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The ability to sequence single protein moleculesin their native, full-length form
would enable amore comprehensive understanding of proteomic diversity. Current
technologies, however, are limited in achieving this goal'?. Here, we establish a

method for the long-range, single-molecule reading of intact protein strandson a
commercial nanopore sensor array. By using the ClpX unfoldase to ratchet proteins
through a CsgG nanopore®*, we provide single-molecule evidence that ClpX
translocates substrates in two-residue steps. This mechanism achieves sensitivity

to single amino acids on synthetic protein strands hundreds of amino acids in length,
enabling the sequencing of combinations of single-amino-acid substitutions and the
mapping of post-translational modifications, such as phosphorylation. To enhance
classification accuracy further, we demonstrate the ability to reread individual
protein molecules multiple times, and we explore the potential for highly accurate
protein barcode sequencing. Furthermore, we develop abiophysical model that can
simulate raw nanopore signals a priori on the basis of residue volume and charge,
enhancing the interpretation of raw signal data. Finally, we apply these methods to
examine full-length, folded protein domains for complete end-to-end analysis.
These results provide proof of concept for a platform that has the potential to
identify and characterize full-length proteoforms at single-molecule resolution.

Annotating the complexity of protein variation is important for
understanding biological processes, identifying disease states and
developing effective therapeutics. Proteoform diversity refers to the
vast array of protein variations that can exist because of differences
in transcription, translation and post-translational modifications
(PTMs), which can occur through enzymatic (such as phosphoryla-
tion) and non-enzymatic (for example, spontaneous deamidation)
processes’. These variations occur independently and in combination
with each other onsingle protein molecules, creatinga‘PTM code’ that
has unique and specific roles in driving biological processes®®. The
ability to sequence single protein molecules in their natural, full-length
state could elucidate this proteoform diversity and its underlying
code. However, current methods, including Edman degradation and
mass spectrometry, have difficulty analysing full-length proteins
from complex samples and face problems with detection sensitivity,
dynamic range, analytical throughput and instrumentation cost'2. To
address these challenges, complementary or potentially disruptive
platforms for next-generation protein analysis and sequencing have
been proposed, including single-molecule fluorescence labelling and
affinity-based approaches’® . However, these emerging techniques
also have limitations compared with nanopore technology™, which
has the potential to achieve direct, label-free, full-length protein
sequencing®.

Nanopore technology consists of a nanometre-sized pore in an
insulating membrane that separates two electrolyte-filled wells'™.
A voltage applied across the membrane drives ionic current flow
through the nanopore sensor. When individual analyte molecules
pass through the pore, they can generate a detectable change in the
signal. This change can provide insight into the molecular nature of
the analyte. Although originally viewed, and now commercialized, as
atechnique for sequencing nucleic acid strands, nanopore sensing
has great potential for protein analysis'®". It has been used for the
discrimination of peptides and proteins'® %, the real-time measure-
ment of protein-protein® and protein-ligand interactions®, and
aptamer-mediated protein detection®®>!, Protein nanopores have
also shown promise in identifying amino acids and PTMs, such as
those involved in phosphorylation and glycosylation®, that serve
asimportant biomarkers of cell states and diseases. Previous studies
have demonstrated some ability to read DNA-conjugated peptide
strands using DNA-processive molecular motors, such as a helicase
or a polymerase®*3, Furthermore, rereading of peptide fragments
using this strategy have made it possible to resolve among a small
subset of single amino acid substitutions with high accuracy®. Despite
this progress, using nanopores to obtain sequence information from
intact, full-length proteins has been hindered by the difficulty of driv-
ing long protein strands through the sensor, owing to the neutrally
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charged polypeptide backbone, varying charge states of amino acid
side chains, and stable tertiary structures®.

To overcome the problems of reading full-length proteins, here we
have developed atechnique to reversibly thread long protein strands
into a CsgG pore*® using electrophoresis, and then enzymatically pull
themback out of the pore using the protein unfoldase and translocase
activity of CIpX*. Unlike the rapidinitial stage of threading the protein
into the pore using electrophoretic force, the unfoldase-mediated
translocation of proteins back out of the pore leads to slow, reproduc-
ible ionic current signals. This method has resulted in the processive
translocation of long proteins, enabling the detection of single amino
acid substitutions and PTMs across protein strands up to hundreds of
aminoacidsinlength. We have also developed an approachtoreread-
ing the same protein strand multiple times. Furthermore, this method
enables the unfolding and translocation of a model folded protein
domain for linear, end-to-end analysis.

ClpX-mediated proteinreading on an array

We and others have previously developed approaches to unfoldase-
mediated protein translocation through nanopores***, but these
methods required complex experimental set-ups and did not demon-
strate the single amino acid sensitivity required for sequencing. Inour
previous methodology, the unfoldase and its cofactors were located
inthe trans-side solution, opposite to the location of the protein sub-
strate addition*?>**, This set-up rendered the method incompatible
with commercial high-throughput nanopore sensor-array devices,
such as MinlON from Oxford Nanopore Technologies, which do not
allow accessto the trans compartment solution. To overcome the need
for trans motor addition, we designed a more streamlined two-step
process. First, the protein substrate is threaded into the nanopore
by electrophoretic force (cis-to-trans). Then, ClpX is added to the cis
solution to steadily pull the substrate protein back out of the pore
(trans-to-cis) (Fig. 1a).

We first synthesized a protein to evaluate this method. It comprised
anunstructured, negatively charged N-terminal sequence of 42 amino
acidsrichinglycine, serine and aspartic acid, to facilitate electropho-
retic capture in the pore, attached to a stably folded domain (Smt3).
This was followed by a short, positively charged sequence (an RGS
repeat) and a ClpX-binding ssrA tag at the C-terminal end (protein P1;
Supplementary Fig.1). The RGS and the folded domain were included
to inhibit complete translocation of the protein through the pore,
thereby preserving the accessibility of the ssrA tag in the cis compart-
ment. Afterintroducing P1linto aMinlONR9.4.1flow cellincorporating
aCsgG pore variant (Oxford Nanopore Technologies)*and applyinga
voltage of —-180 mV, we observed current blockades associated withthe
capture of the negatively charged protein tail in the pores. To test the
ability of ClpX to extract the captured protein from the nanopore, we
thenintroduced a buffer solution containing ClpX and ATP into the flow
cell. Under these conditions, we observed deepionic current blockades,
characteristic of capture of the substrate protein in the nanopore,
returning to the open channel state in a stepwise manner some time
after the addition of ClpX. We also determined that these events were
ATP dependentand occurred ataslower rate in the presence of ATPYS
(Extended Data Fig. 1), an ATP analogue that is more difficult for ClpX
to hydrolyse®. These results are consistent with our model that ClpX
wasbindingto the ssrA tagand translocating the captured protein out
of the nanopore with C-to-N-terminal directionality.

Ifthiswere true, we reasoned that mutationsin the tail domain of the
protein would induce alterations in the ionic current states observed
during ClpX-mediated translocation of the protein through the nano-
pore. To test this, we synthesized three new proteins (P2, P3 and P4),
each containing several tyrosine mutations at distinct positions of
the polyGSD sequence (Supplementary Fig. 1). To compare the signal
profiles of the four protein sequences directly, we created ensemble
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Fig.1|Nanopore proteinreading using an unfoldase. a, Schematic of the
cis-based unfoldase approach on the MinlON platform. The roman numerals
correspondtotheioniccurrentstatesinb.b, Example trace of protein P1.
Deep spikesinthe capturestate are hypothesized tobe transient structural
fluctuations of the Smt3 domaininthe pore. Stateiii canbe discerned froma
transientdropin current when the ClpX solutionisinitially loaded into the flow
cell.c,Ensemble traces for protein P1(blue, n =34) and mutants P2 (purple,
n=17),P3(orange, n=21) and P4 (red, n =12). Protein sequences are oriented
from Cto N, with all mutation regions shownin colour.

ionic current traces for each of these proteins, as shownin Fig. 1c (the
individual traces are in Supplementary Fig. 2). This revealed that the
main differences across the translocation signals corresponded with
the positions of the tyrosine mutations along the protein strands.
Moreover, comparingall-versus-all signal dynamic time warping (DTW)
distancesrevealed that the sets of translocation signals generated by
each unique protein sequence formed distinct clusters, differentiat-
ing them fromevery other protein. This was statistically supported by
permutational multivariate analysis of variance (PERMANOVA) with
P <1x10"*for each comparison after applying a Bonferroni correction.

Resolving CIpX steps and substitutions

After establishing acis-based ClpX approach, we next sought toinves-
tigate the sensitivity of this method to single amino acids as afirst step
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Fig.2|Characterizing single amino acid substitutions and ClpX stepping
inPASTORs. a, PASTOR sequence composition. b, Filtered nanopore current
trace of PASTOR-HDKER. Colour boundaries are defined by automated

YY segmentation.c, Top, anexample PASTOR trace. The red boxes show the
manually segmented YY dips. Bottom, the black horizontal lines denote the
mean of individual steps. d, Distribution of the mean number of residues per
stepineachoftheYYdips;n=776YY dips. e, Step dwell-time distribution.

f, Average signal trace for the transformed VRs of each amino acid after Euclidian
alignment of all the VRs equidistantly stretched to the same length. The VRs of
acharged aminoacid are shown as adashed line (n of VRs and experiments are
showninExtended Data Table1).

towards developing along-read protein analysis method. To do this,
we designed protein constructs with five repeating sequence blocks,
each containing 59 amino acids. These blocks were built with a base
sequence of glycine, serine, aspartic acid and glutamic acid (Fig. 2a
and Supplementary Fig.1). We introduced a single unique amino acid
mutation at the central position in each block and demarcated the
blocks with a double tyrosine mutation at each end. This spacing was
intended to avoid entanglement of the signal contributions from single
amino acid mutations by preventing them from occupying the pore at
the same time. This hypothesis was grounded on prior observations
indicating that around 20 amino acids can occupy the CsgG sensing
regionwheninastretched conformation*. We termed these strategi-
cally designed protein constructs ‘proteins for amino acid sequencing
through optimized regions’ (PASTORs). We synthesized a total of eight
different PASTOR variants, each containing a different sequence of
mutations. The PASTOR design allowed us to analyse up to five different
mutationsinasingle nanoporeread, and the total set of eight PASTORs
(CtoN:HDKER, GNQST, FYWCP, AVLIM, VGDNY, TWAFH, PRMQE and
KSILC) enabled us to investigate each of the 20 amino acids in two dif-
ferent PASTOR sequence contexts.

ClpX-mediated analysis of the PASTOR proteins manifested ionic
current traces containing repetitive patterns that resulted from the
seven YY mutations preceding the return to the open channel state,
seen as seven repeated dips in the signal (PASTOR-HDKER is shown
in Fig. 2b and the other PASTORSs are shown in Supplementary Fig. 3).
Between these dips, distinctive and reproducible variationsin theionic
current signals were observed, corresponding to the variable amino
acid mutation in each block. Using the consistent, substantial effect
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of the YY mutations, we segregated the current signals into regions
termed ‘YY dips’ and ‘variable regions’ (VRs) (Supplementary Fig. 4),
and used these patterns to scale and segment our signals (Methods
and Extended Data Fig. 2).

A close examination of the YY-dip signals revealed rapid, stepwise
changesinthe currentlevel, which we reasoned must be caused by sin-
gle ClpX substrate translocation steps (Fig. 2c). Previous estimates of
the step size of these movements vary: single-molecule tweezer experi-
ments suggested that ClpX translocates 5-8 amino acids per step*>*¢,
whereas structural studies on ClpX-related protein-remodelling
machines imply 2 amino acids per step**%. To determine the step
size of ClpX in our experiments, we analysed these YY-dip regions
using a segmentation algorithm (examples are in Supplementary
Figs.5and 6), filtering out dips with back-stepping or excessive noise.
By dividing the number of residues contributing to the YY dips by
the number of steps identified per YY dip (Methods and Extended
Data Fig. 3a,b), we determined that ClpX translocates an average of
approximately 1.96 residues per step (s.d. = 0.25; Fig. 2d). This was
confirmed by asecondary segmentation algorithmyielding a similar
mean of around 1.89 residues per step (s.d. = 0.28; Extended Data
Fig.3c-e). The dwell time of each step, capturing the duration ClpX
pauses between pulling events, had amean of 28.6 ms (s.d. =32.3 ms;
Fig.2e). Theseresultsareinstrong agreement with the step size of two
amino acids hypothesized from the structural studies, and indicate
that the tweezer experiments lacked the spatio-temporal resolution
to resolve individual ClpX steps.

After establishing the two-residue stepping behaviour of ClpX, we
shifted our focus to the VRs to explore theionic signatures of individual
amino acid mutations. Our analysis revealed thatin VRs with a neutral
amino acid mutation, there was anegative correlation betweentheionic
current levels and the volume of the amino acid (Fig. 2f and Extended
DataFig.4a). This observation supports a volume-exclusionmodelin
whichlargeramino acids block more current thantheir smaller counter-
partsdo. Interestingly, the VRs containing positively charged residues
(Kand R) decreased the current level below the baseline sequence,
whereas negatively charged residuesincreased it, diverging fromthe
volume-exclusionmodel. This effect was greater for negatively charged
residues than for positively charged ones. One possible explanation
for this is that the negatively charged residues resist translocation to
the negatively charged cis compartment, causing the protein strand to
stretch and thereby decrease the total volume of proteinin the pore.
Conversely, a positively charged residue would be attracted to the
cis compartment and could introduce upstream kinks in the protein
strand, adding to the protein volumein the pore. Theimpact onsignal
levels could also be attributed to variationsin solvation states and the
mobility of ions near the charged amino acids. We hypothesize that
some of the variability between VRs of the same amino acid can be
attributed to non-enzymatic PTMs, such as asparagine deamidation,
whichis discussed in Extended Data Fig. 4b-h, Supplementary Note 1
and Supplementary Fig. 7. Collectively, these results show that this
method is sensitive to single amino acid residues.

Sequence to nanopore signal modelling

Considering the relationship between the volume and the charge
of individual amino acids, and their effect on nanopore signals, we
developed a biophysical model designed to simulate nanopore sig-
nals from the amino acid sequence of a protein directly. This model,
which builds on previous findings*¢, determines a summation of the
volume and charge of amino acids in a moving 20-residue window,
applyingacentrally positioned negative parabolic weight (Extended
Data Fig. 5a-d). Extended Data Fig. 5e shows the signal generated
by our model for the PASTOR-TWAFH protein sequence aligned to
an actual nanopore trace of the same protein. Model signals for all
proteinsinthis study are shownin Supplementary Fig. 8. To evaluate



our model quantitatively, we computed the DTW distance between
the actualionic current traces and the model, and compared that with
the distribution of distances between the actual ionic current trace
and the model of random sequences. We found that, on average, the
model of the true sequence ranked in the top 0.3% of the best matches
(Extended Data Fig. 5f), which confirms that the signal agreement
observed in Extended Data Fig. 5e was not caused by artefacts from
DTW alignment. This reinforces the assertion that our model has the
capacity tosimulate these current traces accurately in these sequence
contexts.

Building a single-molecule aminocaller

Sequencing synthetic protein constructs such as PASTORs could serve
diverse technological applications, including protein barcoding***. We
addressed this by initially training machine learning models to identify
the single mutation presentin a VR. This process consisted of filtering
and scalingeach of the raw signal traces, followed by segmentation of
the VR signal regions (Fig. 3a). To featurize the VR signals, we used a
combination of manually curated features and DTW-distance features
(Methods). We next explored several classical and deep machine learn-
ing models and found that random forests most frequently achieved
the highest accuracy. All classification analyses were then done witha
hyperparameter-tuned random forest evaluated onafixed held-out test
set, unless otherwise specified. We first evaluated the discrimination
of all pairs of amino acids (Fig. 3b and Extended Data Fig. 6a). Pairs of
amino acids with dissimilar volumes, or in which one was negatively
charged, achieved the highest accuracy classifications. For example,
tyrosine versus aspartate exhibited 100% discrimination accuracy.
Some pairs of amino acids, such asleucine and isoleucine, proved to be
more challenging, owing to their inherent physico-chemical similari-
ties. Amino acids with high variance signals, such as cysteine, were also
more difficult to distinguish from others. We then moved to training
models to classify among particular sets of three amino acids (for exam-
ple, G, Y and D) in which the model achieved 95% single-read accuracy.
Expandingthisto 5-way classifications (for example, G, V,W,Rand D),
the model maintained high performance, achieving anaccuracy rate of
86% (Extended Data Table 2 and Extended Data Fig. 6b). In the most chal-
lenging task, a 20-way amino acid classification, our top-performing
model substantially outperformed a dummy classifier, obtaining an
accuracy of 28% compared with just 5.5% for the dummy. When we
considered top-N accuracy measurements, our model attained 67%
accuracy for top-5and 81% for top-8 accuracy in the 20-way classifica-
tion task (Extended Data Fig. 6¢).

Building on these results, we integrated our classifiers downstream of
the PASTOR segmenter to develop anend-to-end PASTOR ‘aminocaller’.
We then amino-called aset of PASTOR reads from the classification test
set (Fig. 3c and Supplementary Fig. 9). Overall sequencing accuracy
per read averaged about 62% and 42% for the HDKER sequence, and
roughly 51% and 21% for the AVLIM sequence, using 5-way and 20-way
classification models respectively.

Unfoldase slip sequence enables rereading

After developing the aminocaller, we aimed toimprove the accuracy of
our single-molecule sequencing approach by developing amethod to
reread single protein molecules. A previous study suggested that ClpX
may have difficulty gripping particular polypeptide sequences, such
aspolyproline, on which the CIpXP complex showed slow degradation
rates*’. This prompted us to hypothesize thatincorporating a‘slippery’
amino acid sequence near the N terminus of a PASTOR would induce
ClpXtomomentarily loseits grip of the strand (Fig. 4a). Consequently,
the substrate protein would be free to rethread into the pore by elec-
trophoresis. Rethreading would stop enzyme-mediated translocation,
anditwould resume once ClpX regainsits grip on the substrate. To test

Predictions with
confidence

a Raw signals Transformed signals Features

T

~

U EEEEE——
YY segmentaton 5
Feature extraction

Variable regions

40

gzg ;‘.MU/\JWAM .

Mean,

current

median, D:77%, K:41%,
pairwise DTW E: 11.9%, ¥: 15%,
S:2.2%, R:12%,
distance, etc. etc. B etc. 0
(dimensions =72) . 64%, R:77%,
:18%, Y:5.6%,
:3.7%, T:2.3%,
etc. etc.

325
- >
Identify

translocations

cwow

Transformed

Transformation:
filtering and scaling

b Accuracy (%) 9 &
100 5 ‘ o)
v 2 o
(O e

A2 %

Classification
with ML model

¢ PASTOR YY~H-YY~D~yY~K-yY~E~YY~-F~yY

Top box:

~ =29 amino acid linker rank of correct

K E R 80% label in 5-way

classification

[ “M V\ E R 60% predictions
1
60%

R R N >

" 40%  Top box 3

Bottom 4

R 80% box 5

60% Bottom box:
o rank of correct

20% classification

A E ° predictions

80% 1

R E R ° = 3

f\-vvf\ 5 80% 5

7

K E R 80% 9

1
J M E R 80% 13
15
K 17
M 19

M Q
R K E E R 40%

40%

Fig.3|Single-molecule nanopore sequencing of single amino acid
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VRs and experimentsisshownin Extended Data Table1). ¢, Example sequencing
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this strategy, we constructed a new PASTOR (PASTOR-reread) with
two important sequence features: first, a proline-rich ‘slip’ sequence
repeat (EPPPP); positioned near the N terminus; and second, VRs sepa-
rated by anincreasing number of tyrosine residues, ranging from two
to five (Supplementary Fig. 1). We reasoned that the distinct current
levels that our signal-to-sequence model predicted for each of the
repeats would enable us to estimate the slip distance (Supplementary
Fig. 8).Indeed, nanopore signals produced by PASTOR-reread gener-
ally exhibited repeated signal patterns that closely aligned with our
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model’s prediction before returning to the open channel state (Fig. 4b
and Supplementary Fig. 10). By using the tyrosine repeat regions as a
measure of slip length, we observed that slipping distances were usually
either short ranges (50-100 amino acids) or extended across the entire
PASTOR unstructured region (more than 300 amino acids), account-
ing for roughly 40% and 30% of all rereads, respectively (Extended
Data Fig. 7a). The effect of ClpX concentration on slipping distance
and frequency is discussed in Supplementary Note 2 and Extended
DataFig.7b,c.

We next investigated the potential of single-molecule rereading
for increasing sequencing accuracy. Using a simulation discussed in
Supplementary Note 3, the accuracy for the 20-way amino acid clas-
sification taskimproved from 28% to 61% (compared witha 5% random
baseline) with10 rereads (Extended DataFig. 7d). Likewise, the accuracy
fora7-way classification task improved from 66% to 99% (against a14%
random baseline).

Simulating protein barcode sequencing

Having determined the capacity for high-accuracy sequencing through
PASTOR rereading and the ability to design PASTOR proteins with
customizable VR sequences, we simulated the PASTOR VR sequence
space with varying constraints, with a view to applicationsin protein
barcoding. Onthe basis of the accuracy rates of our models (Extended
DataFig.7d), we computed the number of distinct barcodes that could
be generated at a given accuracy level. This calculation considered
varying degrees of rereading and two different VR segment numbers
per protein barcode (five and ten VRs). For example, our findings
indicate that with ten VRs and ten rereads, it is feasible to generate
libraries of more than 1 million or 1billion unique PASTOR barcodes
thatare decodable withasingle-molecule accuracy of more than 95%
or more than 81%, respectively (Extended Data Fig. 7e and Supple-
mentary Table1).
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Monitoring and mapping enzymatic PTMs

Demonstrating the ability to detect and map phosphorylations across
long protein strands would be animportant step towards developing
atechnology capable of identifying distinct full-length proteoforms.
To do this, we focused on two serine/threonine protein kinases with
distinct recognition motifs: protein kinase A (PKA), which recognizes
the canonical motif RRXS, and casein kinase Il (CKII), which targets
the sequence SXXD/E*. To see if we could effectively characterize the
differential activity of these two kinases using our nanopore reading
approach, we designed a new substrate, PASTOR-phos (Fig. 5a and
Supplementary Figs.1and 11). In this design, we inserted the substrate
peptide LRRASLG (‘kemptide’) of PKAinto one of the VRs, making it spe-
cific for recognizing the kinase®. To investigate CKIlin PASTOR-phos,
we used the original 29-amino acid linker sequences from the PAS-
TOR, which inherently contain a CKIl motif, while reducing the total
number of VRs.

Afterincubating PASTOR-phos with PKA for1 h, we performed nano-
pore analysis, which found a substantialincreaseinionic currentin 91
ofthe 92reads (98.9%) in the kemptide VR compared with the baseline
(Fig. 5b and Extended Data Fig. 8a). This increase in ionic current is
consistent with expectations for the negatively charged phosphoser-
ine, which carries a charge of -2, to enhance ionic flow. Conversely,
361ofthe 368 non-kemptide VRs and linker sequences (98.1%) showed
no substantial signal changes. These results are consistent with PKA
activity being specific to the RRXS motif.

When the same substrate (PASTOR-phos) was treated with CKII for
1h, we observed high read-to-read variability manifested by large
increases in current levels that were found to be concentrated in the
eight linker sequences containing the CKII phosphorylation motif
(Fig.5a). The maximum peak transformed current of the VRs and linker
sequences incubated in CKIl showed a significantincrease compared
with that of the PKA and the no-kinase (blank) and incubation condi-
tions (Extended Data Fig. 8a). This indicates that the method can dis-
cernsite-specific phosphorylation events, demonstrating specificity to
CKILI. Interestingly, asmall portion of linkers had signal increases much
higher than the others, indicating that they were being phosphorylated
to a greater extent (Fig. 5a and Extended Data Fig. 8a). Analysis of the
phosphorylated linker sequence revealed that phosphorylationat the
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initial motifinduces the formation of a secondary CKII motif, SXXpS,
which has been described previously*®. We hypothesized that the link-
erswith much higher signal levels were phosphorylated atboth serine
positions. To test this, we reasoned that extending theincubation time
of CKllwiththe substrate should increase the frequency of both single
and, consequently, double phosphorylation events. Supporting this
hypothesis, data from PASTOR-phos after a26-h incubation revealed
increased occurrences of both putative single and double phosphoryla-
tions in the linker sequences (Extended Data Fig. 8b,c).

Given the abundance of potential CKIl phosphorylation sites in
the PASTOR-phos sequence, numerous combinatorially unique pro-
teoforms are possible (a total of 13,122). To map our reads to these
various modified forms, we integrated phosphoserine into our
sequence-to-signal model (Methods). This approach allowed us to
align nanopore traces with the predicted sequence-to-signal profiles
for each phosphorylation state across all VRs and linkers, as shown
in Supplementary Fig. 12. Consequently, we identified and quanti-
tatively assessed more than 100 distinct full-length proteoforms
of PASTOR-phos, across reads obtained from the baseline, PKA and
CKIl experiments (Fig. 5¢, Supplementary Fig. 13 and Supplementary
Tables2and 3). For example, the 26-h CKllincubation resulted in single
molecules containing as many as nine phosphorylated residues.

Processive reading of folded domains

Progressing beyond synthetic, unstructured sequences, we next evalu-
ated the effectiveness of our cis-based unfoldase method on protein
sequences that contain a folded domain. For this purpose, we ana-
lysed a PASTOR protein with the titin 127,,;, domain, which consists of
89 amino acids arranged into 8 B-strands®, inserted into the third VR
position (PASTOR-titin; Supplementary Fig. 1). Unlike unstructured
proteins, nanopore traces of PASTOR-titin yielded an initial two-step
electrophoretic nanopore capture state, indicating that the folded
titin domain was first captured on the nanopore at state ii and then
electrically unfolded at transition state iii to produce the typical PAS-
TOR capture signal at state iv, manifested by the Smt3 domain on the
pore (Fig. 6a and Extended Data Fig. 9a). After adding ClpX to the cis
compartment, we observed a translocation signal corresponding to
the leading VRs and YY regions, which are tethered to the C terminus

traces of titin translocation (state vii), with black horizontal lines denoting the
mean of individual putative ClpX steps, found with the Bayesian segmentation
algorithm (Methods).

ofthe titin domain (state v). Subsequently, we observed a distinct and
deepblockade state that we interpreted as ClpX attempting to unfold
the titin domain (state vi), which presumably refolds in the trans com-
partment after the initial translocation. This deep blockade state often
reverted back to the previous state, indicating an unsuccessful ClpX
unfolding attempt andindicating that ClpX slipped back on the protein
strand®>**, After a successful unfolding attempt, we observed putative
translocation of the titin domain (state vii; Fig. 6b and Supplementary
Fig.14). In the titin translocation signal, individual ClpX steps could
be seen (Fig. 6¢). After translocation of the titin domain, we observed
characteristic signal features corresponding to the downstream VRs
and YY regions (state viii) before transitioning back to an open-pore
state (state ix).

To confirm our understanding of the unfolding and transloca-
tion states, we performed experiments using a variant of titin 127
(PASTOR-D-titin) with a destabilized tertiary structure, introduced
through double-point mutations (C47E and C63E) on two buried
cysteines**2, Comparing PASTOR-D-titin (Extended Data Fig. 9b)
with PASTOR-titin allowed us to explore the effect of the tertiary
structure of titin on the resulting current signals. This generated
two notable differences: first, PASTOR-D-titin displayed unique sig-
nal features at the putative unfolding state vi, indicating structural
disparities between the two variants; and second, states v and vi
were observed only once in PASTOR-D-titin before the presumptive
translocation state vii, in contrast to PASTOR-titin in which they were
typically observed multiple times, leading to a substantial difference
between the distribution of the unfolding times of PASTOR-titin and
PASTOR-D-titin (Extended Data Fig. 9¢). These differences can be
attributed to the more stable, unfolding-resistant titin domain of
PASTOR-titin compared with that of PASTOR-D-titin. In PASTOR-titin,
repeated observations of states v and vi, which were not present for
PASTOR-D-titin, support the conclusion that they result from unsuc-
cessful unfolding attempts and ClpX back-slipping events triggered
by the stable titin domain. Also, despite their dissimilar structural
stabilities, PASTOR-titin and PASTOR-D-titin demonstrated similar
signals during the putative translocation state vii (Extended Data
Fig.9d-f). This similarity reflects their nearly identical primary amino
acid sequences. The observation of similar signals at the proposed
translocation state vii between PASTOR-titin and PASTOR-D-titin,
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despite their differencesin structural stability, underscores the role of
the primary amino acid sequencein this process. Itindicates that the
primary sequence is the main determinant of the translocation signal
through the nanopore, whereas structural variations have greater
influence on the preceding unfolding state.

We next tested PASTOR constructs with the amyloid-f3 protein1-42
(PASTOR-AB42) and its shorter derivative 1-15 (PASTOR-AP15), which
have distinctamino acid sequences and lengths from the titin domain.
Wereasoned that AB42 and AB15 would generate brief unfolding states
because they are partly but not fully structured in their monomeric
forms®. As expected, after nanopore analysis they yielded ionic current
traces similar to PASTOR-D-titin overall but with distinct features in
unfolding state vi (Extended Data Fig. 9g and Supplementary Fig. 14).
Furthermore, comparing their putative translocation states (state vii)
using DTW distance, we observed that the signals generated by
PASTOR-AB42 and PASTOR-A15 share similarities to, but are distinct
from, signals generated by PASTOR-titin and PASTOR-D-titin (Extended
DataFig. 9d-f), reflective of the translocation state being depend-
ent on protein primary sequence. Overall, the dwell times of these
different states also correspond well with their respective sequence
lengths across all the PASTOR proteins, indicating a translocation rate
of around 63 amino acids per second (an average dwell time of about
16 ms per amino acid) (Extended Data Fig. 9h). This is close to previ-
ous estimates of ClpX translocation speed and the observation that
therate of ClpX-mediated protein translocationis relatively constant
regardless of protein sequence®*,

Finally, we assessed our predictive model using these proteins.
Because the model does not factor in the signal features linked with
unfolding, we analysed the signal segment after the unfolding state
until the completion of the translocation (states vii-viii). Using the
same comparison technique as previously implemented for the PAS-
TOR proteinmodels, we found that the average model of the PASTORs
containing folded domains ranked inthe top 0.04% of the best matches
(Extended DataFig. 9i). This evaluationis evidence that our model can
adequately simulate these current traces in the specified sequence
contexts.

Discussion

We haveintroduced anew approach for single-molecule reading of long
protein strands using nanopores and an unfoldase motor protein. This
method achieves single-amino-acid sensitivity and demonstrates the
capability toreread and sequence amino acid substitutionsin defined
sequence contexts across long protein strands. This could immediately
advance protein barcoding technology, as we project the ability to
design libraries of synthetic peptide sequences (more than 1billion).
Moreover, we applied our method to detect and map the activities of
distinct kinases, achieving site-specific detection of enzymatic PTMs
along extended protein sequences and the relative quantification of
more than100 putative proteoforms of a single synthetic protein sub-
strate. Theimplications and challenges of PTM detection are outlined
in Supplementary Discussion 1.

We also established that ClpX translocates proteins through the
nanopore in a stepwise manner, in agreement with structural studies
that suggested a fundamental step size of two amino acids. We then
laid the groundwork for a biophysical model capable of simulating
nanoporesignals that are generated whenindividual protein sequences
are pulled through the nanopore by the unfoldase. This result could
eventually enable a‘lookup table’ approach reminiscent of mass spec-
trometry, facilitating full-length, single-molecule proteinidentification
and fingerprinting (Supplementary Discussion 2). However, further
work is needed to explore more native protein sequences. Further-
more, directly determining amino acid sequences from the nanopore
signal (de novo sequencing) will be even more difficult and will require
extensive datasets for training de novo amino acid callers.
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Finally, we have demonstrated the full-length reading of a model
folded protein domain, which is an important result as we move
towards reading natural protein molecules. In the present system,
electrophoretic protein unfolding (cis to trans; state iii in Fig. 6a)
and ClpX-mediated protein unfolding (¢rans to cis; state vii in
Fig. 6a) are key to achieving full-length folded-domain analysis. It is
likely that some protein domains will exhibit greater resistance to
unfolding than the substrates explored in this study. In such cases,
extra strategies could be used to facilitate unfolding, such as the
use of denaturants and electro-osmotic flow*. As we begin to turn
our attention to natural proteins, this methodology will require
synthetic N- and C-terminal sequences that can be appended using
existing terminus-specific chemical-conjugation techniques®*"8
(Supplementary Discussion 3).

One factor that currentlyimpedes data collection throughputis the
two-step flow cell loading process. Looking ahead, we can imagine a
system that operates continuously, with the unfoldase prebound to
the protein analyte but prevented from initiating unfolding activity
until the protein strand is captured by the pore. This method, which
mirrors strategies developed for the nanopore sequencing of DNA>’,
has the potential to greatly increase throughput. There are challenges
with experimental yield (Extended Data Fig. 10 and Supplementary
Discussion 4) and read-out accuracy, particularly for domains with
secondary structure (Supplementary Discussion 5), and these can be
addressed in future work. In conclusion, this work serves as a stepping
stone towards full-length protein identification, capable of achieving
the highest level of proteoform resolution. Furthermore, it promises
immediate advances, particularly in the context of protein barcoding
and PTM-monitoring applications.
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Methods

Expression and purification of proteins

Plasmids for analyte proteins were constructed using gBlocks (Inte-
grated DNA Technologies) inserted into the pET-49b(+) plasmid
(Novagen), with a dihydrofolate reductase domain, a polyhistidine
tag and a TEV cleavage site upstream of the sequence encoding an
analyte protein. The NEBuilder HiFi DNA assembly and Q5 site-directed
mutagenesis kits (New England Biolabs) were used for plasmid con-
struction. Cloning was done using NEB 5-a-competent Escherichia coli
cells. Plasmid sequences were verified by Sanger sequencing through
Genewiz. Protein expression was induced overnight at 30 °C with BL21
(DE3) E. colicellsin Overnight Express Instant TB medium (Novagen).
Proteins were purified by immobilized metal affinity chromatography
(IMAC) with TALON metal affinity cobalt resin and its associated buffer
set (Takara), following the manufacturer’s instructions. Proteins were
cleaved with TEV protease (New England Biolabs) and further purified
byreverse IMAC. Purified proteins were concentrated using ultracen-
trifugal filters with a 10 kDa cutoff (Amicon) and stored in the short
termat4 °Corinthelongtermat-80 °Cuntil use.

A covalently linked hexamer of an N-terminal truncated ClpX vari-
ant (CIpX-AN,)*° was prepared using the BLR E. colistrain as described
previously*®. Inbrief, cells were grown to an optical density at 600 nm
(ODgq) of around 0.6 in LB medium and thenincubated in the presence
of 0.5 mM isopropyl 3-D-1-thiogalactopyranoside (IPTG) at 23 °C for
about 3 h to induce ClpX expression. ClpX was purified by IMAC and
anion-exchange chromatography. Purified ClpX was stored at —80 °C
insmall aliquots until use. ClpP expression wasinduced atan OD,, of
around 0.6 with 0.5 mMIPTG at 30 °C for about 3 h*3. CIpP was purified
by IMAC and stored at —-80 °C until use.

PTM assays

For asparagine deamidation, protein (around 1 mg ml™) wasincubated
overnight in 100 mM sodium bicarbonate buffer (pH 9.6) at 25°C to
catalyse deamidation. For protein phosphorylation with kinase, pro-
tein wasincubated with either 50,000 units per ml PKA (New England
Biolabs) or10,000 units per ml CKII (New England Biolabs) in a protein
kinase buffer (10 mM MgCl,, 0.1 mM EDTA, 2 mM DTT, 0.01% Brij 35,
260 pM ATP and 50 mM Tris-HCI, pH 7.5) at 30 °C. The protein solu-
tion was used for nanopore analysis immediately after the incubation
without purification.

MinlON experiments

All the experiments were done on the MinlON platform using R9.4.1
flow cells. Run conditions were set with a custom MinKNOW script
(available from Oxford Nanopore Technologies) at a temperature
of 30 °C and a constant voltage of -140 mV with a 3 kHz sampling
frequency, except for initial proteins P1-P4, for which runs were
performed at a constant voltage of -180 mV with a 10 kHz sampling
frequency. Using the priming port, flow cells were first washed with
1 ml cis running buffer (200 mM KCl, 5 mM MgCl,, 10% glycerol and
25 MM HEPES-KOH, pH 7.6) and then loaded with 200 pl protein ana-
lyte in cis running buffer at a final concentration of 500 nM, unless
otherwise specified. Following the observation of protein captures
in the pores, flow cells were washed with 1 ml cis running buffer to
remove uncaptured proteins and subsequently loaded with 75 pl cis
running buffer supplemented with 4 mM ATP and 200 nM CIpX-AN
unless otherwise specified. The flow cell was washed about 4 min after
analyteloadingin theinitial method, and around 6 min and 2 min after
analyte loading at concentrations of 5nM and 500 nM, respectively,
in the optimized method (Extended Data Fig. 10a). For MinlON runs
inthe high-salt condition (Extended DataFig. 6b), abuffer containing
400 mM KCl, 5 mM MgCl, and 25 mM HEPES-KOH (pH 7.6) was used
instead of standard cis running buffer to see if it would improve the
signal-to-noise ratio.

Bulk degradation assays

Thetime-course degradation assay of the PASTOR-HDKER protein was
performed in cis running buffer with 6 uM PASTOR-HDKER, 150 nM
ClpX-ANg, 300 nM ClpP,, and an ATP-regeneration mix (4 mM ATP,
16 mM creatine phosphate and 7 units per ml creatine phosphokinase)
at 30 °C. Incubation was stopped by denaturing samples in Laemmli
buffer at 95 °C for 5 min. Samples were run on SDS-PAGE and stained
with Coomassie blue to quantify the protein bands using the ImageJ
software.

Nanopore signal analysis

Preprocessing. To help identify ClpX-mediated protein transloca-
tions, we established detection thresholds using specific statistical
parameters (standard deviation, median value, standard deviation of
the mean of windows, and the ratio of values relative to the open pore
value) indicative of translocation toionic current blockades preceding
areturnto the open channelstate. This analysis was used to assist the
process of manually checking traces for translocations, and translo-
cations with particularly high noise or disruptions were discarded.
PASTOR proteins were auto-segmented as described below, with the
exception of those containing folded domains and PASTOR-rereads,
which were segmented manually. PASTOR-reread rereads with acom-
plete Y,-Y;-Y,-Ys-Y,signal were assumed to be full-length reads with
aback-slipping distance of 310 amino acids. Partial rereads missing
the signal(s) of the C-terminal Y,, Y;, Y, and Y; were assigned to have
back-slipping distances 0f 250,188,125 and 61 amino acids, respectively.
All figures with raw traces (those shown in pA) had a low-pass Bessel
filter applied using SciPy with N=10 and W, = 0.025, except for those
showing stepping analysis (Figs. 2c and 6c, Extended Data Fig. 3 and
Supplementary Figs. 5 and 6), which had W, = 0.7. Before use in data
analysis, traces were smoothed by applying alow-pass Bessel filter with
N=10and W, = 0.03 with SciPy, and by applying average downsampling
by afactor of 50 for proteins P1-4, 20 for the 8 PASTORs and 10 for the
other proteins. Then, to scale, the segment was split into tenths, and
the median of the minima of each tenth and the median of the maxima
of each tenth were used as the min and max, respectively, to perform
min-max scaling (Extended DataFig. 2b). For PASTOR-phos, the signals
wereiteratively scaled. We first used this approach, then DTW-aligned
traces to two canonical presegmented traces and selected the align-
mentwith the lowest DTW distance. The max value of the N-terminal VR
was multiplied by 1.4, and the max value of VR GLSARRL was multiplied
by 1.2, and the minimal max was used as the max value for min-max
scaling. This was repeated after realigning to the canonical traces and
segmenting the VRs. Unless otherwise specified, ‘normalized’ refers
to z-score normalization, as in ‘normalized current’ when comparing
amodelsignal with experimental signals.

Signal alignment. To alignsignals, we used DTW® and normalized the
DTW distances by dividing by the sum of the lengths of the two signals.
Todescribe the similarity of aset of traces, we computed the DTW dis-
tance between all pairs of traces. In t-distributed stochastic neighbor
embedding (¢-SNE) plots, we then clustered traces on the vector of its
DTW distances to all other traces. To create ensemble traces, we first
identified the trace with the lowest mean DTW distance to all other
traces and stretched it to create T,q0id = [£; £y, £,], Where nis the mean
length of all traces. We then DTW-aligned every other trace to Tpcqoid
and created Tqqeensus = [median(alignments to ¢,), median(alignments
tot,), ..., median(alignments to ¢,)]. Ensemble traces in Fig. 1c, Fig. 5b
and Extended Data Fig. 9d show all traces aligned to the T_,nsensus, DUL
donot p10t Tconsensus-

Protein sequence-to-signal model. To describe the amino acids, we
used their volumes® and their charges at pH 7.6, at which the histi-
dine residue is assumed to be neutral. The volume of phosphoserine



was estimated as 126.6 cm® mol™, on the basis of a linear regression of
molecular weight to volume of the other residues. The model signal,
S=1[S,S,, ..., S,.10], of amino acid sequence [aa,, aa,, ..., aa,] is calcu-
lated by computing the signal for each of the n-19 windows of width
20 (Extended Data Fig. 5a-d). The vector X; describes the window
startingatindexiinthe sequence. Thej-thindexin X;is1+ V. x volume
(aa,,;) + P, x PositiveCharge(aa,,)) + N, x NegativeCharge(aa,,), for
0 <, <20, where the functions PositiveCharge and NegativeCharge
take 1if the residue has a positive or negative charge, respectively,
and O otherwise. The constants representing weights between charge
and volume, V,=-3.9 x1073,N,=4.08 x10'and P,=-8.16 x 1072, were
determined empirically to minimize the average post-DTW distance of
atraining subset of protein traces to the model of their sequences. To
weight the valuesin X;, we use a vector PW (parabolic weight) of length
20 containing values representing a negative, centrally positioned
parabolic curve. Thei-thindex in Sis then finally computed as the dot
product of X;and PW.

ClpX step identification. For this analysis, the signals were not scaled
or downsampled. They were filtered with a low-pass Bessel filter with
N=10and W,=0.7.For thisanalysis, YY dips were extracted manually,
including portions of the signal that would otherwise be considered
partofthe VRinthis study, to best capture the entire portion for which
the double tyrosines contribute to the signal. The number of residues
perYY dipwas calculated as pw/d, where pis the mean proportionof the
total translocation dwell time spent in these regions (0.318; Extended
DataFig.3a), wisthe total number of reading windows inthe sequence
(359; Extended DataFig.1) and dis the number of YY dips per read (6).
We primarily used a Bayesian-based algorithm® to identify steps, unless
otherwise noted. When applying this algorithm, aminimum length of
10 observations and a threshold of 18 was used. A total of 776 YY-dip
regions were analysed, comprising45% of allthe YY dipsin the dataset,
omitting dips affected by potential backstepping (non-monotonic
steps) or excessive noise. This selection was made by excluding YY
dips that did not follow the pattern of the mean of each segmented step
monotonically decreasing to the minimum and then monotonically in-
creasing. Asecondary t-test-based algorithm® was also used to confirm
the results of the stepping rate, which was used in a different study of
ClpX stepping behaviour®, When using the t-test-based algorithm, a
minimum window length of 10 observations and a threshold P-value
of 5x10° were used, and a total of 456 dips were analysed.

YY segmentation. To identify the YY dips and VRs, a single PASTOR
trace was segmented manually into each coloured section in Fig. 2a,
and the remainder of the traces were aligned to it with DTW. The cor-
responding regions were assigned the label from the one manually
segmented trace (Supplementary Fig. 4). For PASTOR-phos, two ca-
nonical traces were segmented manually, and the rest of the traces
were aligned to both, and then labels were assigned according to the
canonical trace with the lowest DTW distance.

VR classification. We used scikit-learn to develop and test classical
machinelearning models and Pytorch to develop and test convolutional
neural-network models. The test set was composed of all current traces
from a given set of experiments to create an out-of-sample test set.
The set of test experiments was selected using linear programming
(Python package Pulp) to ensure at least 12 VRs with each amino acid
in the test set, and minimizing the test set size. We decided to use 12
becauseit gave the closest to an 80-20 train-test split: 79.6% of the VRs
were in the training set and 20.4% were in the testing set (full counts
areshownin Extended Data Table 1a). In classification tasks for which
only VRs corresponding to a subset of amino acids were used, the test
set was composed of a subset of this test set. We performed hyperpa-
rameter tuning with scikit-optimize on the training set using 5-fold
cross-validation. The optimal parameters were: n_estimators = 250,

min_samples_leaf =2, max_features = ‘log2’, max_depth =20, ccp_
alpha=0.0001, class_weight = ‘balanced_subsample’ and criterion =
‘gini’. All the results in Fig. 3b,c, Extended Data Fig. 6, Extended Data
Table2and Supplementary Fig. 9 are from models evaluated onthe test
set. Allthe VRs containing an asparagine with a maximum transformed
value above 1.3 had their labels changed to aspartate. In training all
classical models, we upsampled minority classes, such that there was
anequalrepresentation of all classes in the training set. When training
the convolutional neural network (CNN) in Extended Data Fig. 6¢, we
weighted thelossinversely proportional to eachlabel’s class represen-
tationinthetraining set. To featurize the VRs, we performed principal
component analysis on the vector of its DTW distances to all VRs in
thetraining set to reduce the size of the vector to 64. We also used the
median, max, middle, mean, dip, mean absolute value of the derivative
and median absolute value of the derivative of the transformed signals,
aswell as the standard deviation of the raw (unfiltered, unscaled) signal.
The CNN had the transformed signal asinput. It was trained with a sto-
chasticgradient descent optimizer withalearningrate of 0.01, had four
convolutionallayers followed by agated recurrent unit (GRU) and then
afully connected layer, and was initialized with Kaiming initialization.
Max pooling and a ReLU activation function were applied after each
convolutional layer. The dummy classifier was implemented with the
scikit-learn dummy classifier with default parameters.

Reread simulation. To collect the results shown in Extended Data
Fig. 7d,e, we used a random forest without hyperparameter tuning
and used 100 randomly selected 80-20 train-train splits. This was
necessary to estimate the accuracy well enough with a large number
of rereads, given the datalimitation and the need to group samplesin
the test set.

Barcode error correction. To calculate the accuracy of barcode identi-
fication whenusing linear error-correcting codes, we started with our
accuracy, pyg, of identifying a VR given an alphabet size, a, of 2,4, 8 or
16.Foragivenaand number of VRs, L, we calculated the number of bits,
n=L xlog,(a), that could be encoded in a protein. We simulated the
accuracy witherror correction, p’, when n—k of the bits were allocated
tolinearerror-correcting codes, for allintegers k =1to n. We did this by
conducting 50,000 trials of: first, encoding arandominteger from O to
2*with agenerating matrix into a message of n bits; second, randomly
andindependently, with probability p,;, changing each of the n/log,(a)
consecutive sets of log,(a) bitsinthe encoded message (to a different
set of bits of the same length) to simulate misclassifying one VR; and
third, decoding the number with syndrome decoding. We calculated
p’tobe the percentage of trials in which the decoded number was the
same as the original random number.

Phosphorylation detection. Each section (C-terminal linker, VRV, VR
GLSARRL, VR A and N-terminal linker) was extracted with YY segmen-
tation. For each section, the transformed current was aligned to the
model of all possible phosphorylation states, shownin Supplementary
Fig.12. We determined the number of phosphorylationsin each section
by the number of phosphorylationsin the best-matching (lowest DTW
distance) phosphorylation-state model (Supplementary Table 2) to
the actual trace. When describing the signal increase in VR GLSARRL
caused by PKA (Extended DataFig. 8a), only the portion of the section
up to the (n/3)-thindex, where n is the length of the YY-segmented
VR GLSARRL, was used because that is where PKA causes the signal to
increase, as seen in Fig. 6b.

Null-hypothesis tests

All PERMANOVA tests were done on the DTW distance matrix of sig-
nals using scikit-bio and 10° permutations, unless we used a Bonfer-
roni correction, in which case n x 10° permutations were used, where
nis the number of comparisons performed. Kruskal-Wallis, T and



Article

Mann-Whitney Utests were performed using SciPy. Reported Pvalues
were multiplied by n if we noted that we used a Bonferroni correction.
All tests were two-sided unless stated otherwise, and P values were
considered significantif P < 0.05.

Materials availability
Protein expression plasmids are available at Addgene.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Data are available on GitHub at https://github.com/uwmisl/PASTOR-
sequencing and Zenodo at https://doi.org/10.5281/zenodo.12713840
(ref. 66). Custom MinlON MinKNOW run scripts can be obtained from
Oxford Nanopore Technologies on request.

Code availability
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Extended DataFig. 8| Reading kinase phosphorylation activity onsingle
protein molecules. a, Maximum transformed signal value for each trace.
Transparency of each scatter pointis proportional to the n of traces for that
condition. For each of C-terminal linker, VRV, VR A, and N-terminal linker
conditions, the CKll incubation conditions’ maximum values were significantly
higher than the blank and PKA incubation conditions (Pyann-whitney, one-sidea < 10~
foreach, after Bonferroni correction). GLSARRL region correspondsto the
C-terminal third of the VR. The GLSARRL region’s maximum values are
significantly higherin the PKA than the blank incubation condition
(Pmann-Whitney, one-way = 5 X 107%°, after Bonferroni correction) and the two CKII
incubation conditions are significantly different fromeach of the two

other conditions (Pynn-whimey < 10~ for each, after Bonferroni correction).

b, Interquartile range (IQR) of the number of putative phosphorylations per
molecule.Nokinase incubation shows fewer phosphorylations than1 hr
incubation (Pyannwhitney,oneway = 4 X 107), and 1 hrincubation in CKIl shows fewer

Blank
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CKIl 26hr

phosphorylations than 26 hrincubation (Pyannwhitney,oneway = 5 X 107%). Center
line, box, whiskers, and diamonds represent median, IQR,1.51QR, and outliners,
respectively. ¢, Interquartile ranges of putative linker phosphorylations per
molecule for each of the kinase incubation conditions, corresponding to
single or double phosphorylations on alinker. Center line, box, whiskers, and
diamonds represent median, interquartile range (IQR), 1.51QR, and outliners,
respectively. CKI126 hrincubation molecules have significantly more
putative single phosphorylations than the CKII1 hrincubation condition
(PMann-Whitney, one-sided, Bonferronicorrected = 0-002) and the blank and PKA incubation
conditions (Pyannwhitney, one-sided, Bonferronicorrected = 3 X 102%). CKI126 hrincubation
molecules also have significantly more putative double phosphorylations
thanthe CKII1hrincubation condition (Pyann-whitney, one-sided, Bonferronicorrected = 0-01)
and the blank and PKA incubation conditions (Puann-whitney, one-sided, Bonferronicorrected =
3x107%%). Forall panels, n of traces and experiments in Extended Data Table 3.
*P<1075.
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Extended DataFig.9|Processive reading of folded protein domains.

a, Exampletrace of PASTOR-Titin, not zoomed into translocation state (open
poretoopen pore). Roman numerals correspond to states described in main
Fig. 6a.b, Example trace of PASTOR-dTitin. ¢, Distribution of total unfolding
time for Titin (n=21) and dTitin (n =14). d, Ensemble traces of state vii of
PASTOR-APB15 (pink, n=21),-AB42 (purple, n=15), -Titin (red, n=20), and -dTitin
(orange, n=12).Protein sequences are shownin the C-to-N direction, and
asterisks represent the C47E and C63E mutations between Titinand dTitin.

e, t-SNE plot based on pairwise DTW distances for state vii, showing AB15and
AB42formadistinct cluster from Titin and dTitin (Ppermanova <1¥107°). AB15 vs
AB42and Titinus dTitin states vii are indistinguishable (ppgrmanova = 0.99, 0.67,
respectively).f, Distance matrix of the DTW-distances between the traces of
AP15,AB42, Titinand dTitin, shownine.g, Example trace of PASTOR-AB42.

h, Relationship between protein length and translocation time. State vii dwell
timeis plotted for AB15, AB42, Titin, and dTitin, as well as translocation time for

the 8 PASTORs with no folded domaininsert (n=672). The dotted line was
fitted with the mean dwell times of each protein class (slope correspondstoa
translocation rate of 16 ms/aa or 63 aa/sec, R? = 0.998). i, Distributions of the
DTW distances of each of the protein translocations for folded domain proteins
tomodelsignal(s). Inblue, they are compared to the model signal of the protein
sequence, andinorange, they are each compared to the model 0f10,000
random sequences derived from the same sequence distribution. The protein
translocationsinclude the regions corresponding to the folded domain
translocation (state vii) and the N-terminal half of the PASTORYY dipsand VRs
(stateviii). The signals corresponding to the C-terminal half of the PASTORYY
dipsand VRs (state v) and the folded domain unfolding (state vi) are excluded
from the analysis, because the model does not predict unfolding patterns
(mainFig. 6b).n=20,12,21, and 15 for PASTOR-Titin, PASTOR-dTitin,
PASTOR-AB15,and PASTOR-AP42, respectively.
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Extended DataFig.10| Quantification of ClpX-mediated protein
translocations. a, Yield of nanopore runs on the R9.4.1flow cell. Quality open
poredenotes aporethat was consistently at open pore current at the time of
analyteloading. The R9.4.1flow cell has amaximum of 512 pores available for
measurement and the number of quality open pores used for measurement
fluctuates depending on the flow cell condition. Theinitial run method with an
analyte concentration of 500 nM (purple) includes PASTOR and PASTOR-phos
data. The optimized runmethod with an analyte concentration of 5nM (blue)
includes PASTOR-HDKER data. The optimized run method with an analyte
concentration of 500 nM (green) includes PASTOR-HDKER and PASTOR-phos
data.n=35,3,and 3, for the original run (500 nM analyte), optimized run
(5nManalyte), and optimized run (500 nM analyte) conditions, respectively.
Thenumber of translocations per quality open pore was significantly (Pe.es, one-sided =

5x107®) higher for the optimized run method (500 nM analyte) condition than
the original run method (500 nM analyte), and the other comparisons were
non-significant (Pe.cest, originalvs. 5 Pretest, one-sided v$500nM >0.05).
Error bars denote standard deviations. b, SDS-PAGE analysns of purified
PASTOR-HDKER protein. The protein band appears at a higher position on
the gel than the actual molecular weight of the protein (50.2 kDa) due to its
highly net negatively-charged state. ¢, Bulk CIpXP degradation assay on
purified PASTOR-HDKER protein. The substrate protein wasincubated
withan ATPregeneration mix and CIpP in the presence or absence of ClpX.
d, Residual PASTOR substrate was quantified based on the peak area of the
PASTOR-HDKER protein band normalized by the CIpP proteinband on each
lane using ImageJ software. Raw gels shown in Supplementary Figs.15and 16.
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Extended Data Table 1| PASTOR data

a

Residue |A |C |D |E |F |G |H |I |K |L [ M [N [P [Q [R [S [T [V [W]Y

Total 82163169 |79 |56 |81|63|89|70 |89 |98 8172|9179 (82|75 |88]|56 |62

Training | 65 | 51 | 52 |62 |44 |65 |46 |72 |53 |72 |81 |65|60|75|62 |66 |59 71|44 |50
set

Testing 17 112 |17 (17 (12 |16 |17 |17 |17 (17 |17 |16 |12 |16 [ 17 [ 16 | 16 | 17 | 12 | 12
set

b
PASTOR HDKER GNQST FYWCP AVLIM VGDNY TWAFH PRMQE KSILC
Traces 36 48 29 55 33 27 43 34
Independent 2 3 6 3 3 4 3 5
Experiments

PASTOR data relate to Figs. 2f and 3, Extended Data Figs. 4a-c, 5f, 6, 7e,f; Extended Data Table 2; and Supplementary Table 1. a, Counts of variable regions. b, Counts of traces and technical
replicates for each PASTOR.



Extended Data Table 2 | Set-wise classification accuracy

Set Size | Random Forest | AAs
Accuracy (%)
2 100 Y,D
3 95.0 G Y,D
4 86.3 A, W,R,D
5 85.5 G, VVW,R,D
6 70.6 C,G L Y,R,D
7 65.9 G, Q W,ER,D,E
8 64.0 AT LY,WRD,E
9 59.0 G,VN,L,Y,W,R,D,E
10 53.8 A,G, VN, Y,WE R, D,E
11 50.0 CAGVNYWERDE
12 47.1 CAGTVQLY,WR,DE
13 44.8 AGT,VVN,Q MY, W,FR,D,E
14 40.4 CAGT,VNQMY,WER,DE
15 37.7 CS,GT,VN,QMY,W,F,R,K,D,E
16 35.6 CAGTVNQMLY,WEFERKDE
17 32.7 CS,AGT,VNQMLY,W,FHR,D,E
18 29.1 CS,AGTNMLLYWEPHRK,D,E
19 28.9 CS,AGTVNQMLL Y, WFEPRK,DE
20 28.3 all 20

Accuracy of a hyperparameter-optimized Random Forest classifying VRs when the train and test set was composed only of VRs corresponding to the mentioned amino acids.
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Extended Data Table 3 | Counts of PASTOR-phos

Condition Blank/No kinase (1 hr) | PKA (1 hr) CKII (1 hr) CKII (26 hr)
Traces 155 92 16 171
Independent 2 2 1 3
Experiments
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Data analysis Custom code written for this paper can be found at https://github.com/uwmisl/PASTOR-sequencing and https://doi.org/10.5281/
ZENODO.12713840. The analysis pipeline for a PASTOR sequencing run begins with extracting the segments of the raw nanopore signal that
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perform barcode error correction are also included in the Github repository. It also contains the code for the sequence to signal model. The
segmentation code to study ClpX stepping with both approaches, the normalization code used for PASTOR-phos, and the DTW medoid
calculation and alignment code are available on the Github as well.
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Data exclusions  Traces with substantial noise were discarded prior to analyses
Replication Experiments were replicated as indicated, typically using technical replicates n=>3.
Randomization  Not applicable to this study; does not include subjects that require allocation into experimental groups.

Blinding Not applicable to this study; does not include subjects that require allocation into blinded experimental groups.
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