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The computerized simulations of physical and socio-economic systems have proliferated in the past decade, at
the same time, the capability to develop high-fidelity system predictive models is of growing importance for
a multitude of reliability and system safety applications. Traditionally, methodologies for predictive modeling
generally fall into two different categories, namely physics-based approaches and machine learning-based
approaches. There is a growing consensus that the modeling of complex engineering systems requires novel
hybrid methodologies that effectively integrate physics-based modeling with machine learning approaches,
referred to as physics-informed machine learning (PIML). Developing advanced PIML techniques is recognized
as an important emerging area of research, which could be particularly beneficial in addressing reliability
and system safety challenges. With this motivation, this paper provides a review of the state-of-the-art of
physics-informed machine learning methods in reliability and system safety applications. The paper highlights
different efforts towards aggregating physical information and data-driven models as grouped according to
their similarity and application area within each group. The goal is to provide a collection of research articles
presenting recent developments of this emergent topic, and shed light on the challenges and future directions
which we, as a research community, should focus on for harnessing the full potential of advanced PIML

techniques for reliability and safety applications.

1. Introduction

Ensuring reliability and system safety is critically important in de-
veloping complex engineering systems. Moreover, the ability to develop
accurate predictive models for system performances under different
designs and operating conditions is vital for effective reliability and
safety analysis. Due to the cost effectiveness, predictive models have
been employed more frequently in a variety of engineering appli-
cations, such as reliability modeling [1-6], degradation analysis [7,
8], fault diagnostics [9,10], failure prognostics [11-14], operation
and maintenance decision-making [15-17], design and uncertainty
quantification [18-20], as well system risk assessment. Traditionally,
methodologies for predictive modeling generally fall into two cate-
gories, namely physics-based approaches [21] and machine learning
(ML)-based approaches [22].

Physics-based approaches, also called forward modeling approaches
(e.g., [23,24]), use physical laws of nature to determine the underly-
ing relationship between input parameters and output performances
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of a complex system. Physics-based approaches are well-suited for
representing processes that are conceptually well understood using
known scientific principles. By providing a baseline model for the
underlying physical relations within the system of interest, physics-
based approaches have been widely used for numerous reliability and
system safety applications. For example, in structural health monitor-
ing (SHM) [25,26], the physics-based approach provides a calibrated
physics-based numerical model that can be used for damage progno-
sis. However, a critical barrier limiting the in-practice application of
physics-based model updating is the modeling error that originates
from model simplification and omission [24]. In addition, a wide
variety of system modeling tasks, such as optimal control and real-
time damage diagnosis, require accurate and timely predictions. In such
scenarios, employing physics-based approaches, could be challenging
due to computational times required in solving physics-based govern-
ing equations and predicting system performances. Furthermore, tasks
involve processes that are not completely understood because of the
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inherent complexity of the processes limit the application of physics-
based approaches. For example, the prediction of the failure time of
complex systems is generally addressed by capturing the physics of
failure. While extensive research on physics-based models has been per-
formed (e.g., [27,28]), developing physics-based models for reliability
and system safety applications could be challenging, as engineering
systems could be complex, physical degradation processes may not be
well-understood, or large variability may exist from system to system.
Machine learning approaches [22,29,30] could remedy the chal-
lenges on required prior knowledge about the system for physics-based
approaches by relying on the data collected from the system of interest.
The use of machine learning approaches could be particularly promis-
ing in problems involving processes that are not completely understood,
or where it is computationally infeasible to implement physics-based
approaches at a desired level of accuracy or efficiency. Therefore,
machine learning approaches have been implemented to mitigate these
drawbacks of physics-based approaches. While these advanced machine
learning models could be powerful for modeling complicated systems,
there could also be challenges. First, machine learning approaches are
often data-driven and require a substantial amount of data, which is
usually unreliable or unavailable in engineering practice. For instance,
in failure diagnosis applications, machine learning approaches often re-
quire training data sets from both undamaged and damaged conditions.
However, such data could be limited, especially for those damaged con-
ditions. Additionally, it could be challenging in extrapolating machine
learning models or predicting unseen data. Particularly, the “black-
box” model highly depends on the representative quality of the labeled
data that it is fed in, leading to low accuracy and generalizability out-
side available data. Research studies on machine learning applications
in prognostic and health management (PHM) require a representative
data set of run-to-failure degradation trajectories to obtain accurate
prognostics models [31,32]. The collection of the representative data
set for systems subjected to periodic maintenance interventions can
take a long time because failure may be rare, and the system can
operate in different environments and follow different mission profiles,
resulting in a large range of possible deterioration trajectories.
Generally speaking, physics-based and machine learning approaches
both have their own characteristics, and could suffer from certain
deficiencies when applied to complex engineering problems in reli-
ability and system safety applications. There is a growing consen-
sus that solutions to complex science and engineering problems re-
quire novel methodologies that can integrate prior scientific knowledge
(e.g., physics-based modeling approaches) with state-of-the-art ma-
chine learning techniques. Physics-informed machine learning (PIML)
is an emerging paradigm that aims to leverage the wealth of physical
knowledge for improving the effectiveness of machine learning mod-
els [33]. By the PIML methods, physical principles are often used as
the ‘prior’ knowledge to enhance the power of the machine learning
models. Various approaches have been developed to combine physics-
based and machine learning approaches, depending on what type of
information is processed and how the pieces of information are com-
bined. Karpatne [34] first formally conceptualized the paradigm of
theory-guided data science, where scientific theories are systematically
integrated with data science models in the process of knowledge dis-
covery. Karniadakis [35] reviewed some of the prevailing trends in
embedding physics into machine learning, present some of the current
capabilities and limitations, and discuss diverse applications of physics-
informed learning. Rueden [36] provided a definition and propose
a concept for informed machine learning, which illustrates its build-
ing blocks and distinguishes it from conventional machine learning.
A taxonomy that serves as a classification framework for informed
machine learning approaches is introduced. It considers the source
of knowledge, its representation, and its integration into the machine
learning pipeline. Moreover, among physics-informed machine learn-
ing methods, the physics-informed neural network has been receiving
growing attention due to the potential reduction in computational cost
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and modeling flexibility. Viana [37] surveyed the developments on
Bayesian calibration of computer models and physics-informed neural
networks. Besides, a physics-informed machine learning strategy has
been widely used in many research areas in recent years. Willard [33]
provided an overview on techniques of integrating the traditional
physics-based modeling approaches with the machine learning models.
This survey focuses primarily on improving the modeling of engi-
neering and environmental systems that are traditionally solved using
physics-based modeling. Markidis [38] focused on evaluating the po-
tential of PIML as linear solvers and characterizing PIML linear solvers
in terms of accuracy and performance under different network con-
figurations (depth, activation functions, input data set distribution).
Rai [39] made a meticulous and systematic attempt at organizing
and standardizing the methods of combining machine learning mod-
els and physics-based models in the field of cyber-physical systems.
Moreover, physics-informed machine learning methods have also been
incorporated in some advanced technologies, such as digital twin [40]
and additive manufacturing [41-44]. Big data and the industry 4.0
bring opportunities for new hybrid modeling solutions. Sansana [45]
provided a review on hybrid modeling techniques, associated system
identification methodologies, and model assessment criteria.

While PIML methods have quickly been used in solving differential
equations and physical computing, among others, little attention was
paid to their method development and application for the enhance-
ment of the reliability and safety of complex technological systems.
Developing advanced PIML methods is recognized as an important
emerging area of research, which could be particularly beneficial in
addressing reliability and system safety related challenges. With this
motivation, this paper provides a review of the state-of-the-art of
physical-informed machine learning methods in enhancing reliability
and safety of complex system from both technical and application per-
spectives. This survey was conducted in two aspects with the method-
ology and application focuses. The authors explored physics-informed
machine learning (PIML) techniques published in the reliability and
system safety-related journals between 2016 and 2022, such as the
Journal of Reliability Engineering & System Safety, Mechanical Sys-
tems and Signal Processing, Mechanical Design, and Structural and
Multidisciplinary Optimization, etc. The focus of this survey is on PIML
approaches that incorporate physics knowledge and machine learning
models for real-world engineering applications. Moreover, the authors
conducted a keyword search for PIML methodologies from google
scholar and web of science between 2016 and 2022, such as the words
“physics-informed”, “physics-guided”, “‘physics-constrained”, “physics-
aware”, or “theory-guided”, etc. A collection of research articles pre-
senting recent developments of this emergent topic are provided, and
comprehensive analysis on constructing the PIML model is presented
focusing on reliability and system safety related methodologies and
applications. It also sheds light on the challenges and future directions
which we, as a research community, should focus on for harnessing the
full potential of advanced PIML techniques for reliability and system
safety related techniques and applications. The rest of the paper is
organized as follows. Section 2 discusses the existing state of the art
methods of the PIML. Section 3 analyzes a multitude of reliability and
system safety applications, such as reliability modeling, degradation
analysis, fault diagnostics, failure prognostics, operation and mainte-
nance decision-making, as well as system risk assessment. Section 4
explores the limitations and challenges of PIML modeling, and a brief
conclusion is provided in Section 5.

2. Overview of the PIML methodology

Integration of physics-based models with machine learning tech-
niques to create PIML models has been prevalent recently for engineer-
ing applications. This section provides an overview of the past PIML
methodology. Section 2.1 provides a brief summary of the past PIML
methodology development efforts, especially the usage of PIML in early
stages. Section 2.2 presents some recently developed PIML frameworks
and provides a summary of the state of the art PIML methodology.
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2.1. Development of PIML models

While a physical model can be employed initially to establish the
essential relationship between system input parameters and output
performances for engineering analysis, the field has evolved with more
advanced data-driven approaches being incorporated for the develop-
ment of PIML models in order to achieve a better model prediction
performance. For example, Zhu et al. [46] determined the low cycle
fatigue of aircraft turbine discs using a physical model, and further
combined it with a statistical learning model for uncertainty analysis.

In general, sample data is needed for training and validation of the
PIML model, where physics-based simulation models could be used to
generate these needed sample data. For example, triple loop Monte
Carlo simulation [47] was used for multi-state physics modeling, which
was applied to reliability assessment of reactor protection system of a
nuclear power plant. This is an early example of a “physics-informed”
model that enhances a data driven model. Shi et al. [48] utilized Gaus-
sian process model for reliability based design optimization and applied
this technique to optimize crash-impact design of vehicles. Many of
the these studies have a primary focus of reducing the computational
cost of physics-based simulations by using machine learning based
surrogates. In particular, Perrin et al. [49] utilized Gaussian process
surrogate models and aims to identify boundaries of failure domain
while minimizing computational cost. However, these studies do not
utilize the data-driven model to enhance or improve the physics model,
instead the physics model is replaced by the data-driven model and
further updated given online data measurements.

Hybrid machine learning physics models were scarce only a few
years ago, but data-driven models have been utilized as surrogates
to complicated physics of failure models. For instance, Bourinet [50]
utilized support vector machine surrogates for the true limit state
function, which defines the failure of the given system. In this study,
due to lack of data, training points were generated using Metropolis-
Hasting algorithm based on the few known data points. Also, machine
learning has been utilized for direct estimation of the probability of
failure. Gomez et al. [51] implemented an artificial neural network
with radial basis function to detect cracks in a rotating shift, where
experimental data was used to train the model.

In recent years, there have been advances in combining physical
models with machine learning techniques. Specifically, mapping Al
structures to experimental data, and merging existing physical models
with data driven methods. For instance, Yigit et al. [52] implemented a
neural network for adjusting the outputs of frequency response function
utilized for torsional vibration damper. In this study, the nodes of the
deep neural network are implemented as model elements, including
storage loss, stiffness, and damping coefficients. This particular hybrid
model is an example of physics enhanced architecture, where the nodes
of the network are defined specifically by physical vibration models. In
addition, this enables correction to the physical model with observable
experimental data. In most applications, the available experimental
and simulated data plays a significant role in the performance of the
algorithm.

2.2. State of the art PIML methodology

Different types of hybrid structures are created for different appli-
cations, for example, physical knowledge can be used in the design of
model families to restrict the space of models to obtain physically con-
sistent solutions, such as in the selection of response and loss functions
or in the design of model architectures. Another way of integrating the
physics principles and data is to construct hybrid models, where some
aspects of the problem are modeled using physics-based components
while other aspects are modeled using data-driven components. Many
of these approaches can be applied together in multiple combinations
for a particular problem, depending on the nature of physical knowl-
edge and the type of data-driven method. Generally, there are two types
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of physics-informed machine learning approaches, depending on the
roles of physics prior knowledge played in the hybrid model. The first
approach enforces known physical constraints into machine learning
models, which can be considered as a physics-informed loss func-
tion. The second approach, named the physics-informed architecture,
incorporates the physics knowledge into the model architecture.

2.2.1. Physics-informed loss function

In this section, we discuss physics-informed loss function strategies
that integrate the prior physics knowledge into the loss function of the
ML model. Engineering problems often exhibit a high complexity and
standard ML models could fail to capture such relationships directly
from data, especially when limited data is available for model training.
One of the most common techniques to make ML models consistent
with physical laws is to incorporate physical constraints into the loss
function of ML models as follows

Loss = Lossy + Losspy, (€9)]

The first term, Loss,, is the loss function in the ML model which is
typically defined as a mean-square error (MSE) or a root-mean-square
error (RMSE) loss during the training. The addition of physics-based
loss, Losspyy, aims to ensure consistency with physical laws. The
added physics constraints can be written as the regularization term in
the loss function.

Various types of knowledge based upon physical principles, such
as those represented by partial differential equations, boundary con-
ditions, physics of failure models, and statistical properties, can be
incorporated. The equations can generally be expressed as follows: A
generic form of partial differential equations that describe the evolution
of a continues value v(x, t):

2
A (N @
ot 0x; 0x;0x;

Boundary conditions:
T
=0, v(%)=2 3)

Statistical (invariance) property that defines a system keeps certain
properties under some transformations:

g-(h-u)y=(gh)-u (€]
Physics law:
E=m-c? 5)

Using physics-informed loss function in PIML models has been em-
ployed in many recent studies. Physics-informed neural networks [53]
were introduced and trained to solve supervised learning tasks while
taking into account given laws of physics described by general non-
linear partial differential equations. A neural network-based compu-
tational framework Li [54] was established to characterize the finite
deformation of elastic plates, where the physical information (PDEs,
BCs, and potential energies) was incorporated into the loss function.
John [55] proposed a biologically informed neural network framework,
which enables the modeler to use domain expertise to include quali-
tative constraints on the parameter networks by selecting appropriate
activation functions and loss terms for the optimization. In addition to
neural networks, the physics constraints can also be integrated with
other ML models, such as Gaussian Process models. Recent studies have
incorporated physical constraints or other priori information within
Gaussian process regression (GPR) to supplement limited data and reg-
ularize the behavior of the model. Veiga [56] introduced a framework
for incorporating constraints in Gaussian process modeling, and extends
this framework to any type of linear constraint. The result shows the
accuracy of Gaussian process predictions can be enhanced with such
constraint knowledge. Lopera [57] extended the method to deal with
sets of linear inequalities, and investigate theoretical and numerical
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properties of a constrained likelihood in the GP model. Swiler [58] gave
a survey on constrained GPR, which presents three main opportunities,
including transformation to the output, likelihood, and hyperparameter
optimization, to enforce constraints for the GP model. Jensen [59]
extended the Gaussian process (GP) framework for bounded regression
by introducing two bounded likelihood functions that model the noise
on the dependent variable explicitly. Bachoc [60] considered covari-
ance parameter estimation for a Gaussian process under inequality
constraints. Study shows that the constrained maximum likelihood
estimator is generally more accurate on finite samples in simulations.

Overall, incorporating physics knowledge into the loss function
often possesses salient features including but not limited to: (1) ex-
cellent capability of dealing with less rich data; (2) consistent with
physics principles; (3) superior generalizability with robust inference.
Moreover, loss function terms corresponding to physical constraints
are applicable across many different types of ML frameworks and
objectives.

First, one of the obstacles hindering the scaling-up of the initial
successes of machine learning is the size of the database that drives
the algorithms. Incorporating the already-known physical laws into
the training process can significantly reduce the size of the required
database. Available physics can provide constraints to the network
outputs, alleviate overfitting issues, reduce the need for big training
dataset, and thus improve the robustness of the trained model for
more reliable prediction. For example, Zhang [61] developed a physics-
guided convolutional neural network for data-driven structural seismic
response modeling.

Second, the data set could be sparse and noisy. The difficulties
of modeling with the noisy data and high-dimensional data can be
relieved by integrating the prior scientific knowledge into the loss
function. He [62] developed a local convexity data-driven computing
method to enhance accuracy and robustness against noise and outliers
in the dataset, which also performs well for high dimensional data
sets that are relatively sparse in real-world engineering applications.
Kissas [63] introduced physics-informed neural networks to solve con-
servation laws in graph topology with real noisy clinical data for
the first time. Sun [64] proposed a physics-constrained Bayesian deep
learning approach to reconstruct flow fields from sparse, noisy veloc-
ity data, where equation-based constraints are imposed through the
likelihood function and uncertainty of the reconstructed flow can be es-
timated. Patrick [65] used an experimental weakly turbulent fluid flow
to demonstrate that combining a data-driven methodology with physi-
cal principles enables the discovery of a quantitatively accurate model
of a non-equilibrium spatially extended system from high-dimensional
data that is both noisy and incomplete. Many other issues lie in the
traditional ML methods can also be solved by integrating the scientific
knowledge and data-driven methods intelligently. Jun [66] proposed
an architecture that combines the deep residual neural network with
some underlying physical laws, which overcomes several issues in deep
learning methods, such as the dynamic behavior and the gradient
explosion.

Third, it could be difficult in practice to obtain the output value
(label) of each data, and the dependence on labeling has restricted
the application of supervised learning. The ML model integrated with
physical principles enables the usages of unlabeled or indirectly labeled
data. Chen [67] used variables associated with the label as indirect
labels and constructs an indirect physics-constrained loss based on the
physical mechanism, so that the model training process does not rely
on labels. Zhu [68] proposed a convolutional encoder—decoder neural
network for predicting transient PDEs with governing PDE constraint,
which expands the work in [69]. The governing equations of the
physical model are incorporated in the loss/likelihood functions, re-
sulting in Physics-constrained deep learning models that can be trained
without any labeled data. Karumuri [70] used a deep fully connected
residual neural network to build a surrogate, eliminating the need for
expensive forward model evaluations. A physics-informed loss function
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was introduced to train the deep neural network for high-dimensional
uncertainty propagation. Moreover, due to the multi-scale nature of the
physics, such processes can be computationally prohibitive for most
real-time applications (e.g., diagnosis and planning) and many-query
analyses (e.g., optimization design and uncertainty quantification).
Sun [71] proposed a simulation-free, physics-constrained deep learning
for surrogate computational fluid dynamics (CFD) model, where the ini-
tial and boundary conditions, and the governing PDEs are incorporated
into the loss function to drive the training. It shows good promise to
geometric variations optimization and uncertainty quantification.

Fourth, physics consistency is another important aspect of model
construction. Drgona [72] presented a physics-constrained deep learn-
ing method, which encodes physics-based prior knowledge into a struc-
tured recurrent neural architecture and uses penalty methods to pro-
vide inequality constraints, thereby bounding predictions within phys-
ically realistic and safe operating ranges.

Fifth, high accuracy and low error are not only required in the
model construction processes but also in the model prediction. Tra-
ditional ML methods often lack the ability to extrapolate, which can
be solved by the physics-informed ML methods. Zhao [73] proposed
a physics constrained ML model, which extrapolates much better than
the pure ML model, emphasizing the benefits of combining physics with
ML for increased generalizations. Zobeiry [74] developed a Physics-
informed neural network to solve heat transfer PDE. The loss function
is defined based on errors to satisfy PDE, BCs, and initial conditions.
By using physics-informed activation functions, the heat transfer be-
yond the training zone can be accurately predicted. Moreover, the
richness of the information brought by the ‘prior’ knowledge may also
influence the model construction. Sometimes, the scientific principles
are incorporated into multiple structures, especially for the incomplete
physics knowledge. Zhang [75] introduced a physics-informed deep
learning framework for metamodeling of nonlinear structural systems
with scarce data, which incorporate incomplete physics knowledge into
deep long short-term memory (LSTM) networks. The laws of physics are
taken as extra constraints, encoded in the network architecture, and
embedded in the overall loss function to enforce the model training
in a feasible solution space. The embedded physics can alleviate over-
fitting issues, reduce the need for big training datasets, and improve
the robustness of the trained model for more reliable prediction with
extrapolation ability. The details on how to integrate prior knowledge
into the architecture of the ML model will be presented in the next
section.

2.2.2. Physics-informed architecture

In this section, we discuss four physics-informed architectures that
integrate the prior physics knowledge and ML techniques. First, new
ML architecture can be constructed according to the specific charac-
teristic of physics knowledge. This physics-informed ML architecture
incorporates the physics properties into nodes and/or layers of the
ML model making the black-box algorithm more interpretable. Second,
physics-based models and ML models can also operate simultaneously
to enhance the model power, which generally refers to the hybrid
physics-informed ML Model. Third, the multi-fidelity framework can
be utilized to further improve the efficiency of the PIML strategies.
Fourth, the Bayesian framework enables the PIML strategies, especially
physics-informed neural networks, to quantify the uncertainties and
incorporate various types of prior knowledge for different applications.

* Physics-Informed Machine Learning Architecture

The physics-informed architectures are a powerful approach to en-
hance the machine learning structure with known physical equations.
The design of the architecture often depends on the model structure.
For example, neural networks provide opportunities to encode physics
prior knowledge in the novel neurons or layers (shown in Fig. 1), where
the nodes of the structure are defined by known physical phenomena.
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Physics-Informed Architecture

Physics Layer

ya N P mr
—_ -

Input\ . /oUUJUt |nPUt\
PHY

(a) Physics-informed node

—_—
/Output

(b) Physics-informed layer

’ Data-driven nodes PHY,  Physics-informed nodes

Fig. 1. Physics-informed architecture.

Contrasting to the physics-embedded loss function, where the training
of the network is constrained by a physical equation; specifically,
physics-informed architectures contain nodes for physical equations
within the system. For instance, Yucesan [76] embedded a neural
network with physics-informed layers which is utilized to estimate
bearing and grease damage for wind turbines. In this particular study,
there are two main failure modes being determined, grease damage and
bearing damage; of which the latter can be determined with physical
equations, while the former needs to rely on data-driven models. Still,
both of these failure modes have some connection to each other,
which is shown within the physics-informed architecture with “physics-
informed” layers and data-driven layers. The main takeaway from this
reference is that the two different failure modes can be estimated
with the combination of known physics equations of one failure while
enhancing the data-driven predictions of the other failure mode, and
vice versa.

Similar to most hybrid methods, the main challenge is implementing
the architecture specifically for a given application. With these different
applications, the physics-informed architecture will take on varying
structures. Also, the fusion of principles of physics into ML can take
on different forms. For example, Cho [77] proposed information index
and link functions, which show success in infusing the principles of
physics into ML. The information index integrates adjacent information
and quantifies the physical similarity between laboratory and reality,
enabling ML to see through a complex target system with the perspec-
tive of scientists, and the link functions unravel the hidden relations
between information index and physics rules. This framework fuses
information index, link functions, evolutionary algorithm, and Bayesian
update scheme. Zhang [78] introduced a machine learning-based fusion
model MIDPhyNet that decomposes, memorizes, and integrates first
principle physics-based information with data-driven models. The MID-
PhyNet architecture’s superiority is most significant when the models
are trained over sparse data sets and in general, MIDPhyNet provides
a generic way to explore how physical information can be infused
with data-driven models. Pawar [79] proposed an architecture that
aims to augment the knowledge of the simplified theories with the
underlying learning process. The architecture consists of adding certain
features at intermediate layers rather than in the input layer. This
framework is flexible to be applied to many physical systems. Za-
mzam [80] proposed a novel learning model that utilizes the structure
of the power grid. The proposed neural network architecture reduces
the number of coefficients needed to parameterize the mapping from
the measurements to the network state by exploiting the separability
of the estimation problem. This prevents overfitting and reduces the
complexity of the training stage. Lei [81] proposed a physics-informed
data-driven optimal power flow (OPF) approach based on the stacked
extreme learning machine (SELM) framework. Compared with the deep
learning algorithms, the proposed method only requires very few ad-
justments of the parameters and thus can be easily extended to other
systems.
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Physics knowledge can also be used as the prior information to
enhance the power of machine learning models. Chen [82] proposed
a physics-constrained LSTM, in which the physical mechanism behind
the geomechanical parameters is utilized as a priori information. This
state-of-the-art model is capable of directly estimating geomechanical
logs based on easily available data, and it achieves higher prediction
accuracy since the domain knowledge of the problem is considered.
Raissi [83] proposed a PIML method where Gaussian process priors
are modified according to the particular form of parametric linear
operators related to the governing equation and are employed to infer
parameters of the linear equations from scarce and possibly noisy ob-
servations. Moreover, progress has been made at incorporating physical
knowledge into kernels by computing kernels for systems governed by
linear and weakly nonlinear ordinary and partial differential equations.
Such kernels are computed by substituting a GPR approximation of
the system’s state variables into the governing equation and obtaining
a system of equations for the kernel hyperparameters. Swiler [58]
discussed a different strategy to design a covariance kernel for the prior
of the Gaussian process which enforces the constraint. Such methods
are based on derivations of linear transformations of GPs. Considering
Gaussian processes as distributions over functions, another strategy is
to consider a function space defined by a certain representation such
that a global constraint can be translated into a finite set of constraints.
This strategy amounts to deriving a specific kernel function related to
the representation.

» Hybrid Physics-Informed Machine Learning Model

The previous sections discussed the embedded structure of con-
structing the PIML model, where the physics are integrated into the loss
function and/or architecture of the ML model. This section introduces a
separate structure employing and operating the physics-based and ML
model jointly, where the ML models and physical models are applied
separately to approximate different aspects of the physical system and
be connected consistently to perform numerical simulation or meta-
modeling. And we name it as the hybrid physics-informed machine
learning model. Fig. 2 gives a schematic diagram of this method.
Generally, there are mainly three integration strategies to construct
the hybrid physics-informed ML model, including but not limited to:
(1) operate the physics-based model and ML model simultaneously; (2)
feed the output of a physics-based model as input to an ML model.
These techniques encapsulate a wide variety of goals like feature extrac-
tion, noise removal, data transformation, etc.; (3) use an ML model to
replace one or more components of a physics-based model or to predict
an intermediate quantity that is poorly modeled using a physics-based
model. The structures of the hybrid models have many variations and
are widely used in many engineering applications, such as fault diagno-
sis and performance degradation assessment. Sadoughi [84] proposed a
physics-based convolutional neural network (PCNN), for fault diagnosis
of rolling element bearings. The proposed approach utilizes spectral
kurtosis as well as envelope analysis to extract sidebands from raw
sensor signals and minimizes non-transient components of the signals,
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Fig. 3. Multi-fidelity PIML framework example.

and then feeds the information about the fault characteristics into the
CNN model. Tian [85] presented a method that detects bearing faults
and monitors the degradation of bearings in electric motors. Based
on spectral kurtosis (SK) and cross correlation, the method extracts
fault features that represent different faults, and the features are then
combined to form a health index using principal component analy-
sis (PCA) and a semi-supervised k-nearest neighbor (KNN) distance
measure. Sun [86] proposed a novel intelligent diagnosis method for
fault identification of rotating machines, where the compressed sensing
method preprocesses the data and feeds it into deep learning.

In summary, there are several novel aspects achieved by the hybrid
structure including but not limited to: (1) the physics-based model and
ML model complement each other to create more precise predictive
models that respect the underlying physics; (2) the model and parame-
ters are trained and estimated in a symbiotic fashion by using both the
physics-based model and acquired data; (3) the robustness of physics
model is enhanced by the accuracy of data-driven model.

+ A Multi-Fidelity PIML Framework

Although the PIML approaches enhance the power of ML models,
the training efficiency is still limited in high-dimensional problems.
The concept of multi-fidelity has been explored extensively in surrogate
modeling [87-89]. By integrating the data from high-fidelity (HF) and
low-fidelity (LF) simulations, the trade-off between efficiency and accu-
racy for metamodeling can be made, and the model can be constructed
with a limited amount of simulation data but achieve a good accuracy
of prediction.

The concept of multi-fidelity is introduced to ANNs for the first
time by Yan [90]. Multi-fidelity physics-constrained neural network
is proposed to reduce the required amount of training data, where
physical knowledge is applied to constrain neural networks, and multi-
fidelity networks are constructed to improve training efficiency. A
simple multi-fidelity PIML framework integrating HF and LF models
is shown in Fig. 3. Olleak [44] considered finite element modeling as
a physics model and machine learning model to quantify the physical
model bias for more accurate additive manufacturing performance
prediction with limited real experiment data. Nicholas [91] intro-
duced a novel multi-fidelity deep generative model for the surrogate
modeling of high-fidelity turbulent flow fields given the solution of
a computationally inexpensive but inaccurate low-fidelity solver. The
model is trained with a variational loss that combines both data-driven
and physics-constrained learning. Mohammadamin [92] introduced
a multi-fidelity neural network (MFNN) architecture for data-driven
constitutive metamodeling of complex fluids. The physics-based neu-
ral networks developed are informed by the underlying rheological
constitutive models through the synthetic generation of low-fidelity
model-based data points.

In addition to incorporating the multi-fidelity framework with the
physics-informed neural networks, the multi-fidelity framework can
also be adapted and used for the physics-informed Kriging model.
Yang [93] proposed a physics-informed Kriging (PhIK). In PhIK, the
mean and covariance function are computed from realizations of avail-
able stochastic models. To reduce the computational cost of obtaining
stochastic model realizations, Yang [94] proposed a multilevel Monte
Carlo estimate of the mean and covariance functions, and further
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Fig. 4. Bayesian PIML framework example: B-PINN.

present an active learning algorithm that guides the selection of ad-
ditional observation locations. The main drawback of PhIK is that it
is highly dependent on the physical model, because the prior mean
and covariance are determined entirely by the model and are not
informed by data. Therefore, the convergence of PhIK to the true
solution with the increasing number of available observations is slower
than in the data-driven GPR if the physical model is incorrect. The
multi-fidelity framework can be used to relieve these issues. Yang [95]
proposed a new GPR-based multi-fidelity method CoPhIK, which is a
modified version of the recently developed physics-informed Kriging
(PhIK) method to improve its accuracy.

» A Bayesian PIML Framework

Traditional neural networks and PINN are not probabilistic in nature
resulting in Bayesian extensions of these models to quantify the un-
derlying uncertainty in black-box algorithms. There are many sources
of uncertainty in data-driven PDE solvers, including aleatoric uncer-
tainty associated with noisy data, epistemic uncertainty associated
with unknown parameters, and model uncertainty associated with the
type of PDE that models the target phenomena. Geneva [96] pro-
posed a deep auto-regressive dense encoder-decoder for predicting
transient PDEs with the physics-constrained learning algorithm that
enables the model to learn dynamics without training data. This model
was extended to a Bayesian framework using the recently proposed
stochastic weight averaging Gaussian algorithm [97] to quantify both
epistemic and aleatoric uncertainty. The model is implemented for a
chaotic/turbulent system and extends Zhu’s method [68]. Yang [98]
proposed a Bayesian physics-informed neural network (B-PINN) (as
shown in Fig. 4) where the Bayesian neural network (BNN) combined
with a PINN for PDEs serves as the prior while the Hamiltonian
Monte Carlo (HMC) or the variational inference (VI) could serve as
an estimator of the posterior. B-PINNs make use of both physical
laws and scattered noisy measurements to provide predictions and
quantify the aleatoric uncertainty arising from the noisy data in the
Bayesian framework. Compared with PINNs, in addition to uncertainty
quantification, B-PINNs obtain more accurate predictions in scenarios
with large noise due to their capability of avoiding overfitting.

3. PIML for reliability and system safety applications

Enhancing reliability and system safety is critically important in
today’s industrial environment, where increasingly complex techno-
logical systems are utilized. The ability to model, characterize and
predict the behavior and performance of a product, component, or
system provides a significant competitive advantage, especially critical
in estimating the reliability, safety and risks inherent in a system.
Physics-informed ML strategies improve the power of these abilities and
are employed more frequently in a variety of engineering applications,
such as uncertainty quantification, reliability analysis and risk as-
sessment, prognostics and health management (including degradation
analysis, fault diagnostics, failure prognostics, operation and main-
tenance decision-making) to adequately represent and understanding
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complex behavior of real-world systems. In this section, we review
the use of PIML methods in recent literature for reliability and sys-
tem safety applications. Subsections are organized by the application
area, and the last subsection summarizes the previous subsections and
discusses the influence of prior knowledge properties on PIML model
construction.

3.1. PIML for uncertainty quantification

Uncertainty Quantification (UQ) refers to strategies of quantifying,
characterizing, tracing, and managing uncertainty in computational
and real world systems (e.g., [99]). UQ seeks to address the prob-
lems associated with incorporating real world variability and prob-
abilistic behavior into engineering and systems analysis. Uncertainty
quantification methods play a pivotal role in reducing the impact
of uncertainties during engineering modeling, design, optimization,
and decision-making processes. They have been applied to solve a
variety of real-world problems. Bayesian approximation and ensemble
learning techniques are two widely-used types of uncertainty quantifi-
cation (UQ) methods. Abdar [100] provided an extensive review of
uncertainty quantification methods in deep learning.

In UQ applications, several types of knowledge, including physics
equations, theories, and simulation data, often provide useful infor-
mation that characterize the system. To incorporate those types of
knowledge enhancing the power of the model, three types of integra-
tion methods, including physics-informed loss function, hybrid physics-
informed machine learning model, and Bayesian framework are com-
monly used.

The integration of prior physic knowledge into ML for UQ aims
to provide a better characterization of uncertainty. Yang [69,101]
considered the application of deep generative models in propagating
uncertainty through complex physical systems (e.g., randomness in
inputs or noise in observations), where physics-informed constraints
provide a regularization mechanism for effectively training deep prob-
abilistic models. Xie [102] proposed an implementation framework of
quantification of margins and mixed uncertainties, based on evidence
theory and Kriging model with adaptive sampling. The confidence
factor (CF) for the quantification of margins and uncertainties (QMU)
calculation is then evaluated by integrating the surrogate model and
the Dempster-Shafer theory of evidence (DSTE) analysis.

Despite the success of physics-informed machine learning methods
in solving various real-world problems, they cannot provide informa-
tion about the uncertainties of their predictions. In a deterministic
physics-informed machine learning, a loss function is defined by com-
bining both the data mismatches and residuals of governing equations
of a physical model. However, the measurement noise associated with
data and model-form uncertainties due to model inadequacy cannot
be considered since the models are formulated in a deterministic way.
To solve these issues, probabilistic physics-informed Bayesian learn-
ing methods are proposed, where the physics-constrained training is
formulated in a Bayesian way. Instead of defining the loss, a physics-
informed likelihood function is constructed, where the measurement
noise and equation residual are modeled as random variables with
specified distributions. Sun [64] formulated the equation-constrained
training in a Bayesian manner. The confidence of the physical con-
straints is modeled in a probabilistic way, being combined with data
uncertainty to form the likelihood function. The proposed PC-BNN
can accurately predict the mean flow field, meanwhile reasonably
estimating the prediction uncertainties corresponding to different data
noise levels. Compared with a previous work [71] showing that the
flow solutions can be obtained from physics-constrained deep learning
even without any labeled data if the boundary conditions are im-
posed properly, adding some labeled data would further improve the
equation-constrained learning. Wang [103] proposed an approach that
integrates data from a simulation model, with real-time traffic data
streams and available physical constraints to predict aircraft trajectory,
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using the Bayesian-Entropy information fusion methodology. There
have also been attempts to approximate Bayesian processes in neural
networks. These approximate methods make the training process more
feasible for certain applications. One popular method is Monte Carlo
dropout (MC dropout) proposed by Gal and Ghahramani [104] which
proposed dropout at testing to approximate parameter uncertainty.
This method has been used to more accurately identify uncertainty
in surrogate models for infrastructure damage, response, and safety
predictions [105-107].

Under the uncertainty quantification field, sensitivity analysis (SA)
[108-114] is an important branch, which aims to provide a quan-
titative uncertainty assessment of the relative contribution of each
uncertainty source to the model response. When physics-based or ML
models are used for the sensitivity analysis of engineering systems,
the sensitivity estimate is affected by the accuracy and uncertainty of
the model. Purely data-driven ML models do not explicitly consider
physical laws and may produce physically inconsistent results. Thus,
incorporating prior scientific/physics knowledge with ML models is
needed to improve the accuracy and efficiency of SA computations.
Kapusuzoglu [115] considered global sensitivity analysis (GSA) for
situations where both a physics-based model and experimental observa-
tions are available, and investigates physics-informed machine learning
strategies to effectively combine the two sources of information in order
to maximize the accuracy of the sensitivity estimate. Two strategies for
incorporating physics knowledge within the deep neural networks and
GP models are investigated. One is incorporating loss functions in the
ML models to enforce physics constraints, and the other one is pre-
training and updating the ML model using simulation and experimental
data respectively.

3.2. PIML for prognostic and health management

This section discusses the physics-informed ML strategies and ap-
plications in Prognostic and Health Management (PHM) field, which
includes many topics, such as prognostic, diagnostic, degradation mod-
eling, remaining useful life (RUL) prediction, health management, and
maintenance.

The PHM field aims to predict and forecast failures of a given
system. Incorporating PHM methods [116] can potentially decrease the
probability of a catastrophic event; and in addition can reduce mainte-
nance costs. In general, the PHM methods contain mostly data-driven
approaches. Mainly, for PHM methods, the failure state is modeled
by a data-driven model, which in some literature has been machine
learning models, and in recent literature, these models are enhanced
by physical models. Physics-based approaches evaluate structural con-
ditions through updating a representative physics-based model of the
target structure, such as a finite element (FE) model, by minimizing
the discrepancy of its predictions from the measured data. Physics-
based and data-driven models for PHM typically suffer from two major
challenges that limit their applicability to complex real-world cases:
(1) incompleteness of physics-based models and (2) limited represen-
tativeness of the training dataset for data-driven models. Integrating
physics knowledge into the machine learning model can relieve the
above issues.

In PHM applications, different branches of applications encom-
pass different types of information. For instance, in the branch of
diagnosis, physics-based model or numerical simulation models are
integrated with the ML model by using physics-informed loss function
approach or the hybrid physics-informed ML methods; in the branch
of SHM, physics law reflecting the relationships of the system prop-
erties are often added to the ML architecture enhancing the physics
consistency; in the branch of prognosis and decision-making, expert
knowledge plays an important role and can be integrated by the hy-
brid physics-informed ML strategy. In general, there are four types
of knowledge and three types of integration methods are commonly
used in the PHM applications. Four types of prior knowledge includes
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the physics models (e.g., PDEs, governing equations, physics-of-failure,
empirical models, etc.), data (e.g., experimental data, sensor data,
simulation data, etc.), theory and rule (e.g., empirical rule, predefined
rule, temporal logic, etc.), and expert knowledge. Physics-informed
loss function method utilizing the prior knowledge as the physics
constraints, physics-informed architecture methods integrating prior
knowledge into the layers and/or nodes of the neural networks, and
hybrid physics-informed machine learning methods are used as the
integration methods. In the following, we discuss different branches
of PHM applications that take advantage of different types of prior
knowledge and integration methods.

» Fault Diagnosis

Physics-informed loss function and physics-informed architecture
are employed corresponding to available knowledge in the diagnosis
applications.

The first type is the physics-informed loss function. Zhang [117]
extended the original modal-property based features with the damage
identification result of finite element model updating. A physics-based
loss function is designed to evaluate the discrepancy between the neural
network model output and that of finite element model updating.
With the guidance from the scientific knowledge contained in finite
element model updating, the learned neural network model has the
potential to improve the generality and scientific consistency of the
damage detection results. Xu [118] proposed the first multiple source
domain adaptation framework for building damage diagnosis without
any labels of the target building. This study design a new physics-
guided weight in the loss function based on the physical similarities
of buildings. The new physics-guided loss provides a tighter upper
bound for the damage prediction risk on the target domain. Shen [119]
proposed a physics-informed deep learning approach that consists of
a simple threshold model and a deep convolutional neural network
(CNN) model for bearing fault detection. A loss function is designed
for training and validating the CNN model that selectively amplifies
the effect of the physical knowledge.

The second type is the physics-informed ML architecture. Lai [120]
exploited a new direction of structural identification by means of
Physics-informed Neural Ordinary Differential Equations (Neural
ODEs), which involve a physics-informed term, that stems from possible
prior knowledge of a dynamical system, and a discrepancy term,
captured by means of a feed-forward neural network. Physics-informed
Neural ODEs comes with the benefits of direct approximation of the
governing dynamics, and a versatile and flexible framework for discrep-
ancy modeling in structural identification problems. When the sensor
data are available, a new ML structure can be constructed. Liu [121]
proposed a two-stage physics-based statistical approach for modeling
the cooling efficiency based on the thermodynamic law that governs the
relationship between system internal states, operating conditions and
cooling efficiency. Moreover, multiple failure modes can be connected
by the physics-informed architecture. Yucesan [76] embedded a neural
network with physics-informed layers which is utilized to estimate
bearing and grease damage for wind turbines. The bearing fatigue
damage portion consists of known physics formulations, and unknown
grease degradation is represented with deep neural networks. The two
different failure modes are connected by the physics-informed architec-
ture and successfully estimated with the combination of known physics
equations of one failure while enhancing the data-driven predictions of
the other failure mode, and vice versa.

Besides the diagnosis applications, the hybrid physics-informed ML
models have a wide variety of applications in PHM, including prog-
nosis, degradation modeling, RUL prediction, maintenance, as well as
monitoring and decision-making.

+ Degradation Modeling and RUL Prognosis
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A multitude of prognosis problems, such as fatigue prognosis, dam-
age prognosis, and many other types of prognosis problems, often em-
ploy hybrid physics-informed ML strategies to provide a physics consis-
tent and interpretable degradation model. Blancke [122] took into ac-
count the complexity of failure mechanisms as a system and integrates
both expert knowledge and diagnostic information. Model assumptions
are first proposed by experts and then formalized using graph theory
and stochastic models. Jiang [9] presented a dynamic model correction
framework for a simplified degradation model using strain measure-
ments. This framework integrates data-driven model with physics-
based degradation model and improves the accuracy of model-based
failure prognostics. Arias Chao [123] proposed a novel hybrid frame-
work for prognostics of complex safety-critical systems. The framework
combines deep learning and physics-based performance models. The
physics-based performance models infer unobservable model parame-
ters related to a system’s components health by solving a calibration
problem. These parameters are subsequently combined with sensor
readings and used as input to a deep neural network, thereby generat-
ing a data-driven prognostics model with physics-augmented features.
The proposed framework outperforms equivalent purely data-driven
approaches. Vega [124] developed a novel hybrid damage prognosis
framework for miter gate component of navigational locks, by mitigat-
ing effects of human errors on the condition assessment and integrating
the highly abstracted inspection data with the SHM. It overcomes two
main challenges, namely (1) there is no physical or empirical model
available to model the loss-of-contact degradation in the gate, and (2)
the mismatches between the inspection data and the SHM system due to
data abstraction. Prakash [125] developed a hybrid approach with the
fusion of model-based and data—driven approaches for the prognosis
of dynamical system components whose degradation may follow dif-
ferent nonlinear trends. The degradation levels of different components
are identified by using bond graph model-based distributed prognosis
approach. Artificial neural network based degradation models learned
from the run-to-failure data of the components are used to predict the
future degradation patterns and RUL of the components. Chang [126]
proposed a hybrid prognostic scheme with the capability of uncertainty
assessment, which combines particle filter (PF) and relevance vector
machine (RVM). The proposed prognostic method can provide accurate
and stable RUL prediction.

Successful modeling and quantification of the degradation perfor-
mance is important for engineering systems, as it will help improve
failure prediction accuracy and facilitate subsequent decision-making
at design, operation, and maintenance stage. Various types of prior
information can be utilized with the hybrid physics-informed ML strate-
gies to improve the model performance. Chiachio [127] developed a
knowledge-based prognostics approach by fusing on-line data for track
settlement with a physics-based model for track degradation within a
filtering-based prognostics algorithm. Sun [128] proposed a physical-
statistical modeling approach to evaluating and quantifying the latent
degradation performance of corroding aluminum alloys at both indi-
vidual and population levels. Guo [129] proposed an improved inverse
Gaussian process which considers the dependency between degradation
increments and prior degradation states. Whiteley [130] proposed a
method for problem with complex internal operational mechanisms im-
pacting on degradation phenomenon where a combined physics-based
and stochastic model can offer more accurate and valuable information
about the operation of such systems, with impacts to future design,
manufacture and operation. Integration of a physics based model with
the stochastic Petri net has enabled accurate lifetime analysis. Liu [131]
proposed a reliability estimation and degradation modeling method,
where Wiener process is combined with evidence theory by applying
evidential variable to describe model parameters. The proposed method
can be used to evaluate population reliability without increasing pa-
rameter size, resulting in stochastic process becoming more practical
under small sample conditions. Following the degradation modeling,
an accurate prediction of the future degradation patterns and RUL of



Y. Xu et al.

the components are essential indicators to guarantee system safety.
And filtering-based methods and physics-based models are commonly
employed by the hybrid physics-informed ML approaches for the RUL
prediction. Baptista [132] proposed a Kalman-based data-driven ap-
proach to prognostics. The model uses Kalman filtering to fuse the
estimates of remaining useful life. Results suggest Kalman-based models
are better in precision and convergence. Jain [133] mathematically
modeled the tool degradation progression via a new, adaptive, and
hybrid stochastic degradation model. The methodology is conceptually
unique as the challenges allied with time-variant operating profiles
were explicitly addressed by integrating its physics, capturing the
uncertainty in the evolution of dynamic operating profiles in real-
time. Consequently, the approximated RUL taps past as well as the
future characteristics of operating profiles. Li [134] proposed an in-
teracting multiple model framework with particle filter and support
vector regression to realize multi-step-ahead estimation of the capacity
and remaining useful life of batteries. Polynomial and exponential
model are chosen to describe the capacity degradation. Support vector
regression is used to predict future measurements online. Zang [135]
proposed a hybrid method that balances model-based and data-driven
methods. Particle filtering method and feedforward neural network
are used to predict RULs. Hybrid method predicts more accurate RUL
predictions under different stresses.

+ Condition Monitoring, Operations and Maintenance Decision Ma-
king

Optimal inspection and maintenance planning play an important
role in engineering problems. Chahrour [136] integrated physics-based
and dependability models for monitoring the state evolution of protec-
tion structures and improving maintenance decision-making processes.
The modeling approach proposed is based on (1) physics-based model-
ing for identifying the probabilistic laws of the transition times between
the defined states of the structure depending on its behavior over time
and (2) a decision aiding method based on Petri nets, which helps in
choosing the best maintenance strategy while considering budgetary
constraints. Sometimes there is no clear physical understanding of
how damage progresses in time; for example, it is not clear how the
bearing gaps change in time in the quoin blocks of a miter gate. There-
fore, Vega [2] developed a new hybrid condition-based maintenance
(CBM) approach that integrates high-fidelity (physics-based) FE model-
based SHM with inspection data-based transition matrix for effective
diagnosis, prognosis, and maintenance planning.

With the increasing complexity of engineering systems that contain
various component dependencies and degradation behaviors, there has
been increasing interest in on-line SHM capability to continuously
monitor (via sensor and other methods of observation) system com-
ponents for detection and diagnostic of safety-critical systems. The
ability to have accurate on-line system monitoring improves mainte-
nance and decision-making to reduce cost and avoid possible critical
failure. Pan [137] integrated information from the monitoring data
and expert knowledge. The integrated model with a three-layer struc-
ture is constructed that incorporates both expert knowledge and data.
Arcosjimenez [138] employed an approach that considers advanced
signal processing and machine learning to determine the thickness of
the dirt and mud in a wind turbine blades (WTB). A condition moni-
toring system based on non-destructive tests by ultrasonic waves was
used to analyze wind turbine blades. Favaro [139] integrated model-
based hazard modeling/monitoring with the verification of safety prop-
erties expressed in Temporal Logic (TL). This expanded framework
leverages tools and ideas from Control Theory and Computer Science.
Iamsumang [140] proposed a hybrid Dynamic Bayesian Network (DBN)
to represent complex engineering systems with underlying physics
of failure by modeling a theoretical or empirical degradation model
with continuous variables. Hong [141] provided new opportunities
for integrating data from massive IoT sensors and devices to enhance
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the accuracy of simulation results, which are used to inform decision-
making on energy retrofits and efficiency improvements of existing
buildings. Yang [142] proposed a risk assessment guided development
process using machine learning techniques and multi-source data. A
predefine safety-critical attributes have been identified from major acci-
dent scenarios to guide machine learning process to define operational
limits based on multi-source data. The attributes that can represent the
risk factor are established based on domain knowledge and further feed
into machine learning process.

3.3. System FMEA and reliability analysis

This section discusses the physics-informed machine learning ap-
proaches and applications in system failure mode and effect analysis
(FMEA) and reliability analysis (RA) fields.

In the RA applications, various types of knowledge provide the
understandings of the system. Integrating one or more of those prior
knowledge requires different ML structures and strategies. Four types of
knowledge are typically available in the reliability assessment applica-
tions, containing: (1) physics models (e.g., physics-o-failure, limit-state
functions, failure mechanism, etc.); (2) experimental data and simu-
lation data; (3) theory and rule (e.g., empirical rule, belief reliability
theory, uncertainty theory, predefined rule, logic-based model, etc.);
and (4) expert knowledge. To incorporate one or more of those prior
knowledge, three types of integration methods are commonly uti-
lized including the physics-informed loss function, physics-informed
architecture, and hybrid physics-informed machine learning methods.

Based on different objectives of the application and types of avail-
able knowledge, different integration methods are utilized. A signif-
icant effort has been made in the last few years to combine the
advances in RA data and RA modeling. Xi [143] provided strategies
for more accurate reliability analysis based on different data availabil-
ity (e.g., relatively sufficient, and insufficient) and the combination
with a physics model. Tan [144] proposed an algorithm to combine
data-driven and domain knowledge condition, where the loss function
and alternative training scheme of component models are specified
for harnessing the information from sensor readings and empirical
rules to serve the modeling. Sakurahara [145] developed a simulation-
informed method for Common Cause Failure (CCF) Analysis. Physical
failure mechanisms are explicitly incorporated by simulation models.
Simulation-based CCF data is integrated with existing CCF data by
Bayesian method. Pence [146] introduced the Data-Theoretic module
of Integrated Probabilistic Risk Assessment, which build a theoreti-
cal framework equipped with reliable modeling techniques and data
analytic to quantify the influence of organizational performance on
risk scenarios. Kim [147] proposed an analysis based on the Bayesian
logistic regression method that incorporates empirical data with prior
knowledge, which overcomes the limitations of the traditional re-
gression technique. Sakurahara [148] initiated a line of research to
integrate renewal process modeling with probabilistic models of un-
derlying mechanisms associated with physical degradation and mainte-
nance. The methodology integrates Markov modeling with Probabilistic
Physics-of-Failure models of degradation, while maintenance is treated
by a data-driven approach. The methodology explicitly incorporates the
underlying spatiotemporal causes of failure into the renewal model,
allowing to rank the criticality of causal factors to improve maintenance
and mitigation strategies.

Among the reliability analysis applications, human reliability analy-
sis (HRA) has been widely recognized as an important activity of proba-
bilistic safety assessments, which was conducted to identify significant
mechanisms of human error probabilistic for significant tasks. Differ-
ent hybrid physics-informed ML architectures are widely employed to
integrate multiple information and improve HRA.

Santhosh [149] presented an integrated approach to predict the
lifetime and reliability of I&C cables by ANN from the accelerated aging
data and Weibull theory. Study demonstrates that by an appropriate
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training algorithm with suitable network architecture, it is possible
to predict the reliability of I&C cables by ANN with the minimal
accelerated life testing. Qian [150] proposed a time-variant reliability
method for an industrial robot rotate vector reducer. Firstly, the limit
state functions of the industrial robot RV reducer are built by consid-
ering time-variant load and material degradation based on the failure
physic method. Secondly, a time-variant reliability analysis method for
multiple failure modes is proposed based on a double-loop Kriging
model. Wu [151] constructed a new uncertain accelerated degradation
model based on uncertainty theory and belief reliability theory, and
presents the uncertain statistical method for parameter estimations.
Cai [152] developed a novel real time methodology for reliability
estimation with cubic spline interpolation by combining cluster-system
theory and k-means clustering. Moradi [153] proposed the integration
of deep learning methods and logic-based models and explore how to
systematically draw together the advances in PHM and PRA to provide
a more forward-looking, model- and data-driven approach for assessing
and predicting the risk and health of CES. Sohoin [154] presented a
novel approach to deal with early reliability estimation of upgraded
automotive components. The key idea is to combine reliability analysis
based on efficient surrogate models and time transformation function
principle. Vasilyev [155] developed a novel model for dynamic relia-
bility analysis of a polymer electrolyte membrane fuel cell to account
for multi-state dynamics and aging.

Moreover, multiple different types of knowledge can be integrated
and utilized simultaneously for HRA. Groth [156] defined a com-
prehensive hybrid algorithm that uses causal models built from and
parameterized by a combination of data from cognitive literature, sys-
tems engineering, existing Human Reliability Analysis (HRA) methods,
simulator data, and expert elicitation. Fusing data and models can seem
as a cognitive version of hybrid “physics of failure” modeling which
overcomes limitations of data, models, and literature by fusing multiple
evidence. The hybrid modeling strategy enhances the traceability and
credibility of the qualitative and quantitative aspects of HRA. Further-
more, Guo [157] investigated the Bayesian melding method (BMM) for
system reliability analysis by effectively integrating various available
sources of expert knowledge and data at both subsystem and system
levels. Additionally, Bayesian networks are used for probabilistic risk
assessment, which represent variables and dependencies using nodes
and arcs where the outputs can be smoothly connected to the neural
networks. Abrishami [158] proposed a Bayesian network based physics-
informed ML (BN-SLIM) model which is based on both the available
data and the predefined rules, in general, outperforming the rule-based
methods. The proposed method was assessed and compared with the
performance of some of the well-known Bayesian Network Human Re-
liability Analysis (BN-HRA) techniques. Zywiec [159] proposed a new
methodology for training a neural network metamodel and incorporat-
ing it into a Bayesian network-based probabilistic risk assessment. The
neural network metamodel is based on structural design and physics-
informed metamodel research, which use metamodels to reduce the
computational burden of performing direct, simulation-based analysis
of physical systems. The main benefit of this methodology is that it
combines the interpretability and sampling algorithm of a Bayesian
network with the high-dimensional, latent variable modeling capability
of a neural network metamodel.

3.4. Surrogate modeling for reliability and system safety

This section discusses the physics-informed machine learning strate-
gies and applications in surrogate modeling for reliability and safety
of complex systems. Surrogate modeling is an important strategy to
replace the computationally intensive physics model to accelerate the
evaluation process. Therefore, it would be highly desirable to con-
struct a metamodel that complies with the expected physical behav-
ior/constraints. Veiga [160] introduced a framework for incorporating
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any type of linear constraints in Gaussian process modeling, this includ-
ing common bound and monotonicity constraints. Ray [161] proposed
a general framework for systematically executing efficient modeling
and simulation studies. Empirical model does not really describe the
underlying physics-based mechanisms, causation, and relationships be-
tween variables. Many of the challenges and limitations can be mostly
overcome by synthesizing outputs and data from both computer models
and experimentation. Wang [162] introduced a novel framework based
on the Bayesian-Entropy (BE) principle. BEGP uses Bayesian-Entropy
method to encode constraints into GP regression for enhanced predic-
tion and extrapolation. BEGP serves as an information fusion tool to
enhance the extrapolation behavior of the GP model by incorporating
additional knowledge about the problem, such as physical constraints,
boundary conditions, and empirical knowledge.

4. Discussion of PIML in reliability and system safety applications

The recent PIML related studies for reliability and system safety
applications are summarized (in Figs. 5 and Table 1) from two per-
spectives: (1) the knowledge type and (2) the integration methods.
Considering the knowledge types, the existing studies are divided into
scientific equations, experimental data, theory/rule, and expert knowl-
edge. Scientific equations refer to the PDEs, physics-of-failure equa-
tions, governing equations, and statistical constraints. Experimental
data refers to the data from physical experiments, sensor data, and
simulated data. Theory and rule refer to the scientific theory and/or
law, empirical rules, predefined rules, etc. Concerning the integration
methods, the existing studies are categorized as: physics-informed loss
function, physics-informed architecture, and hybrid physics-informed
machine learning models. Physics-informed loss function approaches
incorporate the prior knowledge as the penalty term to the loss function
or as the extra constraints. Physics-informed architecture approaches
include (1) incorporating the prior knowledge in the node of the
neural networks, (2) adding/constructing layers corresponding to the
prior knowledge, and (3) choosing appropriate activation functions
based on prior knowledge. Hybrid physics-informed ML models include
integrating with physical models, adding physics preprocessing, and a
Bayesian framework. In addition, Fig. 6 summarizes the relationships
among the application area, knowledge type, and integration method
from the PIML studies in reliability and system safety application areas
(see Table 1).

The means of physics-informed machine learning model construc-
tion are highly affected by the properties of the available knowledge,
such as the knowledge type, quantity, and quality. In this section, we
will provide an analysis for PIML construction with different knowledge
properties (summarized in Fig. 7) based on the literature discussed in
the previous sections.

» Knowledge Type

Different from scientific problems where the systems are mainly
captured by the PDEs and governing equations, various types of knowl-
edge are available in the reliability and safety applications including
the physics equations, experimental data, theories and laws, predefined
rules, expert knowledge, etc. However, several types of knowledge
cannot directly be integrated into the ML model in the same manner as
the PDEs and governing equations. Therefore, varying hybrid models
with diverse structures are investigated to utilize different types of
knowledge.

» Knowledge Quantity

Distinct knowledge quantities, such as the amount of data and
the amount of equations, may guide our choices and decisions on
PIML model construction. The amount of data is a main element that
influences the choice of model types and integration methods. Data
availability is a key factor in model selection and construction. When
only limited experimental data or unlabeled data are available, the
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physics-informed loss function approaches are usually used to inte-
grate that physical knowledge and improve the physics consistency
and training convergence. The number of equations is another crucial
factor in model selection and construction. For complex engineering
systems, scientific equations are usually used to represent underlying
physics or dynamics. Generally, those underlying relationships can be
represented by a few scientific/physics equations, and the equations
and boundary conditions are often incorporated into the loss function
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of the ML model. For problems with multiple failure modes, a certain
amount of physics equations are used to reflect different aspects of the
system. Incorporating multiple equations into the loss function brings
the complexity for solving the problem and challenges in finding the
right weight for each physics equations. In this case, incorporating
multiple equations into the architecture of the ML model, such as nodes
and/or layers of the neural network, is preferred.

» Knowledge Quality

Knowledge quality refers to the complexity and the completeness
of the knowledge/information, which will trigger our different options
on model construction. Equation complexity affects our decision on
model selection and construction. In engineering applications, various
prior knowledge, such as scientific equations and laws, may possess
different complexities, varying from statistics properties to complex
PDEs. Generally, complex equations enjoy rich physics information,
but they will also bring limitations to model construction. Most of
the studies incorporate complex equations or laws using the physics-
informed loss function approach. Unlike complex equations, knowledge
with low complexity like statistic constraints possess more choices and
are more flexible on model construction, where several approaches
can integrate prior knowledge into the loss function, the nodes and/or
layers of architecture, the activation function of the ML model. Com-
pleteness of the knowledge determines the usage of the models and
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Table 1
Characteristics of PIML for reliability and system safety related literature.
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Year Author Area Method PIML objectives

2017 Liu [121] PHM 1 B Propose a two-stage physics-based statistical approach

2018 Xie [102] uQ 3 C Add adaptive sampling to PIML

2018, Yang [69,101] uQ 1 A Train a deep probabilistic model

2019

2018 Guo [157] RA 2,4 C Propose a bayesian melding method for system reliability analysis

2018 Santhosh [149] RA 3 B Predict reliability with minimal accelerated life testing

2018 Blancke [122] PHM 4 C Take into account the complexity of failure mechanisms

2018 Guo [129] PHM 1 C Consider the dependency between degradation increments and prior degradation states

2018 Sun [128] PHM 1 C Quantify the latent degradation performance at both individual and population level

2018 Tamsumang [140] PHM 1 C Represent complex system with underlying physics of failure

2018 Favaro [139] PHM 3 C PIML framework leverages tools and ideas from control theory to computer science

2019 Tan [144] RA 2,3 A Loss function and alternative training schemes are specified for harnessing the information from sensor data and

empirical rule

2019 Pence [146] RA 2,3 Build a theoretical framework to quantify the influence of organizational performance on risk scenarios

2019 Sakurahara RA 1,2 Initiate a line of research to integrate renewal process with physical degradation and maintenance; simulation-informed
[145,148] method for common cause failure analysis

2019 Groth [156] RA 2,4 C Overcome limitation of data, models, and literature by fusing multiple evidence

2019 Baptista [132] PHM 1 C Obtain better precision and convergence

2019 Chang [126] PHM 1 C Provide accurate and stable RUL prediction

2019 Chiachio [127] PHM 1 C Fuse on-line data for the PIML

2019 Whiteley [130] PHM 1 C Offer more accurate information about the system operation and accurate lifetime analysis

2019 Hong [141] PHM 2 C Enhance the accuracy of simulation results

2019 Arcosjimenez PHM 1 C PIML for condition monitoring systems
[138]

2020 Sun [64,71] uQ 1 A Improve the learning process by adding some labeled data to unlabeled data sets

2020 Abriishami [158] RA 2,3 C PIML outperform rule-based methods

2020 Moradi [153] RA 3 C Systematically draw together the advances in PHM and PRA

2020 Qian [150] RA 1 C Propose a time-variant reliability method using PIML

2020 Wu [151] RA 3 C Construct a new uncertain accelerated degradation model using PIML

2020 Cai [152] RA 3 C Develop a real-time reliability estimation method

2020 Veiga [160] SM 1 C Introduce a PIML framework for incorporating any type of linear constraints in GP model

2020 Ray [161] SM 1,2 C Combine computer models with experimentation to enhance prediction

2020 Liu [131] PHM 3 C Evaluate population reliability without increase parameter size

2020 Jain [133] PHM 1 C Approximated RUL taps past and future characteristics of operating profiles using PIML

2020 Yang [142] PHM 2 C Risk factor are established based on domain knowledge and multi-source data via PIML

2020, Vega [2,124] PHM 1,24 C Consider condition based maintenance problem; successful model the loss-of-contact degradation; solve the mismatch

2021 between the inspection data and the SHM system

2021 Kapusuzoglu [115] UQ 1 A, C Improve global sensitivity analysis accuracy

2021 Wang [103] uQ 1,2 A Use bayesian-entropy information fusion to integrate data

2021 Sohoin [154] RA 1 C Deal with early reliability estimation

2021 Vasilyev [155] RA 1 C Account multi-state dynamics and aging

2021 Zywiec [159] RA 1 C Combine the interpretability and sampling algorithm of a bayesian network

2021 Wang [162] SM 1,4 C Use bayesian-entropy method to encode constraints into GP model to enhance prediction and extrapolation

2021 Zang [135] PHM 1 C Provide more accurate RUL prediction

2021 Li [134] PHM 1 C Propose an interacting multiple model framework with the online prediction

2021 Prakash [125] PHM 1 C Predict future degradation patterns and RULof the components

2021 Jiang [9] PHM 1 C Propose a dynamic model correction framework to improve the accuracy of failure prognostic

2021 Lai [120] PHM 1 B Directly approximate the governing dynamics

2021 Xu [118] PHM 1 A Propose a multiple source domain adaption framework with unlabeled data; provide tighter bound for prediction

2021 Yucesan [76] PHM 1 B Identify bearing and grease damage for wind turbines

2021 Shen [119] PHM 1 A Bearing fault detection

2021 Zhang [117] PHM 1 A Improve generality and scientific consistency for damage detection

2021 Pan [137] PHM 4 C Realize on-line system monitoring

2021 Chahrour [136] PHM 1 C Improve maintenance decision-making processes

2022 Arias Chao [123] PHM 1 C PIML outperform purely data-driven approaches

integration methods. The quality of empirical and/or physics models
generally relies on our understanding of the system, and the com-
pleteness of our understanding of the system affects our decision on
model selection and construction. If the physical equations/models own
a high completeness, they can be operated independently to capture
the physics mechanism of the system, and a hybrid/precessing model
can be constructed to integrate the physics into ML. Contrary, if the
model can only reflect part of the system, then other knowledge, such as
experimental data, physics rules, and expert knowledge, are needed to
capture the character of the system. In this case, hybrid/fusing models
tend to be utilized to obtain a comprehensive understanding of the
system and construct a complete model.

» A General PIML Framework is Needed for Reliability and System
Safety

12

The challenges for physics-informed machine learning are often
specific to its applications. In particular, for reliability applications, if
there are multiple failure modes to be determined, the structure of the
model can take on different forms. Applications can be divided into
different levels of understanding. For instance, Yucesan [52] has a fail-
ure mode that is well-defined by physical equations (bearing fatigue);
while for determination of grease damage, a pure data-driven model
is utilized. For processes that have less known variables, data-driven
models and random variable modeling is implemented. The data-driven
models can then be utilized to enhance existing known physics models,
or vice versa. The main difference between enhancing the physical
equations compared to enhancing the data-driven models are within the
observables. If one can observe the outputs of the data-driven model,
then the data-driven model should enhance existing physics equations;
and the reverse should be done for enhancing the data-driven model.
Moreover, the design of effective physics-informed ML architectures is
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generally done empirically by users in the present literatures, which
could be very time-consuming. All these problems may severely limit
the applicability of the PIML methodology. Therefore, a general PIML
framework that can flexibly integrate prior knowledge and ML models
is required for reliability and system safety applications.

5. Challenges and future directions

Introducing PIML into reliability and safety applications come with
limitations and challenges despite the numerous advantages of PIML
outlined in previous sections. In this section, we first identify some
common limitations and challenges regarding information character-
istics and model properties in PIML implementation, and then discuss
key future research directions in developing advanced PIML technology
for reliability and system safety applications.

5.1. Limitations and challenges of PIML

5.1.1. Limitation and challenges in information characteristics

Data availability is an essential assumption of ML-based models.
However, many reliability and system safety applications have sparse,
unavailable, or bias data. The lack of high quality data has often forced
researchers and practitioners to rely on overly simplified models which
may lead to inaccurate results [163]. However, using PIML models
which are generally highly parameterized can lead to overfitting and
a lack of generalizability.

Even though the era of big data has led to more available data,
this data may not be high quality and be in different or new forms.
This new data may not be useful in its existing form or create noisy
data sets that are difficult to use in training applications. Moreover,
these new data sources need to be validated. Much of this validation is
dependent on human analysis and expertise which may be too costly
or infeasible [164]. Finally, the increase in data can also provide
data sources that are highly complex or highly variable in format and
type. Highly variable data can be very difficult to format and process
leading to limitations in speed and usability. Large amounts of data can
quickly lead to limitations in storage and processing speed. Therefore,
researchers and decision makers may prefer simplified models that can
provide quick predictions even if the PIML model may improve overall
accuracy.

5.1.2. Limitations and challenges in model properties

Some key limitations and challenges of PIML in model property as-
pects are summarized into five types: model selection, model structure,
model parameter, model optimizer, and model prediction.

First, reliability and system safety problems are often complex and
can be multi-dimensional. Many of these dimensions (or levels) have
different properties and may be correlated in space and/or time [165].
Creating nested models which can accurately account for uncertainty,
material properties, and correlations is very challenging. Moreover,
these features make it difficult to perform tasks such as feature or
model selection which may be necessary for reliability and system
safety applications. Model selection for PIML is the process of choosing
one final model among a collection of candidate models and strate-
gies for a predictive modeling problem, which can be applied both
across different types of models (e.g. neural networks, Gaussian process
model, SVM etc.) and across models of the different types of structure
with different model integration strategies (e.g. physics-informed loss
function, architecture, and hybrid model). The challenge of PIML model
construction is how to choose among a range of different models and
integration strategies that you can use for your problem. There may
be many competing concerns when performing model selection be-
yond model performance, such as complexity, efficiency of the model,
and properties of available resources. Even though model selection
in physics-based and machine learning domains [29] are extensively
investigated and well-developed, there is no clear guideline for model
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selection in the PIML modeling space so far. And a certain extent
experience is required to establish a PIML model properly. For example,
the design of effective PIML architectures is currently done empirically
by users, which often brings limitations for applying the PIML methods.
Therefore, a well-defined set of guidelines for PIML model selection and
construction is indispensable, which will improve the performance of
hybrid models and broaden their scope of applications.

Second, lots of restrictions still located in the model construction
process. Different types of prior knowledge and ML models often yield
challenges for knowledge integration and model construction. For ex-
ample, logic rules are encoded in the architecture of the neural network
with only a few layers in existing PIML studies, and the feasibility and
functionality of this approach for deep machine learning models are
under-investigated. Another example is that, currently, the GP model
can integrate equality and inequality equations, and little attention
has been paid to the physics-informed GP model with other types of
knowledge, such as the knowledge fusion framework.

Third, we see a potential challenge in finding the right weights for
prior knowledge that arise from the recent PIML studies. When multiple
equations/constraints are integrated into the loss function of the ML
model, the weights for each physics penalty term corresponding to each
equation are usually predefined by the user and effectuate the PIML
model learning process. Moreover, in the hybrid/preprocessing model
structure, the weight for physics-based model and ML model balances
the proportion of the physics meaning in the ML model. There is no
universal approach in determining the right weight and the value of it
is problem dependent.

Fourth, adding prior knowledge and/or constraints into the ML
model generates additional complexities into the optimization and
model training process. Consequently, this highly complex problem
may bring challenges to traditional optimizers. However, advanced
optimizers/algorithms have not been paid much attention to PIML
methods. Thus, advanced optimizers are urgently needed to improve
the performance of physics-informed models and keep up with the rapid
development of PIML technologies.

Fifth, the main challenges of using PIML for online prediction are
convergence and computational efficiency. For an algorithm to run and
make accurate predictions in real time, it must have low computational
complexity to provide fast estimations. Additionally, if there is a signifi-
cant amount of uncertainty in the existing model (which is common for
PHM and reliability applications), the initial parameters of the model
may not be an accurate representation of the system. This means the
parameters need to be updated within the algorithm, and they must
converge quickly for the framework to provide accurate predictions.
Currently, there does not exist substantial literature on combining
PIML models and updating operators for online applications. There
is an opportunity for future research in employing PIML for online
prediction, as studies have shown that PIML structures can significantly
reduce convergence time, particularly with the physics-informed loss
function.

5.2. Future directions

Several promising research directions on PIML methodology are
summarized from two aspects: information characteristics and model
properties.

5.2.1. Future directions in model construction with different information
characteristics

Data collection is often an expensive process in engineering appli-
cations. Collecting data from the area that we are interested in is an
important step in discovering the underlying behavior of complex sys-
tems. As discussed in Sections 2 and 3, partial differential equations are
widely adopted to explain a variety of phenomena due to their ability
to model and capture the behavior of complex systems. Collecting data
samples from appropriate locations has a great impact on convergence
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and results of modeling training. Traditionally, the data collection pro-
cess relies heavily on expert knowledge and the understanding of the
system. Recently, Zheng [166] proposed a framework using the idea of
adaptive sampling strategy to iteratively estimate the future dynamical
behavior and select sample points based on the form of PDEs. Although
the PIML strategies are widely used to model the behavior of complex
systems, little attention has been paid to data collection and adaptive
sampling strategies.

For reliability and safety applications, in order to develop a com-
plete model of the system, new data shall be collected from the regions
of the system’s space that are far from the training set, in which
the model is likely to fail. Such data acquisition will be instrumental
for a system where the consequences of failure can be catastrophic.
The model shall be trained on such data for reducing its bias and
until its accuracy is saturated. Different from the adaptive sampling
strategies [167-175] developed in the ML area, the data collection
process for PIML methods is more complex, where not only the model
learning target and performances but also the multiple types of prior
knowledge need to be considered for the data collection. In summary,
there is an opportunity for future research in developing new adaptive
sampling strategies to speed-up the PIML development. Moreover, in
many reliability and safety applications, labeling is an expensive pro-
cedure that may require domain-specific expertise. Thus, developing
hybrid models that learn with fewer labels opens up a new avenue of
research and practical applications.

Besides the data collection, the training efficiency of PIML models
is still limited in complex systems since the cost of obtaining enough
samples for achieving reasonable accuracy is high. Multi-fidelity PIML
frameworks, therefore, have been developed to compensate for expen-
sive high fidelity samples with cheap low fidelity samples. In reliability
and system safety applications, available knowledge often come from
multiple different sources with varying fidelities and multi-fidelity
modeling is a common approach to employ in this type of resource-
expensive computationally demanding problems. How to utilize those
multi-fidelity data comprehensively becomes a key question that needs
to be investigated. Nowadays, bi-fidelity [176] and multi-fidelity frame-
works [177,178] for ML models are well-developed, while the inves-
tigation of multi-fidelity frameworks for PIML approaches is in the
preliminary stage of development. Only limited bi-fidelity [94,95,179]
and multi-fidelity [90-92] structures for PIML methods are proposed
for PIML models so far, and further researches on it will enhance the
applicability of the PIML methods.

5.2.2. Future directions in model construction with different model proper-
ties

As discussed in Section 5.1.2, at least five types of grand chal-
lenges in PIML models are yet to be addressed: model selection, model
structure, model parameter, model optimizer, and model prediction.

For model selection, a well-defined set of guidelines for PIML model
selection among a range of different models and integration strategies
is needed, which will improve the performance of hybrid models and
broaden their scope of applications. In addition, in recent years, PIML-
related researches have developed rapidly, and how to measure and
evaluate the performances of emerged PIML approaches become a
critical challenge in the PIML methods development. Benchmark prob-
lems ease the evaluation and comparison of different algorithms and
are essential for the growth of physics-informed model structures and
algorithms. Consequently, new metrics that reveal the test accuracy and
learning capability need to be brought up to evaluate how well-posed
the physics-informed structures.

For model construction, methods for integrating some types of
prior knowledge into ML models have not yet been explored. New
approaches to unexplored spaces will broaden PIML applications. More-
over, simulation results may bring up the challenge of mismatch be-
tween real and simulated data. New Hybrid models that combine ML
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and simulation in more sophisticated ways are needed to enable the
calibration capability.

For model parameter estimation, there is no universal approach in
determining the right weight and the value of it is problem dependent.
Strategies for tuning and optimizing model parameter require further
attention.

For model optimization, highly complex model structures bring
challenges to traditional optimizers, and advanced optimizers design
for PIML are urgently required to improve the model performance and
keep up with the rapid development of PIML technologies.

For the model prediction, there is an opportunity for future research
in employing PIML for online prediction, as studies have shown that
PIML structures can significantly reduce convergence time.

6. Conclusion

This paper presented a literature review for the state-of-the-art of
physical-informed machine learning methods for the reliability and
system safety applications. The study highlights different efforts to-
wards aggregating physical information and data-driven models as
grouped according to their similarity and application area within each
group. Moreover, the challenges of the applications of physics-informed
machine learning methods to address practical reliability and system
safety problems and future research needs have also been discussed.
It is the authors’ intention to provide a collection of research articles
presenting recent development of this emergent topic, and shed light
on the challenges and future directions which we, as a research com-
munity, should focus on for harnessing the full potential of advanced
physics-informed machine learning techniques for reliability and safety
applications.
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