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ABSTRACT 
As insects fly, their wings generate complex wake structures 

that play a crucial role in their aerodynamic force production. 

This study focuses on utilizing reduced order modeling 

techniques to gain valuable insights into the fluid dynamic 

principles underlying insect flight. Specifically, we used an 

immersed-boundary-method-based computational fluid 

dynamics (CFD) solver to simulate a hovering hawkmoth’s 

wake, and then identified the most energetic modes of the wake 

using proper orthogonal decomposition (POD). Furthermore, 

we employed a sparse identification of nonlinear dynamics 

(SINDy) approach to find a simple reduced order model that 

relates the most energetic POD modes. Through this process, we 

formulated multiple different models incorporating varying 

numbers of POD modes. To compare the accuracy of these 

models, we utilized a force survey method to estimate the 

aerodynamic forces produced by the hawkmoth’s wings. This 

force survey method uses an impulse-based approach to 

calculate the aerodynamic lift and drag based solely on the 

velocity and vorticity information provided by the model. By 

comparing the estimated aerodynamic force with the actual force 

production calculated by the CFD solver, we were able to find 

the simplest model that still provides an accurate representation 

of the complex wake produced by the hovering hawkmoth wings. 

We also evaluated the stability and accuracy of this model as the 

number of flapping cycles increases with time. The reduced order 

modeling of insect flight has important implications for the 

design and control of bio-inspired micro-aerial vehicles. In 

addition, it holds the potential to reduce the computational cost 

associated with high-fidelity CFD simulations of complex flows. 
 

NOMENCLATURE 
𝑢𝑖 Velocity components 
𝑝 Pressure 

𝑅𝑒 Reynolds number 
𝑈𝑡𝑖𝑝
̅̅ ̅̅ ̅ Cycle-averaged wingtip velocity 

𝑐 Average wing chord length 
𝜈 Kinematic viscosity of air 

Φ𝑖 ith POD mode 
𝛼𝑖 ith POD coefficient 
𝑀 Total number of POD modes 
𝑁 Number of POD modes used in SINDy model 
𝑿 SINDy input data 

𝚯(𝑿) SINDy candidate function library 
𝚵 SINDy sparse coefficient matrix 
f Flapping frequency 

𝜔 Vorticity 
 
1. INTRODUCTION 

As insects fly, their wings produce complex wake structures 

that play a role in their aerodynamic force production [1, 2]. 

However, experiments and computational simulations of insect 

flight can be time consuming, computationally intensive, and 

difficult to analyze due to their many degrees of freedom. One 

potential solution to these problems is reduced order modelling. 

Reduced order modeling can be used to derive a simple dynamic 

model for complex flow phenomena [3, 4]. In addition, reduced 

order models of insect flight can provide insights into the 
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underlying dynamics involved in flapping-wing propulsion, as 

well as significantly reduce the computational complexity 

associated with simulating insect flight. 
Developing a reduced order model often requires 

decomposing the flow field into a group of time-varying modes. 

Proper Orthogonal Decomposition (POD) is one commonly used 

decomposition method [5, 6]. The benefit of POD is that it 

effectively transforms the complex flow into a compact 

coordinate system that can be used to create a reduced-order 

model. One common technique for reduced-order modeling is 

Galerkin Projection, wherein the governing equations are 

projected onto the POD modes. Alternatively, data-driven 

algorithms such as Sparse Identification of Nonlinear Dynamics 

(SINDy) can be used to identify reduced order models using only 

the flow data, without relying on the governing equations. The 

goal of SINDy is to use sparse regression to identify a system of 

simple and interpretable dynamic equations capable of 

describing complex phenomena [7, 8].  
Previous applications of SINDy in fluid mechanics have 

largely focused on canonical problems, such as flow over a 

cylinder [9, 10]. In this study, we apply SINDy to the more 

complex flow produced by a hovering hawkmoth’s wings. We 

first simulate a hovering hawkmoth’s wake using an in-house 

computational fluid dynamics (CFD) solver. Then, we use POD 

to decompose the flow into a set of time-varying modes. A 

simple reduced order model relating these modes is created using 

SINDy. Finally, to evaluate the accuracy of the model, we 

compare its prediction of the hawkmoth’s aerodynamic force 

generation against our initial simulation results. 
 
2. METHODOLOGY 
2.3 Governing equations and numerical method 

To simulate the aerodynamic wake of a hovering hawkmoth, 

we employ an in-house immersed-boundary-method-based 

computational fluid dynamics solver. The solver is used to solve 

the three-dimensional viscous incompressible time-dependent 

Navier Stokes equations that govern the flow. The 

nondimensional form of these equations is shown below: 
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where iu   (i = 1, 2, 3) and p   are the velocity components and 

pressure, respectively. The Reynolds number, given by  𝑅𝑒 =
𝑈𝑡𝑖𝑝̅̅ ̅̅ ̅̅  𝑐

𝜈
 (where 𝑈𝑡𝑖𝑝

̅̅ ̅̅ ̅ is the cycle-averaged wingtip velocity, 𝑐 is the 

average wing chord length, and 𝜈 is the kinematic viscosity of 

air), is equal to 7335. 
The governing equations are discretized in space using a 

cell-centered collocated arrangement of the primitive variables 

and are evaluated using a second-order central difference 

scheme. A fractional step method is used to integrate the 

equations in time. Boundary conditions are imposed on the 

immersed boundaries (in this case, the hawkmoth’s flapping 

wings) via a ghost cell procedure, which eliminates the need for 

computationally intensive remeshing algorithms. Validations 

and additional details related to this computational method can 

be found in our previous studies [11-15]. Our flow solver has 

been successfully utilized in studies of flapping flight [16-20].  
 

2.4 Proper orthogonal decomposition 
Proper orthogonal decomposition (POD) is applied to the 

simulation results to decompose the flow into a set of time-

varying modes. The temporal fluctuation of each mode Φ𝑖  is 

given by its associated coefficient 𝛼𝑖. The flow field at any point 

in time can therefore be expressed as a linear superposition of 

POD modes: 

𝑈(𝑥, 𝑡) = 𝑈 + ∑ 𝛼𝑖(𝑡)

𝑀

𝑖=1

Φ𝑖(𝑥)  (2) 

where 𝑈 is the mean flow and 𝑀 is the total number of modes. 
The POD algorithm employed in this study is known as the 

method of snapshots [5]. A sequence of snapshots is created by 

sampling the flow at 𝑆  instances throughout the hawkmoth’s 

flapping cycle. The resulting snapshot matrix 𝑊  has rows 

containing the velocity components at each grid point and 𝑆 

columns corresponding to the total number of snapshots. Then, 

the autocovariance matrix 𝐴 = 𝑊𝑇𝑊  is used to solve the 

eigenvalue problem 𝐴𝑉𝑖 = 𝜆𝑖𝑉𝑖 . Finally, the POD modes are 

given by Φ𝑖 =
1

√𝜆𝑖
∑ (𝑉𝑖)𝑗  (𝑊 −𝑆

𝑗=1  𝑈). 
One benefit of modal decomposition algorithms such as 

POD is their ability to greatly reduce the dimensionality of 
complex flow phenomena. Using the aforementioned method of 
snapshots, the number of degrees of freedom necessary to 
represent a hovering hawkmoth’s wake is reduced to just 96 

(corresponding to a total of 𝑀 = 96 POD modes). Modes are 
ordered according to their contribution towards the total kinetic 
energy of the flow, such that lower modes (Φ1, Φ2, Φ3, etc.) are 
significantly more energetic than higher modes. For this reason, 
it is likely that only a small subset of the 96 POD modes is 
required to accurately model a hawkmoth’s wake. 

 
2.4 Sparse Identification of Nonlinear Dynamics 

Next, we use Sparse Identification of Nonlinear Dynamics 
(SINDy) to formulate a reduced order model of the hovering 
hawkmoth’s wake. In this study, the input data for SINDy 
consists of the temporal coefficients 𝛼𝑖 corresponding to the first 
𝑁  POD modes. Then, sparse regression is performed on the 
system shown in equation (3). 

𝑿̇ = 𝚯(𝑿) 𝚵  (3) 

The matrix 𝑿  contains the input data, and 𝑿̇  is its time 
derivative. 𝚯(𝑿) contains a library of candidate polynomials for 
the model. In this study, we employ candidate polynomials up to 
order 3. 𝚵 is the sparse coefficient matrix that denotes which 
columns of theta are active. SINDy utilizes sparsity promotion 
to force as many of these coefficients to zero as possible, 
resulting in the simplest model that accurately describes the 
system. The model we obtain using the SINDy algorithm takes 
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the form of a dynamical system relating the 𝑁 most energetic 
POD modes. Figure 6 shows a schematic of the SINDy algorithm 
employed in this study. 
 
2.4 Force Survey Method 

To evaluate the accuracy of the SINDy model, we employ a 

force survey method (FSM) to calculate the lift and drag 

produced by the hawkmoth’s wings. Because the model does not 

include any pressure information, FSM is required to calculate 

the aerodynamic forces using only the velocity components 

predicted by the model. This method is based on the impulse 

equation first published by Noca et al. [21]: 

 

 

(4) 

Validations and additional details related to the force survey 

method can be found in previous studies [22, 23]. 
 
3. RESULTS AND DISCUSSION 

Using the results from the CFD simulation, we can examine 

the aerodynamic performance of the hovering hawkmoth. Figure 

1 shows the Q-criterion wake structures produced by the 

hawkmoth’s flapping wings during the middle of the downstroke 

and the middle of the upstroke. The wake is shed directly below 

the hawkmoth’s body. In addition, we observe that during the 

downstroke, a large leading-edge vortex is formed along the 

hawkmoth’s wings.  
 

 
Figure 1. Q-criterion wake structures during (a) the middle of the 

downstroke and (b) the middle of the upstroke. 
 

Previous studies have shown that vortices and wake 

structures produced during insect flight play a significant role in 

the insect’s aerodynamic performance [1, 2]. Figure 2 shows the 

lift (vertical force) and drag (horizontal force) generated by one 

of the hawkmoth’s wings during one flapping cycle. Lift is 

mainly generated during the downstroke, which occurs during 

the first half of the flapping cycle. Some lift is also produced 

during the upstroke. Positive drag is generated during the 

downstroke, and negative drag is generated during the upstroke. 

 

 
Figure 2. Instantaneous aerodynamic force production by one of the 

hawkmoth’s wings during one flapping cycle. 
 

 
Figure 3. Cumulative energy contribution by the 96 POD modes. 

Energy is shown as a fraction of the total kinetic energy of the flow. 
 

Table 1. Contribution of the first 8 POD modes towards the total 

kinetic energy. 

Mode Contribution 

(%) 
Accumulation 

(%) 
1 34.6 34.6 
2 29.4 64.0 
3 9.63 73.6 
4 8.76 82.4 
5 3.77 86.2 
6 3.42 89.6 
7 1.79 91.4 
8 1.70 93.1 

 
As demonstrated in Figure 1, the wake produced by the 

hovering hawkmoth’s wings is complex, which makes 

formulating a simple model for the wake challenging.  POD is 

therefore used to reduce the degrees of freedom of the flow to 

include just 96 time-varying modes. Figure 3 and Table 1 show 

the cumulative energy contributions of these modes towards the 



 4 © 2024 by ASME 

total kinetic energy of the wake. The first eight contribute over 

90% of the total energy. In addition, the first six modes are 

depicted in Figure 4, and the parametric relationships between 

their respective coefficients are shown in Figure 5. Interpreting 

the Lissajous curves in Figure 5 reveals there is a roughly 

harmonic relationship between the modes. We also observe that 

the modes occur in pairs that oscillate with the same frequency. 

For example, 𝛼1  and 𝛼2  fluctuate at a frequency equal to the 

hawkmoth’s flapping frequency (f = 25.6 Hz). Similarly, 𝛼3 and 

𝛼4 fluctuate at 2f, 𝛼5 and 𝛼6 fluctuate at 3f, etc. Table 1 shows 

that the modes in each “mode pair” also contribute roughly the 

same proportion of the total kinetic energy. 
 

 
Figure 4. Vorticity (𝝎𝒛) contours for the first six POD modes (𝚽𝟏 to 

𝚽𝟔). 
 

 
Figure 5. Lissajous curves showing the parametric relationships 

between the first six POD coefficients (𝛂𝟏 to 𝛂𝟔). 
 

The POD modes provide a convenient coordinate system 

that can be used to formulate a reduced order model of the 

hawkmoth’s wake. A schematic of the SINDy algorithm used to 

create the model is shown in Figure 6, using just the first two 

modes (𝛼1 and 𝛼2) as an example. In this figure, the identified 

system does a relatively good job of capturing the real 

relationship between these modes. However, Table 1 shows that 

the first two modes contribute only 64% of the total kinetic 

energy of the flow. To create a model that captures over 90% of 

the total kinetic energy, we instead use the first eight POD 

coefficients as inputs for the SINDy algorithm. The resulting 

model is shown in equation (5): 
𝛼1̇ = 6.7947 𝛼2 

𝛼2̇ = −5.7256 𝛼1 
𝛼3̇ = 12.8693 𝛼4 

𝛼4̇ = −12.0264 𝛼3 
𝛼5̇ = 19.1913 𝛼6 

𝛼6̇ = −17.9167 𝛼5 

𝛼7̇ = 25.0649 𝛼8 

𝛼8̇ = −24.2253 𝛼7 

(5) 

Due to the sparsity promotion involved in SINDy, the above 

reduced order model is both simple and interpretable. Although 

the candidate function library contains polynomial functions up 

to order three, each equation in the model system includes just 

one first-order term. In addition, the dynamics of each mode 

depend solely on its complementary mode in the “mode pairs” 

observable in Table 1 and Figure 5 (𝛼1  and 𝛼2 , 𝛼3  and 𝛼4 , 𝛼5 

and 𝛼6 , etc.). Figure 7 shows the parametric relationships 

between the first six coefficients predicted by the model. The 

predicted parametric curves closely match the real relationships 

between the modes, which suggests that the model accurately 

captures the underlying dynamics of the system. 
By substituting the coefficients 𝛼𝑖  predicted by the model 

(equation (5)) into equation (2), we can reconstruct the 

hawkmoth’s wake at any instant during the flapping cycle. 

Figure 8 shows the predicted wake during the middle of the 

downstroke (t/T = 0.25). Results are also shown for SINDy 

models formulated using just 𝑁  = 2 modes and 𝑁  = 4 modes. 

Comparing these predicted wake structures with the real 

structures in Figure 1(a), we observe that the model improves as 

more modes are included. We can also see that the leading-edge 

vortex attached to the hawkmoth’s wing becomes more visible 

as more modes are added to the model.  
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Figure 6. The SINDy algorithm, demonstrated using the first two POD 

coefficients, 𝜶𝟏 and 𝜶𝟐. The input data includes the time history 𝑿 of 
these coefficients, as well as their time derivative 𝑿̇. The candidate 
function library 𝚯(𝑿) includes all polynomial functions of 𝜶𝟏 and 𝜶𝟐 

up to order three. Sparse regression is used to find the fewest terms that 

satisfy 𝑿̇ = 𝚯(𝑿) 𝚵 . The resulting dynamic system is shown and 

compared against the real dynamics.  
 

 
Figure 7. Lissajous curves showing the parametric relationships 

between the first six POD coefficients (𝛂𝟏 to 𝛂𝟔). Results are shown for 

the real coefficients, as well as those predicted by the SINDy model. 
 

To evaluate the accuracy of these various SINDy models (𝑁 

= 8 modes, 𝑁 = 4 modes, and 𝑁 = 2 modes), we use equation (4) 

to calculate the aerodynamic lift and drag produced by the 

hawkmoth’s wings. Figure 9 shows the predicted forces 

compared against the real forces from our simulation results. The 

2-mode model reflects only the general trend of the hawkmoth’s 

force production. As more modes are included in the model, it 

better captures smaller fluctuations in force production. 

However,  there are still significant deviations between the 8-

mode model and real force production, most notably during the 

wing-reversal period around t/T = 0. We believe that these 

discrepancies are due to the complexity and spatiotemporal 

asymmetry of the hawkmoth’s wake (see Figure 1). During the 

wing-reversal period, it is likely that high-frequency low-energy 

modes contribute to the hawkmoth’s force production. In future 

studies, we plan to identify and incorporate these contributions 

into our reduced-order model to improve its accuracy. 
 

 

 
Figure 8. Q-criterion wake structures during the middle of the 

downstroke (t/T = 0.25). Results are shown for SINDy models created 

using (a) 2 POD modes, (b) 4 POD modes, and (c) 8 POD modes. 
 

 
Figure 9. Predicted (a) lift and (b) drag production for the various 

SINDy models. Results are compared against the real force production 

from the direct numerical simulation (DNS). 
 
4. CONCLUSION 

In this study, we created a reduced order model of a hovering 

hawkmoth’s wake. We first simulated hovering hawkmoth flight 

using an in-house CFD solver. Then, we decomposed the flow 

into a set of time-varying POD modes. Using SINDy, we created 

a reduced order model that relates the 8 most energetic POD 

modes and accurately predicts the system dynamics. We also 

found that using less than 8 POD modes to create the model 

significantly reduces its accuracy. However, there are still some 

significant errors in the 8-mode model, especially when it is used 

to predict the hawkmoth’s aerodynamic force production. Future 

plans to improve model accuracy include exploring alternative 

modal decomposition techniques (e.g., dynamic mode 

decomposition) and using an autoencoder neural network to 

further reduce the dimensionality of the system. Reduced order 

modeling of insect flight has the potential to yield new insights 
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into flapping-wing propulsion, as well as provide inspiration for 

the design and control of bio-inspired micro-aerial vehicles.  
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