], [Rasa]). The functor ΓHecke is fully faithful.

Proof. This is essentially Theorem 8.7.1 of [FG06], though they do not

work with∞-categories. With our categorical setup, this is stated as Theorem

7.16.1 of [Rasa], which also gives a new proof. �

We now define a t-structure on D
Heckez
crit (GrG). Set D

Heckez
crit (GrG)≤0 to be

the full subcategory generated under colimits by the indHeckez(F), for F ∈
Dcrit(GrG)≤0. By Proposition 1.4.4.11 of [Lura], this uniquely defines a t-

structure.

Theorem 3.9. With respect to the above t-structures on D
Heckez
crit (GrG)

and ĝcrit- modreg, ΓHecke is right t-exact.

Proof. This is Corollary 7.15.3 of [Rasa]. �

For the rest of this paper, when working with a t-structure on a category C,

we will denote the subcategory of objects supported in cohomology degrees at

least n (resp. at most n) by C≥n (resp. C≤n.) Note the use of a superscript, as

opposed to the use of a subscript for the depth filtration.

3.4. Localization theorem. The following is the main theorem of this pa-

per. It confirms one of the main conjectures (more precisely, Main Conjecture

8.5.2) of [FG06]:

Theorem 3.10. The functor ΓHecke is a t-exact equivalence.

For G of rank 1, this was proven in [Rasa]. More generally, for any G,

loc. cit. reduces Theorem 3.10 to three auxiliary statements, which appear

below as Lemmas 3.11, 3.12, and 3.13. All three are proven in [Rasa] only

when G has rank 1; our contribution is to prove them for general G.
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Lemma 3.11. Let ĝcrit-̃ modreg,naive ⊆ ĝcrit- modreg,naive be the full sub-

category generated under colimits by the subcategory ĝcrit- mod+
reg,naive of even-

tually coconnective objects. Then the essential image of ΓHecke,naive lies in

ĝcrit-̃ modreg,naive and generates it under colimits.

Lemma 3.12. The functor ΓHecke,naive is t-exact.

Lemma 3.13. For every compact open subgroup K ⊆ G((t)), the compo-

sition

D
Heckez
crit (GrG)K → D

Heckez
crit (GrG)→ ĝcrit- modreg

is left t-exact up to shift.

We refer to [Rasa] Section 7.17 for the deduction of Theorem 3.10 from

these lemmas.

Let us explain some philosophy behind the proofs of Lemmas 3.11, 3.12,

and 3.13. Each of these lemmas involves proving some property P of a functor

f : C→ D. In Lemmas 3.11 and 3.12, both C and D have G((t))-actions, while

in Lemma 3.13, only C has a G((t))-action. Assume for simplicity that C and

D are both G((t))-categories.

Motivated by Corollary 2.12, we will show that f satisfies P if we know

that, for all x ∈ X∗(T )⊗ R and r > 0,

fKx,r+,◦ : CKx,r+,◦ → DKx,r+,◦

satisfies P , as well as that

f I0 : CI0 → DI0

satisfies P . Luckily, each of the involved invariant categories is well understood,

and it will be (relatively) straightforward to show that each of these simpler

functors satisfies P , proving the desired lemma.

Remark 3.14. In [Rasa], a similar line of attack was used, with the in-

variant categories CKx,r+,◦ replaced with the category Whit(C) of Whittaker

invariants. For G = PGL2, any G((t))-category is generated (under the G((t))-

action) by its I0-invariants and its Whittaker invariants. One impetus for the

current paper was the observation (our Corollary 2.12) that this generation

statement holds for any group G once one replaces Whit(C) with the cate-

gories CKx,r+,◦.

Lemma 3.11 is easiest, and it can be shown with a direct application of

Corollary 2.12. The proofs of the other two lemmas will require reworking each

step of the proof of 2.12 to apply in a new setting.
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4. Invariant subcategories

The goal of this section is to collect some results on invariant subcategories

of D
Heckez
crit (GrG) and ĝcrit- modreg,naive. These results form the concrete input

needed for the proof of Theorem 3.10.

4.1. I0-invariants. The following theorem is the main fact we shall need

about the behavior of ΓHecke,naive on I0-equivariant objects. It is essentially

the main theorem of [FG09]. However, [FG09] does not state their result in

terms of derived categories, so instead we use the phrasing of [Rasa].

Theorem 4.1 ([Rasa, Th. 8.2.1], [FG09, Th. 1.7]). The functor ΓHecke,naive

induces a t-exact equivalence

D
Heckez
crit (GrG)I0,+ → ĝcrit- modI0,+reg,naive

on eventually coconnective I0-equivariant categories.

For the proof of Lemma 3.13, we will need a related statement adapted to

ĝcrit- modreg. Because of the lack of an a priori G((t))-action, we cannot speak

directly of I0-invariant objects in ĝcrit- modreg. Even if we could, there would

be no convolution functor. Instead, as a proxy, we will look at the images of

convolutions with I0-invariant objects in D
Heckez
crit (GrG).

Lemma 4.2. For any compact object G ∈ D(G((t))/I0), the functor

ΓHecke(G ?−) : D
Heckez
crit (GrG)I0 → ĝcrit- modreg

is left t-exact up to shift.

Remark 4.3. The case of trivial G is Lemma 8.2.2 of [Rasa]. The proof we

give below is an adaptation of the one in loc. cit. to our case.

Proof. Choose an integer r for which the conclusion of Lemma 7.1 is sat-

isfied. We will show that ΓHecke(G ? −)[r] is left t-exact. Because D
Heckez
crit is

right complete, it suffices to show that, for F ∈ DHeckez
crit (GrG)I0,♥, we have

ΓHecke(G ? F) ∈ (ĝcrit- modreg)≥r.

Note that if we replace ΓHecke with ΓHecke,naive, we have

ΓHecke,naive(G ? F) ∼= G ? ΓHecke,naive(F) ∈ (ĝcrit- modreg,naive)
≥r

by Theorem 4.1 and Lemma 7.1. Thus, by Theorem 3.3, it suffices to show

that ΓHecke(G ? F) is eventually coconnective.

By Lemma 3.6 and Proposition 3.18 of [FG09], F can be written as a

filtered colimit of objects Fi ∈ D
Heckez
crit (GrG)I0,♥ admitting finite filtrations with

subquotients of the form indHeckez(Fi,j)⊗Opreg

Ǧ
Hi,j for Fi,j ∈ Dcrit(GrG)I0,♥ and
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Hi,j ∈ QCoh(Opreg

Ǧ
)♥. It thus suffices to show that, for any i and j, we have

ΓHecke(G ? indHeckez(Fi,j) ⊗
Opreg

Ǧ

Hi,j) ∈ (ĝcrit- modreg)≥r,

or equivalently, that ΓHecke(G ? indHeckez(Fi,j)⊗Opreg

Ǧ
Hi,j) is eventually cocon-

nective.

As QCoh(Opreg

Ǧ
)♥ is compactly generated, we can immediately reduce to

the case of Hi,j coherent. And as Opreg

Ǧ
is an infinite-dimensional affine space,

any coherent sheaf is perfect. Therefore, to prove eventual coconnectivity, the

case of Hi,j coherent further reduces to the case where Hi,j is equivalent to

the structure sheaf OOpreg

Ǧ
.

So we just need to show that

ΓHecke(G ? indHeckez(Fi,j)) ∼= ΓHecke(indHeckez(G ? Fi,j))

∼= ΓIndCoh(GrG,G ? Fi,j)

is eventually coconnective. Applying Lemma 7.1 again, we see that G ? Fi,j ∈
Dcrit(GrG)≥r. By Corollary 7.15.2 of [Rasa], ΓIndCoh(GrG,−) is t-exact, giving

the desired statement. �

4.2. (Kx,r+, ◦)-invariants. It will turn out that both D
Heckez
crit (GrG) and

ĝcrit- modreg,naive are purely of depth zero, i.e., are equal to their depth ≤ 0

truncations. By Theorem 2.5, this is equivalent to saying that for all x and r,

their (Kx,r+, ◦)-invariant categories are trivial.

The following lemma will help show this in both cases:

Lemma 4.4.

(1) Let C be a G((t))-category purely of depth zero, with a right action of a

monoidal category A which commutes with the G((t))-action. Let B be an

A-module category. Then the category

C⊗
A
B

is purely of depth zero.

(2) Let C be a G((t))-category purely of depth zero, with a right coaction of a

comonoidal category A which commutes with the G((t))-action. Let B be

an A-comodule category. Then the category

C
A
⊗B

is purely of depth zero.

Proof. Let us first treat the case of A monoidal. We would like to show

that

(C⊗
A
B)Kx,r+,◦
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is trivial for any choices of x and r. But the operation of (Kx,r+, ◦)-invariants

commutes with tensor products, so we have

(C⊗
A
B)Kx,r+,◦ ∼= CKx,r+,◦ ⊗

A
B

∼= 0⊗
A
B

∼= 0,

as desired.

The case of A comonoidal proceeds similarly, as taking (Kx,r+, ◦)-invari-

ants also commutes with cotensor products. �

Theorem 4.5. The category D
Heckez
crit (GrG) is purely of depth zero.

Proof. Start by noting that D(G((t))/K0,0+) is tautologically K0,0+-gen-

erated and hence purely of depth zero. As K0,0+ is a normal subgroup of

K0,0
∼= G[[t]], with quotient G, we have

D(GrG)∼=D(G((t))/G[[t]])∼=D(G((t))/K0,0+)G ∼= D(G((t))/K0,0+) ⊗
D(G)

Vect .

Thus, by the first part of Lemma 4.4, D(GrG) is purely of depth zero. As

D
Heckez
crit (GrG) ∼= D(GrG) ⊗

Rep(Ǧ)
QCoh(Opreg

Ǧ
),

another application of Lemma 4.4 shows that D
Heckez
crit (GrG) is purely of depth

zero, as desired. �

Now we treat the case of ĝcrit- modreg,naive. We will need the following

special case of Theorem 4.3 of [Yan21], which computes the depth filtration on

ĝcrit- mod:

Theorem 4.6 ([Yan21, Th. 4.3, Case r = 0]). There is an equivalence of

subcategories

ĝcrit- mod≤0
∼= ĝcrit- mod

IndCoh∗(Opǧ)

⊗ IndCoh∗(Ôp≤0
ǧ ),

where Ôp≤0
ǧ is the formal completion of Op≤0

ǧ inside Opǧ.

Properly equipped, let us proceed to the promised theorem.

Theorem 4.7. The category ĝcrit- modreg,naive is purely of depth zero.

Proof. Note that IndCoh∗(Ôp≤0
ǧ ) has a natural coalgebra structure. Fur-

thermore, as Opreg
ǧ ⊆ Ôp≤0

ǧ , IndCoh∗(Opreg
ǧ ) is naturally a comodule over
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IndCoh∗(Ôp≤0
ǧ ). Thus, we can write

ĝcrit- modreg,naive

∼=ĝcrit- mod
IndCoh∗(Opǧ)

⊗ IndCoh∗(Opreg
ǧ )

∼=(ĝcrit- mod
IndCoh∗(Opǧ)

⊗ IndCoh∗(Ôp≤0
ǧ ))

IndCoh∗(Ôp≤0
ǧ )

⊗ IndCoh∗(Opreg
ǧ )

∼=ĝcrit- mod≤0

IndCoh∗(Ôp≤0
ǧ )

⊗ IndCoh∗(Opreg
ǧ ).

The second part of Lemma 4.4 now implies the desired statement. �

5. Generation

5.1. Reduction step. As shorthand, we say that a (not necessarily fully

faithful) functor f : C→ D between categories generates under colimits if the

essential image of f generates D under colimits.

Lemma 5.1. Let C and D be two categories, and let f : C → D be a

functor between them. Then f generates under colimits if and only if the

quotient category ; i.e., the colimit of the pushout diagram

C D

0

is trivial.

Proof. It is well known (see, e.g., Lemma I.1.5.4.3 of [GR17]) that f gen-

erates under colimits if and only if its (not necessarily continuous) right adjoint

fR is conservative. Conservativeness is equivalent to fR having trivial kernel,

and by Corollary 5.5.3.4 of [Lur09], the kernel of fR can be identified with the

quotient of f , giving the desired statement. �

We will deduce Lemma 3.11 from the following auxiliary statement:

Lemma 5.2. Let C,D be G((t))-categories, and let f : C→ D be a G((t))-

equivariant functor. Then f generates under colimits if and only if the functors

fKx,r+,◦ : CKx,r+,◦ → DKx,r+,◦,

for all choices of r > 0 and x ∈ X∗(T )⊗ R, as well as the functor

f I0 : CI0 → DI0 ,

all generate under colimits.
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Proof. First we show the “only if” direction. Let E be the quotient of D

by C. By Lemma 5.1, E must be trivial.

As the functor of I0-invariants commutes with colimits, the quotient of DI0

by CI0 is EI0 . Similarly, the quotient of DKx,r+,◦ by CKx,r+,◦ is EKx,r+,◦. Since

E is trivial, these quotients must also be trivial, and hence the corresponding

functors must generate under colimits, as desired.

Now let us show the “if” direction. Reversing the logic, we see that we

have

EI0 ∼= 0

and, for all r > 0 and x ∈ X∗(T )⊗ R,

EKx,r+,◦ ∼= 0,

and we need to show that E ∼= 0. But this is exactly the statement of Corol-

lary 2.12. �

5.2. The category ĝcrit-̃ modreg,naive. Recall that ĝcrit-̃ modreg,naive was pre-

viously defined to be the full subcategory of ĝcrit- modreg,naive generated by

ĝcrit- mod+
reg,naive under colimits. We will need a few properties of this cate-

gory which were proven in [Rasa]. As the proofs would take us slightly afield,

we do not reproduce them here.

Lemma 5.3 ([Rasa, Lemma 9.2.1]). There is a (necessarily unique) struc-

ture of G((t))-category on ĝcrit-̃ modreg,naive compatible with the inclusion into

ĝcrit- modreg,naive.

Lemma 5.4 ([Rasa, Cor. 9.2.3]). The functor ΓHecke,naive factors through

ĝcrit-̃ modreg,naive.

Lemma 5.5 ([Rasa, Cor. 9.2.4]). Let K ⊆ G[[t]] be a prounipotent group

scheme. Then ĝcrit-̃ mod
K

reg,naive is the subcategory of ĝcrit- modKreg,naive gener-

ated under colimits by ĝcrit- modK,+reg,naive.

We will also need one new lemma.

Lemma 5.6. Choose x ∈ X∗(T )⊗ R and r > 0. Then

ĝcrit-̃ mod
Kx,r+,◦
reg,naive

∼= 0.

Proof. Consider the map

ĝcrit-̃ mod
Kx,r+,◦
reg,naive → ĝcrit- mod

Kx,r+,◦
reg,naive .

We will compute its kernel A in two different ways. (The kernel of a map

C → D is defined to be the pullback of C along the map 0 → D.) First, since
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the operation of taking (Kx,r+, ◦)-invariants commutes with limits, we have

A ∼= (ker ĝcrit-̃ modreg,naive → ĝcrit- modreg,naive)
Kx,r+,◦.

As the map ĝcrit-̃ modreg,naive → ĝcrit- modreg,naive is the inclusion of a full

subcategory, it has trivial kernel, and so A must also be trivial.

On the other hand, Theorem 4.7 shows that ĝcrit- mod
Kx,r+,◦
reg,naive

∼= 0. Thus,

A can also be identified with ĝcrit-̃ mod
Kx,r+,◦
reg,naive. Comparing these two compu-

tations, we get the desired equivalence. �

Now we are prepared to prove Lemma 3.11.

5.3. Proof of Lemma 3.11.

Proof. By Lemma 5.4, we know that the image of ΓHecke,naive lies in

ĝcrit-̃ modreg,naive. It remains to show the generation under colimits.

For this, we apply Lemma 5.2. By Theorem 4.5 and Lemma 5.6, we have

D
Heckez
crit (GrG)Kx,r+,◦ ∼= ĝcrit-̃ mod

Kx,r+,◦
reg,naive

∼= 0.

So the only statement remaining to be checked is that the functor

D
Heckez
crit (GrG)I0 → ĝcrit-̃ mod

I0

reg,naive

generates under colimits. This follows from the combination of Theorem 4.1

and Lemma 5.5. �

6. Exactness

The goal of this section is to prove Lemma 3.12. We start by formulating

a general criterion for a G((t))-equivariant functor to be left t-exact.

6.1. Reduction step. We will use an analogue of Lemma 5.2. To state

it, let us note that for a G((t))-category C with a compatible t-structure,

Lemma A.13 constructs a t-structure on CKx,r+,◦.

Lemma 6.1. Let C,D be G((t))-categories equipped with compatible t-

structures, and let f : C → D be a G((t))-equivariant functor. Then f is

left t-exact if and only if the functors

fKx,r+,◦ : CKx,r+,◦ → DKx,r+,◦,

for all choices of r > 0 and x ∈ X∗(T )⊗ R, as well as the functor

f I0 : CI0 → DI0 ,

are all left t-exact.
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Proof. Let us quickly dispatch of the only if case. The left t-exactness of

f I0 is clear, and the left t-exactness of fKx,r+,◦ follows from the commutativity

of the diagram

CKx,r+,◦ DKx,r+,◦

CKx,r+ ⊗D((Kx,r/Kx,r+)∗,◦) DKx,r+ ⊗D((Kx,r/Kx,r+)∗,◦).

Indeed, the vertical arrows are conservative and t-exact by Lemma A.13, and

the bottom arrow is left t-exact by Proposition A.6.

Now we treat the (much harder) if direction. We will show that for any

choice of x ∈ X∗(T ) ⊗ R and r ≥ 0, the functor fKx,r+ : CKx,r+ → DKx,r+ is

left t-exact. This implies that f is left t-exact. Indeed, for any object c ∈ C≥0,

we have

f(c) ∼= colim Oblv(Av
K0,r+
∗ f(c))

∼= colim Oblv(fK0,r+(Av
K0,r+
∗ c)),

and the result follows from left t-exactness of Av∗.

Our proof will be by induction. First we deal with the base case.

6.1.1. Depth zero. Assume r = 0. We will emulate the proof of Theo-

rem 2.11. Recall from that proof that any sufficiently small ε > 0 gives the

same subgroup Kx+ερ̌,0+, and that Kx+ερ̌,0+ is a conjugate of I0. In particular,

the functor fKx+ερ̌,0+ is left t-exact.

Let Nx denote the subgroup (Kx,0+(Px ∩N((t))))/Kx,0+ of Lx. As in the

proof of Theorem 2.11, Nx is a maximal unipotent subgroup of Lx. We have an

equivalence CKx+ερ̌,0+ ∼= (CKx,0+)Nx . The left t-exactness of fKx,0+ now follows

from the following purely finite-dimensional lemma (taking H to be Lx and g

to be fKx,0+):

Lemma 6.2. Let H be a reductive algebraic group over k, with Borel, Car-

tan, etc. subgroups denoted by BH , TH , etc. Let A and B be two H-categories

equipped with compatible t-structures, and let g : A → B be a H-equivariant

functor. If gNH : ANH → BNH is left t-exact, then g is left t-exact.

Proof. We argue via a sequence of commutative diagrams. They will im-

plicitly introduce some functors gi, which are all induced by g. First, examine

the diagram

(ANH )TH ,w (BNH )TH ,w

ANH BNH .

g2

g1
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The vertical arrows are conservative and t-exact by part (4) of Lemma A.10.

As g1 is left t-exact by assumption, we deduce that g2 is left t-exact.

Next, we have

(ANH )TH ,w ⊗
QCoh(t∗h)

QCoh(t∗,◦h ) (BNH )TH ,w ⊗
QCoh(t∗h)

QCoh(t∗,◦h )

(ANH )TH ,w (BNH )TH ,w.

g3

g2

By Lemma 2.10, the vertical arrows are conservative and t-exact. From the

previous diagram, we learned that g2 is left t-exact. Hence, g3 is left t-exact.

Now we use Lemma 2.8. Compatibility of Γ with H-equivariant functors

gives commutativity of the diagram

(ANH )TH ,w ⊗
QCoh(t∗h)

QCoh(t∗,◦h ) (BNH )TH ,w ⊗
QCoh(t∗h)

QCoh(t∗,◦h )

AH,w ⊗
QCoh(t∗h//WH)

QCoh(t∗,◦h ) BH,w ⊗
QCoh(t∗h//WH)

QCoh(t∗,◦h ).

g3

Γ Γ

g4

Let x be an object in (AH,w ⊗QCoh(t∗h//WH) QCoh(t∗,◦h ))≥0. Then if we take y

to be τ≥0 Locx, we have

Γ(y) ∼= Γ ◦ τ≥0 ◦ Loc(x)

∼= τ≥0 ◦ Γ ◦ Loc(x)

∼= τ≥0x

∼= x.

We can use this to calculate that g4(x) ∼= g4(Γ(y)) ∼= Γ(g3(y)). As g3 and

Γ are both left t-exact, we see that

g4(x) ∈ (BH,w ⊗
QCoh(t∗h//WH)

QCoh(t∗,◦h ))≥0

so g4 is also left t-exact, as desired.

The next diagram we consider is

AH,w BH,w

AH,w ⊗
QCoh(t∗h)

QCoh(th//WH) BH,w ⊗
QCoh(t∗h)

QCoh(th//WH).

g5

g4
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Again, we just showed that g4 is left t-exact. We showed in the proof of

Corollary 2.9 that the vertical arrows are conservative, and they are t-exact

by Lemma 2.10. So g5 is left t-exact.

The final diagram is

A B

AH,w BH,w.

g

g5

The vertical arrows are conservative and t-exact by Lemma A.10. Thus the

left t-exactness of g5 implies the left t-exactness of g : A→ B, as desired. �

6.1.2. Positive depth. Now we treat the inductive step. Assume that for

all s < r and x ∈ X∗(T )⊗ R, we know that fKx,s+ is left t-exact. Now, fixing

a choice of x, we want to show that fKx,r+ is left t-exact.

There are two natural adjoint pairs

iC,∗ : CKx,r+,us � CKx,r+ : i!C

and

j!
C : CKx,r+ � CKx,r+,◦ : jC,∗.

For any object c ∈ CKx,r+ , we have an exact triangle

iC,∗i
!
Cc→ c→ jC,∗j

!
Cc→ iC,∗i

!
Cc[1].

We have analogous functors iD,∗, etc. As f is G((t))-equivariant, fKx,r+

intertwines the functors associated to C and D. Thus, we get an exact triangle

iD,∗f
Kx,r+,us(i!Cc)→ fKx,r+(c)→ jD,∗f

Kx,r+,◦(j!
Cc)→ iD,∗f

Kx,r+,us(i!Cc)[1].

In particular, to show that f is left t-exact, it suffices to show the same for

iD,∗ ◦f ◦ i!C and jD,∗ ◦f ◦j!
C. By Lemma A.14, the functors i∗ and j! are t-exact,

and so their right adjoints i! and j∗ must be left t-exact. Thus, it suffices to

show that fKx,r+,◦ and fKx,r+,us are left t-exact. We assumed that fKx,r+,◦ is

left t-exact, so we can restrict our attention to the case of fKx,r+,us.

More generally, for V a quasi-projective variety mapping to (Kx,r/Kx,r+)∗,

we can define a category

CKx,r+,V ∼= CKx,r+ ⊗
D((Kx,r/Kx,r+)∗)

D(V )

and a functor

fKx,r+,V : CKx,r+,V → DKx,r+,V

via tensor product. Let U ⊆ V be an open subvariety with complement Z.

The above argument then shows that if fKx,r+,U and fKx,r+,Z are left t-exact,

then so is fKx,r+,V .
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By Lemma 2.7, (Kx,r/Kx,r+)∗,us is the union of a finite number of Lx-orbits.

We therefore can reduce the left t-exactness of fKx,r+,us to the left t-exactness

of the functors fKx,r+,O for O an Lx-orbit in (Kx,r/Kx,r+)∗,us. Fix such an

orbit O.

Now, Lemma 2.6 tells us that there exist points p ∈ O and y ∈ X∗(T )⊗R
such that Kx,r+ ⊆ Ky,r ⊆ Kx,r and p ∈ (Ky,r/Kx,r+)⊥. Note that we can

identify CKx,r+,(Ky,r/Kx,r+)⊥ with CKy,r . Indeed, we compute

CKx,r+ ⊗
D((Kx,r/Kx,r+)∗)

D((Ky,r/Kx,r+)⊥) ∼= CKx,r+ ⊗
D((Ky,r/Kx,r+)∗)

Vect

∼= CKx,r+ ⊗
D(Ky,r/Kx,r+)

Vect

∼= CKy,r .

This leads to a commutative diagram

CKx,r+,p DKx,r+,p

CKy,r DKy,r .

As Ky,r = Ky,(r−ε)+ for sufficiently small ε > 0, the inductive hypothesis

implies that the bottom arrow is left t-exact. The vertical arrows are fully

faithful and t-exact by Lemma A.14. Therefore, the top arrow, which can be

identified with fKx,r+,p, is necessarily left t-exact.

Let Sp be the stabilizer group of p with respect to the action of Px/Kx,r+

on O. Then we claim that there is a canonical t-exact equivalence

D(Px/Kx,r+) ⊗
Sp

CKx,r+,p ∼= CKx,r+,O.

Indeed, by Lemma 6.3, for any Px/Kx,r+-category E, we have a t-exact equiv-

alence

D(Px/Kx,r+) ⊗
Sp

(E ⊗
Kx,r/Kx,r+

QCoh(p)) ∼= E ⊗
Kx,r/Kx,r+

QCoh(O).

To finish, consider the following commutative square:

CKx,r+,O DKx,r+,O

CKx,r+,p ⊗D(Px/Kx,r+) DKx,r+,p ⊗D(Px/Kx,r+).

The vertical arrows are conservative and t-exact by Lemma A.13, and the

bottom arrow is left t-exact by Proposition A.6. Thus the top arrow, which is

given by fKx,r+,O, is left t-exact, as desired. �

In the above proof, we used the following lemma to relate CKx,r+,O and

CKx,r+,p:
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Lemma 6.3. Let B be a finite type algebraic group, and let A ⊆ B be a

normal subgroup which is isomorphic to the algebraic group underlying a k-

vector space (which, by abuse of notation, we also denote by A). Let E be a

category acted on by B, and let p ∈ A∗ be an additive character of A. If O

denotes the B-orbit of p inside A∗ and Sp ⊆ B denotes the stabilizer of p, then

we have a canonical equivalence

E⊗
A
D(O) ∼= (D(p)⊗

A
E) ⊗

Sp
D(B).

Furthermore, if E is equipped with a t-structure compatible with the B action,

then the above equivalence is t-exact.

Proof. It suffices to consider the universal case of E ∼= D(B). We have a

diagram

D(B)⊗
A
D(O) (D(p)⊗

A
D(B)) ⊗

Sp
D(B)

D(B)⊗D(O) D(B) ⊗
Sp
D(B),

where the bottom arrow is the equivalence induced by the isomorphism

B ×Sp B ∼= B ×O

sending (b1, b2) to (b1b2, (b2)−1 · p). The vertical arrows are fully faithful, and

it is straightforward to check that their essential images agree, giving us the

desired equivalence. As every arrow in the above diagram is t-exact, the t-

exactness of said equivalence also follows. �

6.2. Proof of Lemma 3.12. Now that we have Lemma 6.1, it will not take

much to deduce Lemma 3.12.

Proof. Combining Theorem 3.9 with Theorem 3.3, we see that ΓHecke,naive

is right t-exact. So it suffices to prove left t-exactness, which we do via

Lemma 6.1.

We need to show left t-exactness of the maps (ΓHecke,naive)I0 and, for any

x ∈ X∗(T )⊗R and r > 0, (ΓHecke,naive)Kx,r+,◦. The case of (Kx,r+, ◦)-invariants

is trivial because

D
Heckez
crit (GrG)Kx,r+,◦ ∼= 0

by Theorem 4.5. On the other hand, for I0-invariants, the desired left t-exact-

ness follows from Theorem 4.1. �

7. Boundedness

This section is mainly concerned with Lemma 3.13. The proofs will be

similar to those in Section 6. First we will prove two helpful lemmas.
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7.1. Two auxiliary lemmas.

7.1.1. Boundedness of convolution. The following lemma shows (under ap-

propriate hypotheses) that convolution is left t-exact up to shift. We actually

will not use it in this section (though it was used earlier in this paper.) How-

ever, it explains why the statement of Lemma 7.3 is reasonable.

Lemma 7.1. Let K ⊆ G((t)) be a compact open subgroup, and let G be a

compact object of D(G((t))/K). Then there is some integer r such that, for

any G((t))-category C with a compatible t-structure, the convolution functor

G ?− : C→ C

sends C≥0 to C≥r.

Proof. This is essentially Lemma 9.2.2 of [Rasa]. We reproduce the proof

here.

By compactness of G, it is supported on some (finite type) subscheme

S ⊆ G((t))/K. Then G has a finite resolution by inductions ind(Gi) of bounded

below ind-coherent sheaves Gi ∈ IndCoh(S)+. So we can assume that G is of the

form ind(G′). Without loss of generality, we assume that G′ ∈ IndCoh(S)≥0.

The functors of strong convolution with ind(G′) and weak convolution with

G′ are canonically isomorphic. By Lemma 10.16.1 of [Rasc], weak convolution

with G′ is left exact, as desired. �

7.1.2. Boundedness and invariant categories. The other lemma we prove

will be used below in the proof of Lemma 7.3. It will allow us “deequivariantize”

boundedness statements on categories of weak invariants.

Lemma 7.2. Let H be a finite type algebraic group, and let C be a category

with a weak H action and a compatible t-structure. Assume that we are given a

functor f : C→ D with D a category with a t-structure. Then f is left t-exact

up to shift if and only if f ◦Oblv : CH,w → D is left t-exact up to shift.

Proof. The only if case follows immediately from Lemma A.10. Let us

treat the if case. Taking an appropriate shift, we may assume that f is left

t-exact.

Let F be an object in C≥0. Identifying Oblv ◦AvH,w with the convolution

functor OH ?− : C→ C, we have

f(OH ? F) ∼= f(Oblv(AvH,w F)) ∈ D≥0,

using Lemma A.10 again. It follows that for any projective coherent sheaf M

on H, we again have

f(M ? F) ∈ D≥0.
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As H is smooth, any coherent sheaf on H has a finite resolution by pro-

jective coherent sheaves. In particular, the skyscraper sheaf at the identity

(which we denote by 1H) admits such a resolution. Thus, we can conclude

that

f(F) ∼= f(1H ? F) ∈ D+

as desired. �

7.2. Reduction step. Before stating the key lemma, let us introduce a con-

venient notational shorthand. Assume we have a functor f : C → D, where C

is a G((t))-category and D is any category. For K ⊆ G((t)) a compact open

subgroup and G a compact object of D(G((t))/K), we will write fG|K for the

functor f(G ? −) : CK → D. When G is the skyscraper sheaf at the identity,

fG|K can be identified with the composition CK → C→ D and will be denoted

simply by f |K .

Lemma 7.3. Let C be a G((t))-category with a compatible t-structure, and

let D be a category with a t-structure. Assume that f : C → D is a functor

satisfying the following two properties :

• For any compact object G in D(G((t))/I0), fG|I0 is left t-exact up to shift.

• For any point x ∈ X∗(T ) ⊗ R, real number r > 0, and compact object

G ∈ D(G((t))/Kx,r+), the restriction of fG|Kx,r+ to CKx,r+,◦ is left t-exact

up to shift.

Then for any compact open subgroup K ⊆ G((t)) and any compact object

G ⊆ D(G((t))/K), fG|K is left t-exact up to shift.

Proof. As every compact open subgroup contains some Kx,r+, it suffices

to show that each fG|Kx,r+ is left t-exact up to shift for any x ∈ X∗(T )⊗R and

r ≥ 0. We prove this by induction. At each step of the induction, it suffices to

show left t-exactness up to shift of f |Kx,r+ . Indeed, the case of fG|Kx,r+ follows

by replacing f with fG.

Again, we will treat the base case and inductive steps separately.

7.2.1. Depth zero. For the base case, we use the same setup as in Sec-

tion 6.1.1. In that notation, we need to show the left t-exactness up to shift

of (CKx,0+)Nx → D. Once again, taking H to be Lx and g to be f |Kx,0+ , this

follows from a lemma on categorical representations of H.

Lemma 7.4. Let H be a reductive algebraic group over k, with Borel,

Cartan, etc. subgroups denoted by BH , TH , etc. Let A be a H-category with a

compatible t-structure, B be a category with a t-structure, and g be a functor

A → B. If gG|NH is left t-exact up to shift for any compact G ∈ D(H/NH),

then g itself is left t-exact up to shift.
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Proof. We claim that we have a commutative diagram

(AH,w ⊗
QCoh(t∗h//WH)

QCoh(t∗,◦h ))≥0

(ANH )TH ,w ⊗
QCoh(t∗h)

QCoh(t∗,◦h ) (ANH )TH ,w

AH,w ⊗
QCoh(t∗h//WH)

QCoh(t∗,◦h ) A

B,

τ≥0◦Loc

Γ

g

where the functor from (ANH )TH ,w to A is given by x 7→ (DH/NH

NH
? x)TH .

Indeed, to check the commutativity of the middle square it suffices to consider

the universal case of A ∼= D(H), where the commutativity follows by unwinding

the definition of Γ.

Note that we have

Γ ◦ τ≥0 ◦ Loc ∼= τ≥0 ◦ Γ ◦ Loc ∼= τ≥0 ∼= id

on (AH,w ⊗QCoh(t∗h//WH) QCoh(t∗,◦h ))≥0. In particular, to show left t-exactness

up to shift of the composition

AH,w ⊗
QCoh(t∗h//WH)

QCoh(t∗,◦h )→ A→ B,

it suffices to show that the composed arrow from top left to bottom right

lands in B+. As τ≥0 ◦Loc is left t-exact by definition and (ANH )TH ,w⊗QCoh(t∗h)

QCoh(t∗,◦h )→ (ANH )TH ,w is t-exact by Lemma 2.10, we are reduced to showing

that (ANH )TH ,w → B is left t-exact up to shift.

This functor is given by x 7→ g((DH/NH

NH
? x)TH ). As TH is a torus, this

is a direct summand of the functor x 7→ g(DH/NH

NH
? x), which is left t-exact

up to shift by assumption.

Next, recall that Lemma 2.10 gives us a t-exact adjoint pair

p∗ : AH,w � AH,w ⊗
QCoh(t∗h//WH)

QCoh(t∗,◦h ) : p∗.

Let us use this to show that AH,w → B is left t-exact up to shift.

The Grothendieck-Cousin complex gives a finite resolution

Ot∗h//WH
→

⊕
x∈t∗h//WH |codimx=0

Ex →
⊕

x∈t∗h//WH |codimx=1

Ex → · · · .



AFFINE BEILINSON-BERNSTEIN LOCALIZATION 517

Here, for x a (not necessarily closed) point of t∗h//WH , the sheaf Ex is defined

to be the colimit

colim ik,∗i
!
kOt∗h//WH

[codimx]

over the kth order neighborhood maps ik.

Thus, for any object F ∈ (AH,w)≥0, to show that g(F) is bounded below,

it suffices to show that the g(Ex⊗F) are bounded below uniformly in x. Using

the above expression of Ex as a filtered colimit, we see that it suffices to show

the same for each g(ik,∗i
!
kOt∗

h//WH
[codimx] ⊗ F). And as each coherent sheaf

ik,∗i
!
kOt∗

h//WH
[codimx] is an iterated extension of skyscraper sheaves at x, it in

fact suffices to show that the g(kx ⊗ F) are uniformly bounded below.

Because t∗,◦h → t∗h//WH is faithfully flat, for any x ∈ t∗h//WH , there is a

y ∈ t∗,◦h mapping to x. Fix such x and y. Then kx is a direct summand of

the pushforward of ky, and thus kx ⊗ F is a direct summand of p∗(ky ⊗ p∗F).

Therefore, it suffices to show that the g(p∗(ky ⊗ p∗F)) are uniformly bounded

below. Since we previously showed that g ◦ p∗ is left t-exact up to shift, this

follows from the ky ⊗ p∗F being uniformly bounded below, which in turns

follows from the existence of bounded length projective resolutions of ky.

Finally, we can apply Lemma 7.2 to deduce that g is left t-exact up to

shift, as desired. �

7.2.2. Positive depth. Assume that for all s < r and x ∈ X∗(T )⊗R, each

fG|Kx,s+ is left t-exact up to shift. We need to show, for some fixed such x,

that f |Kx,r+ is left t-exact up to shift. By replacing f with fG, our argument

will also show the left t-exactness up to shift of fG|Kx,r+ .

For any quasi-projective variety V mapping to (Kx,r/Kx,r+)∗, there is a

functor

f |Kx,r+,V : CKx,r+ ⊗
D((Kx,r/Kx,r+)∗)

D(V )→ D.

Assume that U ⊆ V is an open subvariety with complement Z. Then, as in

the proof of Lemma 6.1, the left t-exactness up to shift of f |Kx,r+,V is reduced

to the same property for f |Kx,r+,U and f |Kx,r+,Z . Once again, this reduces the

desired statement to showing that f |Kx,r+,O is left t-exact up to shift for any

Lx-orbit O in (Kx,r/Kx,r+)∗,us.

By Lemma 2.6, there are points p ∈ O and a y ∈ X∗(T ) ⊗ R such that

Kx,r+ ⊆ Ky,r ⊆ Kx,r and p ∈ (Ky,r/Kx,r+)⊥. Then f |Kx,r+,p can be identified

with the composition

CKx,r+,p → CKx,r+,(Ky,r/Kx,r+)⊥ ∼= CKy,r → D,

which is left t-exact up to shift by Lemma A.14 and the inductive hypothesis.
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Let Sp be the stabilizer group of p with respect to the action of Px/Kx,r+

on O. By Lemma 6.3, we have a t-exact equivalence

CKx,r+,O ∼= CKx,r+,p ⊗
Sp
D(Px/Kx,r+).

Thus, it suffices to show that CKx,r+,p⊗Sp D(Px/Kx,r+)→ D is left t-exact up

to shift.

First we show this for CKx,r+,p ⊗ D(Px/Kx,r+) → D. Let F be an ob-

ject of (CKx,r+,p ⊗ D(Px/Kx,r+))+. By Lemma 11.2.4 of [Rasa], F lies in the

subcategory generated under finite colimits and direct summands by the object

(id
C
Kx,r+,p ⊗ΓIndCoh(Px/Kx,r+,−))(F) �DPx/Kx,r+ .

It thus suffices to show that

fDPx/Kx,r+ ((id
C
Kx,r+,p ⊗ΓIndCoh(Px/Kx,r+,−))(F)) ∈ D+

or, from the inductive hypothesis, that

(id
C
Kx,r+,p ⊗ΓIndCoh(Px/Kx,r+,−))(F) ∈ (CKx,r+,p)+.

This is true as id
C
Kx,r+,p ⊗ΓIndCoh(Px/Kx,r+,−) is left t-exact, which itself is

true because ΓIndCoh(Px/Kx,r+,−) is left t-exact and admits a left adjoint.

Now let G be an object in (CKx,r+,O)≥0. We would like to show that

f(G) ∈ D+. To do so, we use a Grothendieck-Cousin argument as in the depth

zero case. Recall that we have a resolution

OO →
⊕

y∈O|codim y=0

Ey →
⊕

y∈O|codim y=1

Ey → · · · .

This time, we will use the interpretation of Ey as the D-module of delta func-

tions at y. Evidently, it suffices to show that the f(G⊗Ey) are bounded below

uniformly in y.

Recall that we have adjoint functors

Oblv : CKx,r+,p ⊗
Sp
D(Px/Kx,r+) � CKx,r+,p ⊗D(Px/Kx,r+) : Av∗,

with Oblv t-exact. Pick some point z ∈ Px/Kx,r+ with z ·p = y. Then G⊗Ey is

a direct summand of Av∗(OblvG⊗Ez), and so f(G⊗Ey) is a direct summand

of f(Av∗(OblvG⊗Ez)). As we previously showed that f ◦Av∗ is left t-exact up

to shift, we are reduced to showing that the OblvG⊗ Ez are bounded below.

For this, we invoke Lemma 11.2.4 of [Rasa] again. We see that OblvG lies

in the subcategory generated under finite colimits and direct summands by the

object

(id
C
Kx,r+,p ⊗ΓIndCoh(Px/Kx,r+,−))(OblvG) �DPx/Kx,r+ ,
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so OblvG⊗Ez lies in the subcategory generated under finite colimits and direct

summands by the object

(id
C
Kx,r+,p ⊗ΓIndCoh(Px/Kx,r+,−))(OblvG) � (DPx/Kx,r+ ⊗ Ez).

But as (DPx/Kx,r+ ⊗ Ez) is uniformly bounded below, so is this object, and

thus so is OblvG⊗ Ez, as desired. �

7.3. Proof of Lemma 3.13. Lemma 3.13 now follows.

Proof. We need to check the conditions of Lemma 7.3. The statement on

(Kx,r+, ◦)-invariants follows immediately from Theorem 4.5. And the state-

ment on I0-invariants is just Lemma 4.2. �

Appendix A. Tensor products and t-structures

As in the rest of this paper, all categories will be assumed presentable

and all t-structures will be assumed accessible, right complete, and compatible

with filtered colimits. We will often implicitly invoke 1.4.4.11 of [Lura], which

states that the data of an accessible t-structure on a presentable category C is

equivalent to the data of a full subcategory C≤0 which is presentable, closed

under small colimits, and closed under extensions.2 Furthermore, for any small

collection of objects of C, the category C≤0 generated by them under colimits

and extensions is presentable (and thus defines a t-structure.)

A.1. Tensor product. Let C and D be two categories equipped with t-

structures. Then we can equip C⊗D with a t-structure by defining (C⊗D)≤0

to be generated (under colimits and extensions) by objects of the form c � d,

with c in C≤0 and d in D≤0. This t-structure will be right complete and

compatible with filtered colimits by Theorem C.4.2.1 in [Lurb].

Lemma A.1. Let C and C′ be categories equipped with t-structures and

let f : C → C′ be a right t-exact functor. Then, for any category D with a

t-structure,

f ⊗ idD : C⊗D→ C′ ⊗D

is right t-exact.

Proof. We need to show that f ⊗ D sends (C ⊗ D)≤0 to (C′ ⊗ D)≤0. It

suffices to check that, for c in C≤0 and d in D≤0,

(f ⊗ idD)(c� d) ∼= f(c) � d ∈ (C′ ⊗D)≤0.

But this follows from the right t-exactness of f . �

2To avoid confusion, we note that we use the cohomological degree convention, while

[Lura] uses the homological convention. In particular, the category we call C≤0 is instead

referred to as C≥0 in loc. cit.
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The stability of left t-exactness under tensor product is more subtle. We

start with a simple observation.

Lemma A.2. Let C and C′ be categories equipped with t-structures, and

let f : C → C′ be a left t-exact functor with a left adjoint fL. Then, for any

category D with a t-structure,

f ⊗ idD : C⊗D→ C′ ⊗D

is left t-exact.

Proof. Recall that left t-exactness of f is then equivalent to right t-exact-

ness of fL. By Lemma A.1, fL⊗idD is right t-exact, so its right adjoint f⊗idD

must be left t-exact, as desired. �

We will prove two other criteria for a tensor product to be left t-exact.

Both revolve around the following notion:

Definition A.3. Let D be a category equipped with a t-structure. We say

that the t-structure is compactly generated if D≤0 is generated under colimits

by D≤0 ∩Dc.

Example A.4. Let X be a quasiseparated scheme of finite type over a

field. Then the natural t-structures on QCoh(X), IndCoh(X), and D(X) are

all compactly generated. For IndCoh(X), this is because Coh(X) is closed un-

der truncations, and the case of D(X) follows as ind(IndCoh(X)≤0) generates

D(X). For QCoh(X), this follows from a slight modification of the arguments

in [TT90].

For D a DG category and F ∈ Dc a compact object, we let DF : D→ Vect

denote the induced functor Hom(F,−).

Lemma A.5. Let C and D be DG categories with t-structures. Suppose

F ∈ Dc ∩D≤0. Then the induced functor

idC⊗DF : C⊗D→ C⊗Vect = C

is left t-exact.

Proof. Note that the functors − ⊗ F : Vect � D : DF are adjoint in the

symmetric monoidal 2-category DGCat. As −⊗ F is right t-exact, we see that

DF is left t-exact. The result now follows from Lemma A.2. �

Our first left t-exactness criterion appears, e.g., as Lemma B.6.2 of [Ras21],

but we reproduce it here for the reader’s convenience.

Proposition A.6. Let C and C′ be categories equipped with t-structures,

and let f : C → C′ be a left t-exact functor. Then, for any category D with a

compactly generated t-structure,

f ⊗ idD : C⊗D→ C′ ⊗D

is left t-exact.
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Proof. Let x be an object of (C ⊗ D)≥0. We would like to show that

(f ⊗ idD)(x) ∈ (C′ ⊗D)≥0, or equivalently, that

HomC′⊗D(c⊗ d[1], (f ⊗ idD)(x)) ∼= 0

for all c ∈ C≤0, d ∈ D≤0.

Because the t-structure on D is compactly generated, we can assume that

d is compact. We compute

HomC′⊗D(c⊗ d[1], (f ⊗ idD)(x))

∼= HomC′(c[1], (idC⊗DF)((f ⊗ idD)(x)))

∼= HomC′(c[1], f((idC⊗DF)(x))).

Combining Lemma A.5 with the left t-exactness of f , we see that this

Hom space is trivial, as desired. �

The other left t-exactness criterion appears below as Proposition A.9. We

first need a preliminary lemma.

Lemma A.7. Suppose D is a DG category with a compactly generated

t-structure.

Let D∨,′ ⊂ D∨ denote the subcategory generated under colimits by objects

of the form DF for F ∈ Dc ∩D≤0.

Then λ ∈ D∨ lies in D∨,′ if and only if the functor λ : D → Vect is left

t-exact.

Proof. Recall that the functor Dc,op F 7→DF−−−−→ D∨ extends to an equivalence

Ind(Dc,op) ∼= D∨. We wish to show that our left t-exact λ lies in the subcat-

egory Ind(Dc,op ∩ D≤0,op) ⊂ Ind(Dc,op) ∼= D∨. Concretely, this amounts to

showing that for any F ∈ Dc and any map α : DF → λ ∈ D∨, there exist

F0 ∈ Dc ∩D≤0 and a map β : F0 → F such that the map α factors as

DF Dβ−−→ DF0 → λ.

For this, recall that the map DF → λ amounts to a point α ∈ Ω∞λ(F).

As λ is left t-exact, the map Ω∞λ(τ≤0F)→ Ω∞λ(F) is an isomorphism. Now

write τ≤0F as a filtered colimit colimi Fi with Fi ∈ Dc ∩ D≤0; we may do so

because the t-structure is compactly generated. Then the point α comes from

a point αi ∈ Ω∞λ(Fi) for some i; taking F0 := Fi yields the claim. �

Corollary A.8. Suppose D is a DG category with a compactly generated

t-structure and C is a DG category with a t-structure. Suppose λ : D → Vect

is left t-exact.

Then the induced functor

(idC⊗λ) : C⊗D→ C⊗Vect = C

is left t-exact.
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Proof. By Lemma A.5, the result is true in the special case λ = DF with

F ∈ Dc ∩D≤0. By Lemma A.7, any left t-exact λ can be written as a filtered

colimit of functors of this form. As our t-structures are assumed compatible

with filtered colimits, left t-exact functors are preserved under filtered colimits.

This yields the claim. �

Proposition A.9. Suppose D1 and D2 are DG categories with compactly

generated t-structures, and let C be a DG category with a t-structure.

Suppose F : D1 → D2 is left t-exact. Then the induced functor

idC⊗F : C⊗D1 → C⊗D2

is left t-exact.

Proof. Suppose G ∈ (C⊗D1)>0 is given. We wish to show that

(idC⊗F )(G) ∈ (C⊗D2)>0.

Equivalently, as the t-structure on D2 is compactly generated, it suffices to

show that for F ∈ Dc
2 ∩D

≤0
2 and H ∈ C≤0, we have

HomC⊗D2(H � F, (idC⊗F )(G)) = 0.

As in the proof of Lemma A.5, we may rewrite the left-hand side as

HomC(H, (idC⊗DF) ◦ (idC⊗F )(G)) = HomC(H, F∨(DF)(G)).

Observe that F∨(DF) = DF ◦ F : D1 → Vect is left t-exact as F is left t-

exact and F is connective. Therefore, F∨(DF)(G) ∈ C>0 by assumption on G.

Therefore, as H ∈ C≤0, the above term vanishes as desired. �

A.2. Compatible t-structures. Let H be an affine algebraic group (in par-

ticular, of finite type). Following Appendix B of [Ras21] and Sections 10.9–13

of [Rasc], we will introduce a notion of compatibility between a t-structure on

C and a H-action (strong or weak) on C. No originality is claimed for any of

the results in this section.

The key lemma is the following:

Lemma A.10 ([Ras21]). Let C be a category with a weak action of H . As-

sume we have a t-structure on C. Then the following conditions are equivalent :

(1) The functor Oblv ◦Avw∗ : C→ C is t-exact.

(2) The functor coact : C→ QCoh(H)⊗ C is t-exact.

(3) The functor act : QCoh(H)⊗ C→ C is t-exact.

(4) The category CH,w admits a t-structure for which Oblv and Avw∗ are t-

exact.

(5) The QCoh(H)-linear equivalence

QCoh(H)⊗ C→ QCoh(H)⊗ C

induced by coact is t-exact.
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Proof. This is Lemma B.3.1 of [Ras21]. Let us reproduce the proof.

First, note that we have an adjoint pair

p∗2 : C � QCoh(H)⊗ C : p2,∗

induced by the pullback and pushforward maps between Vect ∼= QCoh(Spec k)

and QCoh(H). By Lemma A.1, both p∗2 and p2,∗ are right t-exact. The ad-

junction then implies that p2,∗ is also left t-exact, hence t-exact. Noting that

p2,∗ is conservative and that p2,∗ ◦ p∗2 ∼= OH ⊗ − is t-exact, we see that p∗2 is

t-exact as well.

To prove conditions (1) through (4) are equivalent, we use natural isomor-

phisms

p2,∗ ◦ coact ∼= act ◦p∗2 ∼= Oblv ◦Avw∗ .

To see these isomorphisms, note that by a standard tensor product argument,

it suffices to check the universal case of C ∼= QCoh(H), where the desired

isomorphisms follow as from the base change formula.

(1) ⇐⇒ (2): As p2,∗ is t-exact and conservative, we see that coact is

t-exact if and only if p2,∗ ◦ coact ∼= Oblv ◦Avw∗ is t-exact, as desired.

(2) =⇒ (3): As act is right adjoint to coact, we see that act is left t-exact.

To show right t-exactness, it suffices to note that p∗2, viewed as a functor from

C≤0 to (QCoh(H)⊗ C)≤0, generates under colimits.

(3) =⇒ (1): Clear.

(3) ⇐⇒ (5): The equivalence of (5) intertwines p∗2 and coact, so (5)

implies (3). On the other hand, if coact is t-exact, it suffices to show that coact,

restricted to a functor C≤0 → (QCoh(H)⊗C)≤0, generates under colimits. By

adjunction, this would follow if we knew act to be conservative and t-exact.

The t-exactness follows from (2) =⇒ (3), and to check conservativeness it

suffices to consider the universal case of C ∼= QCoh(H), where it is obvious.

(4) =⇒ (1): Clear.

(1) + (2) =⇒ (4): This is the hardest implication to prove. Recall that

CH,w is the totalization of the cosimplicial category

C ⇒ QCoh(H)⊗ C→→→ QCoh(H)⊗QCoh(H)⊗ C · · · .

To construct a t-structure on CH,w, it suffices to prove that all of the tran-

sition maps are t-exact. Consider a face map f : C ⊗ (QCoh(H))n → C ⊗
(QCoh(H))n+1. We split into cases depending on the value of n.

For n = 0, there are two face maps, p∗2 and coact. By our assumptions,

both are t-exact.

Next, for n=1, there are three face maps, p∗2⊗idQCoh(H), coact⊗ idQCoh(H),

and idC⊗∆∗, where ∆∗ is pushforward along the diagonal map ∆ : H → H×H.

The first two maps are t-exact by Proposition A.6, and idC⊗∆∗ is t-exact by

Lemma A.2.
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Finally, if n > 1, then f is of the form g ⊗ idQCoh(H) for some face map

g : C⊗ (QCoh(H))n−1 → C⊗ (QCoh(H))n. Using Proposition A.6 again, this

case follows by induction.

By construction, Oblv is t-exact with respect to this t-structure. As Oblv

is conservative and Oblv ◦Avw∗ is t-exact, we see that Avw∗ is t-exact, as desired.

�

Definition A.11. Let C be a category with a weak action of H. A t-

structure on C is said to be compatible with the H action if it satisfies the

equivalent conditions of Lemma A.10. If C is instead endowed with a strong

H-action, we say that a t-structure on C is compatible with the H action if it

is compatible with the underlying weak H-action.

In the case of a strong action on C, note that the (strong) coaction functor

C → C ⊗ D(H) is still t-exact, up to shift. Indeed, the composition C →
C ⊗ D(H) → C ⊗ QCoh(H) is, up to shift, the weak coaction functor, which

is t-exact by assumption. On the other hand, as D(H) → QCoh(H) is exact,

conservative, and has a right adjoint, the same properties hold for C⊗D(H)→
C⊗QCoh(H), which together imply that C→ C⊗D(H) is t-exact, as desired.

This allows us to show the following:

Lemma A.12. Let C be a category with a strong action of H and a com-

patible t-structure. Then the invariant category CH has a natural t-structure

with Oblv : CH → C t-exact.

Proof. This follows by the same logic as in the proof of (1) + (2) =⇒ (4)

in Lemma A.10. The only point requiring justification is the left t-exactness of

idC⊗∆∗ : C⊗D(H)→ C⊗D(H ×H), which is true by Proposition A.9. �

As a consequence of Lemma A.12, we can construct t-structures on H-

tensor products.

Lemma A.13. Let C be a category with a right H-action, and let D be

a category with a left H-action. Assume both C and D are equipped with

compatible t-structures. Then C ⊗H D has a natural t-structure, and there

is a natural t-exact functor C⊗H D→ C⊗D.

Proof. Composing with the inversion map D(H) → D(H), we can make

C into a left H-category instead. Then C ⊗ D has a left H × H action. We

claim that there is a canonical equivalence C ⊗H D ∼= (C ⊗ D)H , where the

H-invariants on the right-hand side is taken with respect to the diagonal copy

of H inside H ×H. Indeed, there is an obvious such equivalence for C ∼= D ∼=
D(H), and the general case follows by tensoring.

Thus to equip C⊗HD with a t-structure satisfying the desired properties,

it suffices to show that the natural t-structure on C⊗D is compatible with the

diagonal H action. In fact, it is compatible with the entire H ×H action. To
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see this, we need to show that the functor

QCoh(H)⊗ C⊗QCoh(H)⊗D→ C⊗D

is t-exact. By assumption, the functors QCoh(H)⊗C→ C and QCoh(H)⊗D

→ D are t-exact. As they are also right adjoints, Lemma A.1 and Lemma A.2

tell us that their tensor product is t-exact, as desired. �

Finally, following Sections 10.9–13 of [Rasc], let us say something about

the case where H is, rather than a finite type algebraic group, a Tate group

indscheme with prounipotent tail (e.g., G((t)).) As we will make only cursory

use of this material, our treatment will only be a sketch. In this case, com-

patibility with a weak H-action on C is defined to mean t-exactness of the

equivalence

IndCoh∗(H)⊗ C→ IndCoh∗(H)⊗ C

intertwining act and p2,∗.

If C comes with a strong H-action, we impose one more requirement,

namely, that for all (or equivalently, one) prounipotent compact subgroups

K ⊆ H, CK is closed under truncations. This is equivalent to the existence of

a t-structure on CK such that CK → C is t-exact.

A.3. Case of additive groups. Now take H to be a vector space V , treated

as an algebraic group with group structure given by addition. By the Fourier-

Deligne transform for D-modules, there is a t-exact equivalence D(V ) ∼= D(V ∗)

intertwining the convolution monoidal structure on the left with the ⊗! mon-

oidal structure on the right. In particular, if X is a variety mapping to V ∗,

there is a natural H-action on D(X).

We will be interested in categories of the form C ⊗A D(X) for C a H-

category. Assume that C comes with a compatible t-structure, so Lemma A.13

gives a t-structure on C⊗HD(X). Furthermore, the proof of the lemma shows

that this t-structure is compatible with the H-action.

The main result of this section is the following:

Lemma A.14. Assume that H corresponds to a vector space V , and let C

be a H-category with a t-structure compatible with the H-action. Let X be a

quasi-projective variety mapping to V ∗.

(1) If i : Z → X is a closed embedding, then idC⊗Hi∗ : C ⊗H D(Z) → C ⊗H
D(X) is t-exact.

(2) If j : U → X is an open immersion, then idC⊗Hj∗ : C ⊗H D(X) →
C⊗H D(U) is t-exact.
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Proof. Let us first treat the case of closed embeddings. We have a com-

mutative diagram

C⊗
H
D(Z) C⊗

H
D(X)

C⊗D(Z) C⊗D(X)

with vertical arrows conservative and t-exact. Thus, to show that the top

arrow is t-exact, it suffices to show that the bottom arrow idC⊗i∗ is t-exact.

But this follows from Lemma A.1 and Proposition A.9.

Now we consider the case of open immersions. Again, we are reduced to

showing that idC⊗j∗ is t-exact. And again, right t-exactness is automatic by

Lemma A.1, and left t-exactness holds because of Proposition A.9. �
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