
An Energy-Efficient Neural Network Accelerator

with Improved Protections Against Fault-Attacks

Saurav Maji∗, Kyungmi Lee∗, Cheng Gongye†, Yunsi Fei† and Anantha P. Chandrakasan∗

∗Dept. of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
†Dept. of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA

AbstractÐEmbedded neural network (NN) implementations
are susceptible to misclassification under fault attacks. Inject-
ing strong electromagnetic (EM) pulses is a non-invasive yet
detrimental attack that affects the NN operations by (i) causing
faults in the NN model/inputs while being read by the NN
computation unit, and (ii) corrupting NN computations results
to cause misclassification eventually. This paper presents the
first ASIC demonstration of an energy-efficient NN accelerator
with inbuilt fault attack detection. We incorporated lightweight
cryptography-aided checks using the Craft cipher for on-chip
verification to detect model/input errors and also as a fault
detection sensor. Our developed ASIC has demonstrated excellent
error detection capabilities (100% detection for 100k error
attempts) with a minimal area overhead of 5.9% and negligible
NN accuracy degradation.

I. INTRODUCTION

There are increased security concerns with the popularity

of embedded NN implementations [1]. Physical attacks over

NNs can be broadly categorized as: (i) side-channel attacks

(SCAs) that are aimed to extract confidential information [2],

[3]; and (ii) fault attacks (FAs) that are targeted to make

them dysfunctional [4]. While previous works have focused

on the SCAs of NNs [5], [6], less attention has been given to

FAs. In FAs, attackers introduce faults in the execution of the

target platform by feeding faulty data or operating it outside

normal conditions. FAs for NNs have been demonstrated for

targeted misclassification and denial-of-service attacks [4],

whereby attackers inject erroneous operations by manipulating

the supplied voltage, altering the clock signal frequency,

applying strong EM pulses, or laser pulses [7]. Among these

FA methods, clock/voltage attacks require direct access to the

hardware, while laser-based FAs are non-invasive and require

the decapsulation of the ICs. Hence in this work, we consider

electromagnetic fault injection (EMFI) attacks which are non-

invasive and do not require any decapsulation.

In typical embedded NN accelerators, the NN model is

stored externally (e.g., in DRAM). In this use case, an attacker

can inject errors in two ways: (i) by introducing errors during

the transmission of the NN model/input to the ASIC, and

(ii) by causing computation errors during NN processing. Our

designed ASIC possesses high error detection capabilities for

both these attacks while incurring low-performance overheads.
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Foundation (NSF-SaTC 1929300) for funding support.

Fig. 1. Overview of EM fault attacks on embedded NNs (exemplified for
thumbprint-based biometric authentication).

II. APPLICATION SCENARIO & THREAT MODEL

For demonstrating EMFI over real-life applications, we

consider a smart-card application that uses embedded NNs to

authenticate users based on their biometric thumbprint infor-

mation, as shown in Fig. 1. The user enters their thumbprint in

the smart-card reader, which processes the input thumbprint to

extract refined features and transmits them to the smart-card

processor for verification. The smart-card processor (i.e., the

NN accelerator) reads the NN model from DRAM and per-

forms NN processing over the received features to authenticate

the user. An attacker can inject faults during transmitting input

features, reading the model, or during NN computations to

cause targeted misclassification and perform denial-of-service

attacks. We assume a white box scenario for the attack, where

the attacker has extensively characterized the system to inject

faults effectively. An adversary can use EM fault attacks that

can be applied to both contact and contactless modes of

interaction between the smart-card and the smart-card reader.

Our baseline NN accelerator comprises 16 processing el-

ements (PEs) and supports multi-layer perceptron and con-

volutional NN operations. The baseline NN accelerator uses

quantized 8b unsigned integer weights 8b signed activations.

Fig. 2 shows the architecture of our ASIC, which augments the

baseline accelerator with (i) lightweight Craft [8] cipher-aided

NN model/input authentication unit and (ii) Craft cipher-based

clock-glitch detection units. If errors are detected, the system

can be configured to repeat the erroneous operations for accu-

rate NN processing, such as requesting to re-transmit the faulty

NN model/input or repeating the inaccurate NN computations.

In case repeated errors are detected, the system/user is alerted

regarding an attacker’s presence.
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Fig. 2. System architecture of the implemented NN accelerator.

III. NN MODEL / INPUT AUTHENTICATION

Current data authentication techniques include parity checks

[9], algorithmic [10], or cryptographic [11] checksums. The

parity/algorithmic checksums require very low memory over-

heads but do not perform well when several bits can be flipped

arbitrarily (e.g., flipping even bits for parity checks). On the

contrary, cryptographic checks offer very strong security guar-

antees. However, they lead to high performance overheads. As

an example, incorporating 64b cryptographic checksum into

the entire NN model will cause negligible memory overhead.

On the mismatch of the checksum, the entire model data

needs to be re-fetched, thus leading to high data transmission

overhead. On the other hand, incorporating cryptographic

checksums at smaller memory intervals helps to locate mem-

ory errors at smaller granularity. However, it requires high

memory overheads. For example, 64b cryptographic checksum

for 0.5kB memory leads to 12.5% memory overhead. Our

proposed method, which we discuss next, incorporates parity

checks under the umbrella of encryption, thus combining the

benefits of both these methods.

As shown in Fig. 3, our proposed method’s parity check is

inspired from [9], which proposes to set the least significant bit

(LSB) of each weight as its corresponding even parity bit. This

is based on the fact that the LSBs contribute very less to the

NN accuracy. Additionally, we also encrypt the parity-encoded

model. Therefore, the model verification involves on-chip

decryption of model parameters and performing parity checks.

We partition the NN model into 0.5kB blocks (64×8b weights)

and process them individually. A block is detected as valid

when parity checks for all its 64 weights are satisfied. Without

the knowledge of the cipher key, it is extremely challenging for

an attacker to alter the encrypted model such that the decrypted

model bypasses the checks. We also organized the data so that

all equipositional bits (e.g., LSBs) of all weights are grouped

in a row and encrypted. Thus, any anomaly in the encrypted

block possibly affects all weights. Hence, for any altered

ciphertext, each of the 64 weights (in the plaintext) satisfies

the parity condition with a probability of 0.5 (i.e., random

guess). Hence, the probability of a fault-injected block (with

64 weights) passing the check has an insignificant probability

of (0.5)64
≃ 0%. As exemplified in Fig. 4, flipping even a

single bit in the ciphertext dismantles the parity for several

weights in the resultant plaintext.

The methodology that is described above and used for

anomaly detection in NN model, is also used for verifying

the NN input. This leads to effective resource utilization.

We utilized Craft [8], a lightweight tweakable block cipher,

for our application. Tweakable ciphers are a special category of

block cipher which are popular for encrypting memory. They

provide an efficient way to encrypt an entire memory with

a single key while ensuring that different memory addresses

(tweaks) have uncorrelated encryptions. We opted for Craft

instead of existing solutions such as XTS [12] for two reasons:

Craft being a lightweight cipher is more efficient and uses

fewer resources than AES, and the design of Craft allows for

easy error detection capabilities (that is utilized in Section

IV). In Section V, we discuss the impact of enforcing parity

constraints on the accuracy of our NN. While our proposed

method does not increase the size of the model/input, we do

need to pad the model/input to make it a multiple of the block

size, which results in negligible memory overheads of <0.5kB.

IV. DIGITAL SENSOR FOR NN FAULT DETECTION

Cryptographic ciphers are highly sensitive to fault attacks.

Hence, any coarse-grained EM attack that is targeted over

the NN is likely to affect the cipher, thus corrupting its

state. Hence, we detect glitches using the cipher’s inherent

vulnerability. We complement the Craft cipher with a nibble

(4b)-parity-based concurrent error detection (CED) unit [8].

An anomaly between the cipher’s state and its parity indicates

an error. The cipher and its CED unit execute concurrently

with the NN computation and raise an error flag when ob-

taining a parity mismatch, as shown in Fig. 5. Our proposed

method is capable of detecting NN computation errors for all

PEs without incorporating dedicated operation-specific verifi-

cation (e.g., separate checks for addition-&-multiply (MAC),

ReLU, etc.) or redundant NN computations. Our method is

fully synthesizable and does not require technology-specific

design/characterization required for designing sensors [13],

[14]. Because of the effective reuse of the existing cipher

(from Section IV), our solution incurs low area overhead while

providing high error detection capabilities.

V. EXPERIMENTAL DEMONSTRATION OF FAULT ATTACK

RESISTANCE FOR BIO-METRIC AUTHENTICATION

Our designed ASIC was used to demonstrate the real-

life application of thumbprint information-based biometric

authentication [15]. Fig. 6 shows the NN model architecture.

As demonstrated here and analyzed in [9], the degradation in

the NN accuracy is extremely small (almost negligible) while

enforcing the parity constraints for the weights and inputs.
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Fig. 3. Proposed NN model authentication: algorithm and implementation.

Fig. 4. Illustrated example of NN model authentication.

Fig. 5. Design of the cipher-aided fault detection unit for NN computations.

For the EM glitch attack, we utilized Riscure’s EMFI

injection probe, with a diameter of 4mm. To carry out an

effective fault attack, we pinpointed the most vulnerable

position by deactivating protections (using exhaustive search).

We subsequently activated the implemented protections and

analyzed the response against EM fault attacks.

Fig. 6. Model details and performance of the demonstrated application of
thumbprint-based user recognition.

TABLE I
SUMMARY OF FAULT-ATTACK EXPERIMENTS

Fault attacks No. of attacks Fault Coverage

NN Model 0.1M (0.1M/0.1M) = 100%

NN Input 0.1M (0.1M/0.1M) = 100%

NN Computations 0.1M (0.1M/0.1M) = 100%

The conducted experiments are described below and sum-

marized in TABLE I :

• For our demonstrated applications, we introduced errors

into the NN inputs and the NN model (particularly biases

as they are most sensitive for accuracy) and achieved mis-

classification. However, in the protected implementation,

any errors introduced over the NN model were detected

(for 100k FA attempts).

• We injected random errors during the NN computations

and were able to misclassify the output. However, in the

protected implementation, any error injected was detected

correctly for 100k attempts.
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TABLE II
COMPARISON WITH PRIOR WORKS ON PROTECTION AGAINST ACTIVE ATTACKS.

Metric ISSCC’11 [16] JSSC’18 [13] VLSIC’22 [14] ISSCC’23 [17] This Work

Platform ASIC (130nm) ASIC (180nm) ASIC (5nm) ASIC (Intel 4) ASIC (28nm)

Application AES AES − AES Neural Networks

Targeted Attacks Any FA Laser Clock Glitch Any FA EM Faults

Defense Duplicate Bulk current FLL-based Arith. + Parity Cipher-based

Techniques datapath sensors detector Checks + LDC anomaly detection

Supply Voltage (V) 1.20 1.80 0.75 0.75 0.60 − 0.95

Frequency (MHz) 50 25 40 780 25 − 200

1.37 pJ/MAC (unprotected)b

Energy/opn. − 0.6 nJ/cycle 20.1 pJ/cycle a 34.6 pJ/cycle a

1.88 pJ/MAC (protected)b

Energy Overhead − 0.3% 20.1 pJ/cycle c
− 37%

Area Overhead 104% 28% 0.0048 mm2 c 40% 5.9%
a Computed from the reported power & frequency. b Reported at 0.60V & 25MHz. c Constant energy & area overhead.

Fig. 7. Successful demonstration of EM glitch detection capability of the
implemented NN accelerator.

As shown in Fig. 7, for an unprotected implementation, the

error induced during the execution of neuron 1 propagates to

neuron 2 and gives incorrect decision. Whereas, for the pro-

tected implementation, an error flag is raised on successfully

detecting fault and the neuron 2 does not execute.

VI. COMPARISON WITH OTHER FAULT TOLERANT

DESIGNS

Fig. 8 shows the fabricated ASIC (in 28nm HPC+ CMOS)

and summarizes its performance. Our chip supports voltage

scaling from 0.95V to 0.60V and operates from 25MHz to

200MHz. All the energy measurements have been reported

at 0.60V and 25MHz. TABLE II compares our work with

prior work on custom hardware designs for fault attack-

resistant ASICs. These prior works have targeted fault-tolerant

applications for cryptographic applications. Our work is the

only one to target FAs for NN applications while achieving

high error-detection capabilities and low area overheads. Using

algorithmic and architectural innovations, this work demon-

strate the first NN accelerator ASIC resilient against fault

attacks for resource-constraint applications.
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Fig. 8. Chip micrograph and specifications.
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