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Multi-pass, single-molecule nanopore 
reading of long protein strands

Keisuke Motone1,4,5, Daphne Kontogiorgos-Heintz1,5, Jasmine Wee1, Kyoko Kurihara1, 
Sangbeom Yang1, Gwendolin Roote1, Oren E. Fox1, Yishu Fang1, Melissa Queen1, 
Mattias Tolhurst2, Nicolas Cardozo2, Miten Jain3 & Jeff Nivala1,2 ✉

The ability to sequence single protein molecules in their native, full-length form 
would enable a more comprehensive understanding of proteomic diversity. Current 
technologies, however, are limited in achieving this goal1,2. Here, we establish a 
method for the long-range, single-molecule reading of intact protein strands on a 
commercial nanopore sensor array. By using the ClpX unfoldase to ratchet proteins 
through a CsgG nanopore3,4, we provide single-molecule evidence that ClpX 
translocates substrates in two-residue steps. This mechanism achieves sensitivity  
to single amino acids on synthetic protein strands hundreds of amino acids in length, 
enabling the sequencing of combinations of single-amino-acid substitutions and the 
mapping of post-translational modifications, such as phosphorylation. To enhance 
classification accuracy further, we demonstrate the ability to reread individual 
protein molecules multiple times, and we explore the potential for highly accurate 
protein barcode sequencing. Furthermore, we develop a biophysical model that can 
simulate raw nanopore signals a priori on the basis of residue volume and charge, 
enhancing the interpretation of raw signal data. Finally, we apply these methods to 
examine full-length, folded protein domains for complete end-to-end analysis.  
These results provide proof of concept for a platform that has the potential to  
identify and characterize full-length proteoforms at single-molecule resolution.

Annotating the complexity of protein variation is important for 
understanding biological processes, identifying disease states and 
developing effective therapeutics. Proteoform diversity refers to the 
vast array of protein variations that can exist because of differences 
in transcription, translation and post-translational modifications 
(PTMs), which can occur through enzymatic (such as phosphoryla-
tion) and non-enzymatic (for example, spontaneous deamidation) 
processes5. These variations occur independently and in combination 
with each other on single protein molecules, creating a ‘PTM code’ that 
has unique and specific roles in driving biological processes6–8. The 
ability to sequence single protein molecules in their natural, full-length 
state could elucidate this proteoform diversity and its underlying 
code. However, current methods, including Edman degradation and 
mass spectrometry, have difficulty analysing full-length proteins 
from complex samples and face problems with detection sensitivity, 
dynamic range, analytical throughput and instrumentation cost1,2. To 
address these challenges, complementary or potentially disruptive 
platforms for next-generation protein analysis and sequencing have 
been proposed, including single-molecule fluorescence labelling and 
affinity-based approaches9–13. However, these emerging techniques 
also have limitations compared with nanopore technology14, which 
has the potential to achieve direct, label-free, full-length protein 
sequencing15.

Nanopore technology consists of a nanometre-sized pore in an 
insulating membrane that separates two electrolyte-filled wells16. 
A voltage applied across the membrane drives ionic current flow 
through the nanopore sensor. When individual analyte molecules 
pass through the pore, they can generate a detectable change in the 
signal. This change can provide insight into the molecular nature of 
the analyte. Although originally viewed, and now commercialized, as 
a technique for sequencing nucleic acid strands, nanopore sensing 
has great potential for protein analysis16,17. It has been used for the 
discrimination of peptides and proteins18–28, the real-time measure-
ment of protein–protein29 and protein–ligand interactions30, and 
aptamer-mediated protein detection30,31. Protein nanopores have 
also shown promise in identifying amino acids and PTMs, such as 
those involved in phosphorylation and glycosylation32–35, that serve 
as important biomarkers of cell states and diseases. Previous studies 
have demonstrated some ability to read DNA-conjugated peptide 
strands using DNA-processive molecular motors, such as a helicase 
or a polymerase36–38. Furthermore, rereading of peptide fragments 
using this strategy have made it possible to resolve among a small 
subset of single amino acid substitutions with high accuracy37. Despite 
this progress, using nanopores to obtain sequence information from 
intact, full-length proteins has been hindered by the difficulty of driv-
ing long protein strands through the sensor, owing to the neutrally 
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charged polypeptide backbone, varying charge states of amino acid 
side chains, and stable tertiary structures39.

To overcome the problems of reading full-length proteins, here we 
have developed a technique to reversibly thread long protein strands 
into a CsgG pore40 using electrophoresis, and then enzymatically pull 
them back out of the pore using the protein unfoldase and translocase 
activity of ClpX41. Unlike the rapid initial stage of threading the protein 
into the pore using electrophoretic force, the unfoldase-mediated 
translocation of proteins back out of the pore leads to slow, reproduc-
ible ionic current signals. This method has resulted in the processive 
translocation of long proteins, enabling the detection of single amino 
acid substitutions and PTMs across protein strands up to hundreds of 
amino acids in length. We have also developed an approach to reread-
ing the same protein strand multiple times. Furthermore, this method 
enables the unfolding and translocation of a model folded protein 
domain for linear, end-to-end analysis.

ClpX-mediated protein reading on an array
We and others have previously developed approaches to unfoldase- 
mediated protein translocation through nanopores42–44, but these  
methods required complex experimental set-ups and did not demon-
strate the single amino acid sensitivity required for sequencing. In our 
previous methodology, the unfoldase and its cofactors were located 
in the trans-side solution, opposite to the location of the protein sub-
strate addition42,43. This set-up rendered the method incompatible 
with commercial high-throughput nanopore sensor-array devices, 
such as MinION from Oxford Nanopore Technologies, which do not 
allow access to the trans compartment solution. To overcome the need 
for trans motor addition, we designed a more streamlined two-step 
process. First, the protein substrate is threaded into the nanopore 
by electrophoretic force (cis-to-trans). Then, ClpX is added to the cis 
solution to steadily pull the substrate protein back out of the pore 
(trans-to-cis) (Fig. 1a).

We first synthesized a protein to evaluate this method. It comprised 
an unstructured, negatively charged N-terminal sequence of 42 amino 
acids rich in glycine, serine and aspartic acid, to facilitate electropho-
retic capture in the pore, attached to a stably folded domain (Smt3). 
This was followed by a short, positively charged sequence (an RGS 
repeat) and a ClpX-binding ssrA tag at the C-terminal end (protein P1; 
Supplementary Fig. 1). The RGS and the folded domain were included 
to inhibit complete translocation of the protein through the pore, 
thereby preserving the accessibility of the ssrA tag in the cis compart-
ment. After introducing P1 into a MinION R9.4.1 flow cell incorporating 
a CsgG pore variant (Oxford Nanopore Technologies)3 and applying a 
voltage of −180 mV, we observed current blockades associated with the 
capture of the negatively charged protein tail in the pores. To test the 
ability of ClpX to extract the captured protein from the nanopore, we 
then introduced a buffer solution containing ClpX and ATP into the flow 
cell. Under these conditions, we observed deep ionic current blockades, 
characteristic of capture of the substrate protein in the nanopore, 
returning to the open channel state in a stepwise manner some time 
after the addition of ClpX. We also determined that these events were 
ATP dependent and occurred at a slower rate in the presence of ATPγS 
(Extended Data Fig. 1), an ATP analogue that is more difficult for ClpX 
to hydrolyse45. These results are consistent with our model that ClpX 
was binding to the ssrA tag and translocating the captured protein out 
of the nanopore with C-to-N-terminal directionality.

If this were true, we reasoned that mutations in the tail domain of the 
protein would induce alterations in the ionic current states observed 
during ClpX-mediated translocation of the protein through the nano-
pore. To test this, we synthesized three new proteins (P2, P3 and P4), 
each containing several tyrosine mutations at distinct positions of 
the polyGSD sequence (Supplementary Fig. 1). To compare the signal 
profiles of the four protein sequences directly, we created ensemble 

ionic current traces for each of these proteins, as shown in Fig. 1c (the 
individual traces are in Supplementary Fig. 2). This revealed that the 
main differences across the translocation signals corresponded with 
the positions of the tyrosine mutations along the protein strands. 
Moreover, comparing all-versus-all signal dynamic time warping (DTW) 
distances revealed that the sets of translocation signals generated by 
each unique protein sequence formed distinct clusters, differentiat-
ing them from every other protein. This was statistically supported by 
permutational multivariate analysis of variance (PERMANOVA) with 
P < 1 × 10−6 for each comparison after applying a Bonferroni correction.

Resolving ClpX steps and substitutions
After establishing a cis-based ClpX approach, we next sought to inves-
tigate the sensitivity of this method to single amino acids as a first step 
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towards developing a long-read protein analysis method. To do this, 
we designed protein constructs with five repeating sequence blocks, 
each containing 59 amino acids. These blocks were built with a base 
sequence of glycine, serine, aspartic acid and glutamic acid (Fig. 2a 
and Supplementary Fig. 1). We introduced a single unique amino acid 
mutation at the central position in each block and demarcated the 
blocks with a double tyrosine mutation at each end. This spacing was 
intended to avoid entanglement of the signal contributions from single 
amino acid mutations by preventing them from occupying the pore at 
the same time. This hypothesis was grounded on prior observations 
indicating that around 20 amino acids can occupy the CsgG sensing 
region when in a stretched conformation46. We termed these strategi-
cally designed protein constructs ‘proteins for amino acid sequencing 
through optimized regions’ (PASTORs). We synthesized a total of eight 
different PASTOR variants, each containing a different sequence of 
mutations. The PASTOR design allowed us to analyse up to five different 
mutations in a single nanopore read, and the total set of eight PASTORs 
(C to N: HDKER, GNQST, FYWCP, AVLIM, VGDNY, TWAFH, PRMQE and 
KSILC) enabled us to investigate each of the 20 amino acids in two dif-
ferent PASTOR sequence contexts.

ClpX-mediated analysis of the PASTOR proteins manifested ionic 
current traces containing repetitive patterns that resulted from the 
seven YY mutations preceding the return to the open channel state, 
seen as seven repeated dips in the signal (PASTOR–HDKER is shown 
in Fig. 2b and the other PASTORs are shown in Supplementary Fig. 3). 
Between these dips, distinctive and reproducible variations in the ionic 
current signals were observed, corresponding to the variable amino 
acid mutation in each block. Using the consistent, substantial effect 

of the YY mutations, we segregated the current signals into regions 
termed ‘YY dips’ and ‘variable regions’ (VRs) (Supplementary Fig. 4), 
and used these patterns to scale and segment our signals (Methods 
and Extended Data Fig. 2).

A close examination of the YY-dip signals revealed rapid, stepwise 
changes in the current level, which we reasoned must be caused by sin-
gle ClpX substrate translocation steps (Fig. 2c). Previous estimates of 
the step size of these movements vary: single-molecule tweezer experi-
ments suggested that ClpX translocates 5–8 amino acids per step45,46, 
whereas structural studies on ClpX-related protein-remodelling 
machines imply 2 amino acids per step47,48. To determine the step 
size of ClpX in our experiments, we analysed these YY-dip regions 
using a segmentation algorithm (examples are in Supplementary 
Figs. 5 and 6), filtering out dips with back-stepping or excessive noise. 
By dividing the number of residues contributing to the YY dips by 
the number of steps identified per YY dip (Methods and Extended 
Data Fig. 3a,b), we determined that ClpX translocates an average of 
approximately 1.96 residues per step (s.d. = 0.25; Fig. 2d). This was 
confirmed by a secondary segmentation algorithm yielding a similar 
mean of around 1.89 residues per step (s.d. = 0.28; Extended Data 
Fig. 3c–e). The dwell time of each step, capturing the duration ClpX 
pauses between pulling events, had a mean of 28.6 ms (s.d. = 32.3 ms; 
Fig. 2e). These results are in strong agreement with the step size of two 
amino acids hypothesized from the structural studies, and indicate 
that the tweezer experiments lacked the spatio-temporal resolution 
to resolve individual ClpX steps.

After establishing the two-residue stepping behaviour of ClpX, we 
shifted our focus to the VRs to explore the ionic signatures of individual 
amino acid mutations. Our analysis revealed that in VRs with a neutral 
amino acid mutation, there was a negative correlation between the ionic 
current levels and the volume of the amino acid (Fig. 2f and Extended 
Data Fig. 4a). This observation supports a volume-exclusion model in 
which larger amino acids block more current than their smaller counter-
parts do. Interestingly, the VRs containing positively charged residues 
(K and R) decreased the current level below the baseline sequence, 
whereas negatively charged residues increased it, diverging from the 
volume-exclusion model. This effect was greater for negatively charged 
residues than for positively charged ones. One possible explanation 
for this is that the negatively charged residues resist translocation to 
the negatively charged cis compartment, causing the protein strand to 
stretch and thereby decrease the total volume of protein in the pore. 
Conversely, a positively charged residue would be attracted to the 
cis compartment and could introduce upstream kinks in the protein 
strand, adding to the protein volume in the pore. The impact on signal 
levels could also be attributed to variations in solvation states and the 
mobility of ions near the charged amino acids. We hypothesize that 
some of the variability between VRs of the same amino acid can be 
attributed to non-enzymatic PTMs, such as asparagine deamidation, 
which is discussed in Extended Data Fig. 4b–h, Supplementary Note 1  
and Supplementary Fig. 7. Collectively, these results show that this 
method is sensitive to single amino acid residues.

Sequence to nanopore signal modelling
Considering the relationship between the volume and the charge 
of individual amino acids, and their effect on nanopore signals, we 
developed a biophysical model designed to simulate nanopore sig-
nals from the amino acid sequence of a protein directly. This model, 
which builds on previous findings46, determines a summation of the 
volume and charge of amino acids in a moving 20-residue window, 
applying a centrally positioned negative parabolic weight (Extended 
Data Fig. 5a–d). Extended Data Fig. 5e shows the signal generated 
by our model for the PASTOR–TWAFH protein sequence aligned to 
an actual nanopore trace of the same protein. Model signals for all 
proteins in this study are shown in Supplementary Fig. 8. To evaluate 
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our model quantitatively, we computed the DTW distance between 
the actual ionic current traces and the model, and compared that with 
the distribution of distances between the actual ionic current trace 
and the model of random sequences. We found that, on average, the 
model of the true sequence ranked in the top 0.3% of the best matches 
(Extended Data Fig. 5f), which confirms that the signal agreement 
observed in Extended Data Fig. 5e was not caused by artefacts from 
DTW alignment. This reinforces the assertion that our model has the 
capacity to simulate these current traces accurately in these sequence 
contexts.

Building a single-molecule aminocaller
Sequencing synthetic protein constructs such as PASTORs could serve 
diverse technological applications, including protein barcoding46,49. We 
addressed this by initially training machine learning models to identify 
the single mutation present in a VR. This process consisted of filtering 
and scaling each of the raw signal traces, followed by segmentation of 
the VR signal regions (Fig. 3a). To featurize the VR signals, we used a 
combination of manually curated features and DTW-distance features 
(Methods). We next explored several classical and deep machine learn-
ing models and found that random forests most frequently achieved 
the highest accuracy. All classification analyses were then done with a 
hyperparameter-tuned random forest evaluated on a fixed held-out test 
set, unless otherwise specified. We first evaluated the discrimination 
of all pairs of amino acids (Fig. 3b and Extended Data Fig. 6a). Pairs of 
amino acids with dissimilar volumes, or in which one was negatively 
charged, achieved the highest accuracy classifications. For example, 
tyrosine versus aspartate exhibited 100% discrimination accuracy. 
Some pairs of amino acids, such as leucine and isoleucine, proved to be 
more challenging, owing to their inherent physico-chemical similari-
ties. Amino acids with high variance signals, such as cysteine, were also 
more difficult to distinguish from others. We then moved to training 
models to classify among particular sets of three amino acids (for exam-
ple, G, Y and D) in which the model achieved 95% single-read accuracy. 
Expanding this to 5-way classifications (for example, G, V, W, R and D), 
the model maintained high performance, achieving an accuracy rate of 
86% (Extended Data Table 2 and Extended Data Fig. 6b). In the most chal-
lenging task, a 20-way amino acid classification, our top-performing 
model substantially outperformed a dummy classifier, obtaining an 
accuracy of 28% compared with just 5.5% for the dummy. When we 
considered top-N accuracy measurements, our model attained 67% 
accuracy for top-5 and 81% for top-8 accuracy in the 20-way classifica-
tion task (Extended Data Fig. 6c).

Building on these results, we integrated our classifiers downstream of 
the PASTOR segmenter to develop an end-to-end PASTOR ‘aminocaller’. 
We then amino-called a set of PASTOR reads from the classification test 
set (Fig. 3c and Supplementary Fig. 9). Overall sequencing accuracy 
per read averaged about 62% and 42% for the HDKER sequence, and 
roughly 51% and 21% for the AVLIM sequence, using 5-way and 20-way 
classification models respectively.

Unfoldase slip sequence enables rereading
After developing the aminocaller, we aimed to improve the accuracy of 
our single-molecule sequencing approach by developing a method to 
reread single protein molecules. A previous study suggested that ClpX 
may have difficulty gripping particular polypeptide sequences, such 
as polyproline, on which the ClpXP complex showed slow degradation 
rates41. This prompted us to hypothesize that incorporating a ‘slippery’ 
amino acid sequence near the N terminus of a PASTOR would induce 
ClpX to momentarily lose its grip of the strand (Fig. 4a). Consequently, 
the substrate protein would be free to rethread into the pore by elec-
trophoresis. Rethreading would stop enzyme-mediated translocation, 
and it would resume once ClpX regains its grip on the substrate. To test 

this strategy, we constructed a new PASTOR (PASTOR-reread) with 
two important sequence features: first, a proline-rich ‘slip’ sequence 
repeat (EPPPP)5 positioned near the N terminus; and second, VRs sepa-
rated by an increasing number of tyrosine residues, ranging from two 
to five (Supplementary Fig. 1). We reasoned that the distinct current 
levels that our signal-to-sequence model predicted for each of the 
repeats would enable us to estimate the slip distance (Supplementary 
Fig. 8). Indeed, nanopore signals produced by PASTOR-reread gener-
ally exhibited repeated signal patterns that closely aligned with our 
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model’s prediction before returning to the open channel state (Fig. 4b 
and Supplementary Fig. 10). By using the tyrosine repeat regions as a 
measure of slip length, we observed that slipping distances were usually 
either short ranges (50–100 amino acids) or extended across the entire 
PASTOR unstructured region (more than 300 amino acids), account-
ing for roughly 40% and 30% of all rereads, respectively (Extended 
Data Fig. 7a). The effect of ClpX concentration on slipping distance 
and frequency is discussed in Supplementary Note 2 and Extended 
Data Fig. 7b,c.

We next investigated the potential of single-molecule rereading 
for increasing sequencing accuracy. Using a simulation discussed in 
Supplementary Note 3, the accuracy for the 20-way amino acid clas-
sification task improved from 28% to 61% (compared with a 5% random 
baseline) with 10 rereads (Extended Data Fig. 7d). Likewise, the accuracy 
for a 7-way classification task improved from 66% to 99% (against a 14% 
random baseline).

Simulating protein barcode sequencing
Having determined the capacity for high-accuracy sequencing through 
PASTOR rereading and the ability to design PASTOR proteins with 
customizable VR sequences, we simulated the PASTOR VR sequence 
space with varying constraints, with a view to applications in protein 
barcoding. On the basis of the accuracy rates of our models (Extended 
Data Fig. 7d), we computed the number of distinct barcodes that could 
be generated at a given accuracy level. This calculation considered 
varying degrees of rereading and two different VR segment numbers 
per protein barcode (five and ten VRs). For example, our findings 
indicate that with ten VRs and ten rereads, it is feasible to generate 
libraries of more than 1 million or 1 billion unique PASTOR barcodes 
that are decodable with a single-molecule accuracy of more than 95% 
or more than 81%, respectively (Extended Data Fig. 7e and Supple-
mentary Table 1).

Monitoring and mapping enzymatic PTMs
Demonstrating the ability to detect and map phosphorylations across 
long protein strands would be an important step towards developing 
a technology capable of identifying distinct full-length proteoforms. 
To do this, we focused on two serine/threonine protein kinases with 
distinct recognition motifs: protein kinase A (PKA), which recognizes 
the canonical motif RRXS, and casein kinase II (CKII), which targets 
the sequence SXXD/E50. To see if we could effectively characterize the 
differential activity of these two kinases using our nanopore reading 
approach, we designed a new substrate, PASTOR-phos (Fig. 5a and 
Supplementary Figs. 1 and 11). In this design, we inserted the substrate 
peptide LRRASLG (‘kemptide’) of PKA into one of the VRs, making it spe-
cific for recognizing the kinase51. To investigate CKII in PASTOR-phos, 
we used the original 29-amino acid linker sequences from the PAS-
TOR, which inherently contain a CKII motif, while reducing the total 
number of VRs.

After incubating PASTOR-phos with PKA for 1 h, we performed nano-
pore analysis, which found a substantial increase in ionic current in 91 
of the 92 reads (98.9%) in the kemptide VR compared with the baseline 
(Fig. 5b and Extended Data Fig. 8a). This increase in ionic current is 
consistent with expectations for the negatively charged phosphoser-
ine, which carries a charge of −2, to enhance ionic flow. Conversely, 
361 of the 368 non-kemptide VRs and linker sequences (98.1%) showed 
no substantial signal changes. These results are consistent with PKA 
activity being specific to the RRXS motif.

When the same substrate (PASTOR-phos) was treated with CKII for 
1 h, we observed high read-to-read variability manifested by large 
increases in current levels that were found to be concentrated in the 
eight linker sequences containing the CKII phosphorylation motif 
(Fig. 5a). The maximum peak transformed current of the VRs and linker 
sequences incubated in CKII showed a significant increase compared 
with that of the PKA and the no-kinase (blank) and incubation condi-
tions (Extended Data Fig. 8a). This indicates that the method can dis-
cern site-specific phosphorylation events, demonstrating specificity to 
CKII. Interestingly, a small portion of linkers had signal increases much 
higher than the others, indicating that they were being phosphorylated 
to a greater extent (Fig. 5a and Extended Data Fig. 8a). Analysis of the 
phosphorylated linker sequence revealed that phosphorylation at the 
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initial motif induces the formation of a secondary CKII motif, SXXpS, 
which has been described previously50. We hypothesized that the link-
ers with much higher signal levels were phosphorylated at both serine 
positions. To test this, we reasoned that extending the incubation time 
of CKII with the substrate should increase the frequency of both single 
and, consequently, double phosphorylation events. Supporting this 
hypothesis, data from PASTOR-phos after a 26-h incubation revealed 
increased occurrences of both putative single and double phosphoryla-
tions in the linker sequences (Extended Data Fig. 8b,c).

Given the abundance of potential CKII phosphorylation sites in 
the PASTOR-phos sequence, numerous combinatorially unique pro-
teoforms are possible (a total of 13,122). To map our reads to these 
various modified forms, we integrated phosphoserine into our 
sequence-to-signal model (Methods). This approach allowed us to 
align nanopore traces with the predicted sequence-to-signal profiles 
for each phosphorylation state across all VRs and linkers, as shown 
in Supplementary Fig. 12. Consequently, we identified and quanti-
tatively assessed more than 100 distinct full-length proteoforms 
of PASTOR-phos, across reads obtained from the baseline, PKA and 
CKII experiments (Fig. 5c, Supplementary Fig. 13 and Supplementary 
Tables 2 and 3). For example, the 26-h CKII incubation resulted in single 
molecules containing as many as nine phosphorylated residues.

Processive reading of folded domains
Progressing beyond synthetic, unstructured sequences, we next evalu-
ated the effectiveness of our cis-based unfoldase method on protein 
sequences that contain a folded domain. For this purpose, we ana-
lysed a PASTOR protein with the titin I27V15P domain, which consists of 
89 amino acids arranged into 8 β-strands52, inserted into the third VR 
position (PASTOR-titin; Supplementary Fig. 1). Unlike unstructured 
proteins, nanopore traces of PASTOR-titin yielded an initial two-step 
electrophoretic nanopore capture state, indicating that the folded 
titin domain was first captured on the nanopore at state ii and then 
electrically unfolded at transition state iii to produce the typical PAS-
TOR capture signal at state iv, manifested by the Smt3 domain on the 
pore (Fig. 6a and Extended Data Fig. 9a). After adding ClpX to the cis 
compartment, we observed a translocation signal corresponding to 
the leading VRs and YY regions, which are tethered to the C terminus 

of the titin domain (state v). Subsequently, we observed a distinct and 
deep blockade state that we interpreted as ClpX attempting to unfold 
the titin domain (state vi), which presumably refolds in the trans com-
partment after the initial translocation. This deep blockade state often 
reverted back to the previous state, indicating an unsuccessful ClpX 
unfolding attempt and indicating that ClpX slipped back on the protein 
strand52,53. After a successful unfolding attempt, we observed putative 
translocation of the titin domain (state vii; Fig. 6b and Supplementary 
Fig. 14). In the titin translocation signal, individual ClpX steps could 
be seen (Fig. 6c). After translocation of the titin domain, we observed 
characteristic signal features corresponding to the downstream VRs 
and YY regions (state viii) before transitioning back to an open-pore 
state (state ix).

To confirm our understanding of the unfolding and transloca-
tion states, we performed experiments using a variant of titin I27 
(PASTOR-D-titin) with a destabilized tertiary structure, introduced 
through double-point mutations (C47E and C63E) on two buried 
cysteines43,52. Comparing PASTOR-D-titin (Extended Data Fig. 9b) 
with PASTOR-titin allowed us to explore the effect of the tertiary 
structure of titin on the resulting current signals. This generated 
two notable differences: first, PASTOR-D-titin displayed unique sig-
nal features at the putative unfolding state vi, indicating structural 
disparities between the two variants; and second, states v and vi 
were observed only once in PASTOR-D-titin before the presumptive 
translocation state vii, in contrast to PASTOR-titin in which they were 
typically observed multiple times, leading to a substantial difference 
between the distribution of the unfolding times of PASTOR-titin and 
PASTOR-D-titin (Extended Data Fig. 9c). These differences can be 
attributed to the more stable, unfolding-resistant titin domain of 
PASTOR-titin compared with that of PASTOR-D-titin. In PASTOR-titin, 
repeated observations of states v and vi, which were not present for 
PASTOR-D-titin, support the conclusion that they result from unsuc-
cessful unfolding attempts and ClpX back-slipping events triggered 
by the stable titin domain. Also, despite their dissimilar structural 
stabilities, PASTOR-titin and PASTOR-D-titin demonstrated similar 
signals during the putative translocation state vii (Extended Data 
Fig. 9d–f). This similarity reflects their nearly identical primary amino 
acid sequences. The observation of similar signals at the proposed 
translocation state vii between PASTOR-titin and PASTOR-D-titin, 
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despite their differences in structural stability, underscores the role of 
the primary amino acid sequence in this process. It indicates that the 
primary sequence is the main determinant of the translocation signal 
through the nanopore, whereas structural variations have greater 
influence on the preceding unfolding state.

We next tested PASTOR constructs with the amyloid-β protein 1–42 
(PASTOR-Aβ42) and its shorter derivative 1–15 (PASTOR-Aβ15), which 
have distinct amino acid sequences and lengths from the titin domain. 
We reasoned that Aβ42 and Aβ15 would generate brief unfolding states 
because they are partly but not fully structured in their monomeric 
forms54. As expected, after nanopore analysis they yielded ionic current 
traces similar to PASTOR-D-titin overall but with distinct features in 
unfolding state vi (Extended Data Fig. 9g and Supplementary Fig. 14). 
Furthermore, comparing their putative translocation states (state vii)  
using DTW distance, we observed that the signals generated by 
PASTOR-Aβ42 and PASTOR-Aβ15 share similarities to, but are distinct 
from, signals generated by PASTOR-titin and PASTOR-D-titin (Extended 
Data Fig. 9d–f), reflective of the translocation state being depend-
ent on protein primary sequence. Overall, the dwell times of these 
different states also correspond well with their respective sequence 
lengths across all the PASTOR proteins, indicating a translocation rate 
of around 63 amino acids per second (an average dwell time of about 
16 ms per amino acid) (Extended Data Fig. 9h). This is close to previ-
ous estimates of ClpX translocation speed and the observation that 
the rate of ClpX-mediated protein translocation is relatively constant 
regardless of protein sequence43,55.

Finally, we assessed our predictive model using these proteins. 
Because the model does not factor in the signal features linked with 
unfolding, we analysed the signal segment after the unfolding state 
until the completion of the translocation (states vii–viii). Using the 
same comparison technique as previously implemented for the PAS-
TOR protein models, we found that the average model of the PASTORs 
containing folded domains ranked in the top 0.04% of the best matches 
(Extended Data Fig. 9i). This evaluation is evidence that our model can 
adequately simulate these current traces in the specified sequence 
contexts.

Discussion
We have introduced a new approach for single-molecule reading of long 
protein strands using nanopores and an unfoldase motor protein. This 
method achieves single-amino-acid sensitivity and demonstrates the 
capability to reread and sequence amino acid substitutions in defined 
sequence contexts across long protein strands. This could immediately 
advance protein barcoding technology, as we project the ability to 
design libraries of synthetic peptide sequences (more than 1 billion). 
Moreover, we applied our method to detect and map the activities of 
distinct kinases, achieving site-specific detection of enzymatic PTMs 
along extended protein sequences and the relative quantification of 
more than 100 putative proteoforms of a single synthetic protein sub-
strate. The implications and challenges of PTM detection are outlined 
in Supplementary Discussion 1.

We also established that ClpX translocates proteins through the 
nanopore in a stepwise manner, in agreement with structural studies 
that suggested a fundamental step size of two amino acids. We then 
laid the groundwork for a biophysical model capable of simulating 
nanopore signals that are generated when individual protein sequences 
are pulled through the nanopore by the unfoldase. This result could 
eventually enable a ‘lookup table’ approach reminiscent of mass spec-
trometry, facilitating full-length, single-molecule protein identification 
and fingerprinting (Supplementary Discussion 2). However, further 
work is needed to explore more native protein sequences. Further-
more, directly determining amino acid sequences from the nanopore 
signal (de novo sequencing) will be even more difficult and will require 
extensive datasets for training de novo amino acid callers.

Finally, we have demonstrated the full-length reading of a model 
folded protein domain, which is an important result as we move 
towards reading natural protein molecules. In the present system, 
electrophoretic protein unfolding (cis to trans; state iii in Fig. 6a) 
and ClpX-mediated  protein unfolding (trans to cis; state vii in 
Fig. 6a) are key to achieving full-length folded-domain analysis. It is 
likely that some protein domains will exhibit greater resistance to 
unfolding than the substrates explored in this study. In such cases, 
extra strategies could be used to facilitate unfolding, such as the 
use of denaturants and electro-osmotic flow56. As we begin to turn 
our attention to natural proteins, this methodology will require 
synthetic N- and C-terminal sequences that can be appended using 
existing terminus-specific chemical-conjugation techniques39,57,58  
(Supplementary Discussion 3).

One factor that currently impedes data collection throughput is the 
two-step flow cell loading process. Looking ahead, we can imagine a 
system that operates continuously, with the unfoldase prebound to 
the protein analyte but prevented from initiating unfolding activity 
until the protein strand is captured by the pore. This method, which 
mirrors strategies developed for the nanopore sequencing of DNA59, 
has the potential to greatly increase throughput. There are challenges 
with experimental yield (Extended Data Fig. 10 and Supplementary 
Discussion 4) and read-out accuracy, particularly for domains with 
secondary structure (Supplementary Discussion 5), and these can be 
addressed in future work. In conclusion, this work serves as a stepping 
stone towards full-length protein identification, capable of achieving 
the highest level of proteoform resolution. Furthermore, it promises 
immediate advances, particularly in the context of protein barcoding 
and PTM-monitoring applications.
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Methods

Expression and purification of proteins
Plasmids for analyte proteins were constructed using gBlocks (Inte-
grated DNA Technologies) inserted into the pET–49b(+) plasmid 
(Novagen), with a dihydrofolate reductase domain, a polyhistidine 
tag and a TEV cleavage site upstream of the sequence encoding an 
analyte protein. The NEBuilder HiFi DNA assembly and Q5 site-directed 
mutagenesis kits (New England Biolabs) were used for plasmid con-
struction. Cloning was done using NEB 5-α-competent Escherichia coli 
cells. Plasmid sequences were verified by Sanger sequencing through 
Genewiz. Protein expression was induced overnight at 30 °C with BL21 
(DE3) E. coli cells in Overnight Express Instant TB medium (Novagen). 
Proteins were purified by immobilized metal affinity chromatography 
(IMAC) with TALON metal affinity cobalt resin and its associated buffer 
set (Takara), following the manufacturer’s instructions. Proteins were 
cleaved with TEV protease (New England Biolabs) and further purified 
by reverse IMAC. Purified proteins were concentrated using ultracen-
trifugal filters with a 10 kDa cutoff (Amicon) and stored in the short 
term at 4 °C or in the long term at −80 °C until use.

A covalently linked hexamer of an N-terminal truncated ClpX vari-
ant (ClpX-ΔN6)60 was prepared using the BLR E. coli strain as described 
previously43. In brief, cells were grown to an optical density at 600 nm 
(OD600) of around 0.6 in LB medium and then incubated in the presence 
of 0.5 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) at 23 °C for 
about 3 h to induce ClpX expression. ClpX was purified by IMAC and 
anion-exchange chromatography. Purified ClpX was stored at −80 °C 
in small aliquots until use. ClpP expression was induced at an OD600 of 
around 0.6 with 0.5 mM IPTG at 30 °C for about 3 h43. ClpP was purified 
by IMAC and stored at −80 °C until use.

PTM assays
For asparagine deamidation, protein (around 1 mg ml−1) was incubated 
overnight in 100 mM sodium bicarbonate buffer (pH 9.6) at 25 °C to 
catalyse deamidation. For protein phosphorylation with kinase, pro-
tein was incubated with either 50,000 units per ml PKA (New England 
Biolabs) or 10,000 units per ml CKII (New England Biolabs) in a protein 
kinase buffer (10 mM MgCl2, 0.1 mM EDTA, 2 mM DTT, 0.01% Brij 35, 
260 µM ATP and 50 mM Tris-HCl, pH 7.5) at 30 °C. The protein solu-
tion was used for nanopore analysis immediately after the incubation 
without purification.

MinION experiments
All the experiments were done on the MinION platform using R9.4.1 
flow cells. Run conditions were set with a custom MinKNOW script 
(available from Oxford Nanopore Technologies) at a temperature 
of 30 °C and a constant voltage of −140 mV with a 3 kHz sampling 
frequency, except for initial proteins P1–P4, for which runs were 
performed at a constant voltage of −180 mV with a 10 kHz sampling 
frequency. Using the priming port, flow cells were first washed with 
1 ml cis running buffer (200 mM KCl, 5 mM MgCl2, 10% glycerol and 
25 mM HEPES–KOH, pH 7.6) and then loaded with 200 μl protein ana-
lyte in cis running buffer at a final concentration of 500 nM, unless 
otherwise specified. Following the observation of protein captures 
in the pores, flow cells were washed with 1 ml cis running buffer to 
remove uncaptured proteins and subsequently loaded with 75 μl cis 
running buffer supplemented with 4 mM ATP and 200 nM ClpX-ΔN6 
unless otherwise specified. The flow cell was washed about 4 min after 
analyte loading in the initial method, and around 6 min and 2 min after 
analyte loading at concentrations of 5 nM and 500 nM, respectively, 
in the optimized method (Extended Data Fig. 10a). For MinION runs 
in the high-salt condition (Extended Data Fig. 6b), a buffer containing 
400 mM KCl, 5 mM MgCl2 and 25 mM HEPES–KOH (pH 7.6) was used 
instead of standard cis running buffer to see if it would improve the 
signal-to-noise ratio.

Bulk degradation assays
The time-course degradation assay of the PASTOR-HDKER protein was 
performed in cis running buffer with 6 μM PASTOR-HDKER, 150 nM 
ClpX-ΔN6, 300 nM ClpP14 and an ATP-regeneration mix (4 mM ATP, 
16 mM creatine phosphate and 7 units per ml creatine phosphokinase) 
at 30 °C. Incubation was stopped by denaturing samples in Laemmli 
buffer at 95 °C for 5 min. Samples were run on SDS–PAGE and stained 
with Coomassie blue to quantify the protein bands using the ImageJ 
software.

Nanopore signal analysis
Preprocessing. To help identify ClpX-mediated protein transloca-
tions, we established detection thresholds using specific statistical 
parameters (standard deviation, median value, standard deviation of 
the mean of windows, and the ratio of values relative to the open pore 
value) indicative of translocation to ionic current blockades preceding 
a return to the open channel state. This analysis was used to assist the 
process of manually checking traces for translocations, and translo-
cations with particularly high noise or disruptions were discarded. 
PASTOR proteins were auto-segmented as described below, with the 
exception of those containing folded domains and PASTOR-rereads, 
which were segmented manually. PASTOR-reread rereads with a com-
plete Y2–Y3–Y4–Y5–Y2 signal were assumed to be full-length reads with 
a back-slipping distance of 310 amino acids. Partial rereads missing 
the signal(s) of the C-terminal Y2, Y3, Y4 and Y5 were assigned to have 
back-slipping distances of 250, 188, 125 and 61 amino acids, respectively. 
All figures with raw traces (those shown in pA) had a low-pass Bessel 
filter applied using SciPy with N = 10 and Wn = 0.025, except for those 
showing stepping analysis (Figs. 2c and 6c, Extended Data Fig. 3 and 
Supplementary Figs. 5 and 6), which had Wn = 0.7. Before use in data 
analysis, traces were smoothed by applying a low-pass Bessel filter with 
N = 10 and Wn = 0.03 with SciPy, and by applying average downsampling 
by a factor of 50 for proteins P1–4, 20 for the 8 PASTORs and 10 for the 
other proteins. Then, to scale, the segment was split into tenths, and 
the median of the minima of each tenth and the median of the maxima 
of each tenth were used as the min and max, respectively, to perform 
min–max scaling (Extended Data Fig. 2b). For PASTOR-phos, the signals 
were iteratively scaled. We first used this approach, then DTW-aligned 
traces to two canonical presegmented traces and selected the align-
ment with the lowest DTW distance. The max value of the N-terminal VR 
was multiplied by 1.4, and the max value of VR GLSARRL was multiplied 
by 1.2, and the minimal max was used as the max value for min–max 
scaling. This was repeated after realigning to the canonical traces and 
segmenting the VRs. Unless otherwise specified, ‘normalized’ refers 
to z-score normalization, as in ‘normalized current’ when comparing 
a model signal with experimental signals.

Signal alignment. To align signals, we used DTW61 and normalized the 
DTW distances by dividing by the sum of the lengths of the two signals. 
To describe the similarity of a set of traces, we computed the DTW dis-
tance between all pairs of traces. In t-distributed stochastic neighbor 
embedding (t-SNE) plots, we then clustered traces on the vector of its 
DTW distances to all other traces. To create ensemble traces, we first 
identified the trace with the lowest mean DTW distance to all other 
traces and stretched it to create Tmedoid = [t1, t2,.., tn], where n is the mean 
length of all traces. We then DTW-aligned every other trace to Tmedoid 
and created Tconsensus = [median(alignments to t1), median(alignments 
to t2), …, median(alignments to tn)]. Ensemble traces in Fig. 1c, Fig. 5b 
and Extended Data Fig. 9d show all traces aligned to the Tconsensus, but 
do not plot Tconsensus.

Protein sequence-to-signal model. To describe the amino acids, we 
used their volumes62 and their charges at pH 7.6, at which the histi-
dine residue is assumed to be neutral. The volume of phosphoserine 



was estimated as 126.6 cm3 mol−1, on the basis of a linear regression of 
molecular weight to volume of the other residues. The model signal,  
S = [S1, S2, ..., Sn–19], of amino acid sequence [aa1, aa2, …, aan] is calcu-
lated by computing the signal for each of the n–19 windows of width 
20 (Extended Data Fig. 5a–d). The vector Xi describes the window 
starting at index i in the sequence. The j-th index in Xi is 1 + Vc × volume 
(aai+j) + Pc × PositiveCharge(aai+j) + Nc × NegativeCharge(aai+j), for 
0 ≤ j < 20, where the functions PositiveCharge and NegativeCharge 
take 1 if the residue has a positive or negative charge, respectively, 
and 0 otherwise. The constants representing weights between charge 
and volume, Vc = −3.9 × 10−3, Nc = 4.08 × 10−1 and Pc = −8.16 × 10−2, were 
determined empirically to minimize the average post-DTW distance of 
a training subset of protein traces to the model of their sequences. To 
weight the values in Xi, we use a vector PW (parabolic weight) of length 
20 containing values representing a negative, centrally positioned 
parabolic curve. The i-th index in S is then finally computed as the dot 
product of Xi and PW.

ClpX step identification. For this analysis, the signals were not scaled 
or downsampled. They were filtered with a low-pass Bessel filter with 
N = 10 and Wn = 0.7. For this analysis, YY dips were extracted manually, 
including portions of the signal that would otherwise be considered 
part of the VR in this study, to best capture the entire portion for which 
the double tyrosines contribute to the signal. The number of residues 
per YY dip was calculated as pw/d, where p is the mean proportion of the 
total translocation dwell time spent in these regions (0.318; Extended 
Data Fig. 3a), w is the total number of reading windows in the sequence 
(359; Extended Data Fig. 1) and d is the number of YY dips per read (6). 
We primarily used a Bayesian-based algorithm63 to identify steps, unless 
otherwise noted. When applying this algorithm, a minimum length of 
10 observations and a threshold of 18 was used. A total of 776 YY-dip 
regions were analysed, comprising 45% of all the YY dips in the dataset, 
omitting dips affected by potential backstepping (non-monotonic 
steps) or excessive noise. This selection was made by excluding YY 
dips that did not follow the pattern of the mean of each segmented step 
monotonically decreasing to the minimum and then monotonically in-
creasing. A secondary t-test-based algorithm64 was also used to confirm 
the results of the stepping rate, which was used in a different study of 
ClpX stepping behaviour65. When using the t-test-based algorithm, a 
minimum window length of 10 observations and a threshold P-value 
of 5 × 10−5 were used, and a total of 456 dips were analysed.

YY segmentation. To identify the YY dips and VRs, a single PASTOR 
trace was segmented manually into each coloured section in Fig. 2a, 
and the remainder of the traces were aligned to it with DTW. The cor-
responding regions were assigned the label from the one manually 
segmented trace (Supplementary Fig. 4). For PASTOR-phos, two ca-
nonical traces were segmented manually, and the rest of the traces 
were aligned to both, and then labels were assigned according to the 
canonical trace with the lowest DTW distance.

VR classification. We used scikit-learn to develop and test classical 
machine learning models and Pytorch to develop and test convolutional 
neural-network models. The test set was composed of all current traces 
from a given set of experiments to create an out-of-sample test set. 
The set of test experiments was selected using linear programming 
(Python package Pulp) to ensure at least 12 VRs with each amino acid 
in the test set, and minimizing the test set size. We decided to use 12 
because it gave the closest to an 80–20 train–test split: 79.6% of the VRs 
were in the training set and 20.4% were in the testing set (full counts 
are shown in Extended Data Table 1a). In classification tasks for which 
only VRs corresponding to a subset of amino acids were used, the test 
set was composed of a subset of this test set. We performed hyperpa-
rameter tuning with scikit-optimize on the training set using 5-fold 
cross-validation. The optimal parameters were: n_estimators = 250, 

min_samples_leaf = 2, max_features = ‘log2’, max_depth = 20, ccp_ 
alpha = 0.0001, class_weight = ‘balanced_subsample’ and criterion =  
‘gini’. All the results in Fig. 3b,c, Extended Data Fig. 6, Extended Data 
Table 2 and Supplementary Fig. 9 are from models evaluated on the test 
set. All the VRs containing an asparagine with a maximum transformed 
value above 1.3 had their labels changed to aspartate. In training all 
classical models, we upsampled minority classes, such that there was 
an equal representation of all classes in the training set. When training 
the convolutional neural network (CNN) in Extended Data Fig. 6c, we 
weighted the loss inversely proportional to each label’s class represen-
tation in the training set. To featurize the VRs, we performed principal 
component analysis on the vector of its DTW distances to all VRs in 
the training set to reduce the size of the vector to 64. We also used the 
median, max, middle, mean, dip, mean absolute value of the derivative 
and median absolute value of the derivative of the transformed signals, 
as well as the standard deviation of the raw (unfiltered, unscaled) signal. 
The CNN had the transformed signal as input. It was trained with a sto-
chastic gradient descent optimizer with a learning rate of 0.01, had four 
convolutional layers followed by a gated recurrent unit (GRU) and then 
a fully connected layer, and was initialized with Kaiming initialization. 
Max pooling and a ReLU activation function were applied after each 
convolutional layer. The dummy classifier was implemented with the 
scikit-learn dummy classifier with default parameters.

Reread simulation. To collect the results shown in Extended Data 
Fig. 7d,e, we used a random forest without hyperparameter tuning 
and used 100 randomly selected 80–20 train–train splits. This was 
necessary to estimate the accuracy well enough with a large number 
of rereads, given the data limitation and the need to group samples in 
the test set.

Barcode error correction. To calculate the accuracy of barcode identi-
fication when using linear error-correcting codes, we started with our 
accuracy, pVR, of identifying a VR given an alphabet size, a, of 2, 4, 8 or 
16. For a given a and number of VRs, L, we calculated the number of bits, 
n = L × log2(a), that could be encoded in a protein. We simulated the 
accuracy with error correction, p′, when n−k of the bits were allocated 
to linear error-correcting codes, for all integers k = 1 to n. We did this by 
conducting 50,000 trials of: first, encoding a random integer from 0 to 
2k with a generating matrix into a message of n bits; second, randomly 
and independently, with probability pVR, changing each of the n/log2(a) 
consecutive sets of log2(a) bits in the encoded message (to a different 
set of bits of the same length) to simulate misclassifying one VR; and 
third, decoding the number with syndrome decoding. We calculated 
p′ to be the percentage of trials in which the decoded number was the 
same as the original random number.

Phosphorylation detection. Each section (C-terminal linker, VR V, VR 
GLSARRL, VR A and N-terminal linker) was extracted with YY segmen-
tation. For each section, the transformed current was aligned to the 
model of all possible phosphorylation states, shown in Supplementary 
Fig. 12. We determined the number of phosphorylations in each section 
by the number of phosphorylations in the best-matching (lowest DTW 
distance) phosphorylation-state model (Supplementary Table 2) to 
the actual trace. When describing the signal increase in VR GLSARRL 
caused by PKA (Extended Data Fig. 8a), only the portion of the section 
up to the (n/3)-th index, where n is the length of the YY-segmented 
VR GLSARRL, was used because that is where PKA causes the signal to 
increase, as seen in Fig. 6b.

Null-hypothesis tests
All PERMANOVA tests were done on the DTW distance matrix of sig-
nals using scikit-bio and 106 permutations, unless we used a Bonfer-
roni correction, in which case n × 106 permutations were used, where 
n is the number of comparisons performed. Kruskal–Wallis, T and 



Article
Mann–Whitney U tests were performed using SciPy. Reported P values 
were multiplied by n if we noted that we used a Bonferroni correction. 
All tests were two-sided unless stated otherwise, and P values were 
considered significant if P < 0.05.

Materials availability
Protein expression plasmids are available at Addgene.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data are available on GitHub at https://github.com/uwmisl/PASTOR- 
sequencing and Zenodo at https://doi.org/10.5281/zenodo.12713840 
(ref. 66). Custom MinION MinKNOW run scripts can be obtained from 
Oxford Nanopore Technologies on request.

Code availability
Code for the analyses is available on GitHub at https://github.com/
uwmisl/PASTOR-sequencing and Zenodo at https://doi.org/10.5281/
zenodo.12713840 (ref. 66).
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Extended Data Fig. 1 | ClpX-mediated translocation. a, Fraction of ClpX- 
mediated translocation events observed following capture events in  
the presence of no ATP (n = 230), 0.5 mM ATP + 0.5 mM ATPγS (n = 180),  
4 mM ATP + 0.5 mM ATPγS (n = 27), or, 4 mM ATP (n = 16). b, ClpX-mediated 

translocation time in the presence of 0.5 mM ATP + 0.5 mM ATPγS (n = 7), 4 mM 
ATP + 0.5 mM ATPγS (n = 9), or 4 mM ATP (n = 8). Error bars denote standard 
deviations.
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Extended Data Fig. 2 | Consistency of YY dips and VRs in PASTORs enables 
scaling of ionic current traces. a, Mean transformed current levels of YY and 
VR PASTOR segments. Error bars denote standard deviation. n = 1828 for YY 

dips and 1525 for VRs. There was a total of 305 PASTOR traces analyzed.  
b, Depiction of the process of scaling signals to the “transformed” current 
described in Methods.



Extended Data Fig. 3 | ClpX stepping behavior. a, Distribution of the 
proportion of time (out of the total duration of the signal) spent within the 
manually segmented YY-dip regions, for n = 305 traces. Mean is 0.318 and 
median is 0.319. This portion was used to estimate ClpX’s step size (Methods). 
b, Number of steps for each of the YY dips without back steps using 

Bayesian-based YY-segmentation, n = 776. c-e, Stepping behavior statistics 
when calculated with t-test segmentation method, n = 456. Note that this n is 
different from b, because with the different segmentation algorithm, different 
putative backsteps were found and subsequently different dips were filtered 
(Methods).
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Extended Data Fig. 4 | Variable regions in PASTOR. a, Scatter plot of various 
features of the uncharged VRs, with error bars denoting one standard deviation, 
center point denoting the mean, and explanation of the features to the right.  
n of VRs, traces, and experiments shown in panels a-c shown in Extended Data 
Table 1. b, Bar blot of the variance of the max value of the transformed VRs 
corresponding to each amino acid. c, t-SNE map showing clustering of the 
pairwise DTW distance between each amino acid, with all amino acids other 
than D, E, and C being colored by the volume, the negative amino acids colored 
black, and C being highlighted in orange. d, Plot of all the VRs corresponding  
to asparagine in normal conditions (left) and in conditions that catalyze the 
deamidation of asparagine to aspartate (right). Lines colored teal if the max 
value of the transformed signal <1.3, and purple otherwise. n = 81 for normal 
conditions and 77 for deamidation conditions. e, t-SNE plot as in c, showing 
only asparagine and aspartate VRs. Asparagine VRs are colored blue if the max 

value of the transformed signal >= 1.3, and green otherwise. Asparagine VRs 
form a distinct cluster from aspartate and putative deamidated asparagine  
VRs (pPERMANOVA <1×10−6). Putative deamidated asparagine and aspartate are 
indistinguishable (pPERMANOVA= 0.8). f, Bar plot displaying mean percent of 
mutations that have been putatively deamidated or not (same threshold as in d, 
e) in VRs corresponding to asparagine, across technical replicates with n = 6, 4, 
3, and 3 from left to right. Error bars denote standard deviations. g, Distance 
matrix of the DTW-distances between the aspartate, asparagine, and putative 
post-translationally modified asparagine to aspartate VRs shown in e. h, Violin 
plots showing distribution of the maximum height of transformed VRs, in 
normal and deamidation catalyzing conditions, for asparagine (N, green), and 
aspartate (D, purple), and the three other amino acid substitutions in PASTOR- 
VGDNY (valine, glycine, and tyrosine, brown). Horizontal lines denote min, 
median, and max. n = 88, 77, 81, 77, 68, and 77 from left to right.



Extended Data Fig. 5 | A biophysical model for simulating nanopore ionic 
current traces directly from protein sequence. a–d, Description of model 
signal generation. a, A protein sequence to be modeled. b, Calculation of  
the volume and charge, scaled, for all amino acids in the window of size 20.  
c, Parabolic weighting of the values within a window. d, Plotting the value S for 
each window, by computing the dot product of the parabolic weight array and 
the window array, to create the full model signal. e, Comparison between the 
nanopore signal of an example ionic current signal of PASTOR-TWAFH (black 

line) and the modeled signal generated for the same protein sequence (pink line). 
Model signal shown with the time axis aligned to the experimental trace using 
DTW. f, Distributions of the DTW distances between the real (experimental) 
signal traces and the model signals of the same sequence (pink), or between the 
real signal traces and the model signals of 10,000 random sequences derived 
from the same amino acid distribution as the real sequence (orange). n of 
experimental traces ranges from 27 to 55.
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Extended Data Fig. 6 | Classification of single-amino acid mutations with a 
Random Forest model. a, Heatmap each pairwise classification accuracy by  
a Random Forest model evaluated on the fixed test set, as in main Fig. 3b, with 
values. b, The accuracy of 5-way classification of the H, D, K, E, and R VRs with 
various training sizes, to compare the quality of data with different buffer 
conditions. Each condition was trained and tested on 100 different Random 
Forest models, each trained on a random train-test split. The extra data was 

allocated to the testing set. The original buffer data is the data used in Figs. 2, 3, 
with n in Extended Data Table 1. Both conditions consist of 2 independent runs. 
The models’ performance was consistent across both standard and elevated 
salt conditions. c, Accuracy in a 20-way classification when “accuracy” is 
defined as the correct label being in the top-N most probable classes. The 
dummy classifier chooses one label at random. Results averaged over 20 
models.



Extended Data Fig. 7 | Rereading with an unfoldase slip sequence and 
estimating its impact on barcode sequencing accuracy. a, Estimated back- 
slipping distance for ClpX concentrations at 1000 nM (n = 141), 200 nM 
(n = 609), 40 nM (n = 777), and 8 nM (n = 999). The very first full-length read 
(Read 1) of each analyte protein molecule was excluded from this analysis.  
b and c, Number of all reads and full-length reads per PASTOR-reread molecule, 
respectively. The dotted lines indicate medians for ClpX concentrations at 
1000 nM (n = 26), 200 nM (n = 37), 40 nM (n = 23), and 8 nM (n = 20). d, Simulated 

effect of rereading on 2 (Y, D), 4 (A, W, R, D), 7 (G, Q, W, F, R, D, E), 10 (A, G, V, N, Y, 
W, F, R, D, E), 14 (C, A, G, T, V, N, Q, M, Y, W, F, R, D, E), 17 (C, S, A, G, T, V, N, Q, M, I, Y, 
W, F, H, R, D, E), and 20-way (all 20 a.a.) classification tasks, compared to a 
baseline random classifier. Each value is the average over 100 train-test trials.  
e, Projected sequencing accuracy of barcode designs using the accuracies 
from d. Points of the same color represent different amounts of bits allocated 
to error correcting codes (see Methods).
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Extended Data Fig. 8 | Reading kinase phosphorylation activity on single 
protein molecules. a, Maximum transformed signal value for each trace. 
Transparency of each scatter point is proportional to the n of traces for that 
condition. For each of C-terminal linker, VR V, VR A, and N-terminal linker 
conditions, the CKII incubation conditions’ maximum values were significantly 
higher than the blank and PKA incubation conditions (pMann-Whitney, one-sided < 10−8 
for each, after Bonferroni correction). GLSARRL region corresponds to the 
C-terminal third of the VR. The GLSARRL region’s maximum values are 
significantly higher in the PKA than the blank incubation condition  
(pMann-Whitney, one-way = 5 × 10−39, after Bonferroni correction) and the two CKII 
incubation conditions are significantly different from each of the two  
other conditions (pMann-Whitney < 10−5 for each, after Bonferroni correction).  
b, Interquartile range (IQR) of the number of putative phosphorylations per 
molecule. No kinase incubation shows fewer phosphorylations than 1 hr 
incubation (pMann-Whitney, one-way = 4 × 10−16), and 1 hr incubation in CKII shows fewer 

phosphorylations than 26 hr incubation (pMann-Whitney, one-way = 5 × 10−6). Center 
line, box, whiskers, and diamonds represent median, IQR, 1.5 IQR, and outliners, 
respectively. c, Interquartile ranges of putative linker phosphorylations per 
molecule for each of the kinase incubation conditions, corresponding to  
single or double phosphorylations on a linker. Center line, box, whiskers, and 
diamonds represent median, interquartile range (IQR), 1.5 IQR, and outliners, 
respectively. CKII 26 hr incubation molecules have significantly more  
putative single phosphorylations than the CKII 1 hr incubation condition  
(pMann-Whitney, one-sided, Bonferroni corrected = 0.002) and the blank and PKA incubation 
conditions (pMann-Whitney, one-sided, Bonferroni corrected = 3 × 10−28). CKII 26 hr incubation 
molecules also have significantly more putative double phosphorylations 
than the CKII 1 hr incubation condition (pMann-Whitney, one-sided, Bonferroni corrected = 0.01) 
and the blank and PKA incubation conditions (pMann-Whitney, one-sided, Bonferroni corrected = 
3 × 10−58). For all panels, n of traces and experiments in Extended Data Table 3. 
*P < 10−5.



Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Processive reading of folded protein domains.  
a, Example trace of PASTOR-Titin, not zoomed into translocation state (open 
pore to open pore). Roman numerals correspond to states described in main 
Fig. 6a. b, Example trace of PASTOR-dTitin. c, Distribution of total unfolding 
time for Titin (n = 21) and dTitin (n = 14). d, Ensemble traces of state vii of 
PASTOR-Aβ15 (pink, n = 21), -Aβ42 (purple, n = 15), -Titin (red, n = 20), and -dTitin 
(orange, n = 12). Protein sequences are shown in the C-to-N direction, and 
asterisks represent the C47E and C63E mutations between Titin and dTitin.  
e, t-SNE plot based on pairwise DTW distances for state vii, showing Aβ15 and 
Aβ42 form a distinct cluster from Titin and dTitin (pPERMANOVA ≤ 1×10−6). Aβ15 vs 
Aβ42 and Titin vs dTitin states vii are indistinguishable (pPERMANOVA = 0.99, 0.67, 
respectively). f, Distance matrix of the DTW-distances between the traces of 
Aβ15, Aβ42, Titin and dTitin, shown in e. g, Example trace of PASTOR-Aβ42.  
h, Relationship between protein length and translocation time. State vii dwell 
time is plotted for Aβ15, Aβ42, Titin, and dTitin, as well as translocation time for 

the 8 PASTORs with no folded domain insert (n = 672). The dotted line was  
fitted with the mean dwell times of each protein class (slope corresponds to a 
translocation rate of 16 ms/aa or 63 aa/sec, R2 = 0.998). i, Distributions of the 
DTW distances of each of the protein translocations for folded domain proteins 
to model signal(s). In blue, they are compared to the model signal of the protein 
sequence, and in orange, they are each compared to the model of 10,000 
random sequences derived from the same sequence distribution. The protein 
translocations include the regions corresponding to the folded domain 
translocation (state vii) and the N-terminal half of the PASTOR YY dips and VRs 
(state viii). The signals corresponding to the C-terminal half of the PASTOR YY 
dips and VRs (state v) and the folded domain unfolding (state vi) are excluded 
from the analysis, because the model does not predict unfolding patterns 
(main Fig. 6b). n = 20, 12, 21, and 15 for PASTOR-Titin, PASTOR-dTitin,  
PASTOR-Aβ15, and PASTOR-Aβ42, respectively.



Extended Data Fig. 10 | Quantification of ClpX-mediated protein 
translocations. a, Yield of nanopore runs on the R9.4.1 flow cell. Quality open 
pore denotes a pore that was consistently at open pore current at the time of 
analyte loading. The R9.4.1 flow cell has a maximum of 512 pores available for 
measurement and the number of quality open pores used for measurement 
fluctuates depending on the flow cell condition. The initial run method with an 
analyte concentration of 500 nM (purple) includes PASTOR and PASTOR-phos 
data. The optimized run method with an analyte concentration of 5 nM (blue) 
includes PASTOR-HDKER data. The optimized run method with an analyte 
concentration of 500 nM (green) includes PASTOR-HDKER and PASTOR-phos 
data. n = 35, 3, and 3, for the original run (500 nM analyte), optimized run  
(5 nM analyte), and optimized run (500 nM analyte) conditions, respectively. 
The number of translocations per quality open pore was significantly (pt-test, one-sided = 

5 ×10−8) higher for the optimized run method (500 nM analyte) condition than 
the original run method (500 nM analyte), and the other comparisons were 
non-significant (pt-test, original vs. 5nm optimized, pt-test, one-sided, 5nM optimized vs 500nM optimized > 0.05). 
Error bars denote standard deviations. b, SDS-PAGE analysis of purified 
PASTOR-HDKER protein. The protein band appears at a higher position on  
the gel than the actual molecular weight of the protein (50.2 kDa) due to its 
highly net negatively-charged state. c, Bulk ClpXP degradation assay on 
purified PASTOR-HDKER protein. The substrate protein was incubated  
with an ATP regeneration mix and ClpP in the presence or absence of ClpX.  
d, Residual PASTOR substrate was quantified based on the peak area of the 
PASTOR-HDKER protein band normalized by the ClpP protein band on each 
lane using ImageJ software. Raw gels shown in Supplementary Figs. 15 and 16.
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Extended Data Table 1 | PASTOR data

PASTOR data relate to Figs. 2f and 3, Extended Data Figs. 4a–c, 5f, 6, 7e,f; Extended Data Table 2; and Supplementary Table 1. a, Counts of variable regions. b, Counts of traces and technical 
replicates for each PASTOR.



Extended Data Table 2 | Set-wise classification accuracy

Accuracy of a hyperparameter-optimized Random Forest classifying VRs when the train and test set was composed only of VRs corresponding to the mentioned amino acids.
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Extended Data Table 3 | Counts of PASTOR-phos
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