ESSCIRC 2023- IEEE 49th European Solid State Circuits Conference (ESSCIRC) | 979-8-3503-0420-6/23/$31.00 ©2023 IEEE | DOI: 10.1109/ESSCIRC59616.2023.10268746

An Energy-Efficient Neural Network Accelerator
with Improved Protections Against Fault-Attacks

Saurav Maji*, Kyungmi Lee*, Cheng Gongye!, Yunsi Feil and Anantha P. Chandrakasan*
*Dept. of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
TDept. of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA

Abstract—Embedded neural network (NN) implementations
are susceptible to misclassification under fault attacks. Inject-
ing strong electromagnetic (EM) pulses is a non-invasive yet
detrimental attack that affects the NN operations by (i) causing
faults in the NN model/inputs while being read by the NN
computation unit, and (ii)) corrupting NN computations results
to cause misclassification eventually. This paper presents the
first ASIC demonstration of an energy-efficient NN accelerator
with inbuilt fault attack detection. We incorporated lightweight
cryptography-aided checks using the Craft cipher for on-chip
verification to detect model/input errors and also as a fault
detection sensor. Our developed ASIC has demonstrated excellent
error detection capabilities (100% detection for 100k error
attempts) with a minimal area overhead of 5.9% and negligible
NN accuracy degradation.

I. INTRODUCTION

There are increased security concerns with the popularity
of embedded NN implementations [1]. Physical attacks over
NNs can be broadly categorized as: (i) side-channel attacks
(SCAs) that are aimed to extract confidential information [2],
[31; and (ii) fault attacks (FAs) that are targeted to make
them dysfunctional [4]. While previous works have focused
on the SCAs of NNs [5], [6], less attention has been given to
FAs. In FAs, attackers introduce faults in the execution of the
target platform by feeding faulty data or operating it outside
normal conditions. FAs for NNs have been demonstrated for
targeted misclassification and denial-of-service attacks [4],
whereby attackers inject erroneous operations by manipulating
the supplied voltage, altering the clock signal frequency,
applying strong EM pulses, or laser pulses [7]. Among these
FA methods, clock/voltage attacks require direct access to the
hardware, while laser-based FAs are non-invasive and require
the decapsulation of the ICs. Hence in this work, we consider
electromagnetic fault injection (EMFI) attacks which are non-
invasive and do not require any decapsulation.

In typical embedded NN accelerators, the NN model is
stored externally (e.g., in DRAM). In this use case, an attacker
can inject errors in two ways: (i) by introducing errors during
the transmission of the NN model/input to the ASIC, and
(ii) by causing computation errors during NN processing. Our
designed ASIC possesses high error detection capabilities for
both these attacks while incurring low-performance overheads.

This project was supported partly by Analog Devices Inc. and partly by MIT
EECS MathWorks Fellowship. C. Gongye acknowledges National Science
Foundation (NSF-SaTC 1929300) for funding support.

A
Targeted Attacks (1] Attacker
s;;g (2] 3;&

Faulting NN Model — Input

O & inputs /\f \) f/:\\
. 2 Unll

) Corrupting NN ~ /N

computations @ X misclassify

Model (DRAM) NN Comp. ASIC

Fig. 1. Overview of EM fault attacks on embedded NNs (exemplified for
thumbprint-based biometric authentication).

II. APPLICATION SCENARIO & THREAT MODEL

For demonstrating EMFI over real-life applications, we
consider a smart-card application that uses embedded NNs to
authenticate users based on their biometric thumbprint infor-
mation, as shown in Fig. 1. The user enters their thumbprint in
the smart-card reader, which processes the input thumbprint to
extract refined features and transmits them to the smart-card
processor for verification. The smart-card processor (i.e., the
NN accelerator) reads the NN model from DRAM and per-
forms NN processing over the received features to authenticate
the user. An attacker can inject faults during transmitting input
features, reading the model, or during NN computations to
cause targeted misclassification and perform denial-of-service
attacks. We assume a white box scenario for the attack, where
the attacker has extensively characterized the system to inject
faults effectively. An adversary can use EM fault attacks that
can be applied to both contact and contactless modes of
interaction between the smart-card and the smart-card reader.

Our baseline NN accelerator comprises 16 processing el-
ements (PEs) and supports multi-layer perceptron and con-
volutional NN operations. The baseline NN accelerator uses
quantized 8b unsigned integer weights 8b signed activations.
Fig. 2 shows the architecture of our ASIC, which augments the
baseline accelerator with (i) lightweight Craft [8] cipher-aided
NN model/input authentication unit and (ii) Craft cipher-based
clock-glitch detection units. If errors are detected, the system
can be configured to repeat the erroneous operations for accu-
rate NN processing, such as requesting to re-transmit the faulty
NN model/input or repeating the inaccurate NN computations.
In case repeated errors are detected, the system/user is alerted
regarding an attacker’s presence.

979-8-3503-0420-6/23/$31.00 ©2023 IEEE 233

Ins(ruc(ion NN C tation Unit
SPI pebclol NN Model omputation Uni
)” 7 Reg. File [¢—>»]
}}I Controller (3208 ® “1' : @m
©+-- : H
NN Input [E ! {
ﬂ NN Model / Input ‘| NN Scheduling & |!
Authentication Unit : Control Logic |
] ! 1
Authentication i i l
Controller ! | i
NN Model ol ﬂ@’ ‘ @m . i
53 o o
[Craft Cipher E"— & &
oo Nibble Parity-based | [*]
Fault Attacks Concurrent Error Re
Detection (CED) Unit Co
Error Detection i
Logic]
Act. Bank 0 (Act. Bank 1 (4kB)
Fault Attack
Detection Unit @+ @ Clock Gating Implemented NN
CLK [e — Accelerator ASIC

Fig. 2. System architecture of the implemented NN accelerator.

III. NN MODEL / INPUT AUTHENTICATION

Current data authentication techniques include parity checks
[9], algorithmic [10], or cryptographic [11] checksums. The
parity/algorithmic checksums require very low memory over-
heads but do not perform well when several bits can be flipped
arbitrarily (e.g., flipping even bits for parity checks). On the
contrary, cryptographic checks offer very strong security guar-
antees. However, they lead to high performance overheads. As
an example, incorporating 64b cryptographic checksum into
the entire NN model will cause negligible memory overhead.
On the mismatch of the checksum, the entire model data
needs to be re-fetched, thus leading to high data transmission
overhead. On the other hand, incorporating cryptographic
checksums at smaller memory intervals helps to locate mem-
ory errors at smaller granularity. However, it requires high
memory overheads. For example, 64b cryptographic checksum
for 0.5kB memory leads to 12.5% memory overhead. Our
proposed method, which we discuss next, incorporates parity
checks under the umbrella of encryption, thus combining the
benefits of both these methods.

As shown in Fig. 3, our proposed method’s parity check is
inspired from [9], which proposes to set the least significant bit
(LSB) of each weight as its corresponding even parity bit. This
is based on the fact that the LSBs contribute very less to the
NN accuracy. Additionally, we also encrypt the parity-encoded
model. Therefore, the model verification involves on-chip
decryption of model parameters and performing parity checks.
We partition the NN model into 0.5kB blocks (64 x 8b weights)
and process them individually. A block is detected as valid
when parity checks for all its 64 weights are satisfied. Without
the knowledge of the cipher key, it is extremely challenging for
an attacker to alter the encrypted model such that the decrypted
model bypasses the checks. We also organized the data so that
all equipositional bits (e.g., LSBs) of all weights are grouped
in a row and encrypted. Thus, any anomaly in the encrypted
block possibly affects all weights. Hence, for any altered

ciphertext, each of the 64 weights (in the plaintext) satisfies
the parity condition with a probability of 0.5 (i.e., random
guess). Hence, the probability of a fault-injected block (with
64 weights) passing the check has an insignificant probability
of (0.5)% ~ 0%. As exemplified in Fig. 4, flipping even a
single bit in the ciphertext dismantles the parity for several
weights in the resultant plaintext.

The methodology that is described above and used for
anomaly detection in NN model, is also used for verifying
the NN input. This leads to effective resource utilization.

We utilized Craft [8], a lightweight tweakable block cipher,
for our application. Tweakable ciphers are a special category of
block cipher which are popular for encrypting memory. They
provide an efficient way to encrypt an entire memory with
a single key while ensuring that different memory addresses
(tweaks) have uncorrelated encryptions. We opted for Craft
instead of existing solutions such as XTS [12] for two reasons:
Craft being a lightweight cipher is more efficient and uses
fewer resources than AES, and the design of Craft allows for
easy error detection capabilities (that is utilized in Section
IV). In Section V, we discuss the impact of enforcing parity
constraints on the accuracy of our NN. While our proposed
method does not increase the size of the model/input, we do
need to pad the model/input to make it a multiple of the block
size, which results in negligible memory overheads of <0.5kB.

IV. DIGITAL SENSOR FOR NN FAULT DETECTION

Cryptographic ciphers are highly sensitive to fault attacks.
Hence, any coarse-grained EM attack that is targeted over
the NN is likely to affect the cipher, thus corrupting its
state. Hence, we detect glitches using the cipher’s inherent
vulnerability. We complement the Craft cipher with a nibble
(4b)-parity-based concurrent error detection (CED) unit [8].
An anomaly between the cipher’s state and its parity indicates
an error. The cipher and its CED unit execute concurrently
with the NN computation and raise an error flag when ob-
taining a parity mismatch, as shown in Fig. 5. Our proposed
method is capable of detecting NN computation errors for all
PEs without incorporating dedicated operation-specific verifi-
cation (e.g., separate checks for addition-&-multiply (MAC),
ReLU, etc.) or redundant NN computations. Our method is
fully synthesizable and does not require technology-specific
design/characterization required for designing sensors [13],
[14]. Because of the effective reuse of the existing cipher
(from Section IV), our solution incurs low area overhead while
providing high error detection capabilities.

V. EXPERIMENTAL DEMONSTRATION OF FAULT ATTACK
RESISTANCE FOR B10-METRIC AUTHENTICATION

Our designed ASIC was used to demonstrate the real-
life application of thumbprint information-based biometric
authentication [15]. Fig. 6 shows the NN model architecture.
As demonstrated here and analyzed in [9], the degradation in
the NN accuracy is extremely small (almost negligible) while
enforcing the parity constraints for the weights and inputs.

234

NP o NN Model Model (DRAM) Model (DRAM)
s Block 0 o Block 0 Block 0
= 0.5kB Pari 0.5kB ; 0.5kB;
g (- . L Encodz + P (s) > @ Decrypt with > (e)
2 . © Encrypt . Parity Check :
5 <« Blockk Block k Block k
A ‘ (0.5kB) B (0.5kB) fC) (0.5kB)
Parity Encode Encryption - Decryption with Parity Check -
wt. position raise error
63 voo 0 -, Enc®_ |z , (M --- 0 | DeckeY flag |-
7] = Ps11:448 5 8k+ Cs11:448 + Ps11:448
£ O -0 L[ey . b O -0 LTy | (N -
2 Paa7:384 Bk+6 | &4 Cas7:384 AN Paaz.384
Q i
5 . . : ik . .
o : : . . P _‘e_ < Write decrypted|], :
12| (Model to SRAM
Flip necessary - EnckeY |, --- Il ; i ---
LSBs for even Posa:000 o Bk+Q | 64 Coe3:000 4 8k+(on-chip Poss:000
parity of weights
Craft Cipher: Encmec g Bits 1 and 0 are represented by ll and = respectively.
Fig. 3. Proposed NN model authentication: algorithm and implementation.
63 Bit Position 0
T ,
H i - 90 X 90
o I 0 1 1 I I
Original Parity-encoded NN Block (Plaintext) OrinalCiphertext Block (toredn DRAV) Dens?s?gomf '1‘;'é)R°LU }-‘%{ Dens‘?s?&;")? 'é’éRaLU
ault attack
induced bit-flip 128 128
6 Bit Position 0 Bit Position 0 i]

ol il i u i
e e e o d

Faulty Plaintext (decryption of faulty ciphertext) Faulty Ciphertext (with bit 0 of 4" row flipped)

Original/unaltered bits 1 and 0 are represented by mand respectively. The flipped bits 1 and 0

are represented by ® and = respectively. Due to single bit error in the 4'" row, the decrypted 4"

row changes greatly. Here, 34 out of 64 weights do not satisfy the parity checks (marked by X).

Hence, the entire block is rejected as an erroneous block.

Fig. 4. Tllustrated example of NN model authentication.

Dense Comp.
(128 X 16)

Dense Comp.
(128 X 16)

Pre-computed and stored on-chip

NN Model | Accuracy (%)
Baseline (80
asaline (80) | gq ggg
Dense Comp. w/ sigmoid -
(16 X 1) cPamyj 99.973

Fig. 6. Model details and performance of the demonstrated application of

thumbprint-based user recognition.

Model = w1 1 Key Features:
SRAM F—_“ - L v Independent of NN TABLE 1
I—E. i 2 SR cperalions SUMMARY OF FAULT-ATTACK EXPERIMENTS
ip-act =0 ° SRAM v Low-area overhead
SRAM — v Large error detection:
Neural Network Acoe‘lerator (array of PEs) probability Fault attacks No. of attacks Fault Coverage
NN Model 0.1M (0.IM/0.1M) = 100%
I) Concurrent NN Accelerator with Cipher Operations “ (@ Error Detection | NN Input 0.1M (0.1IM/0.1M) = 100%
v NN Computations 0.1IM (0.1M/0.1M) = 100%

¥
[state |} McoARCoATKePN®] o5 i L

nibble parity nibble parity
of state
LY

MC ¢ ARC o ATK o PN s
nibble parity computation o
* MC: Mix Column, ARC: Add Round Constant, ATK: Add Tweak-Key, PN: Permute Nibble, SB: Sub Box
Fault Detection Sensor: Craft Cipher with Parity Check

Nibble Parity

Verification *
no‘.—“ “\\Jes
Discard Accept
Result Result

Fig. 5. Design of the cipher-aided fault detection unit for NN computations.

For the EM glitch attack, we utilized Riscure’s EMFI
injection probe, with a diameter of 4mm. To carry out an
effective fault attack, we pinpointed the most vulnerable
position by deactivating protections (using exhaustive search).
We subsequently activated the implemented protections and
analyzed the response against EM fault attacks.

235

The conducted experiments are described below and sum-

marized in TABLE I :

For our demonstrated applications, we introduced errors
into the NN inputs and the NN model (particularly biases
as they are most sensitive for accuracy) and achieved mis-
classification. However, in the protected implementation,
any errors introduced over the NN model were detected
(for 100k FA attempts).

We injected random errors during the NN computations
and were able to misclassify the output. However, in the
protected implementation, any error injected was detected
correctly for 100k attempts.

TABLE 11
COMPARISON WITH PRIOR WORKS ON PROTECTION AGAINST ACTIVE ATTACKS.

Metric ISSCC’11 [16] JSSC’18 [13] VLSIC’22 [14] ISSCC’23 [17] This Work
Platform ASIC (130nm) ASIC (180nm) ASIC (5nm) ASIC (Intel 4) ASIC (28nm)
Application AES AES — AES Neural Networks

Targeted Attacks Any FA Laser Clock Glitch Any FA EM Faults
Defense Duplicate Bulk current FLL-based Arith. + Parity Cipher-based
Techniques datapath Sensors detector Checks + LDC anomaly detection
Supply Voltage (V) 1.20 1.80 0.75 0.75 0.60 — 0.95
Frequency (MHz) 50 25 40 780 25 — 200
E / 0.6 nl/cycl 20.1 plicycle * 34.6 plicycle * 1.37 pIMAC (unprotected)b
nergy/opn. — .6 nJ/cycle .1 pJicycle .6 plicycle 1.88 plIMAC (protected)h
Energy Overhead — 0.3% 20.1 plicycle © — 37%
Area Overhead 104% 28% 0.0048 mm~ ¢ 40% 5.9%
* Computed from the reported power & frequency. b Reported at 0.60V & 25MHz. ¢ Constant energy & area overhead.
1 1 2mm c -

z 3 ! > Specifications of the Protected
2 § 33° ik i Neural Network Accelerator
aE- 40P ae- e Protected r
= g % = = g R r | i iyt "';‘P':"::zr" Logic Area | 70.04 kGE

[$] o] B 0.186 mm? 0.174 mm? Memory 40 kB

3 - 3 -

5 EM fault : EM fault E - Operating | 25MHz (0.60V)
5 e S Natkond Frequency | 200MHz (0.95V)
E § 3 . < b g i. 3 : + $ -) R i | Power 1.25mW (0.60V, 25MHz)
T § © D Ei 4 . Circul T sepal
B2, MLt L HE ectErer —> IM reutsfor sapar ‘“'l 10.1mW (0.95V, 200MHz)
- Y] . 27) - No. of PEs | 16

4 - B SRS

0 3 & 9 122 15 0o 3 6 9 12 15

Time (ps) Time (ps)

Unprotected Implementation Protected Implementation

For the protected NN, the Neuron 2 does not execute upon
successful detection of error during execution of Neuron 1.

Fig. 7. Successful demonstration of EM glitch detection capability of the
implemented NN accelerator.

As shown in Fig. 7, for an unprotected implementation, the
error induced during the execution of neuron 1 propagates to
neuron 2 and gives incorrect decision. Whereas, for the pro-
tected implementation, an error flag is raised on successfully
detecting fault and the neuron 2 does not execute.

VI. COMPARISON WITH OTHER FAULT TOLERANT
DESIGNS

Fig. 8 shows the fabricated ASIC (in 28nm HPC+ CMOS)
and summarizes its performance. Our chip supports voltage
scaling from 0.95V to 0.60V and operates from 25MHz to
200MHz. All the energy measurements have been reported
at 0.60V and 25MHz. TABLE II compares our work with
prior work on custom hardware designs for fault attack-
resistant ASICs. These prior works have targeted fault-tolerant
applications for cryptographic applications. Our work is the
only one to target FAs for NN applications while achieving
high error-detection capabilities and low area overheads. Using
algorithmic and architectural innovations, this work demon-
strate the first NN accelerator ASIC resilient against fault
attacks for resource-constraint applications.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the TSMC University
Shuttle Program for providing chip fabrication support.

[10]
[11]
[12]

[13]

[14]
[15]
[16]

[17]

236

Fig. 8. Chip micrograph and specifications.

REFERENCES

Q. Xu et al., “Security of Neural Networks from Hardware Perspective:
A Survey and Beyond,” in ASP-DAC, 2021.

L. Batina et al., “CSI NN: Reverse Engineering of Neural Network
Architectures Through Electromagnetic Side Channel,” in 28" USENIX
Security Symposium, 2019.

S. Maji et al, “Leaky Nets: Recovering Embedded Neural Net-
work Models and Inputs Through Simple Power and Timing Side-
Channels—Attacks and Defenses,” IEEE JloT, vol. 8, no. 15, 2021.

S. Tajik et al., “Atrtificial Neural Networks and Fault Injection Attacks,”
arXiv preprint arXiv:2008.07072, 2020.

S. Maji et al., “A Threshold-Implementation-Based Neural-Network
Accelerator Securing Model Parameters and Inputs Against Power Side-
Channel Attacks,” in ISSCC, 2022.

S. Maji et al., “A Threshold Implementation-Based Neural Network
Accelerator With Power and Electromagnetic Side-Channel Countermea-
sures,” IEEE JSSC, vol. 58, no. 1, 2023.

J. Breier et al., “How Practical Are Fault Injection Attacks, Really?”
IEEE Access, vol. 10, 2022.

C. Beierle et al., “CRAFT: Lightweight Tweakable Block Cipher with
Efficient Protection Against DFA Attacks,” JACR ToSC, 2019.

S. Burel et al., “Zero-Overhead Protection for CNN Weights,” in [EEE
DFT, 2021.

J. Li et al., “RADAR: Run-time Adversarial Weight Attack Detection
and Accuracy Recovery,” in DATE, 2021.

R. Elbaz et al., “Hardware Mechanisms for Memory Authentication: A
Survey of Existing Techniques and Engines,” LNCS, vol. 5430, 2009.
L. Martin, “XTS: A Mode of AES for Encrypting Hard Disks,” IEEE
Security & Privacy, no. 3, 2010.

K. Matsuda er al., “A 286 F2/Cell Distributed Bulk-Current Sensor
and Secure Flush Code Eraser Against Laser Fault Injection Attack on
Cryptographic Processor,” IEEE JSSC, vol. 53, no. 11, 2018.

S. Song et al., “An FLL-Based Clock Glitch Detector for Security
Circuits in a 5Snm FINFET Process,” in VLSI, 2022.

Y. I. Shehu et al., “Sokoto Coventry Fingerprint Dataset,” arXiv preprint
arXiv:1807.10609, 2018.

M. D.-Verdier et al., “A Side-Channel and Fault-Attack Resistant AES
Circuit Working on Duplicated Complemented Values,” in ISSCC, 2011.
R. Kumar et al., “A 100Gbps Fault-Injection Attack Resistant AES-
256 Engine with 99.1-t0-99.99% Error Coverage in Intel 4 CMOS,” in
ISSCC, 2023.

