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Affine Beilinson-Bernstein localization
at the critical level

By SaM RASKIN and DAVID YANG

Abstract

We prove the Frenkel-Gaitsgory localization conjecture describing reg-
ular Kac-Moody representations at critical level via eigensheaves on the
affine Grassmannian using categorical Moy-Prasad theory. This extends
previous work of the authors.
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1. Introduction

1.1. Overview. In [FGO6], Frenkel and Gaitsgory formulated a conjectural
analogue of Beilinson-Bernstein localization for the affine Grassmannian using
critical level Kac-Moody algebras and geometric Satake. In this paper, we
prove their conjecture.

We highlight [FG09] and [Rasa] as previous works in this area. The former
proves the affine localization conjecture after passing to Iwahori equivariant
objects on both sides. The latter, due to the first author, proves the full
conjecture for rank 1 groups G.

We refer to the introductions of [FG06], [FG09], and [Rasa] for motivation
and background on the subject. We particularly refer to [Rasa], which is close
in spirit in many ways to the present paper.

1.2. Methods. Our methods have some overlap with [Rasa], but are dif-
ferent in their core. Specifically, as discussed in [Rasa, §1.14], we use a re-
cent general technique for categories with G((t))-actions and then specify to
Kac-Moody representations: categorical Moy-Prasad theory. This subject was
developed by the second author in [Yan21], where it was already used to study
critical level Kac-Moody representations.

Roughly speaking, the major outstanding problem has been to show es-
sential surjectivity and t-exactness of the global sections functor

Heck ~
FHecke : Dcr'is‘: ez(GI‘(;) — Gcrit~ modreg;
see Section 3.3. The idea is that [Yan21] almost shows that Gerit- modyeg is
of depth 0. We would then be reduced to checking essential surjectivity on

Iwahori invariants, where it was treated by Frenkel-Gaitsgory.
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The issue is in the almost. Specifically, [Yan21] showed that the subcat-
egory Gerit- Modigz C @erit- mod generated by Ferig- modyeg under colimits has
depth 0. But gerit- mod,eg itself is finicky; for instance, the forgetful functor
Oerit- mod,eg — Gerit- mod is not actually conservative. Moreover, it is not a pri-
ori clear that gerit- modyeg carries a G((t))-action, so it is not clear that depth
is a meaningful notion for it. We refer to [Rasa, §1.22] for a related discussion.

This paper is dedicated to solving those problems. At the same time, we
also address the t-exactness, which is intimately related to the above subtleties.

This overall strategy is in contrast to [Rasa], which relied heavily on Whit-
taker techniques in place of Moy-Prasad theory.

1.3. Notation and background. Throughout this paper, we fix a field k of
characteristic 0. We also fix a split reductive group G over k and a Borel
subgroup B of . The unipotent radical of B will be denoted by N, and
the Cartan will be denoted by T. The weight and coweight lattices will be
denoted by X*(T') and X, (T'), respectively. The Lie algebras of G, B, etc. will
be denoted by g, b, etc.

We use category to mean co-category and DG category to mean presentable
stable category over k. Similarly, all t-structures will be assumed to be right
complete and compatible with filtered colimits (in particular, accessible). We
let DGCat denote Lurie’s symmetric monoidal category of DG categories; we
denote the binary operation of its tensor product by ®.

We will frequently invoke the theory of D-modules on infinite-dimensional
spaces developed in [Rasb]. Occasionally, we will also use the theory of ind-
coherent sheaves on such spaces, for which the reader is referred to Section 6
of [Rasc].

We will be interested in group actions on categories, both weak and strong.
We understand group actions on categories to always imply actions on DG
categories. This theory has been developed in [Berl7] and [Rasc|. In general,
when we speak of a group action without further specification, we are referring
to a strong action. We will also need the following notation for convolution.
If C is a category acted on by G (or by some other group), and K C G is
some subgroup, then we have a convolution functor D(G/K) ® CX — €. This

K
functor will be denoted by x. The overset K will often be omitted when the
subgroup is clear from context.

1.4. Acknowledgements. We thank Dima Arinkin, Sasha Beilinson, Dario
Beraldo, David Ben- Zvi, Roman Bezrukavnikov, Justin Campbell, Kylin Chen,
Vladimir Drinfeld, Gurbir Dhillon, Yuchen Fu, Dennis Gaitsgory, and Ivan
Mirkovic for useful discussions related to this work.

S.R. was supported by NSF grant DMS-2101984.
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2. Moy-Prasad preliminaries

2.1. Categorical depth filtration. This subsection and the next give a quick
overview of the results in Sections 2 and 3 of [Yan21]. We recommend looking
there for a more detailed exposition.

Let g((t)) be the Lie algebra of g-valued Laurent series, with its natural
Lie bracket. This is the Lie algebra of the loop group G((t)). Our main tool will
be the categorical representation theory of G((t)), and so we will need a large
supply of categories on which G((t)) acts. For every compact open subgroup
K C G((t)), we have an action of G((t)) on the (DG-)category D(G((t))/K)
of D-modules on the quotient ind-scheme G((¢))/K. Thus, to produce many
categorical representations of G((t)), it suffices to produce a large family of
subgroups.

The Moy-Prasad subgroups will fill this role. Let g = &g, be the weight
decomposition of g, and fix a point x € X,(T) ® R as well as a nonnegative
real number r. Then K, and K, ,; are defined as the exponentiations of the

Ea:,r = @ gati

(az)+izr

Lie subalgebras

and

Ex,rJr == @ gati.

(a,z)+i>r

As shorthand, we write P, for K, . This is always a parabolic subgroup
of G((t)), justifying the notation. We also write L, for the reductive quotient
Ka:,O/ Km,0+-

Let C be a G((t))-category, i.e., a category equipped with a strong G((t))-
action. Then Lemma 2.2 of [Yan2l1] (which in turn is based on the main
theorem of [BZGO20]) states the following:

LEMMA 2.1. Let C be a category acted on by G((t)). Then there is a
natural G((t))-equivariant fully faithful embedding

Az,r - D(G((t))/Kx,r+) ® GKI-” — C
D(szr+\G((t))/Kz,r+)

with a continuous G((t))-equivariant right adjoint aZf, .

We denote the essential image of a; ; by Ck, ,, -gen- In the case where this
is all of C, we say that C is K, ,-generated. The following gives an equivalent
characterization of Cx, r4-gen:

LEMMA 2.2. The subcategory Cr, ., gen C € is the smallest full subcate-
gory of C which both contains CXer+ and inherits a G((t))-action from €.
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Proof. Let D be another full G((t))-subcategory of € which contains
CKert. Then we must necessarily have CRert = DEart g0 CKyry-gen =
Dryrs-gen € D, as desired. O

Definition 2.3. Let € be a category acted on by G((t)). The depth filtration
on C is the R>p-indexed filtration with C<, the smallest full DG subcategory
of € containing Cp, ,, gen for every z € X, (T) ® R.

Let us list some properties of the depth filtration.

PROPOSITION 2.4.

(1) For a fized G, there is a discrete set of rational numbers such that, for
any G((t))-category C, the depth filtration on C can only jump at those
numbers.

(2) The depth filtration is exhaustive; i.e., we have

colim C<, = €.

(3) Assume that C<, = C. Then for any other G((t))-category D with D<, = 0,
we have C @g () D = 0.

Proof.

(1) This is Lemma 2.6 of [Yan21].
(2) This is proven in the discussion after Definition 2.5 of [Yan21].
(3) This is Lemma 2.9 of [Yan21]. O

As the depth filtration only jumps at a discrete set of numbers, we can
define C., to be C<,_, for € > 0 sufficiently small. The quotient of € by C<,
(resp. C«,) will be denoted by Cs, (resp. C>;.)

2.2. Moy-Prasad generators. The main technical tool of [Yan21] is a con-
struction of 2-categorical generators for each depth. Let us rephrase this result
in a form amenable to our purposes.

Fix some depth r > 0. For any G((t))-category €, we have an action of
D(K; /Ky r+) (with the convolution monoidal structure) on CXzr+. A pri-
ori, Ky ,/Kz,+ has only the structure of a group, but from unwinding the
definitions we see that in fact it has a k-vector space structure. Thus, the
Fourier-Deligne transform of D-modules (see, e.g., Section 5.1 of [Berl7])
identifies the monoidal category D(K, /K, ,+) with the monoidal category
D((Kx,r/Kx,T-i-)*)'

The vector space K /K, r+ is naturally equipped with an L, action, and
hence so is the dual vector space (K /Ky ,+)*. Let (K;,/Kyr4+)"° denote
the locus of GIT-semistable elements, i.e., elements whose L, orbit does not
contain zero in its closure. Equivalently, (K, /K 4 )*° is the complement of
the preimage of zero along (K ,/Ky,+)* = (Kgr/Kgrt)*//Ly. This is an
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open subvariety of (K /Ky ,+)*. We define

Clerte o2 @Kars ® D((Kyp/Kzrs)™).
D((Ko,r/Kor+)*)
Note that the operation of (K ,,o)-invariants commutes with both limits
and colimits.
The complement of (K, /Ky r4+)*°, i.e., the closed locus of GIT-unstable
elements, will be denoted by (K ,/Kz,+)*". In analogy with the definition
of CKer+:° we define

CFartus o @Kot & D(<K:C,T/Ka:,r+)*7us)'
D((Kz,r/Kz,r+)*)

The relevance of these definitions is explained by the following theorem:

THEOREM 2.5 ([Yan2l]). Let C be a G((t))-category. Then the subcate-
gories C<, and C<, coincide if and only if we have, for all x € X.(T) ® R,

CRerto 2,

Proof. Without loss of generality, we can assume that C<, = C. By The-
orem 3.2 of [Yan21], we have D(G((t)))%=r+° = D(G((t))/Kzr+)>r- In par-
ticular, part (3) of Proposition 2.4 implies that

52 ey ® D(G((1)/Kapi)sr 20.
G((®))
We can therefore quotient € by €., and reduce to the case where C.,. = 0. It
remains to show, under our assumptions, that € itself is trivial if and only if
all the categories Cf=+° are trivial.
The only if direction is now obvious, so let us treat the if direction. Assume
@ is not trivial. Then some CX#r+ is nontrivial. We claim that @Kzr+° =
@Kzt or equivalently, that

hertms 2 € @ D(G((1))) e 0,
Gi((®)

This again follows from part (3) of Proposition 2.4 and Theorem 3.2 of [Yan21].
a

Let us give some properties of the unstable locus. They will come in handy
later when we need variations of Theorem 2.5. We note that Lemma 2.6 is a
key geometric input for Theorem 3.2 of [Yan21] (and hence for Theorem 2.5
as well.)

LEMMA 2.6. There is an equality of subvarieties

(Kx,r/Kx,r+)*:uS = Lx . ( U (Ky,r/K:c,r-s—)L)-
Y| Kz, r+ CKyrCKy r
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Proof. Let p be a point of (K,,/K;,+)"". By the Hilbert-Mumford
criterion, there is a one-parameter subgroup G,, — L, which contracts p
to the origin. This subgroup is necessarily a conjugate of a one-parameter
subgroup of T' corresponding to some € X, (T'). Equivalently, there is some
point ¢ € L, - p which is contracted by 3, so there is an inclusion

qe GB gt th @
(B,0)>0

Then for sufficiently small € > 0, if we take y = = + €3, we have K, C

K,, C K;, and
qec (Ky,T/K:v,r—i-)l'
This implies the inclusion p € Ly - (Ky,/ K%M)L, as desired. O

LEMMA 2.7. The variety (Ky /Ky r4)"" is the union of a finite number
of L,-orbits.

Proof. We rewrite the statement in terms of graded Lie algebras. Express
r as a fraction % in lowest terms. Then we have a Z/qZ grading on g, defined by

9 = @ Ja-

(x,a)E%i (mod 1)

This grading is compatible with the Lie algebra structure in the sense that
l9i, 95] C Givj-

In this language, the vector space Ky ,/Ky 4+ can be identified with g,
and L, can be identified with the exponentiation of gg. The lemma now follows
from Theorem 4 of [Vin76]. O

The rest of this section will be devoted to the case of r = 0. The naive
analogue of Theorem 2.5 would say that C<¢ is trivial if and only if CKeo+
is trivial for all z. This is easy to prove, but we will need a more refined
statement.

2.3. Categorical representations of reductive groups. First we need to study
the categorical representation theory of (finite type) reductive groups. Let H
be a reductive algebraic group over k with Lie algebra h. (We use the letter H
here to emphasize that it may differ from the group G fixed in the rest of the
paper.) The Borel, Cartan, etc. subgroups of H will be denoted by By, Ty, etc.

Fix a H-category C. We wish to understand the category of weak invari-
ants C%_ which is defined to be Homqcon () (Vect, H). Our main lemma re-
lates the categories CH""* = C® g h-mod and (CN#)THW = Ry D(H /Ny )THmw.
The Harish-Chandra isomorphism gives an action of QCoh(t;//Wg) on eiw
where the Wx action on t’é is the dot action. On the other hand, the tangent
vector fields for the right action of Ty on H/Npy give an action of QCoh(t;)
on (CN#)THw,
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Let S be the collection of elements &+ (p, &) +n € Sym t, where & ranges
over positive coroots of H and n ranges over positive integers. Then we define
an affine scheme t;’o as Spec of the localization Sym t;[S~!].

LEMMA 2.8. There are adjoint functors
Loc : 1w ® QCoh(t;°) = (€Nm)Tmr @  QCoh(ty°) : T
QCoh(t; //Wr) QCoh(t;)

with Loc fully faithful. Furthermore, if C has a t-structure compatible with the
H-action, then I is t-exact for the t-structures induced by Lemma 2.10.

Proof. To construct I' and Loc, it suffices to consider the universal case
of € = D(G). In this case, we are looking for an adjoint pair

Loc:h-mod @  QCoh(ty°) = (D(H/Ny))™" @
) QCoh

QCOh(f;’O) I
QCoh(t; // Wi oh(t)

These are provided by the global sections and localization functors of [BB81].
By loc. cit., in this case Loc is fully faithful and T" is t-exact.

~Y

For general C, we must still have I"' o Loc = id and so Loc is still fully
faithful. By Lemma A.1 and Lemma A.13, Loc and I" are right t-exact. As I’
has left adjoint Loc, we see that I" must also be left t-exact, as desired. O

COROLLARY 2.9. The functor

D(H/Npg) ® eNr @
D(Ng\H/Ng)

s an equivalence.

Proof. By [BZGO20], this functor is fully faithful. Denote the quotient
category by D. We need to show that D is trivial.

A short calculation shows that DV# = 0. Thus, fully faithfulness of Loc
in Lemma 2.8 implies that DH:w ®DQCoh(t; //Wr) QCoh(t:’o) is trivial. We claim
that the functor

pHw _y pHw ® QCoh(t;°)
QCoh(t;//WH)

is conservative. As QCoh(t;’O) is self dual as a QCoh(t;//Wpg)-module, this
functor can be rewritten as

Homqgon(s; //wy) (QCoh(t;/ /W), D)
— Homqon(t; //wy) (QCoh(t; %), DY),
which is conservative if the pushforward functor
f« : QCoh(t;°) — QCoh(t;/ /W)

generates under colimits. As f : t;’o =t / /Wy is faithfully flat, the image of
f+« contains a skyscraper sheaf at each geometric point. And because t?; //Wr
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is smooth, QCoh(t;//Wp) is generated under colimits by skyscraper sheaves,
giving the conservativeness.

In our case, this shows that D% is trivial. By 1-affineness of BH (The-
orem 2.2.2 of [Gailb]), this implies that D is trivial, as desired. O

The t-structures appearing in Lemma 2.8 have the following source:

LEMMA 2.10. Let f : Spec B — Spec A be a flat morphism of affine
schemes. Let C be a category equipped with a t-structure and an action of
A-mod. Then there is a unique t-structure on C ® o-moq B-mod for which the
pullback and pushforward functors

fe:C2C ® B-mod: fe,
A-mod

are both t-exact. Also, fe . is conservative.

Proof. To show conservativeness, note that this property of a right adjoint
is preserved under tensor product. Thus, it suffices to check that B-mod —
A-mod is conservative, which is obvious. Furthermore, by Barr-Beck-Lurie,
the functor fe . is monadic.

The existence of the desired t-structure will thus follow from t-exactness
of the monad fe . o f3. This monad can be identified with the tensor product
functor — ®4 B : € — C, where B is treated as an A-module. By Lazard’s
theorem, B is a filtered colimit of finite free A-modules. Tensoring by a finite
free A-module is clearly t-exact, so — ® 4 B is also t-exact, as desired. ([

2.4. Depth zero. Now we can analyze the r = 0 case more fully. Recall
that we denote the Iwahori subgroup by I and its unipotent radical by Ij.

THEOREM 2.11. Let C be a G((t))-category. We have an equality of sub-
categories
G§0 = elo-gen C C.
In particular, C<q is trivial if and only if el s trivial.

Proof. As Iy is a subgroup of the form K, oy, the inclusion €z, _gen € C<o
is clear. By Lemma 2.2, it suffices to show that, for all z € X, (T), CK=o+ C
GIO -gen-

Note that for sufficiently small € > 0, the subgroup K, .30+ does not
depend on e. (Recall that p denotes the half-sum of positive coroots.) Indeed,
unwinding the definitions, we have an equality of Lie algebras

Ex+€,z'),0+ = @ gatz
(a,z+€p,)+i>0

= @ gati + @ gati

(o,z)+i>0 (a,x)+1>0
(0, )>0

= ty04 + (Ez,0 N0(()))
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giving the corresponding identity of subgroups
Kovepor = Keor (P N N((2)))-

First, we show that Cf=+es.0+ is a subcategory of Cry-gen- Indeed, K1 ¢50

will be a conjugate gIg~! of the Iwahori subgroup, and K1 e30+ will be the
corresponding conjugate glog~' of Iy. We then have

er+eﬁ,O+ — gefo
c e]o -gen

as desired.
To go from K,iep04-invariants to K, oi-invariants, recall that L, =
Ky 0/Kz o+ acts on CKz0+. Let N, denote the subgroup

(K204 (Pe N N((2)))/ Kz 0+

of L,. As L, is a reductive group with maximal unipotent subgroup N,
Corollary 2.9 is applicable. Thus, we have

Kzt o (@Kz,0+)Nw ® D(L,/N,)

D(Nz\Lz/Nz)
= CRetepor ® D(Py/Kziepo+)
D(Na\Lz/Na)
C Cry-gen
giving the theorem. O

COROLLARY 2.12. Let C be a G((t))-category. Assume that, for all x €

X«(T)®R and r > 0,
CHerto 2

and also that
el ~.

Then C must be trivial.

Proof. By Theorem 2.11, we have C<g = 0. For » > 0, Theorem 2.5 tells
us that C«, = C<,. As the depth filtration only jumps at a discrete set (part 1
of Theorem 2.4), this implies that C<, = 0 for all . And as the depth filtration
is exhaustive (part 2 of Theorem 2.4), we see that C itself must be trivial, as
desired. ([l

3. Kac-Moody categories

To state the main theorem of this paper, we will need to define various
categories of representations of the affine Lie algebra g. Recall that g is defined
as a central extension of the loop algebra g((¢)), and that central characters are
in bijection with invariant bilinear forms on g. For the rest of this paper, we
will only be concerned with critical level representations, i.e., those g-modules
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where the center acts via the character corresponding to negative one half times
the Killing form. Notationally, this will be reflected by a subscript, e.g., Gerit-

This section is effectively a quick overview of the results of Sections 6
and 7 of [Rasal, and we will often refer there for proofs.

3.1. The category gerit-mod. Our starting point is the category gerit- mod
constructed in, e.g., [Rasc]. As justification for its name, its heart gerit- mod"
is the abelian category of discrete critical g-representations. However, we warn
the reader that get- mod does not coincide with the derived category of its
heart; rather, it is a “renormalization” of this derived category.

More precisely, consider the subcategory gerit- ondc C D(gerit- modo) gen-
erated under finite limits by modules of the form ind] C, where ¢ is the Lie sub-
algebra corresponding to a pro-unipotent compact open subgroup K C G((t)).
Then gerit- mod is defined! to be the ind-completion of geri¢- mod®. Kan exten-
sion gives a functor

Berit- mod — D (Ferit- mod”)
which induces an equivalence on bounded below subcategories. However,
Gerit- mod contains objects in cohomological degree —oo which are sent to the
zero object in D (Gerit- mod”).

The advantage of this renormalization is that gert- mod admits a strong
action of G((t)). There is also an additional structure which we will need.
Let 3 denote the center of the universal enveloping algebra U(geit). This is
canonically a pro-vector space, and the Feigin-Frenkel theorem identifies it with
functions on an ind-affine ind-scheme Op, which parametrizes G-opers on the
punctured formal disc. (For more on opers and Feigin-Frenkel, the reader is
referred to Sections 1 and 5 of [FG06], respectively.)

There is a canonical action of 3 on any gerit-module M. Equivalently,
there is a canonical ind-coherent sheaf on Ops whose space of global sections
is isomorphic to M. The correct categorical enhancement of this statement
was identified in [Rasc], using the definition of IndCoh* in Section 6 of loc. cit.

THEOREM 3.1 ([Rasc, Th. 11.18.1]). There is a canonical coaction of

IndCoh*(Opg) on Gait-mod. Furthermore, this coaction is compatible with
the action of G((t)).

We remark that the coaction map
Gerit- mod — Gerit- mod @ IndCoh™(Op)

corresponds to restriction of modules along the algebra homomorphism 3 x
U(acrit) — U(acrit)-

! Actually, in [Rasc], a different definition is given which is easier to work with. The two
definitions are equivalent by Lemma 9.13.1 of loc. cit.
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3.2. The category Gerit- modyeg. There is a natural closed subscheme Op'<®
of Opg, corresponding to regular opers, i.e., those that extend to the formal
disc. We are interested in studying categories of g-representations for which
the action of 3 factors through O(Oprgg). The most famous example of such a
representation is the vacuum module Vi, defined as the critical level induction
from g[[t]] of the trivial representation.

The abelian category of such representations is easy to define. However,
as in the previous subsection, there are subtleties of renormalization in defining
the derived category. We will define two categories, denoted by Gerit- m0dyeg
and Gerit- mOodreg naive- Both of these have t-structures with the desired heart,
but they will differ at —oo. As suggested by the notation, gerit- modyeg is
the better behaved category and the real target of our investigation, while
Derit- mOod,eg naive appears as a useful technical intermediate.

First we will define geri¢- mOd eg naive- Liet us recall the notion of a cotensor
product. Let A be a comonoidal category, and take a right A-comodule B and

A
a left A-comodule €. Then the cotensor product B ® € is defined as the
totalization of the cosimplicial category
BRCIBRIARCI BRIARARC---.

Then we define

N N IndCoh*(Op) . ‘o
Herit mOdreg,naive = Herit- mod ® IndCoh (Op g)'

G
Denote the closed embedding OprCf;‘g — Opg by i. By Lemmas 6.17.1-2 of
[Rasc], we have a pair of adjoint functors
IndCoh*(Opgg) = IndCoh™(Op).
Tensoring, we get another adjoint pair
Gerit- MOdyeg naive = Gerit- mod .
We will abuse notation and denote both adjoint pairs by (i, ').
THEOREM 3.2. The functor
Gx  Berit- MOdreg naive — Gerit - mod

1s comonadic. Thus, ﬁcrit-modregmaive admits a unique t-structure making i
t-exact.

Proof. This is part of Proposition 6.6.1. of [Rasa)]. O

Let Gerit- modlfeg C Gerit- mod,eg naive denote the full subcategory of objects
M such that i, M is compact. We define gerit- mod,eg as the ind-completion of
Gerit- modye,. It comes with a natural t-structure and a functor

D - Bcrit- mOdreg — Qerit- mOdreg,naive .
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THEOREM 3.3. The functor p is t-exact and induces an equivalence on
eventually coconnective subcategories.

Proof. This is Lemma 6.9.3 of [Rasa]. O

Remark 3.4. One technical problem with the category gerit- mod,eg is that
it is a priori unclear that it admits a G((t))-action. Once our Theorem 3.10 is
known, there is a clear such action. But for the proof of Theorem 3.10, we will
need to juggle this category with its naive version gerit- m0dreg naive, Which has
a G((t)) action by virtue of its construction.

3.3. The functor ek Now we would like to relate these categories of
Kac-Moody representations to geometric categories. Let Grg denote the affine
Grassmannian G((t))/G][t]]. To start, note that
Gl

HomG((t)) (Dcrit (GI'G’)7 Herit- mOdreg,naive) = Gerit- mOdreg,naive7

so the vacuum module Vg defines a map Deit(Grg) — Gerit- mOdyeg naive-
Combining this with the QCoh(OprG?g) action constructed in the previous sub-
section, we get a map

(1) Dcrit(GrG) ® QCOh(Opgg) — ﬁcrit' mOdreg,naive .

Recall that geometric Satake (see [MV07]) gives a morphism of monoidal
categories

Rep(é) — Dcrit(GrG)G[[tH = Endg((t)) (Dcrit(Grg)),

so we get a right action of Rep(G) on Dyt (Grg).

There is also a natural action of Rep(G) on QCoh(Opgg), coming from a
reg
re, G
Op ég. By definition, there is a canonical family of opers (and hence a canonical
G-torsor) on Spec(O(Ops®)[[t]]); restricting to Op® gives the desired torsor.

We now claim that the map (1) naturally factors as

DCﬂt(GrG) ® QCOh(Opgg) — Dcrit(GrG) X B QCOh(Opgg)
Rep(G)

natural map Op's® — BG. Such a map is equivalent to the data of a G-torsor on

— /g\crit' mOdreg,naivea
or equivalently, that the map
qCll]

reg,naive

QCoh(Ops*) — Homg((py) (Derit(Gra), Gerit- m0dreg naive) = erie- O
can naturally be lifted to a Rep(G)-equivariant map.

This is proven rigorously in Sections 7.9-7.11 of [Rasa]. The key tool is the
following theorem of Beilinson-Drinfeld, which immediately implies the above

claim at the level of objects:
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THEOREM 3.5 ([BD]). Let V' be a finite dimensional object in Rep(G)©.
The corresponding objects of D(Grg)SM and QCoh(Oprgg) are denoted by Sy
and Py, respectively. Then

8V * Vcrit = :PV & Vcrita

where x denotes the convolution action of D(Grg)GHtH on ﬁcrit—modreg,naive.

We will denote Dt (Grg) B Rep(() QCOh(Opgg) by Dg?fkea(GrG). The
map Dgff 5 (Grg) = Gerit- MOdyeg naive Will be denoted by

We now want to lift THeckenaive o 5 functor THecke . DHeCkez’(Grg) —

crit
gftc key (Grg) is compactly generated. As

Opz;veg — BG is affine, we have a pair of continuous Rep(é)—equivariant adjoint
functors Rep(G) = QCoh(OprGeg). These induce a pair of adjoint functors

FHeCke,naive

Gerit- MOdyeg. First, we will show that D

ind"e<ks ; Doy (Grg) = Diyse ™ (Grg) : Oblviedkes

crit

In particular, ind®% sends compact objects to compact objects. Fur-
thermore, we have the following:

LEMMA 3.6. The objects ind™ % () for F € Deit(Grg) compact, gen-
Hecke
erate D (Grg).

crit

Proof. As Deit(Grg) is compactly generated, it suffices to show that the
Hecke
crit ’
from Lemma 5.1 that this property is stable under tensor product, so it suf-

fices to show that the pullback map Rep(G) — QCoh(OprCf;g) generates under
colimits. This follows as the map Opereg — BG is affine. O

essential image of ind1°*% generates D (Grg) under colimits. It follows

COROLLARY 3.7. The functor THeckenaive oyroseryes compact objects.

Proof. By the preceding lemma, it suffices to show that, for any com-
pact F € Deyit(Grg), the object FHeCke’naive(indHeCkeé (F)) lies in Gerit- modye,.
Unwinding the definitions, we find that

pecensie (i Hes () & 5 s Vo € Ger-m0cl

We would like to show that i, (F * Veyit) = F x i, Vet is a compact object
in gerit- mod. As i, Vet is compact, it suffices to show that Fx— : gepit- mod —
Oerit- mod preserves compactness, or equivalently, that its right adjoint is con-
tinuous.

This right adjoint is explicitly identified in Proposition 22.10.1 of [FGO06].
Let DF denote the Verdier dual of F, and let invDF € D(G([[t]]\G((t))) denote
the pullback of DF along the inversion map. Then, for any G((t))-category C,
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the functors Fx — : € — CCl) and invDF  — : CClH — € form an adjoint
pair. As convolution preserves colimits, we arrive at the desired result. ([l

Hecke;
crit

We thus get a natural functor D (Grg)® — Gait-mody.,. Define

['Hecke t6 be its ind-extension. By definition, we have a commutative triangle

Hecke [Hecke
D ’ (GTG) — Gerit- mOdreg

crit
FHeckm) J’

Gerit- mOdreg,naive .

Let us recall some facts about T'Hecke,
TurOREM 3.8 ([FG06], [Rasa]). The functor THeke is fully faithful.

Proof. This is essentially Theorem 8.7.1 of [FGO06], though they do not
work with oco-categories. With our categorical setup, this is stated as Theorem
7.16.1 of [Rasa], which also gives a new proof. O

We now define a t-structure on Dgftc keé(Grg). Set D(I:{ric ke”(G]rg)go to be
the full subcategory generated under colimits by the ind"ee (), for F €
Derit(Grg)=". By Proposition 1.4.4.11 of [Lura], this uniquely defines a t-

structure.

THEOREM 3.9. With respect to the above t-structures on Di{riefkeﬁ(Gr(;)
and Gerit - modyeg, THEKC 4s right t-ezact.

Proof. This is Corollary 7.15.3 of [Rasa). O

For the rest of this paper, when working with a t-structure on a category C,
we will denote the subcategory of objects supported in cohomology degrees at
least n (resp. at most n) by €=" (resp. @<".) Note the use of a superscript, as
opposed to the use of a subscript for the depth filtration.

3.4. Localization theorem. The following is the main theorem of this pa-
per. It confirms one of the main conjectures (more precisely, Main Conjecture
8.5.2) of [FGO6]:

THEOREM 3.10. The functor THe¥e is g t-ezact equivalence.

For G of rank 1, this was proven in [Rasa]. More generally, for any G,
loc. cit. reduces Theorem 3.10 to three auxiliary statements, which appear
below as Lemmas 3.11, 3.12, and 3.13. All three are proven in [Rasa] only
when G has rank 1; our contribution is to prove them for general G.
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LEMMA 3.11. Let Gerit-MOdreg naive < Gerit- MOdreg naive b€ the full sub-
category generated under colimits by the subcategory ﬁcrit—mod;g naive Of even-

tually coconnective objects. Then the essential image of THeckenaive 1oq 4

—_—

Gerit- MOdyeg naive and generates it under colimits.
LEMMA 3.12. The functor I'Heckemaive yo 4 opqct,

LEMMA 3.13. For every compact open subgroup K C G((t)), the compo-
sition

DHCCkoa(Grg)K —y phHieckes (Grg) = Berit- mOdreg

crit crit
1s left t-exact up to shift.

We refer to [Rasa] Section 7.17 for the deduction of Theorem 3.10 from
these lemmas.

Let us explain some philosophy behind the proofs of Lemmas 3.11, 3.12,
and 3.13. Each of these lemmas involves proving some property P of a functor
f:€— D. In Lemmas 3.11 and 3.12, both € and D have G((t))-actions, while
in Lemma 3.13, only € has a G((t))-action. Assume for simplicity that € and
D are both G((t))-categories.

Motivated by Corollary 2.12, we will show that f satisfies P if we know
that, for all x € X, (T) ® R and r > 0,

sz,ero . GKz,ero N DKI,T+7O

satisfies P, as well as that
flo el — plo

satisfies P. Luckily, each of the involved invariant categories is well understood,
and it will be (relatively) straightforward to show that each of these simpler
functors satisfies P, proving the desired lemma.

Remark 3.14. In [Rasal], a similar line of attack was used, with the in-
variant categories Cf#r+° replaced with the category Whit(€) of Whittaker
invariants. For G = PGLq, any G((t))-category is generated (under the G((t))-
action) by its [p-invariants and its Whittaker invariants. One impetus for the
current paper was the observation (our Corollary 2.12) that this generation
statement holds for any group G once one replaces Whit(C) with the cate-
gories CKer+:0,

Lemma 3.11 is easiest, and it can be shown with a direct application of
Corollary 2.12. The proofs of the other two lemmas will require reworking each
step of the proof of 2.12 to apply in a new setting.
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4. Invariant subcategories

The goal of this section is to collect some results on invariant subcategories
of D?rftc kea(Grg) and Gerit- MOd eg naive- These results form the concrete input
needed for the proof of Theorem 3.10.

4.1. Iy-invariants. The following theorem is the main fact we shall need
about the behavior of I'Heckenaive o [ equivariant objects. It is essentially
the main theorem of [FG09]. However, [FG09] does not state their result in
terms of derived categories, so instead we use the phrasing of [Rasa].

THEOREM 4.1 ([Rasa, Th. 8.2.1], [FG09, Th. 1.7]). The functor I'Hleckenaive
mnduces a t-exact equivalence

Io,+

reg,naive

DHecke 3

crit

(Grg)* = Geris- mod
on eventually coconnective Iy-equivariant categories.

For the proof of Lemma 3.13, we will need a related statement adapted to
Gerit- MOdyeg. Because of the lack of an a priori G((t))-action, we cannot speak
directly of Iy-invariant objects in gerit- modeg. Even if we could, there would
be no convolution functor. Instead, as a proxy, we will look at the images of

. . . . . . Hecke;
convolutions with Ip-invariant objects in D~ *(Grg).

LEMMA 4.2. For any compact object G € D(G((t))/1o), the functor

FHecke(g * _) . DHeCkes(GI‘G)[O N @crit'mOdreg

crit
1s left t-exact up to shift.

Remark 4.3. The case of trivial G is Lemma 8.2.2 of [Rasa]. The proof we
give below is an adaptation of the one in loc. cit. to our case.

Proof. Choose an integer r for which the conclusion of Lemma 7.1 is sat-
isfied. We will show that I'Hecke(G x —)[r] is left t-exact. Because DIk

crit 18
right complete, it suffices to show that, for F € Dgff kea(GrG)IO’O, we have

FHECke(S *F) € (Gerit- modreg)zr.

I‘Hecke with FHecke,naive

Note that if we replace , we have

FHecke,naive(S % Srf) ~ 9 * FHecke,naive(:}r) c (acrit‘ mOdreg,naive)ZT

by Theorem 4.1 and Lemma 7.1. Thus, by Theorem 3.3, it suffices to show
that THecke(G « F) is eventually coconnective.

By Lemma 3.6 and Proposition 3.18 of [FG09], F can be written as a
filtered colimit of objects F; € Dgftc ey (Grg)'o¥ admitting finite filtrations with

subquotients of the form indHecke: (fﬂ"j)®opgg H;,jfor F; 5 € Dcrit(Grg)IO’Q and
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3 € QCoh(Opereg)O' It thus suffices to show that, for any ¢ and j, we have
PR (G ind"e%es (Fjj) @ H;j) € (Gerit- MOdreg) =",
reg
G

or equivalently, that THeke(G x ind"* (F; ;) @ e H; ;) is eventually cocon-
nective. ¢

As QCoh(OprCf;g)QQ is compactly generated, we can immediately reduce to
the case of H; ; coherent. And as Oprgg is an infinite-dimensional affine space,
any coherent sheaf is perfect. Therefore, to prove eventual coconnectivity, the
case of H;; coherent further reduces to the case where H; ; is equivalent to
the structure sheaf Ogres.

So we just need to show that

I—\Hecke(g * indHeCk% (527])) ~ FHecke(indHecke3 (9 * Sti,j))
o FIndCOh(GI'G, G x 3’2.,].)

is eventually coconnective. Applying Lemma 7.1 again, we see that G« J; ; €
Dait(Grg)Z". By Corollary 7.15.2 of [Rasa], T™4C°N(Grg, —) is t-exact, giving
the desired statement. U

4.2. (Kyry,0)-invariants. It will turn out that both Dg?fkeé(Grg) and
Gerit- MOdyeg naive are purely of depth zero, i.e., are equal to their depth < 0
truncations. By Theorem 2.5, this is equivalent to saying that for all x and r,
their (K, 4,0)-invariant categories are trivial.

The following lemma will help show this in both cases:

LEMMA 4.4.

(1) Let C be a G((t))-category purely of depth zero, with a right action of a
monoidal category A which commutes with the G((t))-action. Let B be an
A-module category. Then the category

CeB
A

s purely of depth zero.

(2) Let C be a G((t))-category purely of depth zero, with a right coaction of a
comonoidal category A which commutes with the G((t))-action. Let B be
an A-comodule category. Then the category

A
CB
s purely of depth zero.

Proof. Let us first treat the case of A monoidal. We would like to show
that

C® B)Kerte
(A )
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is trivial for any choices of  and r. But the operation of (K ,,o)-invariants
commutes with tensor products, so we have

(6 R 3)Km,r+7o o~ er,r+:O ® B
A A

20®B
A
=0,
as desired.
The case of A comonoidal proceeds similarly, as taking (K ,+,0)-invari-
ants also commutes with cotensor products. O
Hecke;

THEOREM 4.5. The category D (Grg) is purely of depth zero.

crit

Proof. Start by noting that D(G((t))/Ko,0+) is tautologically Ky o+-gen-
erated and hence purely of depth zero. As Kpyo4 is a normal subgroup of
Ko = G[[t]], with quotient G, we have

D(Grg) 2= D(G((t))/G[[t)]) = D(G((1)/ Koo+) = D(G((1))/Ko,0+) i Vect .

Thus, by the first part of Lemma 4.4, D(Gr¢) is purely of depth zero. As
D5 (Grg) = D(Grg) @ QCoh(Opi?),
Rep(G)

g?tc “(Grg) is purely of depth

zero, as desired. ([l

another application of Lemma 4.4 shows that D

Now we treat the case of gerit- mOdreg naive- We will need the following
special case of Theorem 4.3 of [Yan21], which computes the depth filtration on
/g\crit‘ mod:

THEOREM 4.6 ([Yan21, Th. 4.3, Case r = 0]). There is an equivalence of
subcategories

R R IndCoh* (Opy) =5
Gerit- Mod < = Gerit - mod ® IndCoh*(Opg— ),

o —

where Op§0 1s the formal completion of OpgSO inside Opg.
Properly equipped, let us proceed to the promised theorem.

THEOREM 4.7. The category ﬁcrit-mOdreg,naive is purely of depth zero.

—

Proof. Note that IndCoh*(Opgo) has a natural coalgebra structure. Fur-

thermore, as Opgeg C OpgSO,IndCoh*(OpEeg) is naturally a comodule over
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IndCoh*(Opgo). Thus, we can write

Yerit- mOdreg,naive

R IndCoh™ (Opg)
=ferit- mod ® IndCoh*(Op™*®)
IndCoh™(Opg) — IndCoh*(O/p?))
=(gerit- mod ® IndCoh*(Opg ™)) ® IHdCOh*(OpEeg)
IndCoh* (O/pg))
Sgerit-mod<g  ®  IndCoh*(Opy®).
The second part of Lemma 4.4 now implies the desired statement. O

5. Generation

5.1. Reduction step. As shorthand, we say that a (not necessarily fully
faithful) functor f : € — D between categories generates under colimits if the
essential image of f generates D under colimits.

LEMMA 5.1. Let C and D be two categories, and let f : € — D be a
functor between them. Then f generates under colimits if and only if the
quotient category; i.e., the colimit of the pushout diagram

C——D

|

0
is trivial.
Proof. 1t is well known (see, e.g., Lemma 1.1.5.4.3 of [GR17]) that f gen-
erates under colimits if and only if its (not necessarily continuous) right adjoint
ff is conservative. Conservativeness is equivalent to f® having trivial kernel,

and by Corollary 5.5.3.4 of [Lur09], the kernel of ff can be identified with the
quotient of f, giving the desired statement. (|

We will deduce Lemma 3.11 from the following auxiliary statement:

LEMMA 5.2. Let C,D be G((t))-categories, and let f : C — D be a G((t))-

equivariant functor. Then f generates under colimits if and only if the functors
fKI’T+7O . GKI’T+7O % 'DKTV"JFVO?
for all choices of r > 0 and x € X.(T) @ R, as well as the functor
flo el — plo,

all generate under colimits.



AFFINE BEILINSON-BERNSTEIN LOCALIZATION 507

Proof. First we show the “only if” direction. Let & be the quotient of D
by €. By Lemma 5.1, & must be trivial.

As the functor of Ip-invariants commutes with colimits, the quotient of D
by @l is €0, Similarly, the quotient of DEer+° by @K+ ig EKer+:° Since
€ is trivial, these quotients must also be trivial, and hence the corresponding
functors must generate under colimits, as desired.

Now let us show the “if” direction. Reversing the logic, we see that we
have

g~
and, for all » > 0 and z € X.(T) ® R,

EKIJ‘JIWO >~ O’

and we need to show that € = 0. But this is exactly the statement of Corol-
lary 2.12. ([

—_— —_—

5.2. The category /g\crit‘ mOdreg,naive- Recall that /g\crit‘ mOdreg,naive was pre-
viously defined to be the full subcategory of gerit- mOod,eg naive generated by
Gerit- modjeg’naive under colimits. We will need a few properties of this cate-

gory which were proven in [Rasa]. As the proofs would take us slightly afield,
we do not reproduce them here.

LEMMA 5.3 ([Rasa, Lemma 9.2.1]). There is a (necessarily unique) struc-
ture of G((t))-category on Gerit- MOdreg naive compatible with the inclusion into
/g\crit - mOdreg,naive .

LeEMMA 5.4 ([Rasa, Cor. 9.2.3]). The functor THeckenaive fctors through

Herit - mOdreg,naive .

LEMMA 5.5 ([Rasa, Cor. 9.2.4]). Let K C G[[t]] be a prounipotent group
K
K

reg,naive reg,naive

is the subcategory of Gerit- mod
K+

reg,naive”

scheme. Then Gerit- mod gener-

ated under colimits by Gerit- mod
We will also need one new lemma.

LEMMA 5.6. Choose v € X,(T) ®R and r > 0. Then

/—\_/Kmﬂ,.+7o

Yerit - mod

I

0.

reg,naive

Proof. Consider the map

NKQ:,T+7O

~ K. o
Gerit- mod s

= Gerit~ mOdreg,naive :

reg,naive

We will compute its kernel A in two different ways. (The kernel of a map
C — D is defined to be the pullback of € along the map 0 — D.) First, since
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the operation of taking (K, ,,o)-invariants commutes with limits, we have

~ ~ K 0
A= (ker Yerit- mOdreg,naive — Gerit™ mOdreg,naive) B,
As the map Gerit- MOdyeg naive — Gerit- MOdreg naive 1S the inclusion of a full
subcategory, it has trivial kernel, and so A must also be trivial.

On the other hand, Theorem 4.7 shows that gerit- modKI’”’O

reg,naive

= 0. Thus,

R —_—— z,’r+7o .
A can also be identified with gerit- mod,eg naive- Comparing these two compu-
tations, we get the desired equivalence. O

Now we are prepared to prove Lemma 3.11.

5.3. Proof of Lemma 3.11.

Proof. By Lemma 5.4, we know that the image of T'Heckenaive Jieq in

Derit- mOodreg naive- It Temains to show the generation under colimits.
For this, we apply Lemma 5.2. By Theorem 4.5 and Lemma 5.6, we have

o~ K10

Hecke K ~
D¢ *(Grg) "o 2 Gerig- mod

=0.

reg,naive

So the only statement remaining to be checked is that the functor

—1

Heck ~
D oc eé(Grg)IO — Bcrit™ mod

crit reg,naive

generates under colimits. This follows from the combination of Theorem 4.1
and Lemma 5.5. (]

6. Exactness

The goal of this section is to prove Lemma 3.12. We start by formulating
a general criterion for a G((t))-equivariant functor to be left t-exact.

6.1. Reduction step. We will use an analogue of Lemma 5.2. To state
it, let us note that for a G((t))-category C with a compatible t-structure,
Lemma A.13 constructs a t-structure on CKe.r+:°,

LEMMA 6.1. Let C,D be G((t))-categories equipped with compatible t-
structures, and let f : € — D be a G((t))-equivariant functor. Then f is
left t-exact if and only if the functors

sz,r+,O . GKZ’T+’O _) @Kz,r_‘_,O’
for all choices of r >0 and z € X.(T) ® R, as well as the functor
flo el — plo,

are all left t-exact.



AFFINE BEILINSON-BERNSTEIN LOCALIZATION 509

Proof. Let us quickly dispatch of the only if case. The left t-exactness of
f1ois clear, and the left t-exactness of f&#7+° follows from the commutativity
of the diagram

eKz,T+7O N 'DKZL‘,T‘+7O

| !

GKOC,T-Q- ® D((KTL’,T/KTL’,T"F)*’O) I DKI’T-'— ® D((KJT,"’/KJ?,T’“F)*,O)'

Indeed, the vertical arrows are conservative and t-exact by Lemma A.13, and
the bottom arrow is left t-exact by Proposition A.6.

Now we treat the (much harder) if direction. We will show that for any
choice of z € X,(T) ® R and r > 0, the functor fKzr+ : @Kot 5 DEart g
left t-exact. This implies that f is left t-exact. Indeed, for any object ¢ € €29,
we have

() = colim Oblv(AvE®™ f(c))
= colim Oblv(f5or+ (AvE®™* ¢)),

and the result follows from left t-exactness of Av,.
Our proof will be by induction. First we deal with the base case.

6.1.1. Depth zero. Assume r = 0. We will emulate the proof of Theo-
rem 2.11. Recall from that proof that any sufficiently small ¢ > 0 gives the
same subgroup Ky ¢5 0+, and that K504 is a conjugate of Ip. In particular,
the functor fl=+e.0+ is left t-exact.

Let N, denote the subgroup (K, 04+ (Pr NN((t))))/Kz o4 of Ly. Asin the
proof of Theorem 2.11, N, is a maximal unipotent subgroup of L,. We have an
equivalence @fe+eno+ 22 (CKz0+)Na  The left t-exactness of f5+0+ now follows
from the following purely finite-dimensional lemma (taking H to be L, and g
to be fHKezo+):

LEMMA 6.2. Let H be a reductive algebraic group over k, with Borel, Car-
tan, etc. subgroups denoted by By, Ty, etc. Let A and B be two H -categories
equipped with compatible t-structures, and let g : A — B be a H-equivariant
functor. If gNu : ANE — BNE 45 left t-exact, then g is left t-exact.

Proof. We argue via a sequence of commutative diagrams. They will im-
plicitly introduce some functors g;, which are all induced by g. First, examine
the diagram

(ANH)Tva 92 ; (BNH)TH:W

| |

ANHE g% BNH
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The vertical arrows are conservative and t-exact by part (4) of Lemma A.10.
As ¢y is left t-exact by assumption, we deduce that go is left t-exact.
Next, we have

(ANm)TIw @ QCoh(t°) —L— (BNm)Tmw @  QCoh(t;°)

QCoh(ty) QCoh(ty)
(ANH)TH:W 92 (BNH)TH:UJ.

By Lemma 2.10, the vertical arrows are conservative and t-exact. From the
previous diagram, we learned that go is left t-exact. Hence, g3 is left t-exact.

Now we use Lemma 2.8. Compatibility of I' with H-equivariant functors
gives commutativity of the diagram

(ANm)Taw @ QCoh(ty®) —F— (BNm)Tuw @ QCoh(t°)
QCoh(ty) QCoh(ty)

Ir Jr
AHw ® QCoh(ty®) —F— BHw ® QCoh(t°).
QCoh(t;// W) QCoh(t;// W)
Let « be an object in (Afw BQCoh(t; / /W) QCoh(t;’o))ZO. Then if we take y

to be 729 Loc z, we have
I'(y) 2T o72% 0 Loc(x)
206To Loc(x)

7204

12

1

x.

We can use this to calculate that g4(z) = g4(T'(y)) = T'(g3(y)). As g3 and
I" are both left t-exact, we see that

ga(z) € (BHw ® QCoh(t;;’o))ZO
QCoh(t;//Whr)

S0 g4 is also left t-exact, as desired.
The next diagram we consider is

AHw 95 y BHw

| !

AW @ QCoh(ty//Wy) —L— BHw @  QCoh(ty//Wg).
QCoh(ty) QCoh(ty)
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Again, we just showed that g4 is left t-exact. We showed in the proof of
Corollary 2.9 that the vertical arrows are conservative, and they are t-exact
by Lemma 2.10. So g5 is left t-exact.

The final diagram is

A—79 4B

| |

AHw 95 RHwW.

The vertical arrows are conservative and t-exact by Lemma A.10. Thus the
left t-exactness of g5 implies the left t-exactness of g : A — B, as desired. [

6.1.2. Positive depth. Now we treat the inductive step. Assume that for
all s <7 and z € X,(T) ® R, we know that f&=s+ is left t-exact. Now, fixing
a choice of x, we want to show that f&er+ is left t-exact.

There are two natural adjoint pairs

e CRertus = EKert z'@
and
jo : €fert 2 @Feree o

For any object ¢ € CX#r+ we have an exact triangle
. .l . .l . .l
Qe xieC — ¢ = jewjeC — dexipc[l].

We have analogous functors ip ., ete. As f is G((t))-equivariant, f&er+
intertwines the functors associated to € and D. Thus, we get an exact triangle

Z-D*fKI,v-+,HS(iéC) N fK“'*(c) N jD,*fK“””'+’°(jéC) s iD7*sz,T»+,HS(Z~!eC)[1].

In particular, to show that f is left t-exact, it suffices to show the same for
I« ofoii2 and jop . ofojé. By Lemma A.14, the functors i, and j' are t-exact,
and so their right adjoints ' and j, must be left t-exact. Thus, it suffices to
show that fKzr+° and f&er+U are left t-exact. We assumed that f&zr+° is
left t-exact, so we can restrict our attention to the case of f&Ker+:us,

More generally, for V' a quasi-projective variety mapping to (K, / Kz r+)*,
we can define a category

CRert)V = @Kars ® D(V)
D((Kz,r/Kaz,r+)*)
and a functor
fK:c,r+:V KtV DRV

via tensor product. Let U C V be an open subvariety with complement Z.
The above argument then shows that if f&=+U and fK=r+7 are left t-exact,
then so is fKer+V,
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By Lemma 2.7, (K, /K r4)*" is the union of a finite number of L -orbits.
We therefore can reduce the left t-exactness of f&=m+1 to the left t-exactness
of the functors f&=+0 for O an Lg-orbit in (Kypp/Kzry)™". Fix such an
orbit O.

Now, Lemma 2.6 tells us that there exist points p € O and y € X, (T) @R
such that K, C Ky, C K,, and p € (Ky,r/Kx’H)l. Note that we can
identify CEert (Ky.r/Kart) ™ with CKur, Indeed, we compute

eKar+ ® D((Ky,/Kypry)t) = QFart ® Vect
D((KI,T/K%T-F)*) D((Ky,r/Kx,r+)*)

> @Kar+ ® Vect
D(Ky,r/Kz,r+)
~ Ky,

This leads to a commutative diagram

ng:,r+,p - @Kx,r+7p

| |

Clyr — 5 DRy,
As Ky, = K, (,_¢)+ for sufficiently small € > 0, the inductive hypothesis
implies that the bottom arrow is left t-exact. The vertical arrows are fully
faithful and t-exact by Lemma A.14. Therefore, the top arrow, which can be
identified with f&=r+P is necessarily left t-exact.
Let Sp, be the stabilizer group of p with respect to the action of P, /K, ,4
on O. Then we claim that there is a canonical t-exact equivalence
D(Px/K:cm-i-) ® P o GK”C’""+’O-
SP
Indeed, by Lemma 6.3, for any P, /K, ,-category €, we have a t-exact equiv-
alence
D(Py/Kyry) ® (€ ® QCoh(p)) = €& ® QCoh(0).
Sp Kz,r/K:c,r-}— Kz,r/Kx,r+
To finish, consider the following commutative square:

eKz,r+7O 3 @Kz,r+ao

| |

CRertP @ D(Py/Kyyiy) — DEertP @ D(Pp/Kypy).

The vertical arrows are conservative and t-exact by Lemma A.13, and the
bottom arrow is left t-exact by Proposition A.6. Thus the top arrow, which is
given by fKer+:0 s left t-exact, as desired. O

O

In the above proof, we used the following lemma to relate C¥=r+© and

GKI,’I‘+7P:
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LEMMA 6.3. Let B be a finite type algebraic group, and let A C B be a
normal subgroup which is isomorphic to the algebraic group underlying a k-
vector space (which, by abuse of notation, we also denote by A). Let € be a
category acted on by B, and let p € A* be an additive character of A. If O
denotes the B-orbit of p inside A* and S, C B denotes the stabilizer of p, then
we have a canonical equivalence

E®DO)=(Dp)®E&)® D(B).
2 D(0) = (D) 9£) © D(B)
Furthermore, if € is equipped with a t-structure compatible with the B action,
then the above equivalence is t-exact.

Proof. 1t suffices to consider the universal case of € = D(B). We have a
diagram

D(0) ———— D(B) & D(B),

P

where the bottom arrow is the equivalence induced by the isomorphism
Bx*» B=BxO

sending (b1, b2) to (b1ba, (b2) ™! - p). The vertical arrows are fully faithful, and
it is straightforward to check that their essential images agree, giving us the
desired equivalence. As every arrow in the above diagram is t-exact, the t-
exactness of said equivalence also follows. ([

6.2. Proof of Lemma 3.12. Now that we have Lemma 6.1, it will not take
much to deduce Lemma 3.12.

Proof. Combining Theorem 3.9 with Theorem 3.3, we see that ['Heckenaive
is right t-exact. So it suffices to prove left t-exactness, which we do via
Lemma 6.1.

We need to show left t-exactness of the maps ( o and, for any
7 € X, (T)®R and r > 0, (T'HeckenaiveyKert.0 The case of (K 4, 0)-invariants
is trivial because

FHecke,naive )

Hecke; Kart,0 A
D (Grg) et =0

by Theorem 4.5. On the other hand, for Iy-invariants, the desired left t-exact-
ness follows from Theorem 4.1. O

7. Boundedness

This section is mainly concerned with Lemma 3.13. The proofs will be
similar to those in Section 6. First we will prove two helpful lemmas.
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7.1. Two auziliary lemmas.

7.1.1. Boundedness of convolution. The following lemma shows (under ap-
propriate hypotheses) that convolution is left t-exact up to shift. We actually
will not use it in this section (though it was used earlier in this paper.) How-
ever, it explains why the statement of Lemma 7.3 is reasonable.

LEMMA 7.1. Let K C G((t)) be a compact open subgroup, and let G be a
compact object of D(G((t))/K). Then there is some integer r such that, for
any G((t))-category C with a compatible t-structure, the convolution functor

Gx—:C—=0C
sends C=Y to =T,

Proof. This is essentially Lemma 9.2.2 of [Rasa]. We reproduce the proof
here.

By compactness of G, it is supported on some (finite type) subscheme
S C G((t))/K. Then G has a finite resolution by inductions ind(9;) of bounded
below ind-coherent sheaves G; € IndCoh(S)™. So we can assume that § is of the
form ind(§’). Without loss of generality, we assume that §’ € IndCoh(S)=".

The functors of strong convolution with ind(9’) and weak convolution with
G’ are canonically isomorphic. By Lemma 10.16.1 of [Rasc], weak convolution
with G’ is left exact, as desired. O

7.1.2. Boundedness and invariant categories. The other lemma we prove
will be used below in the proof of Lemma 7.3. It will allow us “deequivariantize”
boundedness statements on categories of weak invariants.

LEMMA 7.2. Let H be a finite type algebraic group, and let C be a category
with a weak H action and a compatible t-structure. Assume that we are given a
functor f: € — D with D a category with a t-structure. Then f is left t-exact
up to shift if and only if f o Oblv : C1W — D is left t-exact up to shift.

Proof. The only if case follows immediately from Lemma A.10. Let us
treat the if case. Taking an appropriate shift, we may assume that f is left
t-exact.

Let F be an object in €20, Identifying Oblv o Av1® with the convolution
functor Og * — : € — €, we have

f(Og «F) = f(Oblv(Aviv F)) € D=9,

using Lemma A.10 again. It follows that for any projective coherent sheaf M
on H, we again have

FOM*F) € D20
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As H is smooth, any coherent sheaf on H has a finite resolution by pro-
jective coherent sheaves. In particular, the skyscraper sheaf at the identity
(which we denote by 1p) admits such a resolution. Thus, we can conclude
that

fF) =2 f(lg*F) e DT
as desired. 0

7.2. Reduction step. Before stating the key lemma, let us introduce a con-
venient notational shorthand. Assume we have a functor f : € — D, where C
is a G((t))-category and D is any category. For K C G((t)) a compact open
subgroup and § a compact object of D(G((t))/K), we will write fg|x for the
functor f(G* —) : @K — D. When § is the skyscraper sheaf at the identity,
fs|x can be identified with the composition €% — € — D and will be denoted

simply by f|x-

LEMMA 7.3. Let C be a G((t))-category with a compatible t-structure, and
let D be a category with a t-structure. Assume that f : C — D is a functor
satisfying the following two properties:

e For any compact object G in D(G((t))/1o), fsl1, is left t-exzact up to shift.

e For any point x € X, (T) ® R, real number r > 0, and compact object
G € D(G((t))/Kyzr+), the restriction of fg|k to CKert:° s left t-exact
up to shift.

x,r+

Then for any compact open subgroup K C G((t)) and any compact object
G C D(G((t)/K), fs|k is left t-exact up to shift.

Proof. As every compact open subgroup contains some K, ,, it suffices
to show that each fg|x, ., is left t-exact up to shift for any » € X, (7)) ®R and
r > 0. We prove this by induction. At each step of the induction, it suffices to
show left t-exactness up to shift of f|f, .. Indeed, the case of fg|k, ., follows
by replacing f with fg.

Again, we will treat the base case and inductive steps separately.

7.2.1. Depth zero. For the base case, we use the same setup as in Sec-
tion 6.1.1. In that notation, we need to show the left t-exactness up to shift
of (€K=0+)Ne 5 D, Once again, taking H to be L, and g to be f| this
follows from a lemma on categorical representations of H.

z,0+ 7

LEMMA 7.4. Let H be a reductive algebraic group over k, with Borel,
Cartan, etc. subgroups denoted by By, Ty, etc. Let A be a H-category with a
compatible t-structure, B be a category with a t-structure, and g be a functor
A — B. If gg|n, is left t-exact up to shift for any compact § € D(H/Ny),
then g itself is left t-exact up to shift.
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Proof. We claim that we have a commutative diagram

(AHw ® QCoh(t;%))="

QCoh(ty//Wr)
lTZOOLoc
(AN)Tuw @ QCoh(t;?) —— (AVm)Tn
QCoh(t})
I
Atw @ QCoh(E) ————— A
QCoh(t;// W)
g
B,
where the functor from (AN#)TH:% to A is given by z — (Dy/n, N x)TH,

Indeed, to check the commutativity of the middle square it suffices to consider
the universal case of A = D(H ), where the commutativity follows by unwinding
the definition of T.

Note that we have

For2%Loc > 72%0 T o Loc & 720 =~ id

on (AW ®QCoh(t;/ /W) QCOh(t;’O))ZO. In particular, to show left t-exactness
up to shift of the composition

AHw ® QCoh(t;°) = A — B,
QCoh(t;//Wir)

it suffices to show that the composed arrow from top left to bottom right
lands in BT. As 72%0 Loc is left t-exact by definition and (AN#)TH-w ®QCoh(ty)
QCoh(t;’o) — (ANm)THw is t-exact by Lemma 2.10, we are reduced to showing
that (AN#)TH®w 5 B is left t-exact up to shift.

This functor is given by x — g((Dp/ny, A;H x)TH). As Ty is a torus, this
is a direct summand of the functor z + g(Dp/n,, N x), which is left t-exact

up to shift by assumption.
Next, recall that Lemma 2.10 gives us a t-exact adjoint pair

p* AW = g Hw ® QCoh(t;’o) D Dy
QCoh(t;/ /W)

Let us use this to show that A7 — B is left t-exact up to shift.
The Grothendieck-Cousin complex gives a finite resolution

Ot;//WH—> @ Er — @ Ep — o

z€ty / /Wi |codim z=0 zet;//W|codim z=1
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Here, for z a (not necessarily closed) point of t;//Wp, the sheaf €, is defined
to be the colimit

. . .l .
colim i, i}, Oy ) ywy, [codim ]
’ h

over the kth order neighborhood maps iy.

Thus, for any object F € (A7)0 to show that g(F) is bounded below,
it suffices to show that the g(€, ® F) are bounded below uniformly in x. Using
the above expression of €, as a filtered colimit, we see that it suffices to show
the same for each g(ik,*i}COt;//WH [codimz] ® F). And as each coherent sheaf

ik7*i}€Otg//WH [codim z] is an iterated extension of skyscraper sheaves at z, it in
fact suffices to show that the g(k, ® F) are uniformly bounded below.
Because t;’o — t;//Whn is faithfully flat, for any = € t//Wpy, there is a
Yy € t;;’o mapping to x. Fix such z and y. Then k, is a direct summand of
the pushforward of k,, and thus k, ® F is a direct summand of p,(k, ® p*F).
Therefore, it suffices to show that the g(p«(ky, ® p*F)) are uniformly bounded
below. Since we previously showed that g o p, is left t-exact up to shift, this
follows from the k, ® p*J being uniformly bounded below, which in turns
follows from the existence of bounded length projective resolutions of k.
Finally, we can apply Lemma 7.2 to deduce that g is left t-exact up to
shift, as desired. O

7.2.2. Positive depth. Assume that for all s < r and z € X, (T) ® R, each
fslx, ., is left t-exact up to shift. We need to show, for some fixed such z,
that f|r, ., is left t-exact up to shift. By replacing f with fg, our argument
will also show the left t-exactness up to shift of fs|r, ., .

For any quasi-projective variety V' mapping to (K, ,/K;,4+)*, there is a
functor

FlKppy v o € ® D(V) — D.
D((Kz,r/Kaz,r+)*)
Assume that U C V is an open subvariety with complement Z. Then, as in
the proof of Lemma 6.1, the left t-exactness up to shift of f|g, ., v is reduced
to the same property for f|x, ., v and f|k, ., z. Once again, this reduces the
desired statement to showing that f|g, . o is left t-exact up to shift for any
Ly-orbit O in (Kg,/Kgrq )",

By Lemma 2.6, there are points p € O and a y € X,.(T) ® R such that
Kort €Ky, C Kyp and p € (Kyy/Kypq )™ Then flk, ., p can be identified
with the composition

eKz,r+7p — GKI,T+7(Ky,T/K:E,’I‘+)J— o eKy,r N @j

which is left t-exact up to shift by Lemma A.14 and the inductive hypothesis.
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Let S, be the stabilizer group of p with respect to the action of P, /K, 4
on O. By Lemma 6.3, we have a t-exact equivalence

CHaort:0 =2 @Bert P @ D(Py /Kyt ).
P
Thus, it suffices to show that CKz.r+»P ®s, D(Py/Kyry) — D is left t-exact up
to shift.
First we show this for CKer+P @ D(P,/Kyr+) — D. Let F be an ob-
ject of (€Ker+P @ D(P,/Kyr+))T. By Lemma 11.2.4 of [Rasal, F lies in the
subcategory generated under finite colimits and direct summands by the object

(ideszrJr,p ®FlndCoh(Pm/Kx,7"+> —))(:‘F) X l)pﬁc/KI’rJr .

It thus suffices to show that
fDPx/KZ,TJr ((dery o @ macon (Pe/ Kt —))(F)) € DT
or, from the inductive hypothesis, that
(iderer i 0 ®Tmdcon(Pre/ Kayrg, —))(F) € (€KertP)T,

This is true as idgr, . » QI tmdCoh (Pr/ Kz r4,—) is left t-exact, which itself is
true because I'nacon(Pr/ Kz r+, —) is left t-exact and admits a left adjoint.

Now let G be an object in (CK+r+0)55. We would like to show that
f(G) € DF. To do so, we use a Grothendieck-Cousin argument as in the depth
zero case. Recall that we have a resolution

G- P &= Pp &

y€O0|codim y=0 y€O|codim y=1

This time, we will use the interpretation of €, as the D-module of delta func-
tions at y. Evidently, it suffices to show that the f(§® &,) are bounded below
uniformly in y.

Recall that we have adjoint functors

Obly : @Rar+P ® D(Py/Kypy) 2 CRortP @ D(Py /Kyt )+ Avs,
P
with Oblv t-exact. Pick some point z € P,/ K, ;4 with z-p = y. Then §®¢&, is
a direct summand of Av,(OblvG® E.), and so f(§® &) is a direct summand
of f(Av.(OblvS®E,)). As we previously showed that foAv, is left t-exact up
to shift, we are reduced to showing that the Oblv § ® €, are bounded below.
For this, we invoke Lemma 11.2.4 of [Rasa] again. We see that Oblv § lies
in the subcategory generated under finite colimits and direct summands by the
object

(ideKz,'r+1p ®F1ndCoh(Px/Kac,r+7 _))(Oblv 9) X DPw/Kz,hu



AFFINE BEILINSON-BERNSTEIN LOCALIZATION 519

so Oblv §® &, lies in the subcategory generated under finite colimits and direct
summands by the object

(ideKI,r+,p ®FIndCoh(Px/Kz,r+a —))(Oblv 9) X (DPx/Ka:,r+ &® Ez)

But as (Dp,/k,,, ® €) is uniformly bounded below, so is this object, and
thus so is Oblv§ ® &, as desired. O

7.3. Proof of Lemma 3.13. Lemma 3.13 now follows.

Proof. We need to check the conditions of Lemma 7.3. The statement on
(K4 r+,0)-invariants follows immediately from Theorem 4.5. And the state-
ment on Ip-invariants is just Lemma 4.2. [l

Appendix A. Tensor products and t-structures

As in the rest of this paper, all categories will be assumed presentable
and all t-structures will be assumed accessible, right complete, and compatible
with filtered colimits. We will often implicitly invoke 1.4.4.11 of [Lural, which
states that the data of an accessible t-structure on a presentable category C is
equivalent to the data of a full subcategory C=Y which is presentable, closed
under small colimits, and closed under extensions.? Furthermore, for any small
collection of objects of €, the category C=Y generated by them under colimits
and extensions is presentable (and thus defines a t-structure.)

A.1. Tensor product. Let € and D be two categories equipped with t-
structures. Then we can equip € ® D with a t-structure by defining (€ ® D)<°
to be generated (under colimits and extensions) by objects of the form ¢ X d,
with ¢ in €S0 and d in D=Y. This t-structure will be right complete and
compatible with filtered colimits by Theorem C.4.2.1 in [Lurb].

LEMMA A.1. Let € and € be categories equipped with t-structures and
let f:C — € be a right t-exact functor. Then, for any category D with a
t-structure,
fRidp:C®D - ®D

1s right t-exact.

Proof. We need to show that f ® D sends (€ ® D)=C to (¢’ @ D)=0. It
suffices to check that, for ¢ in €0 and d in D=0,

(f @idp)(c®d) = f(c)Rd e (€' @ D)=,
But this follows from the right t-exactness of f. O

2To avoid confusion, we note that we use the cohomological degree convention, while
[Lura] uses the homological convention. In particular, the category we call €= is instead
referred to as C>¢ in loc. cit.
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The stability of left t-exactness under tensor product is more subtle. We
start with a simple observation.

LEMMA A.2. Let C and € be categories equipped with t-structures, and
let f:C — € be aleft t-exact functor with a left adjoint f¥. Then, for any
category D with a t-structure,

fRidp:C®D = ®D
is left t-exact.

Proof. Recall that left t-exactness of f is then equivalent to right t-exact-
ness of f&. By Lemma A.1, fL®idy is right t-exact, so its right adjoint f®idqp
must be left t-exact, as desired. O

We will prove two other criteria for a tensor product to be left t-exact.
Both revolve around the following notion:

Definition A.3. Let D be a category equipped with a t-structure. We say
that the t-structure is compactly generated if D= is generated under colimits
by D=0 N De.

Example A.4. Let X be a quasiseparated scheme of finite type over a
field. Then the natural t-structures on QCoh(X), IndCoh(X), and D(X) are
all compactly generated. For IndCoh(X), this is because Coh(X) is closed un-
der truncations, and the case of D(X) follows as ind(IndCoh(X)<o) generates
D(X). For QCoh(X), this follows from a slight modification of the arguments
in [TT90].

For D a DG category and F € D¢ a compact object, we let DF : D — Vect
denote the induced functor Hom(F, —).

LEMMA A.5. Let C and D be DG categories with t-structures. Suppose
F e DN DV, Then the induced functor
ide®DF: C®D — C® Vect =C
18 left t-exact.
Proof. Note that the functors — ® F : Vect 2 D : DF are adjoint in the

symmetric monoidal 2-category DGCat. As — ® JF is right t-exact, we see that
DJF is left t-exact. The result now follows from Lemma A.2. (]

Our first left t-exactness criterion appears, e.g., as Lemma B.6.2 of [Ras21],
but we reproduce it here for the reader’s convenience.

PROPOSITION A.6. Let C and €' be categories equipped with t-structures,
and let f : € — € be a left t-exact functor. Then, for any category D with a
compactly generated t-structure,

f®idp :€@D =€ ®D

18 left t-exact.
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Proof. Let x be an object of (C ® D)=°. We would like to show that
(f ®idp)(z) € (€' ® D)20, or equivalently, that

Home gn(c ® d[1], (f ® idp)(z)) = 0

for all ¢ € =9, d € D=0,
Because the t-structure on D is compactly generated, we can assume that
d is compact. We compute

HOIH@/®D(C & d[1]7 (f b2y 1d®)<x))
=~ Home (c[1], (ide ®DF) ((f @ idp)(z)))
= Home (c[1], f((ide @DF)(x))).

Combining Lemma A.5 with the left t-exactness of f, we see that this
Hom space is trivial, as desired. O

The other left t-exactness criterion appears below as Proposition A.9. We
first need a preliminary lemma.

LEMMA A.7. Suppose D is a DG category with a compactly generated
t-structure.

Let DV C DV denote the subcategory generated under colimits by objects
of the form DF for F € D¢ N DY,

Then X € DV lies in DV if and only if the functor X\ : D — Vect is left
t-ezact.

Proof. Recall that the functor D%°P T2BI, DV extends to an equivalence

Ind(D%P) =2 DV. We wish to show that our left t-exact A lies in the subcat-
egory Ind(D%P N D<YoP) C Ind(D*P) =2 DV. Concretely, this amounts to
showing that for any F € D¢ and any map « : DF — X\ € DV, there exist
Fo € D°ND=Y and a map B : Fg — T such that the map « factors as

pF 25 pF, — A

For this, recall that the map DF — X amounts to a point a € Q®°\(F).
As )\ is left t-exact, the map Q®°A(7=°F) — Q®\(F) is an isomorphism. Now
write 7S0F as a filtered colimit colim; F; with F; € D¢ N D=Y: we may do so
because the t-structure is compactly generated. Then the point o comes from
a point o; € Q®°\(F;) for some i; taking Fy := F; yields the claim. O

COROLLARY A.8. Suppose D is a DG category with a compactly generated
t-structure and C is a DG category with a t-structure. Suppose X : D — Vect
18 left t-exact.

Then the induced functor

(ide®\) : €® D — € ® Vect = €

18 left t-exact.
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Proof. By Lemma A.5, the result is true in the special case A = DF with
F € D°N D=V, By Lemma A.7, any left t-exact A can be written as a filtered
colimit of functors of this form. As our t-structures are assumed compatible
with filtered colimits, left t-exact functors are preserved under filtered colimits.
This yields the claim. U

ProOPOSITION A.9. Suppose Dy and Ds are DG categories with compactly
generated t-structures, and let € be a DG category with a t-structure.
Suppose F' : D1 — Do is left t-exact. Then the induced functor
ide®F : C® D1 — C® Dy
18 left t-exact.
Proof. Suppose § € (€ ® D1)>? is given. We wish to show that
(ide ®F)(9) € (C® Da)”".

Equivalently, as the t-structure on Dy is compactly generated, it suffices to
show that for € D§N DQSO and H € €=, we have

Homegp, (HX ¥, (ide ®F)(9)) = 0.
As in the proof of Lemma A.5, we may rewrite the left-hand side as
Home (H, (ide ®DF) o (ide ®F)(5)) = Home(H, FY(DF)(9)).
Observe that FV(DF) = DF o F : Dy — Vect is left t-exact as F is left t-

exact and F is connective. Therefore, FV(DJF)(G) € €>° by assumption on .
Therefore, as H € €=, the above term vanishes as desired. O

A.2. Compatible t-structures. Let H be an affine algebraic group (in par-
ticular, of finite type). Following Appendix B of [Ras21] and Sections 10.9-13
of [Rasc], we will introduce a notion of compatibility between a t-structure on
C and a H-action (strong or weak) on €. No originality is claimed for any of
the results in this section.

The key lemma is the following:

LEMMA A.10 ([Ras21]). Let C be a category with a weak action of H. As-
sume we have a t-structure on €. Then the following conditions are equivalent:
(1) The functor Oblvo Avy : € — C is t-exact.

(2) The functor coact : € — QCoh(H) ® € is t-exact.
(3) The functor act : QCoh(H) ® € — C is t-exact.
(4) The category CH admits a t-structure for which Oblv and AvY are t-

exact.
(5) The QCoh(H)-linear equivalence

QCoh(H)® € — QCoh(H)® €

induced by coact s t-exact.
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Proof. This is Lemma B.3.1 of [Ras21]. Let us reproduce the proof.
First, note that we have an adjoint pair

Py € = QCoh(H) ® C: pa

induced by the pullback and pushforward maps between Vect = QCoh(Spec k)
and QCoh(H). By Lemma A.1, both pj and ps . are right t-exact. The ad-
junction then implies that po . is also left t-exact, hence t-exact. Noting that
p2,x is conservative and that ps . o p; = O ® — is t-exact, we see that pj is
t-exact as well.

To prove conditions (1) through (4) are equivalent, we use natural isomor-
phisms

P2« © coact = act ops; = Oblvo Avy .

To see these isomorphisms, note that by a standard tensor product argument,
it suffices to check the universal case of € = QCoh(H), where the desired
isomorphisms follow as from the base change formula.

(1) < (2): As p2. is t-exact and conservative, we see that coact is
t-exact if and only if po . o coact = Oblvo AvY is t-exact, as desired.

(2) = (3): As act is right adjoint to coact, we see that act is left t-exact.
To show right t-exactness, it suffices to note that p3, viewed as a functor from
€=0to (QCoh(H) ® €)=Y, generates under colimits.

(3) = (1): Clear.

(3) <= (5): The equivalence of (5) intertwines p5 and coact, so (5)
implies (3). On the other hand, if coact is t-exact, it suffices to show that coact,
restricted to a functor C=? — (QCoh(H) ® €)=Y, generates under colimits. By
adjunction, this would follow if we knew act to be conservative and t-exact.
The t-exactness follows from (2) = (3), and to check conservativeness it
suffices to consider the universal case of € = QCoh(H), where it is obvious.

(4) = (1): Clear.

(1) 4+ (2) = (4): This is the hardest implication to prove. Recall that
CHw is the totalization of the cosimplicial category

€ = QCoh(H) ® € = QCoh(H) ® QCoh(H) @ €- - .

To construct a t-structure on CH%, it suffices to prove that all of the tran-

sition maps are t-exact. Consider a face map f : € ® (QCoh(H))" — C®
(QCoh(H))™!. We split into cases depending on the value of n.

For n = 0, there are two face maps, p5 and coact. By our assumptions,
both are t-exact.

Next, for n=1, there are three face maps, p5®idqcon(m), coact ® idqcon ()
and ide ® A, where A, is pushforward along the diagonal map A : H — HxH.
The first two maps are t-exact by Proposition A.6, and ide ® A, is t-exact by
Lemma A.2.
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Finally, if n > 1, then f is of the form g ® idgconm) for some face map
g:C® (QCoh(H))" ! - C® (QCoh(H))". Using Proposition A.6 again, this
case follows by induction.

By construction, Oblv is t-exact with respect to this t-structure. As Oblv

is conservative and Oblv o AvY is t-exact, we see that AvY is t-exact, as desired.
O

Definition A.11. Let C be a category with a weak action of H. A t-
structure on € is said to be compatible with the H action if it satisfies the
equivalent conditions of Lemma A.10. If € is instead endowed with a strong
H-action, we say that a t-structure on C is compatible with the H action if it
is compatible with the underlying weak H-action.

In the case of a strong action on C, note that the (strong) coaction functor
C — C® D(H) is still t-exact, up to shift. Indeed, the composition C —
C® D(H) — C® QCoh(H) is, up to shift, the weak coaction functor, which
is t-exact by assumption. On the other hand, as D(H) — QCoh(H) is exact,
conservative, and has a right adjoint, the same properties hold for C® D(H) —
C® QCoh(H), which together imply that € — C® D(H) is t-exact, as desired.
This allows us to show the following:

LEMMA A.12. Let C be a category with a strong action of H and a com-
patible t-structure. Then the invariant category CH has a natural t-structure
with Oblv : € — @ t-ezact.

Proof. This follows by the same logic as in the proof of (1) +(2) = (4)
in Lemma A.10. The only point requiring justification is the left t-exactness of
ide ®A,: C® D(H) - C® D(H x H), which is true by Proposition A.9. O

As a consequence of Lemma A.12, we can construct t-structures on H-
tensor products.

LEMMA A.13. Let C be a category with a right H-action, and let D be
a category with a left H-action. Assume both C and D are equipped with
compatible t-structures. Then C ®pg D has a natural t-structure, and there
is a natural t-exact functor CRy D — CR D.

Proof. Composing with the inversion map D(H) — D(H), we can make
C into a left H-category instead. Then € ® D has a left H x H action. We
claim that there is a canonical equivalence C @y D = (€ ® D), where the
H-invariants on the right-hand side is taken with respect to the diagonal copy
of H inside H x H. Indeed, there is an obvious such equivalence for ¢ = D &
D(H), and the general case follows by tensoring.

Thus to equip € ®y D with a t-structure satisfying the desired properties,
it suffices to show that the natural t-structure on € ® D is compatible with the
diagonal H action. In fact, it is compatible with the entire H x H action. To
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see this, we need to show that the functor
QCoh(H)® C® QCoh(H)®D - C® D

is t-exact. By assumption, the functors QCoh(H) ® € — € and QCoh(H)® D
— D are t-exact. As they are also right adjoints, Lemma A.1 and Lemma A.2
tell us that their tensor product is t-exact, as desired. O

Finally, following Sections 10.9-13 of [Rasc], let us say something about
the case where H is, rather than a finite type algebraic group, a Tate group
indscheme with prounipotent tail (e.g., G((t)).) As we will make only cursory
use of this material, our treatment will only be a sketch. In this case, com-
patibility with a weak H-action on € is defined to mean t-exactness of the
equivalence

IndCoh*(H) ® € — IndCoh*(H) ® €

intertwining act and po 4.

If € comes with a strong H-action, we impose one more requirement,
namely, that for all (or equivalently, one) prounipotent compact subgroups
K C H, K is closed under truncations. This is equivalent to the existence of
a t-structure on CX such that €% — € is t-exact.

A.3. Case of additive groups. Now take H to be a vector space V, treated
as an algebraic group with group structure given by addition. By the Fourier-
Deligne transform for D-modules, there is a t-exact equivalence D(V') = D(V*)
intertwining the convolution monoidal structure on the left with the ®' mon-
oidal structure on the right. In particular, if X is a variety mapping to V*,
there is a natural H-action on D(X).

We will be interested in categories of the form C ®4 D(X) for C a H-
category. Assume that € comes with a compatible t-structure, so Lemma A.13
gives a t-structure on C®py D(X). Furthermore, the proof of the lemma shows
that this t-structure is compatible with the H-action.

The main result of this section is the following:

LEMMA A.14. Assume that H corresponds to a vector space V', and let C
be a H-category with a t-structure compatible with the H-action. Let X be a
quasi-projective variety mapping to V*.

(1) Ifi: Z — X is a closed embedding, then ide @piy : C @y D(Z) — C®py
D(X) is t-ezxact.

(2) If 5 : U — X s an open immersion, then ide ®yj* : C @y D(X) —
C®u D(U) is t-exact.
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Proof. Let us first treat the case of closed embeddings. We have a com-
mutative diagram

G%D(Z) — G%D(X)

| |

C®D(Z) — €® D(X)

with vertical arrows conservative and t-exact. Thus, to show that the top
arrow is t-exact, it suffices to show that the bottom arrow ide ®i, is t-exact.
But this follows from Lemma A.1 and Proposition A.9.

Now we consider the case of open immersions. Again, we are reduced to
showing that ide ®j* is t-exact. And again, right t-exactness is automatic by

Lemma A.1, and left t-exactness holds because of Proposition A.9. U
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