
One Flip Away from Chaos: Unraveling Single
Points of Failure in Quantized DNNs

Cheng Gongye and Yunsi Fei
Department of Electrical & Computer Engineering

Northeastern University, Boston, MA
Email: {gongye.c, y.fei}@northeastern.edu

Abstract—Deep Neural Networks (DNNs) have become integral
to security-sensitive and mission-critical tasks due to their
remarkable performance. However, their deployment faces various
security risks, including integrity corruption by fault attacks that
disrupt computations or tamper with parameters. While past
studies have primarily focused on the vulnerabilities of DNN
weights to these attacks, the wider implications of single-bit flips
(SBFs) on other parts of DNN implementations have not been
investigated. In this research, we target a comprehensive and
holistic analysis of the robustness of quantized DNN models
against SBFs.

Utilizing the AMD-Xilinx DPU, an advanced FPGA DNN
accelerator, we delve into the tangible repercussions of SBFs
on a DNN hardware implementation. Our results reveal that an
SBF in about 25% of the bits in an AMD-Xilinx DPU DNN can
lead to severe consequences, ranging from application execution
failures and system lock-ups to notable inference accuracy losses.
Through binary comparison, we pinpoint single points of failure
(SPOFs) on the AMD-Xilinx DPU DNN models. On the CPU side,
we evaluate the PyTorch TorchScript model format, designed
for production deployment on servers, and the results show that
SBFs have comparable detrimental effects on DNN software
implementations, underscoring the generality of this problem.

Our analysis is based on an effective framework that runs the
bit-flipped quantized DNN model on real deployment platforms,
hardware accelerators or CPUs, to monitor the consequences
of SBFs, allowing for broad assessment across diverse models
and datasets. Contrary to the prevailing belief that quantized
DNNs are resilient to bit-flips, our systematic analysis offers new
insights and finds SPOFs, showing that quantized DNN models are
actually very vulnerable to fault attacks. Our work stresses the
pressing need for protection strategies for robust DNN inferences
in critical applications.

Index Terms—Fault tolerance, Deep learning, AI accelerators

I. INTRODUCTION

Deep Neural Networks (DNNs) have emerged as potent
tools, showcasing unrivaled performance across diverse fields
such as computer vision and natural language processing.
As we are witnessing proliferated adoption of DNNs in
critical and security-sensitive applications such as autonomous
vehicles and robotics, the security of DNN models in these
applications, including integrity, confidentiality, and availability,
is of paramount importance.

Fault attacks pose serious threats to the integrity of DNN
models. The target applications would function incorrectly

This work was supported in part by the U.S. National Science Foundation
through the following grants: CNS-2212010, CNS-1916762, and SaTC-
1929300.

due to disrupted computations or faults deliberately imposed
on model parameters. They can be physically executed via
techniques such as Electromagnetic (EM) pulsing [1], laser
beaming [2], and clock glitching [3], or enacted through soft-
ware methods including RowHammer [4], FPGAHammer [5],
and GPU overdrive [6]. A variety of platforms are susceptible
to fault injections, including CPUs, GPUs, FPGAs, and ASICs.

There exists some prior work that investigates the vulnera-
bility of DNN models with floating-point parameters (weights
and biases) to fault attacks [7]. Such models are sensitive
to faults: a Single-Bit Flip (SBF) in the Most Significant
Bit (MSB) of the exponent in nearly half the weights can
severely degrade a DNN model’s performance [7]. Quantized
DNN models, not only achieve efficiency, but also are widely
perceived as more resilient to bit-flip attacks on the weights [7],
[8]. Some work has suggested using quantized DNNs as a
defensive mechanism against fault attacks [7]–[10]. Other
work leverages the resiliency of model weights to faults and
intentionally lowers the voltage of a hardware DNN accelerator,
inducing random but unharmful errors in the memory/weights,
to achieve power savings [11] or to combat adversarial example
attacks [12].

Although weights indeed constitute a large portion of a DNN
model, other parts of the model implementation, including the
code delineating the DNN’s structure and operations, the data
flow, and activation functions, are equally vital. The existing
fault analysis of quantized models is incomplete as it leaves
out many critical components of the DNN model.

Our study aims to fill this research void. We examine
the ramifications of SBFs in real-world applications. We
strategically select two representative applications. On the
hardware accelerator side, we use AMD-Xilinx’s DPU, a state-
of-the-art production-ready FPGA-based DNN accelerator, as
our testbed for exhaustive fault analysis. On the CPU side, we
perform our fault analysis to another widely-used, production-
stage quantized DNN model format—PyTorch TorchScript
serialization. Throughout this work, we adhere to each plat-
form’s default configurations as specified in official guidelines.
We simulate the fault injection process, i.e., manually flipping
bits within the target DNN model, and then run the bit-flipped
model on actual hardware platforms. This approach captures
the realistic impact of a successful bit-flipping attack.

As the consequences of SBFs on a model vary significantly
depending on where the SBF falls, we classify the consequences

332979-8-3503-7394-3/24/$31.00 ©2024 IEEE

20
24

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n
Ha

rd
w

ar
e

O
rie

nt
ed

 S
ec

ur
ity

 a
nd

 T
ru

st
 (H

O
ST

) |
 9

79
-8

-3
50

3-
73

94
-3

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I:

10
.1

10
9/

HO
ST

55
34

2.
20

24
.1

05
45

35
1

Authorized licensed use limited to: Northeastern University. Downloaded on December 18,2024 at 22:44:45 UTC from IEEE Xplore. Restrictions apply.

and pay close attention to parts of the model which are Single
Point of Failure (SPOF), i.e., exemplifying acute consequences
of SBFs. Identification of SPOFs provides useful guidelines
for effective and efficient defense mechanisms and mitigation
strategies against SBFs.

This work makes the following contributions:

• We discover that quantized DNN models are not immune
to SBFs. Specifically, a flip in about one-fifth of the bits
in an AMD-Xilinx DPU DNN model, and two-fifths of
the bits in a TorchScript DNN model, respectively, can
cause severe consequences, including application crashes,
system lock-ups, or substantial model accuracy degradation.
This research complements the prior work, broadening the
evaluation scope beyond the weights of DNN models.

• To our best knowledge, this is the first work that identifies
scaling factors of quantized DNN models as SPOFs, with
an SBF degrading the accuracy of the model to random
guesses. It is generally applicable to almost any quantized
DNN models, agnostic of the platform.

• We create a framework that is able to accurately capture the
effects of SBFs on quantized DNN models, in both hardware
accelerators or software implementations. Additionally, we
evaluate SBFs on the scaling factors across different DNN
models and datasets, providing comprehensive explanations
for the fault effects based on the information bottleneck (IB)
theory [13].

• We propose a set of mitigation strategies against bit-flip
attacks in light of our holistic fault analysis. Our findings
suggest that quantized DNN models are as susceptible, if
not more so, as other floating-point models, demanding
systematic protection schemes to safeguard DNN model
inference.

II. BACKGROUND

This section provides background materials, including fault
attacks on DNN models, the two platforms for edge devices
and server CPUs respectively, the quantization of DNN models
and their different implementations, and related work.

A. Fault Attacks on DNNs

Fault attacks present a formidable challenge to the integrity
of DNNs by deliberately disrupting computation processes
or tampering with model parameters. Typical fault models
include single-bit flips, an effective and stealthy threat to DNN
inference.

The RowHammer attack stands out as a frequently used
fault injection method for inducing SBFs [7]–[10]. It exploits
inherent vulnerabilities in Dynamic Random Access Memories
(DRAMs) to precisely flip a targeted bit, which does not require
the kernel-level privilege. Many commercial DDR4 memory
modules from leading vendors are found to be susceptible
to new RowHammer attacks that can effectively bypass the
defenses [14]. RowHammer attacks have been successfully
applied to DNN models and reduce their inference accuracy to
the level of random guessing by strategically flipping selected
weight bits [15].

There are various other fault injection methods, including
electromagnetic/laser fault injection, clock glitches, and voltage
fluctuations. Some can induce SBFs while others introduce
random faults to computations or data in memory.

B. AMD-Xilinx DPU

For edge devices, we choose to conduct a comprehensive
fault analysis on a representative DNN accelerator, AMD-
Xilinx DPU. DPU is one of the most sophisticated state-of-the-
art FPGA-based DNN accelerators, with exceptional energy
efficiency. It has become a popular platform for real-world
applications, including Subaru’s production vehicles [16], [17]
and Baidu’s Apollo autonomous driving system [18].

To ease model deployment on FPGAs by software devel-
opers and data scientists, modern FPGA-based accelerators
offer comprehensive toolchains, such as Vitis-AI [19]. These
toolchains cover the entire workflow, from training a DNN
model to its execution on FPGA accelerators. A user can
still train a DNN model with floating-point numbers using
TensorFlow [20]. The Vitis-AI framework then quantizes the
model into 8-bit integers with minimal accuracy loss [21]. The
model is then compiled into a binary file executable, typically in
the format of executable and linking format (ELF), directly on
the accelerator, eliminating the need for bitstream regeneration.

C. PyTorch and TorchScript

For the server CPU side, we select the TorchScript model as
the target to perform fault analysis. PyTorch has emerged as
a leading framework for training DNN models, commanding
over 60% of the market share [22] due to its high performance
and flexibility. While the model generated post-training using
PyTorch offers many advantages, it is not inherently optimized
for rapid inference and deployment and typically relies on
Python for execution. To address these challenges and cater to
“high-performance production deployment”, PyTorch introduced
TorchScript in 2018 [23].

TorchScript serialization is a model format that not only
facilitates the storage of streamlined quantized models but
also offers the flexibility of deployment on systems without
using Python, utilizing solely C++ for instance. TorchScript
has transitioned to a stable production stage, meaning that the
models being deployed are fully fledged. In this study, we
leverage the TorchScript model to exemplify the universality
of the vulnerabilities in DNN models we have identified.

D. Quantization of DNN Models

Quantization of DNNs significantly optimizes the resources
during inference, achieved by substituting original 32-bit
floating-point parameters with lower-bit formats, such as 8-bit
integers. This method reduces memory usage by nearly four
times and lowers the computational cost of multiplication by a
factor of sixteen [24], resulting in faster inference by a factor
of two to four [21]. Another advantage of quantization is it
can be applied post-training, with negligible accuracy loss [21].
Moreover, quantized weights and biases are more resistant to
SBFs than floating-point parameters, making them suitable

2024 IEEE International Symposium on Hardware Oriented Security and Trust (HOST) 333Authorized licensed use limited to: Northeastern University. Downloaded on December 18,2024 at 22:44:45 UTC from IEEE Xplore. Restrictions apply.

for security-sensitive applications [7]. As such, quantization
is the preferred choice for DNN model inference in edge
devices and server CPU deployment. For instance, AMD-Xilinx
DPU [25], TensorFlow-Lite [26], and Apache TVM VTA [27]
all incorporate 8-bit quantization in their default configuration.
The DPU and TVM are specifically designed for quantized
models and do not provide support for full-precision DNN
models.

E. Quantization in Hardware Accelerator vs. CPUs

PE

PE

PE PE PE

PE PE

PE PE
Re

Re

Re

PE

Processing EngineRe-quantization

Re

Fig. 1: Illustration of an 8-bit quantized systolic array

Next, we examine the process of quantization on hardware
accelerators. Then we highlight the key similarities and subtle
differences in its implementation on CPUs. In Fig. 1, we
depict a simplified example of how a generic systolic array
accelerates the multiplication of a 3x3 weight matrix, W ,
with a size 3 input vector, I . As seen in the figure, the core
component is an array of Processing Engines (PEs), followed
by a vector of re-quantization modules. Each PE takes an
input scalar and a weight scalar, multiplies them, and adds the
product onto the accumulation input. This operation is Multiply-
Accumulate (MAC). Instead of running 32-bit floating-point
MAC operations on each PE, quantization facilitates 8-bit
integer operations on them, leading to much simpler, smaller,
and faster hardware logic of PEs with much lower power
consumption [24].

To quantize the floating-point input vector I and the weight
matrix W into integers, we need to select two scaling factors
si and sw, respectively, and multiply them with the model
inputs and weights:

Iint = �I · si�,Wint = �W · sw� (1)

Here si and sw are carefully selected to minimize the overall
errors caused by rounding and clipping [24]. Typically they are
integers in high-performance DNN accelerators [24], [27]. The
weights undergo offline quantization (multiplying the original
weight with the scaling factor), while the inputs are generally

subject to online quantization by the inference application. Such
quantized weights and inputs are fed to the PEs to compute
the following result:

WintIint ≈ swsi ·WI (2)

Note that the current output by the PE is swsi times the original
value. Moreover, as shown in Fig. 1, the bit-width has grown to
32 due to the MAC operation. To restore the value and prepare
an 8-bit input for the next layer, we must add a re-quantization
step by dividing the PE output with a scaling factor s that is
tailored for the feature map. Generally, in quantized models,
the scaling factors and the re-quantization step are integral
parts. As a cautionary note, there are quantized models that
can work without scaling factors, e.g., some binary quantized
DNN models whose bit-width is one, which are designed for
highly resource-constrained edge devices.

In the CPU environment, the quantization process exhibits
similarities to that of hardware accelerators. Both the input and
weight are quantized to integer values, and the multiplication
operations are accelerated using SIMD (Single Instruction,
Multiple Data) instructions, such as SSE (Streaming SIMD
Extensions) and AVX (Advanced Vector Extensions) on Intel
x86 CPUs. A re-quantization step is also essential following
multiplication.

A notable difference arises in the type of scaling factors
used. CPUs often employ single-precision floating-point (FP32)
scaling factors, as opposed to INT8 scaling factors. Since SSE
does not natively support division by INT8 and requires casting
to INT32, division by an FP32 scaling factor incurs only a
minor performance penalty. More importantly, the use of FP32
scaling factors simplifies the achievement of higher quantization
accuracy. It is crucial to note that the data type of the scaling
factors does not impact the focus of our fault analysis. Our
results will demonstrate that an MSB flip, in either case, can
substantially compromise the accuracy of the DNN models.

F. Related Work

To our best knowledge, this research represents the first
attempt to perform a comprehensive fault analysis on quantized
DNN models, beyond weight and biases. Also, it is the first
to reveal that an SBF on the scaling factors of quantized
DNN models can dramatically reduce the accuracy, effectively
turning it into random guesses. Previous work by Rakin et
al. [8] showed that while the weights of quantized models are
more resistant to bit-flips than floating-point models, they can
still trigger a similar degradation in DNN model accuracy to
random guesses when a small number of bits are strategically
flipped. Fasfous et al. [28] investigated fault injections in the
PEs of DNN accelerators and hinted at training to limit the
range of scaling factors. However, they did not explore the
effect of SBFs on scaling factors.

III. HOSLITIC FAULT ANALYSIS OF QUANTIZED DNN
MODELS

This section describes our comprehensive fault analysis of
quantized DNN models, under the assumption of a single-bit
flip.

334 2024 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)Authorized licensed use limited to: Northeastern University. Downloaded on December 18,2024 at 22:44:45 UTC from IEEE Xplore. Restrictions apply.

A. Methodology

To observe the consequences of bit-flips on different parts
of a quantized DNN model, we look into the saved model file
and modify it, one bit at a time, and run the resulting model
on actual hardware. This process ensures that the fault effects
are real, reflecting the outcomes that an adversary could trigger
by inducing SBFs in a victim’s DNN model.

1) Limitations and Generalization: The methodology has
an inherent limitation: the results are tied to the specific
implementation being examined. While it is infeasible to
encompass the vast varieties of existing DNN implementations,
we strategically choose two implementations to enhance the
generalizability of our findings.

Our primary target is AMD-Xilinx DPU, one of the most ad-
vanced DNN processing units available, representing hardware
implementations of DNN. DPU provides a robust environment
for a victim DNN model, with complex hardware architecture
and encrypted IP. Utilizing a state-of-the-art implementation
ensures that the observed fault effects are not artifacts of an
underdeveloped or rudimentary system. Our second target is
the widely-used TorchScript DNN model, representing general
software implementations on CPUs or edge MCUs.

With two different implementations, we focus on identifying
vulnerabilities that are agnostic to the specific hardware or DNN
framework, thus contributing to a more general understanding
of the fault behavior.

2) Practical Challenges: Conducting exhaustive fault analy-
sis is computationally expensive and time-consuming, particu-
larly for large and complex models. We start our study with a
simple yet representative task: classification of the handwritten
MNIST dataset [29]. The selected DNN architecture, illustrated
in Fig. 2, comprises two convolutional layers (Conv 1 and Conv
2), each followed by a max-pooling layer. These layers are
followed by a dense layer to generate the output logits.

Another challenge for experiments with bit-flips is the
frequent application execution failures and device lock-ups
of the device-under-test (DUT), which render the DUT unre-
sponsive, necessitating a manual hard reset. To address this
problem, we devise a monitoring program on a separate single-
board computer, enabling us to capture faulty results and
automatically hard reset the DUT using a MOSFET relay
when needed. This approach obviates the need to manually
press the reset button for ten seconds every time the system
locks up. Given the high frequency of system lock-ups, the
experiment would not be feasible without this measure.

B. Experiment Setup

The architecture of the AMD-Xilinx DPU is tightly integrated
with the AMD-Xilinx System-on-Chips (SoCs) [30]. Each SoC
includes ARM cores, referred to as the Processing System (PS),
and Field-Programmable Gate Arrays (FPGAs), designated as
Programming Logic (PL). These components are seamlessly
interconnected via an on-chip AXI bus, enabling a cohesive
hardware-software co-design paradigm.

Within this architecture, the Domain-Specific Accelerator
(DSA) resides on the PL side and is configurable via the AXI

Conv 1 Conv 2
Max Pool Max Pool

Dense

Output

Input

1

Binary Model

0 1

2 Inference

AcceleratorInfer. Script 1
Infer.

Result

3 Monitor

System

Lock-up
3

Script

Failure
2

“3”

1 0

Fig. 2: Overview of the fault analysis methodology.

interface. The PS side not only runs a Linux-based operating
system but also orchestrates the application execution with
scripts. It delegates computationally-intensive tasks (e.g., matrix
MACs) to the PL-side accelerator and handles the results
thereof. The PS-side application loads the model into the
DRAM, enabling the DSA to access it via direct memory
access.

1) Factors Influencing Fault Resilience: The fault resilience
of an AMD-Xilinx DPU-based DNN model is contingent upon
three salient factors:

1) The robustness of the PS-side script when confronted with
corrupted model files.

2) The inherent resilience of the DNN model parameters
(weights and biases) in the DRAM to bit-flips.

3) The DSA’s capability to gracefully handle corrupted instruc-
tions and configurations.

Complementing the prior work that predominantly focuses only
on the second factor, our work examines the full landscape of
DNN models for fault resilience.

2) Experiment Workflow: As depicted in Fig. 2, our experi-
ment proceeds in three stages:

• Stage 1 : Modification of the target binary model file by
flipping a single selected bit.

• Stage 2 : Activation of the inference script, which loads
the modified model into the DSA.

• Stage 3 : Monitoring of the execution outcome on a separate
platform.

We categorize the observed results of model execution under
an SBF into three scenarios:

1) Successful execution with potential degradation in inference
accuracy. The model is executed multiple times to compute
the average classification accuracy (1).

2) Script failure without system lock-up, where the application
aborts and the next bit-flip is subsequently tested (2).

3) Extreme cases with system lock-up, e.g., device freezes or
is unresponsive, necessitating a system reboot or hard reset
(3).

3) Setup Details: We employ the Ultra-96 V2 as our
DUT [31], which is a widely recognized reliable SoC evaluation
board compatible with DPU. The board runs the PYNQ

2024 IEEE International Symposium on Hardware Oriented Security and Trust (HOST) 335Authorized licensed use limited to: Northeastern University. Downloaded on December 18,2024 at 22:44:45 UTC from IEEE Xplore. Restrictions apply.

Linux v2.5 [32], specifically tailored for DPU applications
by AMD-Xilinx. Note that we leave the DPU bitstream and all
default configurations unaltered throughout the experimentation
process. Vitis-AI Docker version 1.2.82 is used. The quantized
CNN model trained on MNIST attains a test accuracy of
93.12%, comparable to the floating-point version. The compiled
binary model has a size of 5.8 KBytes, i.e., approximately 47
K bits for receiving SBFs. Each bit-flip is tested against the
testing dataset of 10, 000 images.

C. Experimental Result Overview

For Outcome (1), we quantify the accuracy degradation as
the relative accuracy loss compared to the original accuracy,
shown in the formula below:

D = 1− a

A
(3)

where A represents the testing accuracy of the original DNN
model and a is the observed accuracy of the faulty model.

Considering the MNIST dataset with its ten classes, the
worst possible observed accuracy a would be 1

10 , equivalent
to randomly guessing the outcome. Consequently, the largest
possible degradation would be D = 1 − 0.1

0.9312 = 0.8926;
while the smallest possible degradation is 0, i.e., unaffected
accuracy. As illustrated in Fig. 3, this unaffected accuracy is
the most common result type, accounting for approximately
64% of the cases. This number indicates a certain level of
fault resilience of the model implementation. We categorize
an accuracy degradation as minor when D is below 0.2, and
severe otherwise. 4.5% of bit-flips account for severe accuracy
degradation. The result also shows that for the other two serious
outcomes (more like denial-of-service), each is contributed by
about 8% of the bit-flips.

0 20 40 60

Percentage

Unaffected Acc.

Minor Acc. Degrdn.

App. Execution Failure

System Lock-up

Sever Acc. Degrdn.

F
au

lt
E

ff
ec

t

63.9

14.9

8.7

8.1

4.5

Fig. 3: Percentage distribution of SBF fault effects on a DPU
model

The overall conclusion of fault analysis for the AMD-Xilinx
DPU is: approximately 20% of the bits in a DNN model act as
Single Point of Failures (SPOFs), leading to severe performance
degradation, application execution failures, or system lock-ups.
To corroborate these findings and ensure that they are not
isolated incidents, we conduct the experiment on a larger DNN
model of size 10.1 KB. We observe a similar proportion of
these failure points even in larger models. Only the code and
weight/bias regions undergo considerable expansion as the
model size increases. The ratio of SPOFs within these regions
remains largely unaltered. This uniformity across different
model sizes substantiates the importance of our findings and
their broader applicability.

D. Experiment Result Discussion

We next dive into analyzing the observed results. The effects
of flipping each bit of the model, depending on different model
regions, are depicted in Fig. 4. We have organized the bits into
four-byte blocks. For each plot, the X-axis represents the block
index of the binary file, while the Y-axis signifies the bit index
within each block. Thus, each dot on the plot corresponds
to the result of one bit-flipping experiment. We use different
colors, as defined in the legend, to represent the aforementioned
five types of fault effects. For inference accuracy degradation
(ranging from 0 to 0.89), the size of each dot corresponds
to the level of degradation. For visual clarity, dots for both
application execution failures and system lock-ups are also at
the size of the highest possible degradation.

The binary DNN model is an ARM executable and linking
format (ELF) file [33]. Our analysis reveals that it functions
as a shared object file and contains multiple regions, which
are all closed-source and proprietary. While we lack detailed
understanding, such as how to decode its instruction set
architecture (ISA) or the precise functions of each region,
we discover that the region names were not obfuscated. Each
region is graphically represented in a separate subplot, as
illustrated in Fig. 4. In addition to the region title, we also
report its size and the percentage of bits that we classify as
SPOFs.

Next, we analyze the effects of bit-flips in various regions
one by one, alluding to the potential causes.

a) String Table: These regions are dedicated to stor-
ing ASCII strings. For String Table I, the majority of the
fault effects are unaffected accuracy or application execu-
tion failures (7.72%). Notably, two strings found in the
string table I, specifically conv2d_1_convolution and
output_logits_MatMul, are responsible for script fail-
ures. These strings serve as identifiers for the input and output
layers, respectively, as designated by the Vitis-AI framework.
Should the script fail to locate these expected names, it
terminates prematurely. The String Table II is found towards the
end of the binary file, comprising region names. The majority
of SBFs in this region do not result in script failures, but
instead more serious system lock-ups. The DPU driver fails to
process the corrupted content when certain hard-coded region
names are compromised, rendering it unresponsive to inputs.

b) Configuration: All three types of severe fault effects
show up for this region. Decoding this region poses a challenge
due to the proprietary and closed-source nature of the DPU.
Judging from its name, it likely stores the configuration values
for the DSA’s controlling registers on the PL side. Script failures
and system lock-ups in this region are probably triggered by
invalid configurations. We managed to recover that some bytes
are for the sizes of tensors. Interestingly, flipping these tensor
sizes has no effect on the performance of the DNN models,
suggesting they are redundant.

c) Weight and Bias: This region serves as a repository
for the weights and biases of all DNN model layers. Echoing
previous research findings, the majority of bit-flips (on weights)
barely impact the classification accuracy. However, the bias of

336 2024 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)Authorized licensed use limited to: Northeastern University. Downloaded on December 18,2024 at 22:44:45 UTC from IEEE Xplore. Restrictions apply.

20 40 60 80 100 120 140

0

20

String Table I | Size: 544 Bytes | SPOF: 7.72%

150 200 250 300 350 400

Configuration | Size: 1024 Bytes | SPOF: 13.23%

420 440 460 480 500 520 540

0

20

Weight & Bias | Size: 568 Bytes | SPOF: 0.33%

550 600 650 700 750

Conv1 Code | Size: 912 Bytes | SPOF: 22.16%

780 800 820 840 860 880

0

20

Conv2 Code | Size: 448 Bytes | SPOF: 34.51%

900 920 940 960

Dense Code | Size: 312 Bytes | SPOF: 34.38%

980 1000 1020 1040 1060 1080

0

20

Symbol Table | Size: 432 Bytes | SPOF: 16.09%

1100 1150 1200 1250

String Table II | Size: 800 Bytes | SPOF: 26.02%

1300 1350 1400 1450

0

20

ELF Footer | Size: 764 Bytes | SPOF: 38.99%

Block Index

B
it

In
d
ex

Fault Effect

Unaffected Acc.

Minor Acc. Degrdn.

App. Execution Failure

System Lock-up

Sever Acc. Degrdn.

Acc. Degrdn.

0.0

0.2

0.4

0.6

0.8

Fig. 4: Visualization of the individual SBF effects on an AMD-Xilinx DPU binary DNN model

the output layer behaves differently. Specifically, flipping the
MSB and the second MSB of the ten biases of the ten output
nodes dramatically reduces the classification accuracy, with
the worst accuracy sharply dropping to 46.28%. This region
is free of other two types of severe results: application failure
and system lock-up.

d) Code: There are three code regions, two convolutional
and one dense, and every one of them exhibits a lot of SPOFs.
Note the max-pooling layers have been integrated into the
convolution layers, and the two dense layers have merged.
The DPU ISA is proprietary and we cannot disassemble the
code, but we can still glean some insights using coarse-grained
information. The first observation is that the length of the
code region correlates directly with the number of arithmetic
computations in each layer. Given that the accelerator functions
by segmenting the workload, each instruction group (following
the convention of four bytes per instruction) handles a small
segment of the task. This segmented approach effectively

enables the code to operate in a manner akin to loop unrolling.
Second, the error types in the code region follow a highly
regular, periodic pattern, confirming the loop-unrolling fashion.
Starting from the bottom and moving upwards within the code
regions, it is observed that bit-flips in the first, third, and
fourth bytes of certain instructions/blocks are highly prone
to inducing system lock-ups (shown as black dots). These
instructions are most likely associated with load and save
operations; consequently, tampering with their critical fields
has the potential to corrupt memory content severely, leading
to system-wide failures. In contrast, there are other instructions
where bit-flips only result in severe model accuracy degradation
(shown as red dots). We will elaborate on our efforts to identify
these instructions and discuss why they contribute to accuracy
degradation in Section III-F (we find them to have scaling
factors hard-coded in instructions, in the immediate field).

e) Symbol Table and ELF Footer: Following the ELF
specification, these regions contain vital information for iden-

2024 IEEE International Symposium on Hardware Oriented Security and Trust (HOST) 337Authorized licensed use limited to: Northeastern University. Downloaded on December 18,2024 at 22:44:45 UTC from IEEE Xplore. Restrictions apply.

tifying and repositioning a program’s symbolic references
and definitions. As such, it has a high likelihood of causing
application execution failures.

Considering the different regions would manifest different
fault effects, various strategies can be developed accordingly
to meet the attacker’s goal. If the intention is to undermine
the availability of the DNN application without destabilizing
the system, they could focus on the ELF footer, where nearly
40% of the bits can lead to application execution failure. If the
objective is to immobilize the system, they could aim for the
end of the String Table II, where almost all bits could achieve
this outcome. Alternatively, if the aim is to deteriorate the
accuracy, numerous bits in the code region could precipitate
varying degrees of accuracy degradation.

Given the outcomes of our analysis, it is crucial to recognize
that the design of these regions in the AMD-Xilinx DPU DNN
model does not seem special. As one of the most sophisticated
DNN accelerators currently on the market, its architectural
design and functionality align with the industry’s state-of-the-
art standards. The vulnerabilities to bit-flips that we identified
tend to be common and could presumably be observed in other
advanced systems.

Furthermore, it is conceivable that other systems, particularly
those less complex ones, could exhibit similar or even height-
ened susceptibility to such faults. Hence, while our analysis is
tailored to the AMD-Xilinx DPU, The conclusions and insights
derived could offer valuable contributions to understanding and
enhancing a broader range of DNN accelerators.

E. Comparison with Fault Analysis of PyTorch TorchScript
Model

Our fault analysis on the AMD-Xilinx DPU model reveals a
critical insight: the code region is significantly more susceptible
to SBFs than the data region.

It is plausible that such fault vulnerabilities are due to
the particular DPU implementation, e.g., the composition of
each region. To make our analysis general to models and not
specific to implementations, we extend our study onto PyTorch
TorchScript, another widely adopted format for production-
stage DNN models.

a) Experiment Setup and Methodology: To ensure a fair
and direct comparison between the AMD-Xilinx DPU and
TorchScript models, our experiment setup and methodology
closely mirror those outlined for the DPU in Sec. III-B. In this
section, we elaborate on the key differences between these two
sets of experiments.

The DNN models have identical structures, hyperparameters,
and parameters, as those used in experiments on AMD-Xilinx
DPU. We employ the latest stable release PyTorch 2.0.1
and Python 3.11. The model weights are quantized to 8-bit
integers and inference is accelerated using the Intel AVX
extension. The experiments are conducted on an Intel i5-
10600K CPU equipped with 64 GB of DDR4 2667 MHz
memory and running Ubuntu 18.04.6. We also use the default
quantization configurations and code provided by the official
PyTorch website. Notably, despite the same DNN model, the

file size of the TorchScript model is substantially larger—26.4
KB—compared to the DPU model, which is 5.8 KB.

A key distinction between the DPU and TorchScript mod-
els lies in their handling of input quantization: while the
TorchScript model autonomously manages input quantization,
the DPU model depends on the application script to supply
quantized inputs. In PyTorch’s default configuration, input
tensor quantization involves scaling the floating-point values
with an FP32 scaling factor, offsetting them with an INT64 zero-
point value, and subsequently rounding them to INT8 values.
Furthermore, TorchScript stores scaling factors and zero-point
values in the data region as if they were data, whereas the
DPU model does not. The implications of these differences
will be elaborated upon in the section discussing experimental
results.

b) Experiment Results and Discussion: As depicted in
Fig. 5, the TorchScript model exhibits a higher percentage of
SPOFs (approximately 41% and mostly execution failure) than
the DPU model, indicating the model is more vulnerable. The
percentages of system lock-ups and accuracy degradation are
both low.

0 20 40 60

Percentage

Unaffected Acc.

Minor Acc. Degrdn.

App. Execution Failure

System Lock-up

Sever Acc. Degrdn.

F
au

lt
E

ff
ec

t

58.1

1.5

40.0

0.3

0.1

Fig. 5: Percentage distribution of fault effects on a TorchScript
model

The TorchScript format enjoys widespread adoption for
deploying high-performance model inference in production,
leveraging PyTorch’s popularity. A TorchScript model primarily
comprises two components: the code region and the data
region. The portable and self-contained TorchScript code
outlines the model’s structure and inference process. It does
not have low-level components like string tables or symbol
tables because TorchScript is a high-level language. The data
region stores tensors, which include weights, biases, and scaling
factors. Similarly, a DPU model also has code region and
data region. Both types of models maintain a code region
because the code functions as an integral component of
any DNN architecture, delineating essential hyperparameters
such as activation functions, padding, stride, and tensor data
flow pathways. Consequently, any fault analysis that excludes
the code region would be intrinsically incomplete. Our fault
analysis result supports this argument, which shows that the
code region in DNN models is especially vulnerable to faults.
Due to space constraints, Fig. 6 provides a selected visualization
of fault effects on the TorchScript model, concentrating on two
representative parts: the model header (part of the code region)
and the tensor (part of the data region).

338 2024 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)Authorized licensed use limited to: Northeastern University. Downloaded on December 18,2024 at 22:44:45 UTC from IEEE Xplore. Restrictions apply.

6450 6475 6500 6525 6550 6575

0

20

Tensor | Size: 620 Bytes | SPOF: 1.37%

0 50 100 150 200 250 300 350

0

20

Header | Size: 1428 Bytes | SPOF: 88.94%

Block Index

B
it

In
d
ex

Fault Effect

Unaffected Acc.

Minor Acc. Degrdn.

App. Execution Failure

System Lock-up

Sever Acc. Degrdn.

Acc. Degrdn.

0.00

0.15

0.30

0.45

0.60

0.75

Fig. 6: Visualization of the individual SBF effects on a TorchScript DNN model

Comparing the two model implementations, the TorchScript
model’s code region appears to be considerably more vulnerable
to faults than that of the DPU model. As illustrated in Fig. 6, in
the Header region, nearly 90% of the SBFs lead to application
execution failures. Similar rates of SPOFs are observed across
all other code regions. The overall percentage of SPOFs in the
model is offset by the debug regions, which are of the same size
as the code regions but are not involved in inference. The higher
vulnerability of TorchScript can be attributed to its nature as
a high-level language, unlike the DPU’s concise binary code.
This makes TorchScript less tolerant of SBFs, as it relies on
an interpretation engine, leading to earlier failure modes. This
observation is corroborated by Fig. 5, which indicates fewer
instances of severe accuracy degradation or system lock-ups
for the TorchScript model.

Both DPU and TorchScript data regions consist of densely
packed bytes, sized at 568 B and 620 B, respectively. The
slightly larger size for TorchScript arises from the inclusion
of scaling factors and zero points. As illustrated in Fig. 6, the
Tensor region features several 4-byte blocks arranged from left
to right. The initial two blocks denote the FP32 scaling factors
of the first and second layers of the DNN model. They are
followed by two 4-byte blocks representing the INT64 zero
point, which is exclusive to the input layer. The fifth 4-byte
block contains the FP32 scaling factor for the input layer itself.
Note that each input value undergoes an addition operation
with this zero point after being multiplied by the associated
scaling factor. The remaining blocks encapsulate the model’s
INT8 weights and biases.

Our analysis uncovers a relatively higher susceptibility to
SPOFs of the Tensor region (compared to the parameter region
of DPU models), attributable to these additional quantization
parameters. For the input layer, bit flips in the TorchScript
model’s scaling factors or zero points often result in application
execution failures or severe accuracy drops. In contrast, the
DPU model relies on pre-quantized inputs and is obviated from
these extra elements. For the rest of the layers, bit flips that

impact the exponent of the scaling factor are also detrimental
to the model’s accuracy, a phenomenon evident in the scaling
factors of both the first and second layers. We delve deeper
into the ramifications of these fault effects in the subsequent
section.

F. Scaling Factors: The Ubiquitous Vulnerability

We have demonstrated the susceptibility of quantized DNN
models, specifically on AMD-Xilinx DPU and TorchScript
platforms, to SBFs. While there are implementation-specific
vulnerabilities, we aim to identify SPOFs that may be univer-
sally present across all quantized DNN models.

Out of the model parameters, the MSBs of the biases in
the output layer could become potential SPOFs. However,
their effects are not universally catastrophic. For example,
flipping the biases in the TorchScript model did not produce
equally severe degradation. We aim to identify bit-flips that
can plunge the model’s accuracy to that of random guessing.
Our analyses suggest that scaling factors may be the SPOFs
of universal concern: they are part of the model’s data
according to PyTorch’s design and should thus be present
across implementations; yet the DPU model does not seem to
store these scaling factors in its data region, leaving us uncertain
whether they are among its SPOFs. This raises two critical
questions: Are scaling factors embedded in DPU models, and
if so, are they SPOFs?

To answer these questions, we trained multiple DNN models
with identical architectures and compiled them into ELF models.
Using a Python-based binary difference tool developed in-
house, we performed a differential binary analysis on these
ELF binaries. This tool dissects the binary into various sections
and compares 4-byte blocks within those sections to identify
differences.

After running pairwise differential analyses on a large set
of DPU models, we noted both expected discrepancies in the
data regions and unexpected variations in the code regions.
Models with identical scaling factors revealed identical code

2024 IEEE International Symposium on Hardware Oriented Security and Trust (HOST) 339Authorized licensed use limited to: Northeastern University. Downloaded on December 18,2024 at 22:44:45 UTC from IEEE Xplore. Restrictions apply.

segments, confirming that scaling factors are indeed integrated
into the DPU model structure (in the specific code regions,
such as CONV1 Code, CONV2 Code, and Dense Code, as
shown in Fig. 4). Subsequent cross-referencing with our fault
analysis verified that these scaling factors are SPOFs in the
DPU models. In the following section, we elaborate on why
scaling factors in quantized DNN models stand out as SPOFs.

IV. GENERALIZABILITY OF SINGLE POINTS OF FAILURE

We have identified the scaling factors of quantized DNN
models as the most notable SPOFs, capable of reducing
the model’s accuracy to mere random guesses. This section
analyzes why quantized DNN models are inherently reliant
on scaling factors. We further analyze the impact of SBFs on
scaling factors of large DNN models.

Scaling factors are judiciously chosen to minimize the model
accuracy loss induced by a lower bit precision. To find an
optimal set of scaling factors, complex optimization problems
must be solved across different layers [24]. As expected, any
change in the value of the scaling factor by SBFs significantly
affects the accuracy of the model. Fig. 7 illustrates the effect of
the MSB SBF on the scaling factor of the re-quantization step.
For an unsigned 8-bit integer scaling factor 134|(10000110),
upon the normal re-quantization, the feature map follows a
normal distribution (the left plot), akin to the original floating-
point feature map. However, with an SBF on the MSB of the
scaling factor, it is changed to 6|(00000110), and a majority
of the output values are clipped due to overflow or underflow
and concentrates on two end-values (shown in the right plot),
resulting in the information entropy dropping from 4.9 bits to
2.0 bits, nearly 60% loss. Consequently, the inference accuracy
of the faulty model declines significantly, reaching the point
of random guesses when using the MNIST dataset.

−100 0 100
0

250

C
o
u
n
t

Orig. Re-quantization

−100 0 100

Flipped Re-quantization

INT8 Quantization Value

Fig. 7: Effect of SBFs on the scaling factor of re-quantization

We extend such fault analysis to a larger dataset and models.
To ensure the results’ broad applicability, a generic quantization
framework independent of specific hardware is selected [34].
The ImageNet-1K dataset [35], one of the largest publicly
available datasets, is chosen with DNN models ResNet-18
and ResNet-50 [36], which achieve top-1 accuracies of 72.2%
and 77.3%, respectively, representing state-of-the-art quantized
models. The weights in these models are 8-bit integers, and the
scaling factors are 8-bit unsigned integers. An SBF experiment
targeting the scaling factors used in the re-quantization step

0 1 2 3 4 5 6 7 8 9 10111213141516

Layer Index

10−1

100

101

L
o
g

S
ca

le
A

cc
.%

Fig. 8: Logarithm base 10 of the accuracy (in percentage) for
the of the scaling factor (MSB SBF) in ResNet-18 evaluated on
the ImageNet-1K dataset. Red indicates performance equivalent
to random guessing.

is conducted. Fig. 8 shows the results of flipping the MSB of
each layer’s scaling factor of ResNet-18. Over 50% of SBFs
degrade the model’s accuracy to the level of random guesses
(with the accuracy of 1

1000 considering the thousand classes
in the ImageNet-1K dataset). Two trends are observed: the
closer to the input layer, the model is more sensitive to the
SBF on its scaling factor; and the odd-number layers are less
susceptible to SBFs with higher accuracies. Both phenomena
can be explained by the Information Bottleneck (IB) theory
[13] and the residual connections structure of ResNet. Similar
results are observed in fault analysis of the larger ResNet-50,
where 35% of the MSB SBFs degrade the model accuracy to
random guess levels.

The IB theory provides a valuable lens to understand how
DNNs process and condense information. It was initially
proposed for extracting significant components of an input
random variable in relation to the output and has been
repurposed for deep learning applications. Each DNN layer
is conceptualized as a compression stage, with data flowing
through a series of “bottlenecks”. This created a Markov chain
from input to output. The Data Processing Inequality (DPI)
principle ensures each layer contains no more information
about the output than its input, maintaining the integrity of
information flow through the network [13]. The DPI principle
offers a theoretical basis for the empirical observation of
increased SBF sensitivity closer to the input layer. The severe
accuracy drop induced by SBFs, especially in earlier layers,
can be seen as excessive information loss due to a perturbed
scaling factor. A distorted scaling factor can lead to information
destruction, thereby obstructing the flow of information through
the network. The metric used to measure the information
content is Shannon entropy of the feature maps [13]. As
depicted in Fig. 7, a perturbed scaling factor can substantially
reduce the information entropy. Specifically, for all the layers
of the ResNet-18, a flip in the MSB of the scaling factors leads
to an average reduction in information entropy by 97%.

Moreover, the IB theory aids in deciphering the observed
resilience of layers with residual connections (odd-number
layers). Residual connections serve as parallel information
channels, circumventing the information destruction caused

340 2024 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)Authorized licensed use limited to: Northeastern University. Downloaded on December 18,2024 at 22:44:45 UTC from IEEE Xplore. Restrictions apply.

by the SBF. Consequently, the information loss is mitigated,
allowing the model to retain reasonable performance despite
the perturbation. However, residual connections and SBFs are
pitted against each other, and still significant information loss
is attributed to the SBFs. This reinforces the importance of
scaling factors in the operation of quantized DNN models and
highlights the need to devise strategies for safeguarding these
factors against bit-flip faults.

V. DISCUSSIONS

A. Potential Defenses

This paper reveals that, contrary to prior assumptions,
quantized DNN models contain numerous SPOFs, therefore,
they are not inherently robust to SBFs. Based on this new
understanding, we evaluate the potential for adapting existing
defenses to safeguard against these SPOFs. A significant
challenge is that it is straightforward for attackers to induce an
SBF, as a variety of fault injection methods, even those targeting
ECC memory and registers during runtime, can accomplish
this. We classify and discuss these defenses by category and
provide our recommendations.

Defenses Dependent on Quantization: Evidently, defenses
that strongly depend on the fault resiliency of quantized DNN
models (weights and biases) are not applicable anymore [7]–
[10], as their base assumption is no longer valid and their fault
analysis is incomplete without considering scaling factors.

Learning-Based Defenses: Learning-based strategies aim
to enhance the robustness of DNN models against bit-flips by
equalizing the significance of channels and weights [37], or by
limiting the range of activations [38]. Unlike bit-flip attacks
that target the weight, the scaling factor affects all channels of
an entire layer. Furthermore, a scaling factor SBF can decrease,
rather than increase, the feature map values. Hence, it is not
a straightforward task to extend these approaches to protect
against scaling-factor SPOFs.

Checksum-Based Detection: Detection strategies that com-
pute the checksum [39], [40] of model weights could be adapted
to shield these SPOFs. However, the area requiring protection
is significantly larger than previously assumed. For example,
as shown in Fig. 4, weights and biases only represent a small
part (around 9%) of a practical quantized model. Extending
the checksum to the entire model file may result in substantial
overhead. Moreover, these detection-based approaches are
susceptible to denial-of-service attacks, as the model needs to
be reloaded when a fault is detected, which can be costly. To
mitigate the reloading expense, Liu et al. suggest identifying
and reloading only the vulnerable weights [41]. However,
we have demonstrated that a considerably larger number of
elements, i.e. all the SPOFs, require reloading.

We conclude that it is challenging to adapt these defenses to
address the discovered SPOFs. For mission-critical and security-
sensitive applications, triple redundancy provides a well-known
and time-proven solution, despite its significant resource
overhead. It can ensure both availability and integrity. If
resources cannot support triple redundancy, multi-level defenses
are required to counteract both memory and transient faults.

For memory faults, ECC memory can be employed. To counter
transient faults, ECC could be added at the software level to
each 4-byte block of the binary DNN model. Additionally,
we need to introduce extra hardware blocks to process the
ECCs. Both the driver and the application need rigorous testing
against corrupted model files to prevent unforeseen exits and
system lock-ups. In summary, there is no universal solution;
comprehensive defenses must be considered to counteract these
SPOFs.

B. Caveats and Future Work

The binary model of AMD-Xilinx DPU is proprietary and
closed-source. Our efforts have identified the scaling factors as
SPOFs that can significantly degrade the model accuracy to the
level of random guessing. Nonetheless, other SBFs can lead to
similar outcomes. However, decoding the semantics of these bits
remains a challenge, which leaves us uncertain whether these
identified SPOFs are implementation-dependent or universally
applicable to all quantized models. Future research could focus
on modeling a generic DNN accelerator and its ISA, so as to
further explore potential hidden SPOFs.

VI. CONCLUSION

This study provides an in-depth analysis of the resilience of
quantized DNN models in the face of SBFs, specifically for
real-world applications with AMD-Xilinx DPU, an advanced
commercial FPGA DNN accelerator. Contrary to the common
belief, we found that quantized DNN models are not immune to
SBFs. A single bit-flip in about one-fifth of the bits in an AMD-
Xilinx DPU DNN model could trigger severe consequences
such as application crashes, device freezes, or significant
accuracy degradation.

Our research has successfully broadened the scope of
evaluations beyond the weights and biases of DNN models,
contributing to a more comprehensive understanding of SBF
vulnerabilities in these models. The differential binary analysis
conducted during our research enabled us to reverse engineer
the proprietary binary format and identify specific SPOFs
not only for the AMD-Xilinx DPU but also for almost all
quantized DNN models across diverse platforms. This discovery
marks a significant advancement in our understanding of fault
vulnerabilities in DNN models.

Furthermore, we developed a framework capable of accu-
rately monitoring the bit-flip effect in quantized DNN model
implementations, either in hardware accelerators or in software.
This tool, combined with our evaluation of general SPOFs
across different DNN models and datasets, allows for an in-
depth explanation of the fault effects based on the information
bottleneck (IB) theory.

Lastly, our investigation into various mitigation strategies
against bit-flip attacks has reaffirmed the need for robust
protection measures in DNN model applications. Our research
demonstrates that these applications are as susceptible if not
more so, to bit-flip attacks than other applications, which
underscores the necessity for a systematic and comprehensive
protection scheme to secure DNN model inference.

2024 IEEE International Symposium on Hardware Oriented Security and Trust (HOST) 341Authorized licensed use limited to: Northeastern University. Downloaded on December 18,2024 at 22:44:45 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] N. Moro, A. Dehbaoui, K. Heydemann, B. Robisson, and E. Encrenaz,
“Electromagnetic fault injection: towards a fault model on a 32-bit
microcontroller,” in Workshop on Fault Diagnosis and Tolerance in
Cryptography, 2013, pp. 77–88.

[2] J. G. Van Woudenberg, M. F. Witteman, and F. Menarini, “Practical
optical fault injection on secure microcontrollers,” in Workshop on Fault
Diagnosis and Tolerance in Cryptography, 2011, pp. 91–99.

[3] J. Balasch, B. Gierlichs, and I. Verbauwhede, “An in-depth and black-
box characterization of the effects of clock glitches on 8-bit MCUs,” in
Workshop on Fault Diagnosis and Tolerance in Cryptography, 2011, pp.
105–114.

[4] M. Seaborn and T. Dullien, “Exploiting the DRAM rowhammer bug to
gain kernel privileges,” Black Hat, vol. 15, p. 71, 2015.

[5] J. Krautter, D. R. Gnad, and M. B. Tahoori, “FPGAhammer: Remote
voltage fault attacks on shared fpgas, suitable for dfa on aes,” IACR
Transactions on Cryptographic Hardware and Embedded Systems, pp.
44–68, 2018.

[6] M. Sabbagh, Y. Fei, and D. Kaeli, “A novel GPU overdrive fault attack,”
in ACM/IEEE Design Automation Conference (DAC), 2020, pp. 1–6.

[7] S. Hong, P. Frigo, Y. Kaya, C. Giuffrida, and T. Dumitras, “Terminal brain
damage: Exposing the graceless degradation in deep neural networks
under hardware fault attacks.” in USENIX Security Symposium, 2019, pp.
497–514.

[8] A. S. Rakin, Z. He, and D. Fan, “Bit-flip attack: Crushing neural
network with progressive bit search,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019, pp. 1211–1220.

[9] A. S. Rakin, L. Yang, J. Li, F. Yao, C. Chakrabarti, Y. Cao, J.-s. Seo, and
D. Fan, “Ra-bnn: Constructing robust & accurate binary neural network
to simultaneously defend adversarial bit-flip attack and improve accuracy,”
arXiv preprint arXiv:2103.13813, 2021.

[10] L. Liu, Y. Guo, Y. Cheng, Y. Zhang, and J. Yang, “Generating robust
DNN with resistance to bit-flip based adversarial weight attack,” IEEE
Transactions on Computers, 2022.

[11] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee,
J. M. Hernández-Lobato, G.-Y. Wei, and D. Brooks, “Minerva: Enabling
low-power, highly-accurate deep neural network accelerators,” ACM
SIGARCH Computer Architecture News, vol. 44, no. 3, pp. 267–278,
2016.

[12] S. Majumdar, M. H. Samavatian, K. Barber, and R. Teodorescu, “Using
undervolting as an on-device defense against adversarial machine learning
attacks,” in IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), 2021, pp. 158–169.

[13] S. S. Lorenzen, C. Igel, and M. Nielsen, “Information bottle-
neck: Exact analysis of (quantized) neural networks,” arXiv preprint
arXiv:2106.12912, 2021.

[14] P. Jattke, V. Van Der Veen, P. Frigo, S. Gunter, and K. Razavi,
“Blacksmith: Scalable rowhammering in the frequency domain,” in 2022
IEEE Symposium on Security and Privacy (SP). IEEE, 2022, pp. 716–
734.

[15] F. Yao, A. S. Rakin, and D. Fan, “Deephammer: Depleting the intelligence
of deep neural networks through targeted chain of bit flips,” in USENIX
Security Symposium, 2020.

[16] “Automotive Solutions,” 2023. [Online]. Available: https:
//www.amd.com/en/solutions/automotive.html

[17] M. Chiappetta, “Subaru Taps Xilinx For Its New EyeSight Vision-Based
Advanced Driver-Assistance System,” Aug. 2020. [Online]. Available:
https://www.forbes.com/sites/marcochiappetta/2020/08/19/subaru-taps-
xilinx-for-its-new-eyesight-vision-based-advanced-driver-assistance-
system/?sh=2336702c71f5

[18] W. G. Wong, “Xilinx SoC FPGA Powers Baidu’s
Apollo Driverless Platform,” Jan. 2020. [Online]. Avail-
able: https://www.electronicdesign.com/markets/automotive/article/
21119589/xilinx-soc-fpga-powers-baidus-apollo-driverless-platform

[19] “Vitis AI,” May 2023. [Online]. Available: https://www.xilinx.com/
products/design-tools/vitis/vitis-ai.html

[20] “TensorFlow,” Apr. 2023. [Online]. Available: https://www.tensorflow.org
[21] “Achieving FP32 Accuracy for INT8 Inference Using

Quantization Aware Training with NVIDIA TensorRT |
NVIDIA Technical Blog,” Nov. 2022. [Online]. Avail-
able: https://developer.nvidia.com/blog/achieving-fp32-accuracy-for-int8-
inference-using-quantization-aware-training-with-tensorrt

[22] R. O’Connor, “PyTorch vs TensorFlow in 2023,” News, Tutorials, AI
Research, Apr. 2023. [Online]. Available: https://www.assemblyai.com/
blog/pytorch-vs-tensorflow-in-2023

[23] “TorchScript for Deployment — PyTorch Tutorials 2.0.1+cu117
documentation,” Aug. 2023. [Online]. Available: https://pytorch.org/
tutorials/recipes/torchscript inference.html

[24] M. Nagel, M. Fournarakis, R. A. Amjad, Y. Bondarenko, M. Van Baalen,
and T. Blankevoort, “A white paper on neural network quantization,”
arXiv preprint arXiv:2106.08295, 2021.

[25] “Introduction • Zynq DPU Product Guide (PG338) • Reader • AMD
Adaptive Computing Documentation Portal,” May 2023. [Online].
Available: https://docs.xilinx.com/r/3.3-English/pg338-dpu

[26] “TensorFlow Lite | ML for Mobile and Edge Devices,” Apr. 2023.
[Online]. Available: https://www.tensorflow.org/lite

[27] apache, “tvm-vta,” May 2023, [Online; accessed 19. May 2023].
[Online]. Available: https://github.com/apache/tvm-vta

[28] N. Fasfous, L. Frickenstein, M. Neumeier, M. R. Vemparala, A. Frick-
enstein, E. Valpreda, M. Martina, and W. Stechele, “Mind the scaling
factors: resilience analysis of quantized adversarially robust cnns,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE),
2022, pp. 706–711.

[29] “The mnist database of handwritten digits,” http://yann.lecun.com/exdb/
mnist/.

[30] “Zynq UltraScale+ MPSoC,” May 2023. [Online].
Available: https://www.xilinx.com/products/silicon-devices/soc/zynq-
ultrascale-mpsoc.html

[31] Digilent. Ultra96-v2 board. https://www.avnet.com/wps/portal/us/
products/new-product-introductions/npi/aes-ultra96-v2/.

[32] Xilinx. Pynq. http://www.pynq.io/.
[33] Arm, “ARM ELF File Format,” Dec. 2021. [Online]. Available:

https://developer.arm.com/documentation/dui0101/a
[34] Q. Jin, J. Ren, R. Zhuang, S. Hanumante, Z. Li, Z. Chen, Y. Wang,

K. Yang, and S. Tulyakov, “F8net: Fixed-point 8-bit only multiplication
for network quantization,” arXiv preprint arXiv:2202.05239, 2022.

[35] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei,
“ImageNet Large Scale Visual Recognition Challenge,” IJCV, 2015.

[36] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016.

[37] N. Cavagnero, F. Dos Santos, M. Ciccone, G. Averta, T. Tommasi, and
P. Rech, “Transient-fault-aware design and training to enhance dnns
reliability with zero-overhead,” in IEEE 28th International Symposium
on On-Line Testing and Robust System Design (IOLTS), 2022, pp. 1–7.

[38] Z. Chen, G. Li, and K. Pattabiraman, “A low-cost fault corrector for deep
neural networks through range restriction,” in 51st Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
2021, pp. 1–13.

[39] M. Javaheripi and F. Koushanfar, “Hashtag: Hash signatures for online de-
tection of fault-injection attacks on deep neural networks,” in IEEE/ACM
International Conference On Computer Aided Design (ICCAD), 2021,
pp. 1–9.

[40] Y. Guo, L. Liu, Y. Cheng, Y. Zhang, and J. Yang, “Modelshield: A
generic and portable framework extension for defending bit-flip based
adversarial weight attacks,” in IEEE 39th International Conference on
Computer Design (ICCD), 2021, pp. 559–562.

[41] Q. Liu, J. Yin, W. Wen, C. Yang, and S. Sha, “NeuroPots: Realtime
proactive defense against Bit-Flip attacks in neural networks,” in 32nd
USENIX Security Symposium, 2023, pp. 6347–6364.

342 2024 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)Authorized licensed use limited to: Northeastern University. Downloaded on December 18,2024 at 22:44:45 UTC from IEEE Xplore. Restrictions apply.

