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Quickest Change Detection With Post-Change
Density Estimation

Yuchen Liang , Member, IEEE, and Venugopal V. Veeravalli , Fellow, IEEE

Abstract— The problem of quickest change detection in
a sequence of independent observations is considered. The
pre-change distribution is assumed to be known, while the
post-change distribution is unknown. Two tests based on
post-change density estimation are developed for this problem,
the window-limited non-parametric generalized likelihood ratio
(NGLR) CuSum test and the non-parametric window-limited
adaptive (NWLA) CuSum test. Both tests do not assume any
knowledge of the post-change distribution, except that the
post-change density satisfies certain smoothness conditions that
allows for efficient non-parametric estimation; also, they do not
require any pre-collected post-change training samples. Under
certain convergence conditions on the density estimator, it is
shown that both tests are first-order asymptotically optimal,
as the false alarm rate goes to zero. The analysis is validated
through numerical results, where both tests are compared with
baseline tests that have distributional knowledge.

Index Terms— Quickest change detection (QCD), non-
parametric statistics, (kernel) density estimation, sequential
methods.

I. INTRODUCTION

THE problem of quickest change detection (QCD) is
of fundamental importance in mathematical statistics

(see, e.g., [2], [3] for an overview). Given a sequence of
observations whose distribution changes at some unknown
change-point, the goal is to detect the change in distribution as
quickly as possible after it occurs, while controlling the false
alarm rate. In classical formulations of the QCD problem, it is
assumed that the pre- and post-change distributions are known,
and that the observations are independent and identically dis-
tributed (i.i.d.) in the pre- and post-change regimes. However,
in many practical situations, while it is reasonable to assume
that we can accurately estimate the pre-change distribution,
the post-change distribution is rarely completely known.
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There have been extensive efforts to address pre- and/or
post-change distributional uncertainty in QCD problems. In the
case where both distributions are not fully known, one
approach is to assume that the distributions are parametrized
by a (low-dimensional) parameter that comes from a
pre-defined parameter set, and to employ a generalized likeli-
hood ratio (GLR) approach for detection. This approach was
first introduced in [4] and later analyzed in more detail in [5].
In particular, in [5], it is assumed that the pre-change distri-
bution is known and that the post-change distribution comes
from a parametric family, with the parameter being finite-
dimensional. A window-limited GLR test is proposed, which is
shown to be asymptotically optimal under certain smoothness
conditions. This work has recently been extended to non-
stationary post-change settings [6]. For the setting considered
in [5], a window-limited adaptive approach to constructing a
QCD test was developed in recent work [7]. This adaptive test
is also shown to achieve first-order asymptotic optimality [7].
In this paper, one of the test constructions for the case where
the post-change is completely unknown is based on extending
techniques introduced in [7].

We assume complete knowledge of the pre-change distri-
bution, while not making any parametric assumptions about
the post-change distribution. There has been prior work along
these lines. One approach is to replace the log-likelihood
ratio by some other useful statistic for distinguishing between
distributions in constructing tests. Examples of this approach
include the use of kernel M-statistics [8], [9], one-class
SVMs [10], nearest neighbors [11], [12], and Geometric
Entropy Minimization [13], [14]. In [8], a test is proposed
that compares the kernel maximum mean discrepancy (MMD)
within a window to a given threshold. A way to set the
threshold is also proposed that meets the false alarm rate
asymptotically [8]. Another approach is to estimate the
log-likelihood ratio and thus the CuSum test statistic through
a pre-collected training dataset. This include direct kernel
estimation [15] and, more recently, neural network estima-
tion [16]. However, the tests proposed in [8], [9], [10],
[11], [12], [13], [14], [15], and [16] lack explicit perfor-
mance guarantees on the detection delay. In [17], a binning
approach is proposed for the QCD problem for the case
where the pre-change distribution is known, and without any
pre-collected training set for the post-change distribution.
Asymptotic optimality of a binning based test is established for
the case where the post-change distribution is distinguishable
from the pre-change with binning, and where both distribu-
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tions have discrete support. Our approach is based on using
density estimators rather than binning. We show that the two
detectors that we propose are asymptotically optimal for a far
wider class of distributions, including those having continuous
support.

Our contributions are as follows:
1) We propose a window-limited non-parametric general-

ized likelihood ratio (NGLR) CuSum test and a non-
parametric window-limited adaptive (NWLA) CuSum
test, both of which do not assume any knowledge of the
post-change distribution (except that the post-change den-
sity satisfies certain smoothness conditions that allows for
efficient non-parametric estimation), and do not require
any post-change training data.

2) We characterize a generic class of density estimators that
enable detection.

3) For both tests, we provide a way to set the test threshold
to meet false alarm constraints (asymptotically).

4) We show that both proposed tests are first-order asymp-
totically optimal with the selected thresholds, as the false
alarm rate goes to zero.

5) We validate our analysis through numerical results,
in which we compare both tests with baseline tests that
have distributional knowledge.

The rest of the paper is structured as follows. In Section II,
we describe some properties required of the density estimators
for asymptotically optimal QCD. In Section III, we propose the
NGLR-CuSum test and analyze its theoretical performance.
In Section IV, we study the performance of the NWLA-
CuSum test. Both tests are analyzed under the assumption
that the post-change distribution is completely unknown.
In Section V, we present numerical results that validate the
theoretical analysis. In Section VI, we provide some conclud-
ing remarks.

A preliminary version of the results in this paper for the
NGLR-CuSum test appeared in [1].

II. DENSITY ESTIMATORS FOR QUICKEST CHANGE
DETECTION

Let X1, X2, · · · → Rd be i.i.d. observations drawn from an
unknown distribution, with probability density function (or
density) p with respect to some dominating measure µ, and
let supp(p) be the support of p. Let Ep and Vp denote,
respectively, the expectation and variance operator on the
sequence of observations, when the density corresponding to
each observation is p. For two densities p and q on Rd with
respect to µ, the Kullback-Leibler (KL) divergence is defined
as:

D(p||q) :=
∫

supp(p)
log(p(x)/q(x))p(x)dµ(x).

Define X
[k,n] := Xk, . . . ,Xn. Let p̂

n,k
→i be a density on

Rd with respect to µ that is estimated using X
[k,n]
→i :=

Xk, . . . ,Xi→1, Xi+1, . . . ,Xn, where the subscript ↑i repre-
sents that Xi, with k ↓ i ↓ n, is the observation that is left
out from X

[k,n]. We refer to p̂
n,k
→i as a leave-one-out (LOO)

estimator. Note that p̂
n,k
→i and Xi are independent for each

1 ↓ k ↓ i ↓ n.
With some possible abuse of notation, we also define

p̂
w
n := p̂

n,n→w
→n

to be the LOO estimate of p obtained from the past w i.i.d.
samples from p.

Assumption 1 (KL-Loss of Estimator): Suppose that, for
large enough w, there exist constants 0 < ω1, C1, C2 < ↔

and 0 < ω2 < 2 (that depend only on the density p and the
estimation procedure) such that the KL loss [18] of the density
estimator satisfies

KL-loss(p̂w
n ) := Ep [D(p||p̂w

n )] ↓
C1

wω1

where the KL divergence and the expectation operator Ep are
taken over the randomness of Xn and p̂

w
n , respectively.

Assumption 2 (Vanishing Second Moment): The second
moment of the log-likelihood ratio satisfies

Ep

[(
log

p(Xn)
p̂w

n (Xn)

)2
]
↓

C2

wω2
.

Here the expectation operator Ep is taken over the randomness
of both Xn and p̂

w
n . Recall that Xn is independent of p̂

w
n .

Similar assumptions to Assumptions 1 and 2 are imposed
for general p̂

n,k
→i as follows.

Assumption 3 (KL-loss of estimator, LOO): When n↑ k is
large enough, for each k ↓ i ↓ n,

KL-loss(p̂n,k
→i ) = Ep

[
D(p||p̂n,k

→i )
]
↓

C1

(n↑ k)ω1
.

Assumption 4 (Vanishing Second Moment, LOO): When
n↑ k is large enough, for each k ↓ i ↓ n,

Ep




(

1
(n↑ k + 1)

n∑

i=k

log
p(Xi)

p̂
n,k
→i (Xi)

)2


 ↓ C2

(n↑ k + 1)ω2
.

A typical loss measure for a density estimator is the
mean-integrated squared error (MISE), defined as (see, e.g.,
[19, Chap. 2])

MISE(p, p̂
w
n ) = Ep

∫
(p̂w

n (xn)↑ p(xn))2dµ(xn)


= Ep

[
↗p̂

w
n ↑ p↗

2
2

]
. (1)

The following lemma connects the MISE measure with the
bounds in Assumptions 1–4. The proof is given in the
Appendix.

Lemma 1: Suppose that there exist ε, ε such that

0 < ε ↓ p(x), p̂w
n (x) ↓ ε < ↔, ↘x → supp(p). (2)

If the estimator achieves

MISE(p, p̂
w
n ) ↓

C3

wω3
, (3)

for all w large enough and for some constants 0 < ω3, C3 <

↔, then Assumptions 1–4 are satisfied with

C1 =
C3

ε
, C2 =

εrC3

ε
2 , ω1 = ω2 = ω3
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where

r :=

(
log(ε/ε)
(ε/ε)↑ 1

)2

. (4)

In the following, for any positive functions g(w), h(w), the
notation h(w) = O(g(w)) means that h(w)

g(w)
w↑↓
↑↑↑↑≃ L < ↔,

and h(w) = !(g(w)) means that h(w)
g(w)

w↑↓
↑↑↑↑≃ L > 0.

Corollary 1: Suppose that (2) is satisfied with

ε = εw = O(wω), ε = ε
w

= !(w→ω)

such that
ω < ω3/2, ω < ω3 ↑ 2ω.

Suppose that the estimator still achieves (3). Then, Assump-
tions 1–4 are still satisfied, with

ω1 = ω3 ↑ ω, ω2 = ω3 ↑ 2ω ↑ ω ↑ ϑ

where ϑ > 0 is a small constant such that ω2 is still positive.
The proof of this corollary is given in the Appendix.

An example of a density estimator that satisfies Assump-
tions 1–4 (under condition (2) and when the density satisfies
some smoothness condition) is the kernel density estimator
(KDE).

Example 1 (Kernel Density Estimator (KDE)): For the
case where µ is the Lebesgue measure on Rd, given
observations X1, . . . ,Xw, a product kernel can be used to
estimate the density. The KDE is defined as

p̂
w
n (xn) =

1
w

d
i=1 h(i)

n→1∑

j=n→w

d

i=1

K

(
x

(i)
n ↑X

(i)
j

h(i)

)
. (5)

Here K(·) ⇐ 0 is a kernel function, x
(i)

, i = 1, . . . , d is
the i-th element of a vector x → Rd, and h is a vector for
smoothing parameter. Define the ϖ-Hölder density class as

Hε :=


p :
∫

p(x)dx = 1,⇒L > 0,

p(ϑ)(x1)↑ p
(ϑ)(x2)

 ↓ L ↗x1 ↑ x2↗
ε→ϑ

,

↘x1, x2 → supp(p)


.

Here ϖ > 0 and ϱ = ⇑ϖ⇓. Further, let the kernel function K(·)
satisfy

∫
K(u)du = 1,

∫
u

j
K(u)du = 0, j = 1, . . . , ϱ. (6)

Then, with a properly chosen h, it can be shown that [20],
[21]:

sup
p↔Hω

MISE(p, p̂
w
n ) = O(w→

2ω
2ω+d ).

Therefore, if the condition (2) is further satisfied, from
Lemma 1, we have

ω1 = ω2 =
2ϖ

2ϖ + d
. (7)

We note that the actual choices of ω1 and ω2 do not affect the
first-order asymptotic optimality results given in Thm 1 and
Thm 2.

III. QCD WITH NGLR-CUSUM TEST

Let X1, X2, . . . ,Xn, · · · → Rd be a sequence of independent
random variables (or vectors), and let ς be a change-point.
Assume that X1, . . . ,Xϖ→1 all have density p0 with respect
to some dominating measure µ. Furthermore, assume that
Xϖ , Xϖ+1, . . . have densities p1 also with respect to µ. Here
p0 is assumed to be completely known. Regarding p1, we only
assume that Assumptions 3 and 4 are satisfied. Let (Fn)n↗0 be
the filtration, with F0 = {!, ⊋} and Fn = φ {Xϑ, 1 ↓ ϱ ↓ n}

being the sigma-algebra generated by the set of n observations
X1, . . . ,Xn. Furthermore, let F↓ = φ(X1, X2, . . . ).

Let Pϖ denote the probability measure on the entire
sequence of observations when the change-point is ς, and let
Eϖ denote the corresponding expectation. The change-time ς

is assumed to be unknown but deterministic. The problem is
to detect the change quickly, while controlling the false alarm
rate. Let ↼ be a stopping time [22] defined on the observation
sequence associated with the detection rule, i.e. ↼ is the time at
which we stop taking observations and declare that the change
has occurred.

A. QCD Problem Formulation and Classical Results
When p1 is known, Lorden [4] proposed solving the fol-

lowing optimization problem to find the best stopping time
↼ :

inf
ϱ↔Cε

WADD (↼) (8)

where

WADD (↼) := sup
ϖ↗1

ess sup Eϖ

[
(↼ ↑ ς + 1)+ |Fϖ→1

]
(9)

characterizes the worst-case delay, and the constraint set is

Cς := {↼ : FAR (↼) ↓ ↽} (10)

with FAR (↼) := 1
E→[ϱ ] , which guarantees that the false alarm

rate of the algorithm does not exceed ↽. Here, E↓ [·] is the
expectation operator when the change never happens, and
(·)+ := max{0, ·}.

Lorden also showed that Page’s Cumulative Sum (CuSum)
algorithm [23] whose test statistic is given by:

W (n)= max
1↘k↘n

n∑

i=k

log
p1(Xi)
p0(Xi)

=(W (n↑ 1))++log
p1(Xn)
p0(Xn)

solves the problem in (8) asymptotically as ↽ ≃ 0. The
CuSum stopping rule is given by:

↼Page (b) := inf{n : W (n) ⇐ b}. (11)

It was shown by Moustakides [24] that the CuSum test is
exactly optimal for the problem in (8) with some threshold
bς that meets the false alarm constraint exactly, where bς ⇔

|log ↽|. Here and throughout the rest of this paper, we employ
standard notations as follows. Let o(x) stand for a function
h(x) ⇐ 0 such that lim supx↑x0

h(x)
x

 = 0. Let ⇀(x) stand

for a function h(x) ⇐ 0 such that lim supx↑x0

h(x)
x

 =
↔. Let O(x) stand for a function h(x) ⇐ 0 such that
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lim supx↑x0

h(x)
x

 < ↔. Let ”(x) stand for a function

h(x) ⇐ 0 such that lim supx↑x0

h(x)
x

 = L → (0,↔). Let
Aς ⇔ Bς be equivalent to Aς = Bς(1+o(1)). If not explicitly
specified, x ≃ x0 refers to ↽ ≃ 0 or b ≃↔.

Thus, we have the first-order asymptotic approximation as:

inf
ϱ↔Cε

WADD (↼) = WADD (↼Page (bς)) ⇔
|log ↽|

I
(12)

as ↽ ≃ 0. Here we define

I := D(p1||p0).

When the post-change distribution has parametric uncer-
tainties, Lai [5] generalized this performance guarantee with
the following assumptions. Let ⇁ → ” be the post-change
parameter, and denote the post-change density as p

φ
1. Define

Pφ
ϖ and Eφ

ϖ to be the probability and expectation operator on
the sequence, respectively, when the true post-change density
is p

φ
1. For fixed ⇁ → ”, define the worst-case average detection

delay as:

WADDφ (↼) := sup
ϖ↗1

ess sup Eφ
ϖ

[
(↼ ↑ ς + 1)+ |Fϖ→1

]
. (13)

Under parametric uncertainty, the goal is to find a test that
belongs to Cς (see (10) and achieves

inf
ϱ↔Cε

WADDφ (↼) (14)

for every ⇁ → ”.
Define I

φ := D(pφ
1||p0). Suppose that p0 and p

φ
1 satisfy the

following assumptions.
Assumption 5 (Right-tail Condition for True LLR): For

any δ > 0,

sup
ϖ↗1

Pφ
ϖ


max
t↘n

ϖ+t∑

i=ϖ

log
p

φ
1(Xi)

p0(Xi)
⇐ (1 + δ)nI

φ


n↑↓
↑↑↑↑≃ 0.

Assumption 6 (Left-tail Condition for True LLR): For any
δ → (0, 1),

sup
t↗ϖ

Pφ
ϖ


t+n∑

i=t

log
p

φ
1(Xi)

p0(Xi)
↓ (1↑ δ)nI

φ


n↑↓
↑↑↑↑≃ 0.

Then, if the window size mς satisfies

lim inf mς/ |log ↽| >
1
Iφ

and log mς = o(|log ↽|),

under some smoothness conditions [5], the window-limited
GLR-CuSum test:

↼̃GLR (b) :=

inf


n ⇐ 1 : max

(n→mε)+<k↘n
sup
φ↔!

n∑

i=k

log
p

φ
1(Xi)

p0(Xi)
⇐ b


(15)

with test threshold bς = |log ↽| (1 + o(1)) solves the problem
in (14) asymptotically as ↽ ≃ 0, for every ⇁ → ”. The
asymptotic performance is

inf
ϱ↔Cε

WADDφ (↼) ⇔ WADDφ (↼̃GLR (bς)) ⇔
|log ↽|

Iφ
. (16)

B. Non-Parametric GLR CuSum Test
For the case when p1 is unknown, we define the

non-parametric GLR statistic as

Ẑ
n,k
i = log

p̂
n,k
→i (Xi)
p0(Xi)

, ↘k ↓ i ↓ n. (17)

We remind readers of the definition of p̂
n,k
→i from Section II.

The non-parametric generalized likelihood ratio (NGLR)
CuSum stopping rule is defined as

↼̂(b) := inf


n > 1 : max

(n→mb)+<k↘n→1

n∑

i=k

Ẑ
n,k
i ⇐ b


. (18)

Here the window size mb is designed to satisfy the following
assumption.

Assumption 7 (Minimum Window Size): For some arbitrary
constant η > 1, mb satisfies

lim inf mb/b ⇐
η

I

for all large b.
In Lemma 2, we show that ↼̂ with a properly chosen density
estimator and threshold b = bς satisfies the false alarm
constraint asymptotically in (10). In Lemma 3, we establish
an asymptotic upper bound on WADD (↼̂(b)). The proofs of
the lemmas are given in the Appendix. Finally, in Theorem 1,
we combine the lemmas and establish the first-order asymp-
totic optimality of the NGLR-CuSum test.

In order to satisfy the false alarm constraint, the following
assumption is imposed on the density estimator.

Assumption 8: Suppose that ⇒ ▷ > 0, such that

E↓

[
max

n:k↘n↘k+mb

n

i=k

p̂
n,k
→i (Xi)
p0(Xi)

]
↓ b

↼

for each fixed k ⇐ 1 and for any large enough b.
We will elaborate on Assumption 8 in Section V-A. Intu-

itively, this is satisfied when the density estimator converges
to the true density fast enough (P↓-almost surely). Since the
pre-change distribution is known, we can numerically verify
Assumption 8 under the chosen window size and density
estimator.

Lemma 2: Suppose Assumption 8 holds. Let bς satisfy

bς ↑ ▷ log bς = |log ↽|+ log 8. (19)

Then,

E↓ [↼̂(bς)] ⇐ ↽
→1(1 + o(1)).

Lemma 3: Suppose b is large enough such that Assump-
tion 7 holds. Suppose that Assumptions 3 and 4 hold. Further,
suppose Assumption 6 holds for the true log-likelihood ratio.
Then,

WADD (↼̂(b)) ↓
b

I
(1 + o(1)), as b ≃↔.

Theorem 1: Suppose that Assumptions 5 and 6 hold for
the true log-likelihood ratio, and suppose that the window size
satisfies Assumption 7. Suppose that Assumption 8 is satisfied
for the chosen estimator. Let bς be so selected according to
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equation (19) such that FAR (↼̂(bς)) ↓ ↽(1 + o(1)), where
also bς = |log ↽| (1 + o(1)). Then ↼̂(bς) solves the problem
in (8) asymptotically as ↽ ≃ 0, and

inf
ϱ↔Cε

WADD (↼) ⇔ WADD(↼̂ (bς)) ⇔
|log ↽|

I
.

Proof of Theorem 1: The asymptotic lower bound on the
delay follows from Assumption 6 using [5, Thm. 1]. The
asymptotic optimality of ↼̂(bς) follows from Lemma 2 and
Lemma 3. ↭

IV. QCD WITH NWLA CUSUM TEST

Although the NGLR CuSum test is shown to achieve asymp-
totic optimality, its computational complexity is very high.
In order to obtain its statistic at each time n, a max operation
needs to be performed over k = (n ↑ m)+ + 1, . . . , n, and
the corresponding LOO estimator needs to be constructed for
each candidate k. In this section, we propose another test, the
NWLA CuSum test, which still achieves asymptotic optimality
and whose statistic has a lower computational complexity.

Define the non-parametric window-limited adaptively-
estimated log-likelihood ratio as

Ẑ
w
n = log

p̂
w
n (Xn)

p0(Xn)
, ↘n > w (20)

where p̂
w
n is the output of the density estimator given input

X
[n→w,n→1]. Note that Ẑ

w
n is independent of Fn→w→1. Define

the non-parametric window-limited adaptive (NWLA) CuSum
statistic as:

W
w(n) =


W

w(n↑ 1)
+

+ Ẑ
w
n , n > w (21)

and W
w(1) = · · · = W

w(w) = 0. The corresponding
stopping rule is

↼(b) := inf


n > w : W
w(n) ⇐ b


. (22)

Here b = bς > 0 is a threshold depending on the false alarm
rate ↽. We omit the dependency of W on w for brevity.

The following observations regarding Assumption 1 are
useful for the analysis in this section. If the estimated density
p = p1, the KL-loss bound in Assumption 1 is equivalent to

Î := E1

[
Ẑ

w
n

]
⇐ I ↑

C1

wω1
, n > w (23)

when w is large. This guarantees that Î > 0 for all sufficiently
large w’s.

In Lemma 4, we show that ↼ with a properly chosen thresh-
old bς satisfies the false alarm constraint in (10). In Lemma 8,
we establish an asymptotic upper bound on WADD (↼(bς)).
Finally, in Theorem 2, we combine the lemmas and establish
the first-order asymptotic optimality of the NWLA-CuSum
test. It should be mentioned that the results in this section are
similar to those in [7], in which a window-limited adaptive
CuSum test is studied for the case where there is parametric
uncertainty in the post-change regime. However, the results
in [7] are clearly not applicable to the non-parametric setting
studied here.

The proofs of Lemmas 4, 5, 7 and 8 are given in the
Appendix.

Lemma 4: For any w > 0,

E↓ [↼(b)] ⇐ e
b
.

Thus, ↼(bς) → Cς if bς = |log ↽|.
Before introducing the main lemma on the delay, we first
introduce three helping lemmas below.

Lemma 5: For any change-point ς ⇐ 1 and b > 0,

ess sup Eϖ


(↼(b)↑ ς + 1)+|Fϖ→1


↓ E1 [↼(b)] .

Lemma 6: Define

Un = Un→1 + Ẑ
w
n , ↘n > w

with U1 = · · · = Uw = 0. Also define the stopping time

↼u(b) := inf{n > w : Un ⇐ b}. (24)

Then, ↼u(b) ⇐ ↼(b) on {↼u(b) < ↔} for any b > 0.
Proof of Lemma 6: The proof is similar to [7, Lemma 5].

Note that Uw = 0 = W (w). For any k ⇐ w, if Uk ↓ W (k),
then

Uk+1 = Uk + Ẑ
w
k ↓ W (k) + Ẑ

w
k

↓

W (k)

+ + Ẑ
w
k = W (k + 1) a.s.

Thus by induction, ↼u(b) ⇐ ↼(b) on {↼u(b) < ↔}. ↭
Lemma 7: If Î > 0, then the ↼u defined in (24) satisfies

↼u < ↔ almost surely under P1.
Now, using the lemmas above, we can upper bound the

delay of the NWLA-CuSum test.
Lemma 8: Suppose that w is sufficiently large such that

Î > 0. Suppose further that Assumption 2 holds for the density
estimator. Then,

E1 [↼(b)] ↓ E1 [↼u(b)]

↓ Î
→1

(
b + wÎ + I +

↖

2
C2

Îwω2
+

(
4C2

Îwω2
(b + I)

) 1
2
)

(25)

where ↼u(b) is defined in (24).
Theorem 2: Suppose that bς = |log ↽| and the window size

wς = |log ↽|
↽ for some 0 < ◁ < 1. Then, under Assump-

tions 1 and 2, ↼(bς) solves the problem in (8) asymptotically
as ↽ ≃ 0, and the delay is upper-bounded as

WADD

↼


bς


↓

|log ↽|

I


1 + ”(|log ↽|

→⇀ϑ)


,

where

0↽ = min {◁ω1, 1↑ ◁} . (26)

Proof of Theorem 2: From Assumption 1 it follows that,

I

Î
= 1 +

I ↑ Î

Î
↓ 1 +

C1

Îwω1

↓ 1 +
C1

I ↑
C1

wϖ1


wω1

= 1 +
C1

Iwω1 ↑ C1
.

Given the selected w = wς, Î > 0 for a sufficiently small
↽. Define rς := |log ς|

I . From Lemma 8 (in particular, (25)),
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if we select bς = |log ↽| and w = |log ↽|
↽, the scaled average

delay (when ς = 1) can be upper bounded as:

r
→1
ς E1


↼(bς)


↓ r

→1
ς E1


↼u(bς)



↓
I

Î

(
1 +

Î

|log ↽|
1→↽ +

I

|log ↽|
+
↖

2
C2

Î |log ↽|
1+↽ω2

+
1

|log ↽|

(
4C2

Î |log ↽|
↽ω2

(|log ↽|+ I)

) 1
2

)

↓ 1 +
C1

I |log ↽|
↽ω1

↑ C1

+
I

|log ↽|
1→↽ + o

(
1

|log ↽|
1→↽

)

= 1 + ”
(

1
|log ↽|

⇀ϑ

)
.

Together with Lemmas 4–7, the result on the asymptotic delay
at ς = 1 establishes the asymptotic optimality. ↭

Remark 1: Since ω1 < 1, we have 0↽ <
1
2 if ◁ → (0, 1).

Also, from (26), to maximize 0↽, one can choose

0
≃ = max

↽↔(0,1)
0↽, ◁

≃ = arg max
↽↔(0,1)

0↽.

Example 2: Let the dominating measure µ be the Lebesgue
measure on Rd. Recall the definition of Hε in Example 1.
Consider p0, p1 → Hε with bounded support and non-zero
density. Consider using KDE as the estimator with some kernel
that satisfies (6). Previously we showed in (7) and Lemma 1
that with a properly chosen h, the optimal ω1 and ω2 are
ω1 = ω2 = 2ε

2ε+d . Therefore, in this case ◁
≃ and 0

≃ are

◁
≃ = arg max

↽↔(0,1)
min


2ϖ

2ϖ + d
◁, 1↑ ◁


=

2ϖ + d

4ϖ + d
,

and
0
≃ =

2ϖ

4ϖ + d
.

V. NUMERICAL RESULTS

In this section, we present some numerical results for the
proposed tests. Before presenting the main results, we first
investigate from a numerical perspective the feasibility of
Assumption 8, which is key to Lemma 2.

A. Discussion of Assumption 8
The quantity of interest is

Q(m) := E↓

[
max

n=2,...,m

n

i=1

p̂
n,1
→i (Xi)
p0(Xi)

]
. (27)

In Fig. 1, we study the numerical properties of Q(m) for KDE
with Gaussian kernels. The difference log(Q(m))↑3 log m is
plotted against m for each m = 5, 10, . . . , 100. In the plot,
it is observed that

log(Q(m))↑ 3 log m < 0 =↙ Q(m) ↓ m
3
.

Therefore, with the chosen density estimator, if further the
window size is chosen such that mb ↓ b

⇁(1 + o(1)) with
some 1 > 1, then Assumption 8 is satisfied with ▷ = 31.

Fig. 1. log(Q(m)) → 3 log m versus m with Q(m) defined in (27).
For each value of m, 100000 Monte Carlo runs are performed for each
n = 2, . . . , m, and the maximum product of likelihood ratios is aver-
aged. The selected pre-change distributions are N (0, 1) (solid lines) and
1
3 (N (→2, 1

4 ) +N (0, 1
4 ) +N (2, 1)) (dashed lines), with N (µ, ω2) denote

a Gaussian with mean µ and ω2. The KDE with Gaussian kernel is used for
density estimation, with bandwidth h = n→r where r chosen as 0.05 (red),
0.2 (blue), and 0.4 (cyan). In both plots, it is observed that the difference
trends lower as m increases, and that all simulated values are below zero.

B. Performance of NGLR-CuSum Test

In Fig. 2, we study the performance of the proposed
NGLR-CuSum test (defined in (18)) through Monte Carlo
(MC) simulations when the pre-change distribution is N (0, 1).
The KDE (defined in (5) with d = 1) with a Gaussian
kernel is used to estimate the density. The actual post-change
distribution is N (0.5, 1), but this knowledge is not used in the
NGLR-CuSum test. The performance of the NGLR-CuSum
test is compared against that of the following tests:

1) the CuSum test (in (11)), which has full knowledge of
the post-change distribution;

2) the parametric window-limited GLR-CuSum test
(in (15)), in which it is assumed that the post-change
distribution belongs to {N (⇁, 1)}φ ⇐=0.

The change-point is taken to be ς = 1.1 Different window
sizes are considered, among which the window size of 100 is
sufficiently large to cover the full range of delay. It is seen
that the expected delay of the NGLR-CuSum test is close to
that of the GLR-CuSum test for all window sizes considered.

C. Performance of NWLA-CuSum Test

In Fig. 3, we study the performance of the proposed
NWLA-CuSum test (defined in (22)) through Monte Carlo
(MC) simulations when the pre-change distribution is N (0, 1).
The KDE (defined in (5) with d = 1) is used to estimate
the density. The actual post-change distribution is N (0.5, 1).
This knowledge is not used in the NWLA-CuSum test. The
performance of the NWLA-CuSum test is compared against
that of the following tests:

1) the CuSum test (in (11)), which assumes full knowledge
of the post-change distribution;

1Note that ε = 1 may not necessarily be the worst-case value for
the change-point for the NGLR-CuSum test in general. However, extensive
experimentation on this Gaussian mean-change problem with different values
of ε ranging from 1 to 100, with a window-size of 100, shows that ε =
1 results in the largest expected delay among all ε’s considered.
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Fig. 2. Comparison of operating characteristics of the NGLR-CuSum test
(solid lines) with the CuSum test (in red) and the parametric window-limited
GLR-CuSum test (dashed lines) in detecting a shift in the mean of a Gaussian.
The pre- and post-change distributions are N (0, 1) and N (0.5, 1). The
change-point ε = 1. The kernel width parameter h = 10→1/5.

2) the parametric window-limited GLR-CuSum test
(in (15)), in which it is assumed that the post-change
distribution belongs to {N (⇁, 1)}φ ⇐=0.;

3) the parallel-NWLA-CuSum test, defined as

↼ parallel(b, Wmax) :=inf


n > 1 : max
1↘w↘Wmax

W
w(n) ⇐ b


.

Using a similar analysis as in Section IV, it can be shown that
the parallel-NWLA-CuSum test is also asymptotically optimal
with the threshold chosen as bς = |log ↽| + log Wmax. The
change-point is taken to be ς = 1, which corresponds to the
worst-case expected delay for the NWLA-CuSum test (shown
in Lemma 5), the parallel NWLA-CuSum test, and the CuSum
test, but not necessarily for the parametric window-limited
GLR-CuSum test. Different window sizes are also considered.
We note that there is a trade-off to consider in the design of the
window size for the NWLA-CuSum test. If the window size
is too small, the post-change density might not be accurately
estimated. On the other hand, if the window size is too large,
the test might wait too long before its statistic starts to grow in
the post-change regime. To address this trade-off, the parallel-
NWLA-CuSum test could be employed without specifying a
pre-defined window size, albeit at the expense of having to
run more tests in parallel.

D. Comparison Between NGLR-CuSum Test and
NWLA-CuSum Test

We now compare the performance between the
NGLR-CuSum test and the parallel-NWLA-CuSum test.
First, we compare the computational complexity of both
tests if the KDE is used for density estimation. For the
NGLR-CuSum test, at each input observation Xn, for
all hypothesized change-points k → ((n ↑ m)+, n ↑ 1]
(where m is the window size), the pair-wise kernel value
K(Xi, Xj) for each pair of i, j → [k, n] with i ∝= j is
calculated and a LOO kernel estimate is evaluated at each
point Xk, . . . ,Xn. Then, the LOO-estimated log-likelihood
ratios at these points are summed up and the maximum
sum (over k) is compared to the given threshold. Thus, the
computation complexity of the NGLR-CuSum test at each

Fig. 3. Comparison of operating characteristics of the NWLA-CuSum test
(solid lines) and the parallel-NWLA-CuSum test (dashed line) with the CuSum
test (in red) and the parametric window-limited GLR-CuSum test (dotted line)
in detecting a shift in the mean of a Gaussian. The pre- and post-change
distributions are N (0, 1) and N (0.5, 1). The change-point ε = 1. The kernel
width parameter h = w→1/5, where w is the window size.

Fig. 4. Comparison of operating characteristics of the NGLR-CuSum test
(solid lines) and the parallel-NWLA-CuSum test (dashed lines) with the
CuSum test (in red) in detecting a shift in the mean of a Gaussian. The pre-
and post-change distributions are N (0, 1) and N (0.5, 1). The change-point
ε = 1. The kernel width parameters are h = 10→1/5 for the NGLR-CuSum
test, and h = w→1/5 for the parallel-NWLA-CuSum test, where w is the
window size.

time is ”((n ′ m)3). For the parallel-NWLA-CuSum test,
at each given Xn, K(Xi, Xn) is first calculated for each
i → [(n↑Wmax)∞ 1, n↑ 1]. Then, with each possible window
size w = 1, . . . ,Wmax ′ (n ↑ 1), a WLA kernel estimate
is evaluated to update the corresponding NWLA-CuSum
statistic in an efficient manner. Finally, the maximum
NWLA-CuSum statistic (over w) is compared to the given
threshold. Therefore, the computation complexity of the
parallel-NWLA-CuSum test is ”((n ′ Wmax)2). Also note
that in practice, Wmax is usually chosen to be smaller than m,
by comparing the requirement of mb in Assumption 7 with
the window condition in Thm 2.

In Fig. 4, we compare the numerical performance of the
NGLR-CuSum test and the parallel-NWLA-CuSum test in
detecting a shift in the mean of a Gaussian. When the window
size is large enough, both tests achieve similar performance at
ς = 1, which corresponds to the worst-case ς for the parallel-
NWLA-CuSum test, but not necessarily for the NGLR-CuSum
test.
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VI. CONCLUSION

We studied a window-limited non-parametric generalized
likelihood ratio (NGLR) CuSum test and a non-parametric
window-limited adaptive (NWLA) CuSum test for QCD. Both
tests do not assume any explicit knowledge of the post-change
distribution, and do not require post-change training samples
ahead of time. We characterized a generic class of density
estimators that enable detection. For both tests, we provided a
way to set the test thresholds to meet false alarm constraints,
and we showed that the tests are first-order asymptotically
optimal with the selected thresholds, as the false alarm rate
goes to zero. We validated our analysis through Monte-Carlo
simulations, in which we compared both tests with baseline
tests that have distributional knowledge.

APPENDIX

Proof of Lemma 1: For brevity we write p̂(X) = p̂
w
n (Xn),

and note that X is independent of p̂. We use the fact that
log s ↓ (s↑1) to establish an upper bound on the first moment.
In particular,

Ep


log

p(X)
p̂(X)



↓ Ep


p(X)
p̂(X)

↑ 1


= Ep

∫
p
2(x)↑ p(x)p̂(x)

p̂(x)
dµ(x)



(≃)
= Ep

∫
p
2(x)↑ 2 p(x)p̂(x) + p̂

2(x)
p̂(x)

dµ(x)


↓
1
ε
MISE(p, p̂) (28)

where (∈) follows by the independence between p̂ and X

and because both p and p̂ are densities. This establishes
Assumption 1 with ω1 = ω3. The proof for Assumption 3
is similar, noting the independence between p̂

n,k
→i and Xi. For

the second moment, note that (log s)2 ↓ r(s↑1)2 on s ⇐ ε/ε

with r as defined in (4). Thus,

Ep

[(
log

p(X)
p̂(X)

)2
]
↓ Ep

[
r

(
p(X)
p̂(X)

↑ 1
)2

]

= rEp

[∫
(p(x)↑ p̂(x))2

p̂2(x)
p(x)dµ(x)

]

↓
εr

ε
2 MISE(p, p̂) (29)

which shows Assumption 2 with ω2 = ω3. Furthermore, for
Assumption 4,

Ep




(

1
n↑ k + 1

n∑

i=k

log
p(Xi)

p̂
n,k
→i (Xi)

)2




(a)
↓ Ep



 1
n↑ k + 1

n∑

i=k

(
log

p(Xi)
p̂

n,k
→i (Xi)

)2




(b)
= Ep




(

log
p(Xn)

p̂
n,k
→n(Xn)

)2




↓
εrC3

ε
2(n↑ k + 1)ω3

. (30)

Here (a) follows by Jensen’s inequality, and (b) follows
because log p(Xi)

p̂n,k
↑i (Xi)

has the same distribution for all i → [k, n].
The proof is now complete. ↭

Proof of Corollary 1: Following the argument in (28),
we have

Ep


log

p(X)
p̂(X)


= O

(
1
ε
MISE(p, p̂)

)
= O(w→(ω3→ω)),

and the first moment results (i.e., that of ω1) follow immedi-
ately for Assumptions 1 and 3.

Now we turn to the second moment. From the definition of
r,

r =

(
log(ε/ε)
1↑ (ε/ε)

)2

↓ (log(ε/ε))2 = (ω ↑ ω)2(log w)2

Therefore, following the argument in (29), we get

Ep

[(
log

p(X)
p̂(X)

)2
]

= O

(
εr

ε
2 MISE(p, p̂)

)

= O

(
w

ω

w
→2ω

wω3
(log w)2

)

= O


w
→(ω3→2ω→ω→,)



where ϑ > 0 is an arbitrarily small constant. This shows
the second moment result for Assumption 2. The result for
Assumption 4 is similar following the argument in (30). ↭

Proof of Lemma 2: Fix ϱ > 1. For all thresholds b > 0,

P↓ {ϱ ↓ ↼̂(b) < ϱ + mb}

(i)
↓ P↓


⇒(k, n) with ϱ ↓ n < ϱ + mb,

(n↑mb)+ < k ↓ n↑ 1 :
n∑

i=k

Ẑ
n,k
i ⇐ b



(ii)
↓ P↓


⇒(k, n) with (ϱ↑mb)+ < k < ϱ + mb,

k + 1 ↓ n ↓ k + mb :
n∑

i=k

Ẑ
n,k
i ⇐ b



= P↓
 ϑ+mb→1

k=(ϑ→mb)++1

⇒n with k + 1 ↓ n ↓ k + mb :

n∑

i=k

Ẑ
n,k
i ⇐ b



↓

ϑ+mb→1∑

k=(ϑ→mb)++1

P↓

⇒n with k + 1 ↓ n ↓ k + mb :

n∑

i=k

Ẑ
n,k
i ⇐ b


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↓

ϑ+mb→1∑

k=(ϑ→mb)++1

P↓ {↼k(b) ↓ k + mb} (31)

where (i) follows from the definition of ↼̂(b), and (ii) follows
because

ϱ ↓ n < ϱ + mb, (n↑mb)+ < k ↓ n↑ 1

implies that

(ϱ↑mb)+ < k < ϱ + mb, k + 1 ↓ n ↓ k + mb.

Here we define the auxiliary stopping time ↼k(b) for k ⇐ 1 as

↼k(b) := inf


n → [k + 1, k + mb] :

n∑

i=k

Ẑ
n,k
i ⇐ b


(32)

and we define inf ∋ := ↔. Now, for each k → [(ϱ↑mb)+, ϱ+
mb), we have

P↓ {k + 1 ↓ ↼k(b) ↓ k + mb}

=
∫
1{k + 1 ↓ ↼k(b) ↓ k + mb}dP↓

=
∫
1{k + 1 ↓ ↼k(b) ↓ k + mb}△

ϱk(b)

i=k

p̂
ϱk(b),k
→i (xi)
p0(xi)

ϱk(b)

i=k

p0(xi)

p̂
ϱk(b),k
→i (xi)

dP↓

(iii)
↓ e

→b

∫
1{k + 1 ↓ ↼k(b) ↓ k + mb}△

ϱk(b)

i=k

p̂
ϱk(b),k
→i (xi)
p0(xi)

dP↓ (33)

where (iii) follows from the definition of ↼k(b).
Now,

∫
1{k + 1 ↓ ↼k(b) ↓ k + mb}

ϱk(b)

i=k

p̂
ϱk(b),k
→i (xi)
p0(xi)

dP↓

↓

∫
max

n↔[k,k+mb]

n

i=k

p̂
n,k
→i (xi)
p0(xi)

dP↓

(iv)
↓ b

↼(1 + o(1))

where (iv) follows from Assumption 8. Combining with (31)
and (33), we have

sup
ϑ>1

P↓ {ϱ ↓ ↼̂(b) < ϱ + mb} ↓ 2 mbe
→b

b
↼(1 + o(1)),

and by [25, Lemma 2.2(ii)],

E↓ [↼̂(b)] ⇐
1
8
e
b
b
→↼(1 + o(1)).

Choosing b = bς then satisfies the false alarm constraint
asymptotically. ↭

Proof of Lemma 3: Recall that I = D(p1||p0). Under
Assumption 7, define a function δb such that δ0 := 1↑η

→1
<

1, that δb → (0, δ0) is decreasing in b, and that δb ▽ 0 as
b ≃↔. Define

nb :=


b

I(1↑ δb)


(34)

and thus

nb <
b

I(1↑ δ0)
=

ηb

I
↓ mb

when b is large enough. If for now that we can get a large
enough b to satisfy

Pϖ


n+nb→1∑

i=n

Ẑ
n+nb→1,n
i < b


< 2δ

2
b , ↘(ς, n) : n ⇐ ς ⇐ 1.

(35)

Then in the following, we will show by induction that

ess sup Pϖ


↼̂(b)↑ ς + 1 > knb

↼̂(b)↑ ς + 1 > (k ↑ ϱ)nb,Fϖ→1


↓ (2δ

2
b )ϑ (36)

for all ς ⇐ 1 and k ⇐ ϱ when b is large enough.
We will induct on the variable ϱ. The base case is where

ϱ = 1, and we get, ↘k ⇐ 1,

ess sup Pϖ {↼̂(b)↑ς+1>knb|↼̂(b)↑ς+1>(k↑1)nb,Fϖ→1}

(i)
↓ ess sup Pϖ

{
↼̂(b)↑ ς + 1 > knb| Fϖ+(k→1)nb→1

}

(ii)
↓ ess sup Pϖ


ϖ+knb→1∑

i=ϖ+(k→1)nb

Ẑ
ϖ+knb→1,ϖ+(k→1)nb

i < b

Fϖ+(k→1)nb→1



(iii)
= Pϖ






ϖ+knb→1∑

i=ϖ+(k→1)nb

Ẑ
ϖ+knb→1,ϖ+(k→1)nb

i < b






(iv)
↓ 2δ

2
b . (37)

In the series of inequalities above, (i) is by definition of
essential supremum and ↼̂(b), (iii) follows from independence
between the event

∑ϖ+knb→1
i=ϖ+(k→1)nb

Ẑ
ϖ+knb→1,ϖ+(k→1)nb

i <

b


and Fϖ+(k→1)nb→1, and (iv) follows from (35). The reason

for (ii) is as follows. The event {↼̂(b)↑ς +1 > knb} implies
that no change has been detected until time n = knb + ς ↑ 1.
In particular, this means that at time n = knb + ς ↑ 1,

max
(ϖ+knb→1→mb)+<↽↘ϖ+knb→2

ϖ+knb→1∑

i=↽

Ẑ
ϖ+knb→1,↽
i < b.

Now, since nb ↓ mb,

ϖ+knb→1∑

i=ϖ+(k→1)nb

Ẑ
ϖ+knb→1,ϖ+(k→1)nb

i

↓ max
(ϖ+knb→1→mb)+<↽↘ϖ+knb→2

ϖ+knb→1∑

i=↽

Ẑ
ϖ+knb→1,↽
i

< b.

The induction base is thus established.
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We now turn to the induction step. Suppose we have proved
that

ess sup Pϖ


↼̂(b)↑ ς + 1 > knb

↼̂(b)↑ ς + 1 > (k ↑ ϱ)nb,Fϖ→1


↓ (2δ

2
b )ϑ

, ↘k ⇐ l.

Then, for k ⇐ ϱ + 1,

Pϖ


↼̂(b)↑ ς + 1 > knb

↼̂(b)↑ ς + 1 > (k ↑ ϱ↑ 1)nb,Fϖ→1



(v)
= Pϖ


↼̂(b)↑ ς + 1 > knb, ↼̂(b)↑ ς + 1 > (k ↑ 1)nb

↼̂(b)↑ ς + 1 > (k ↑ ϱ↑ 1)nb,Fϖ→1



= Pϖ


↼̂(b)↑ ς + 1 > (k ↑ 1)nb

↼̂(b)↑ ς + 1 > (k ↑ ϱ↑ 1)nb,Fϖ→1


△

Pϖ


↼̂(b)↑ ς + 1 > knb

↼̂(b)↑ ς + 1 > (k ↑ 1)nb,

↼̂(b)↑ ς + 1 > (k ↑ ϱ↑ 1)nb,Fϖ→1



where (v) holds because {↼̂(b)↑ς +1 > knb} ̸ {↼̂(b)↑ς +
1 > (k ↑ 1)nb}. Thus,

ess sup Pϖ


↼̂(b)↑ ς + 1 > knb

↼̂(b)↑ ς + 1 > (k ↑ ϱ↑ 1)nb,Fϖ→1



↓ ess sup Pϖ


↼̂(b)↑ ς + 1 > (k ↑ 1)nb

↼̂(b)↑ ς + 1 > (k ↑ ϱ↑ 1)nb,Fϖ→1


△

ess sup Pϖ


↼̂(b)↑ ς + 1 > knb

↼̂(b)↑ ς + 1 >

(k ↑ 1)nb, ↼̂(b)↑ ς + 1 > (k ↑ ϱ↑ 1)nb,Fϖ→1



(vi)
↓ ess sup Pϖ


↼̂(b)↑ ς + 1 > (k ↑ 1)nb

↼̂(b)↑ ς + 1 > (k ↑ ϱ↑ 1)nb,Fϖ→1


△

ess sup Pϖ


↼̂(b)↑ ς + 1 > knb|Fϖ+(k→1)nb→1



(vii)
↓ ess sup Pϖ


↼̂(b)↑ ς + 1 > (k ↑ 1)nb

↼̂(b)↑ ς + 1 > (k ↑ ϱ↑ 1)nb,Fϖ→1


△ (2δ

2
b )

↓ (2δ
2
b )ϑ+1

where (vi) follows by definition of essential supremum and
the fact that


↼̂(b)↑ ς + 1 > (k ↑ 1)nb,

↼̂(b)↑ ς + 1 > (k ↑ ϱ↑ 1)nb,Fϖ→1


⊂ {Fϖ+(k→1)nb→1}

and (vii) follows by (37). Therefore, by induction, we get (36).
In particular, letting ϱ = k, we get

ess sup Pϖ {↼̂(b)↑ ς + 1 > knb|Fϖ→1} ↓ (2δ
2
b )k

, ↘ς ⇐ 1

for all sufficiently large b’s.
Therefore, for all sufficiently large b’s,

sup
ϖ↗1

ess sup Eϖ


n
→1
b (↼̂(b)↑ ς + 1)+|Fϖ→1



↓

↓∑

k=1

ess sup Pϖ {↼̂(b)↑ ς + 1 > knb|Fϖ→1}

↓

↓∑

k=0

(2δ
2
b )k =

1
1↑ 2δ2

b

.

Recall the definition of WADD in (9). As b ≃↔, this implies
that

WADD (↼̂(b)) ↓
nb

1↑ 2δ2
b

↓
b

I(1↑ δb)(1↑ 2δ2
b )

=
b

I
(1 + o(1)).

It remains to show (35). Write

Zi := log
p1(Xi)
p0(Xi)

.

For any n ⇐ ς ⇐ 1 and 2 > 0,

Pϖ


n+nb→1∑

i=n

Ẑ
n+nb→1,n
i < b



= Pϖ

 n+nb→1∑

i=n

Ẑ
n+nb→1,n
i < b,

n+nb→1∑

i=n

Zi ↑ Ẑ
n+nb→1,n
i ↓ 2


+

Pϖ

 n+nb→1∑

i=n

Ẑ
n+nb→1,t
i < b,

n+nb→1∑

i=n

Zi ↑ Ẑ
n+nb→1,t
i ⇐ 2



↓ Pϖ

 n+nb→1∑

i=n

Zi ↓ b + 2


+

Pϖ


1
nb

n+nb→1∑

i=n


Zi ↑ Ẑ

n+nb→1,t
i


⇐

2

nb



= P1


nb∑

i=1

Zi ↓ b + 2


+

P1


1
nb

nb∑

i=1


Zi ↑ Ẑ

nb,1
i


⇐

2

nb


(38)
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where Zi is the true log-likelihood ratio at time i. Observe
that the first term increases with 2, while the second term
decreases. It is important to choose a proper 2 = 2b in order
to keep both terms small. The idea in the following is that we
first choose a proper 2 = 2b by controlling the second term,
and then verify that it is small enough for the first term when
b becomes large.

Below, the goal is to choose 2 = 2b and δb such that

P1


nb∑

i=1

Zi < b + 2b


↓ δ

2
b

and

P1


1
nb

nb∑

i=1


Zi ↑ Ẑ

nb,1
i


⇐

2b

nb


↓ δ

2
b

hold simultaneously. In the following, write p̂i and Ẑi as
short-hand notations for p̂

nb,1
→i and Ẑ

nb,1
→i , respectively. Note

that E1

[
Zi ↑ Ẑi

]
= E1 [D(p1||p̂i)]. Under the conditions for

the estimator in Assumptions 3 and 4, the mean and variance
of n

→1
b

∑nb

i=1(Zi ↑ Ẑi) can be bounded as

E1

[
1
nb

nb∑

i=1

(Zi ↑ Ẑi)

]
= E1

[
1
nb

nb∑

i=1

log
p1(Xi)
p̂i(Xi)

]
↓

C1

n
ω1
b

Var1

(
1
nb

nb∑

i=1

(Zi ↑ Ẑi)

)
= Var1

(
1
nb

nb∑

i=1

log
p1(Xi)
p̂i(Xi)

)

↓
C2

n
ω2
b

. (39)

Now, for any 2b > nb △ E1 [D(p1||p̂i)],

P1


1
nb

nb∑

i=1


Zi ↑ Ẑi


⇐

2b

nb



↓ P1

 
1
nb

nb∑

i=1


Zi ↑ Ẑi


↑ E1 [D(p1||p̂i)]

 (40)

⇐
2b

nb
↑ E1 [D(p1||p̂i)]



(≃)
↓ Var1

(
1
nb

nb∑

i=1

log
p1(Xi)
p̂i(Xi)

)(
2b

nb
↑ E1 [D(p1||p̂i)]

)→2

↓
C2

n
ω2
b

(
2b

nb
↑ E1 [D(p1||p̂i)]

)→2

. (41)

Here (∈) follows from Chebyshev’s inequality. Now, (40) is
less than or equal to δ

2
b if

2b

nb
↑ E1 [D(p1||p̂i)] ⇐

↖
C2

δbn

ϖ2
2

b

,

which is equivalent to

2b ⇐

↖
C2n

1→ω2/2
b

δb
+ nbE1 [D(p1||p̂i)] . (42)

Consider the two terms on the right-hand-side of (42). Since
E1 [D(p1||p̂i)] ↓ C1n

→ω1
b (from (39)), the second term in (42)

is no larger than C1n
1→ω1
b . In order to choose a proper 2b, there

are three cases depending on the rate of the first term in (42).

• Case 1: 4ω1 > ω2. Let

2b =
2
↖

C2n
1→ω2/2
b

δb
, (43)

with δb as chosen below. With this 2b, the first term in (38)
becomes

P1


nb∑

i=1

Zi < b + 2b



= P1


nb∑

i=1

Zi < (1↑ δb)nbI +
2
↖

C2n
1→ω2/2
b

δb



= P1


nb∑

i=1

Zi <(1↑δb)nbI

(
1+

2
↖

C2

(1↑δb)δbn
ω2/2
b I

)

↓ P1


nb∑

i=1

Zi < (1↑ δb)nbI

(
1 +

2η
↖

C2

δbn
ω2/2
b I

)

where in the last inequality we have used the fact that
1↑ δb > η

→1. Let

δb =
(4η

2
C2)

1
4

n
ω2/4
b

↖
I

∀↙
2η
↖

C2

δbn
ω2/2
b I

= δb. (44)

With this chosen δb,

P1


nb∑

i=1

Zi < b + 2b


↓ P1


nb∑

i=1

Zi < (1↑ δ
2
b )nbI


.

Assuming that Assumption 6 is true for the true Zi’s,
we have [5, Appendix B]

P1


nb∑

i=1

Zi < (1↑ δ
2
b )nbI


↓ δ

2
b ,

and thus

P1


nb∑

i=1

Zi < b + 2b


↓ δ

2
b . (45)

Now, we verify that (42) holds for all large enough b’s.
With the chosen δb (in (44)), the first term in (42) satisfies

√
C2δ

→1
b n

1→ω2/2
b = ”(n1→ω2/4

b ) = ⇀(n1→ω1
b ).

Therefore, the chosen 2b (in (43)) satisfies (42) for all b’s
large enough. As a result, from (40), we get

P1


1
nb

nb∑

i=1


Zi ↑ Ẑi


⇐

2b

nb


↓ δ

2
b .

• Case 2: 4ω1 < ω2. Let

2b = 2C1n
1→ω1
b ,

δb =
2ηC1

I
n
→ω1
b ∀↙

η2b

nbI
= δb. (46)

With this choice,

P1


nb∑

i=1

Zi < b + 2b



= P1


nb∑

i=1

Zi < (1↑ δb)nbI + 2C1n
1→ω1
b


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= P1


nb∑

i=1

Zi < (1↑ δb)nbI

(
1 +

2C1

(1↑ δb)nω1
b I

)

↓ P1


nb∑

i=1

Zi < (1↑ δb)nbI

(
1 +

2ηC1

n
ω1
b I

)

= P1


nb∑

i=1

Zi < (1↑ δ
2
b )nbI


(47)

and thus, assuming Assumption 6 holds, we have

P1


nb∑

i=1

Zi < b + 2b


↓ δ

2
b .

Also, since
√

C2δ
→1
b n

1→ω2/2
b = ”


n

1→ω2/2+ω1
b


= o(n1→ω1

b ),

the chosen 2b (in (46)) satisfies (42) for all b’s large
enough. As a result, from (40), we get

P1


1
nb

nb∑

i=1


Zi ↑ Ẑi


⇐

2b

nb


↓ δ

2
b .

• Case 3: 4ω1 = ω2. Let C3 be a large enough constant
such that

C3 ⇐
I
↖

C2

ηC3
+ C1. (48)

Choose

2b = C3n
1→ω1
b ,

δb =
ηC3

I
n
→ω1
b ∀↙

η2b

nbI
= δb. (49)

Following the same line of argument as in (47), we get

P1


nb∑

i=1

Zi < b + 2b



= P1


nb∑

i=1

Zi < (1↑ δb)nbI + 2C1n
1→ω1
b


↓ δ

2
b .

Also, from (48),

2b = C3n
1→ω1
b

⇐
I
↖

C2

ηC3
n

1→ω2/2+ω1
b + C1n

1→ω1
b

=
↖

C2n
1→ω2/2
b

δb
+ C1n

1→ω1
b .

Therefore, (42) is satisfied for the chosen 2b (in (49)),
and from (40) we get

P1


1
nb

nb∑

i=1


Zi ↑ Ẑi


⇐

2b

nb


↓ δ

2
b .

To sum up, in all cases, we have shown the existence of 2b

and δb (that depend on ω1 and ω2) such that

P1


nb∑

i=1

Zi < b + 2b


↓ δ

2
b

and

P1


1
nb

nb∑

i=1


Zi ↑ Ẑ

nb,1
i


⇐

2b

nb


↓ δ

2
b

hold simultaneously. Continuing (38), we can write, for any
(n, ς) such that n ⇐ ς ⇐ 1,

Pϖ


n+nb→1∑

i=n

Ẑ
n+nb→1,n
i < b



↓ P1


nb∑

i=1

Zi ↓ b + 2b



+ P1


1
nb

nb∑

i=1


Zi ↑ Ẑ

nb,1
i


⇐

2b

nb



↓ 2δ
2
b .

This is exactly what was required to be shown in (35). The
proof is now complete. ↭

Proof of Lemma 4: Define the SR-like statistic

Rn = (1 + Rn→1)eẐw
n , ↘n > w

with R1 = · · · = Rw = 0. Also define the corresponding test:

↼R(b) := inf
{
n > w : Rn ⇐ e

b
}

.

Note that the NWLA-CuSum statistic in (21) can be written
equivalently as

e
W (n) = max


1, e

W (n→1)


e
Ẑw

n , n > w.

Therefore, for n > w, Rn > e
W (n) and thus ↼(b) ⇐ ↼R(b) on

{↼(b) < ↔}.
Now, without loss of generality assume E↓ [↼(b)] < ↔;

otherwise the statement of the lemma holds trivially. This
implies that E↓ [↼R(b)] < ↔. Observe that Rn → Fn and

E↓ [Rn ↑ n|Fn→1] = (1 + Rn→1)E↓
[
e
Ẑw

n |Fn→1

]
↑ n

= Rn→1 ↑ (n↑ 1), ↘n > w.

The last equality follows because p̂
w
n is a density given Fn→1.

Hence {Rn ↑ n}n>w is a (P↓,Fn)-martingale. Also, for
any n > w, since Rn → (0, e

b) almost surely on the event
{↼R(b) > n}, we have, for any n > w,

E↓
[
|(Rn+1 ↑ (n + 1))↑ (Rn ↑ n)|

Fn

]

= E↓
[
|Rn+1 ↑Rn ↑ 1|

Fn

]

↓ E↓ [Rn+1|Fn] + (Rn + 1)
= 2(Rn + 1)
↓ 2(eb + 1)

almost surely on the event {↼R(b) > n}. Therefore, we can
apply the optional sampling theorem and obtain

E↓

RϱR(b) ↑ ↼R(b)


= E↓ [Rw+1 ↑ (w + 1)]

= E↓
[
e
Ẑw

w+1

]
↑ (w + 1)

= ↑w,
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where E↓
[
e
Ẑw

w+1

]
= 1 because p̂

w
w+1 is a density given Fw.

Finally, we arrive at

E↓ [↼(b)] ⇐ E↓ [↼R(b)] = w + E↓

RϱR(b)


⇐ e

b
.↭

↭
Proof of Lemma 5: The proof is similar to [7, Lemma 4].

Define a helping stopping time

↼ϖ(b) := inf{n ⇐ ς + w : W ϖ(n) ⇐ b}

where

W ϖ(n) =

W ϖ(n↑ 1)

+ + Ẑ
w
n , n ⇐ ς + w

with W ϖ(n) = 0,↘n < ς+w. Note that W (ς+w) ⇐ W ϖ(ς+
w). Now, if W (k) ⇐ W ϖ(k), we have

W (k + 1) =

W (k)

+ + Ẑ
w
k+1

⇐

W ϖ(k)

+ + Ẑ
w
k+1

= W ϖ(k + 1)

as long as W (k) < b. Thus, by induction,

W (n) ⇐ W ϖ(n), ↘n ⇐ ς + w

on the event
{
W (n) < b

}
, which implies that ↼(b) ↓ ↼ϖ(b)

almost surely under Pϖ . In the remainder of the proof, we omit
“(b)” in the descriptions of the stopping times for notational
brevity.

Since ↼↑ς+1 = w+(↼ ↑ ς↑w + 1) ↓ w+(↼↑ς↑w+1)+,
we have

(↼ ↑ ς + 1)+ ↓ w + (↼ ↑ ς↑w + 1)+ Pϖ–a.s.

Thus,

Eϖ


(↼ ↑ ς + 1)+|Fϖ→1



↓ w + Eϖ


(↼ ↑ ς↑w + 1)+|Fϖ→1



= w + Eϖ



Eϖ


(↼ ↑ ς↑w + 1)+|Xϖ , . . . ,Xϖ+w→1,Fϖ→1

 Fϖ→1



(≃)
↓ w + Eϖ



Eϖ


(↼ϖ↑ς↑w+1)+

Xϖ , . . . ,Xϖ+w→1,Fϖ→1

 Fϖ→1



(≃≃)
= w + Eϖ



Eϖ


↼ϖ↑ς↑w+1

Xϖ , . . . ,Xϖ+w→1,Fϖ→1

 Fϖ→1



where (∈) holds because ↼ ↓ ↼ϖ almost surely (under Pϖ),
and (∈∈) holds because ↼ϖ ⇐ ς + w ↑ 1 ⇐ 0 almost surely
(under Pϖ).

Now, ↘ς ⇐ 1, given the information of Xϖ , . . . ,Xϖ+w→1,
the event {↼ϖ ⇐ ς + w} is independent of Fϖ→1. Thus,

ess sup Eϖ



Eϖ [↼ϖ ↑ ς↑w + 1|Xϖ , . . . ,Xϖ+w→1,Fϖ→1]
Fϖ→1



= Eϖ [Eϖ [↼ϖ ↑ ς↑w + 1|Xϖ , . . . ,Xϖ+w→1]]
= E1 [E1 [↼1↑w|X1, . . . ,Xw]]
= E1 [↼ ↑ w] .

The last line holds because ↼1 = ↼ almost surely (under P1).
The proof is now complete. ↭

Proof of Lemma 7: First, for any k > 0,
w+wk∑

i=w+1

Ẑ
w
i =

w∑

j=1

k∑

ϑ=1

Ẑ
w
wϑ+j

and given j,
∑k

ϑ=1 Ẑ
w
wϑ+j is a sum of i.i.d. random variables

under P1. In the following, we extend the idea of [26,
Prop. 8.21] to w-dependent sequence of random variables. For
any n < ↔,

E1


Umin{ϱu,n}


= E1




min{ϱu,n}∑

i=w+1

Ẑ
w
i





= E1




w∑

j=1

⇒(min{ϱu,n}→j)/w⇑∑

ϑ=1

Ẑ
w
wϑ+j





=
w∑

j=1

E1




⇒(min{ϱu,n}→j)/w⇑∑

ϑ=1

Ẑ
w
wϑ+j



 .

By Wald’s identity (which is applicable since (Ẑw
wϑ+j)ϑ↗1 is

i.i.d.), for each j = 1, . . . , w,

E1




⇒(min{ϱu,n}→j)/w⇑∑

ϑ=1

Ẑ
w
wϑ+j





= Î · E1


⇑(min{↼u, n}↑ j)/w⇓



⇐ Î

(
1
w

E1 [min{↼u, n}]↑
j

w
↑ 1

)
.

Thus,

E1


Umin{ϱu,n}


⇐ Î

(
E1 [min{↼u, n}]↑

3w + 1
2

)
.

Next we consider two cases. Suppose initially that for some
c < ↔, Ẑ

w
i < c, P1 almost surely. If this is true, since Î =

E1

[
Ẑ

w
i

]
> 0, ↘i > w, we have

Î

(
1
w

E1 [min{↼u, n}]↑
3w + 1

2

)

↓ E1


Umin{ϱu,n}


↓ b + c

=↙ E1 [min{↼u, n}] ↓
b + c

Î
+

3w + 1
2

< ↔.

Letting n ≃↔ we get, by Monotone Convergence Theorem,

E1 [↼u] = E1

[
lim
n

min{↼u, n}

]
= lim

n
E1 [min{↼u, n}] < ↔.

In general, define Z̃
w,c
i := Ẑ

w
i 1{Ẑ

w
i < c} + c1{Ẑw

i > c},
where c is large enough such that E1

[
Z̃

w,c
i

]
> 0. Similarly

define

U
c
n :=

n∑

i=w+1

Z̃
w,c
i , ↼

c
u := inf{n > w : U

c
n ⇐ b}.
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Note that Z̃
w,c
i < c almost surely and thus E1 [↼ c

u] < ↔. Since
U

c
n ↓ Un, we have ↼u ↓ ↼

c
u almost surely under P1. Therefore,

E1 [↼u] ↓ E1 [↼ c
u] < ↔. The proof is now complete. ↭

Proof of Lemma 8: The proof consists of two parts. In the
first part, we use a similar technique as in [27, Thm 1.1] to
obtain an extension of Wald’s identity to the case where the
samples are w-dependent. In the second part, we upper bound
the overshoot using results from renewal theory. For notational
brevity, we omit the dependence on w and write Ẑ

w
i = Ẑi.

Define

Yi := E1

[
Ui ↑ (i↑ w)Î|Fi→w

]
, ↘i ⇐ w

and note that Yw = 0. Now,

E1 [Yi+1|Fi→w]

= E1

[
E1

[
Ui+1 ↑ (i + 1↑ w)Î|Fi+1→w

]
|Fi→w

]

= E1

[
Ui + Ẑi+1 ↑ (i↑ w)Î ↑ Î|Fi→w

]

= Yi + E1

[
Ẑi+1 ↑ Î|Fi→w

]

(≃)
= Yi + E1

[
Ẑi+1 ↑ Î

]

= Yi, ↘i > w, P1–a.s.

where (∈) follows from independence between Ẑ
w
i+1 and

Fi→w. This implies that {(Yi,Fi→w)}i↗w is a martingale.
Therefore, for any finite k > w, min {↼u, k} ↓ k < ↔, and
thus

E1

[
Umin{ϱu,k} ↑ Î(min {↼u, k}↑ w)

]

=
↓∑

m=1

P1 {↼u = m}△ E1


E1


Umin{m,k}

↑ Î(min {m, k}↑ w)
Fmin{m,k}→w

↼u = m



=
↓∑

m=1

P1 {↼u = m}E1


Ymin{m,k}|↼u = m



= E1


Ymin{ϱu,k}

 (≃)
= E1 [Yw] = 0

where (∈) follows from optional sampling theorem. This
implies that

E1


Umin{ϱu,k}


= Î(E1 [min {↼u, k}]↑ w). (50)

Note that ↼u < ↔ with probability 1 under P1 by Lemma 7.
For i > w, let Ẑ

+
i := max{0, Ẑi} and Ẑ

→

i := ↑min{0, Ẑi}.
Note that Ẑ

+
i , Ẑ

→

i ⇐ 0, Ẑi = Ẑ
+
i ↑ Ẑ

→

i , and Un =∑n
i=w+1


Ẑ

+
i ↑ Ẑ

→

i


,↘n > w. Thus, we have

lim
k↑↓

E1


Umin{ϱu,k}



= lim
k↑↓

E1




min{ϱu,k}∑

i=w+1

Ẑ
+
i



↑ lim
k↑↓

E1




min{ϱu,k}∑

i=w+1

Ẑ
→

i





(i)
= E1



 lim
k↑↓

min{ϱu,k}∑

i=w+1

Ẑ
+
i



↑ E1



 lim
k↑↓

min{ϱu,k}∑

i=w+1

Ẑ
→

i





(ii)
= E1

[
ϱu∑

i=w+1

Ẑ
+
i

]
↑ E1

[
ϱu∑

i=w+1

Ẑ
→

i

]

= E1 [Uϱu ]

where (i) follows from the monotone convergence theorem,
and (ii) is due to the fact that ↼u < ↔ with probability 1.
Also by the monotone convergence theorem,

lim
k↑↓

E1 [min {↼u, k}] = E1


lim

k↑↓
min {↼u, k}


= E1 [↼u] .

Thus, taking the limit of k on both sides of (50),

E1 [Uϱu ] = lim
k↑↓

E1


Umin{ϱu,k}



= lim
k↑↓

Î(E1 [min {↼u, k}]↑ w)

= Î(E1 [↼u]↑ w). (51)

Now, denote

Li := log
p̂

w
i (Xi)

p1(Xi)
, ↘i > w.

By definition we have E1

[
Ẑi ↑ Li

]
= I, ↘i > w. The proof

of (51) is also applicable to L
2
ϱu

, which gives us

E1

[
ϱu∑

i=w+1

L
2
i

]
= E1


L

2
w+1


(E1 [↼u]↑ w). (52)

Thus,

E1 [Uϱu ↑ b]

= E1

[
Uϱu→1 ↑ b + Ẑϱu

]
< E1

[
Ẑϱu

]
= I + E1 [Lϱu ]

(i)
↓ I +

√
E1


L2

ϱu


↓ I +

√√√√E1

[
ϱu∑

i=w+1

L2
i

]

(ii)
= I +

√
(E1 [↼u]↑ w) E1


L2

w+1



(iii)
↓ I +

√
C2

wω2
(E1 [↼u]↑ w) (53)

for sufficiently large w. Here (i) follows from Jensen’s
inequality, (ii) follows from (52), and (iii) follows from
Assumption 2. Denote cw := C2w

→ω2 and x := E1 [↼u] ↑ w.
The goal below is to get an upper bound for x. Combining (53)
with (51), we obtain

↖
cwx + I ⇐ Îx↑ b

which implies that

x ↓

(2(b + I)Î + cw) +
√

(2(b + I)Î + cw)2 ↑ 4Î2(b + I)2

2Î2

↓
2(b + I)Î + cw

Î2
.

Plugging this bound into (53) gives us

E1 [Uϱu ↑ b] ↓ I +

√
2(b + I)cw Î + c2

w

Î2
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↓ I +
2
√

(b + I)cw Î +
↖

2cw

Î

where in the last inequality we use the fact that
↖

u + v ↓
↖

2u+
↖

2v for any u, v > 0. Therefore, combining with (51),
we obtain

E1 [↼u] = w + Î
→1 (b + E1 [Uϱu ↑ b])

↓ w + Î
→1(b + I) +


4C2(b + I)w→ω2 Î

→3
 1

2

+
↖

2Î
→2

C2w
→ω2 .

The proof is now complete since E1 [↼(b)] ↓ E1 [↼u(b)] by
Lemma 6. ↭
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