

1 Editor summary:
2 A controlled greenhouse study which manipulated the presence of both ectomycorrhizal fungi
3 (EMF) and arbuscular mycorrhizal fungi (AMF) at a range of conspecific and heterospecific
4 plant competitor densities shows that AMF promote plant species coexistence by equalizing
5 fitness differences and stabilizing competition.

6
7 Peer Review Information:

8 Nature Ecology & Evolution thanks the anonymous reviewers for their contribution to the peer
9 review of this work.

10

Item	Present?	Filename	A brief, numerical description of file contents. i.e.: <i>Supplementary Figures 1-4, Supplementary Discussion, and Supplementary Tables 1-4.</i>
Supplementary Information	Yes	SI_Willingetal.pdf	Supplementary Tables 1-2, Supplementary Figures 1-3.
Reporting Summary	Yes	Willing2024_nr-reporting-summary.pdf	
Peer Review Information	No	Willing_RS.pdf	

11
12
13 **Title: Arbuscular mycorrhizal fungi equalize differences in plant fitness and facilitate plant**
14 **species coexistence through niche differentiation**

15
16 **Author list:** Claire E. Willing^{1,2,a}, Joe Wan³, Jay J. Yeam¹, Alex M. Cessna¹, Kabir G. Peay^{1a}

17
18 **Author affiliations:** ¹Department Biology, Stanford University, Stanford, CA 94305, USA; ²School of
19 Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA; ³Institute of
20 Integrative Biology, Department of Environmental Systems Science, ETH Zürich, 8092 Zürich,
21 Switzerland

22
23 ^aAuthors for correspondence:
24 Claire E. Willing (cwilling@stanford.edu; willingc@uw.edu)
25 Kabir G. Peay (kpeay@stanford.edu)

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

66 **Abstract (172/200)**

67 Mycorrhizal fungi are essential to the establishment of the vast majority of plant species but are
68 often conceptualized with contradictory roles in plant community assembly. On one hand, host-
69 specific mycorrhizal fungi may allow a plant to be competitively dominant by enhancing growth.
70 On the other, host-specific mycorrhizal fungi with different functional capabilities may increase
71 nutrient niche partitioning, allowing plant species to coexist. To resolve the balance of these two
72 contradictory forces, we used a controlled greenhouse study to manipulate the presence of two
73 main types of mycorrhizal fungi, ectomycorrhizal fungi (EMF) and arbuscular mycorrhizal fungi
74 (AMF) and used a range of conspecific and heterospecific competitor densities to investigate the
75 role of mycorrhizal fungi in plant competition and coexistence. We find that the presence of AMF
76 equalizes fitness differences between plants and stabilizes competition to create conditions for host
77 species coexistence. Our results show how belowground mutualisms can shift outcomes of plant
78 competition, and that a holistic view of plant communities which incorporates their mycorrhizal
79 partners is important in predicting plant community dynamics.

80
81

82 **Introduction**

83 Plants are never found in nature without their microbiomes¹. Within plant roots, mycorrhizal fungi
84 are a key group of microbial mutualists that form relationships with an estimated 90% of terrestrial
85 plant species² and even greater percentages of plant individuals across the globe³. Mycorrhizal
86 fungi have been shown to improve plant nutrient uptake, water acquisition, and defense against
87 pathogens, often resulting in hosts that are much larger than their non-mycorrhizal counterparts^{2,4,5}.
88 Among these fungi, there are unique mycorrhizal types, which are phylogenetically,
89 morphologically, and functionally distinct⁴. Of these, arbuscular mycorrhizal fungi (AMF) and
90 ectomycorrhizal fungi (EMF) are by far the most ubiquitous⁴. As they differ in their enzymatic
91 capacity to decompose organic matter, these two mycorrhizal types are thought to give rise to
92 contrasting evolutionary strategies for plant host nutrient acquisition, where EM plants often
93 dominate in N-limited systems and AM plants tend to dominate regions with more rapid rates of
94 decomposition and nutrient liberation^{3,6}.

95 In conjunction with their effects on host nutrient acquisition and plant growth, mycorrhizal
96 fungi appear to modify host demographics and alter local dominance⁷⁻¹⁰. For example, reduced
97 mycorrhizal availability can decrease host competitive ability with heterospecific neighbors⁸.
98 Biological invasions have acted as natural experiments that test the importance of mycorrhizal
99 fungi in host demographics, demonstrating how compatible mycorrhizal partners are often
100 required to tip the scales of coexistence to favor invading species¹¹. More broadly, forests tend
101 towards dominance by a single mycorrhizal type¹²⁻¹⁴. Especially where N and P are co-limiting,
102 predictions of AMF-EMF bistability, where either AMF or EMF hosts might dominate local
103 patches, are common¹³. Once hosts are established, these symbioses appear to generate positive
104 con-mycorrhizal feedbacks, selecting for hosts with their own mycorrhizal strategies¹⁴⁻¹⁷.
105 Together, these ecological patterns suggest that mycorrhizal-based competition can shape forest
106 structure and diversity across scales¹²⁻¹⁴. Yet despite their strong associations with both host
107 nutritional niches and large-scale patterns in plant community structure, mycorrhizal effects have
108 yet to be included in an experimental framework that evaluates the multiple dimensions in which
109 these fungi contribute to dynamics of plant competition and coexistence^{7,8}.

110 In the context of plant community assembly, these different mycorrhizal roles – expanding
111 hosts' nutrient niche and improving host growth – may have opposing effects¹⁸, highlighting an
112 important gap in our understanding of the impact of mycorrhizas on plant ecology. If mycorrhizal

113 fungi expand the nutrient niches of plant hosts (e.g. the “mutualistic niche”^{19,20}), this could stabilize
114 plant competition and promote coexistence by increasing intra- relative to interspecific plant
115 competition. Reciprocally, if mycorrhizal mutualisms promote large differences in plant growth,
116 mycorrhizal relationships might exacerbate plant competition and lead to competitive exclusion
117 (destabilization). These two mycorrhizal effects (increasing hosts’ nutrient niches and promoting
118 plant growth) could have opposing effects on plant competition and coexistence^{21,22}.

119 Modern coexistence theory (MCT) provides a useful framework for reconciling this apparent
120 contradiction because it precisely predicts how growth differences in species' performance should
121 help or hinder coexistence. Differences that reduce species' competitive impacts on each other
122 consistently promote coexistence and are therefore termed stabilizing niche differences. By
123 contrast, differences that create imbalances in competitive ability and prevent coexistence are
124 termed unequalizing forces. Coexistence is promoted by both stabilization (i.e. high niche
125 differentiation) and equalization (i.e. low competitive imbalance) between competitors^{23–26}.
126 Importantly, while these two possibilities are not mutually exclusive (theory suggests that the
127 equalizing and stabilizing components are often interrelated²⁷), one key strength of MCT is that it
128 can identify how exactly these two components interact to determine coexistence²⁸. As such, MCT
129 has become an important pillar in the study of plant ecology used to predict outcomes of plant
130 competition^{23–25}. Within the MCT framework, host-specific mycorrhizal fungi may alter outcomes
131 of competition through (un)equalizing processes if mycorrhizal fungi modify growth differences
132 between hetero-mycorrhizal species^{23,26,29}; this will determine if AMF or EMF hosts are predicted
133 to dominate. Mycorrhizal fungi could also increase the likelihood of coexistence if fungi enable
134 hosts to specialize in the uptake of distinct, growth-limiting nutrients, resulting in hosts co-limiting
135 each other’s growth (stabilization)^{20,30}.

136 Previous efforts to investigate how mycorrhizal fungi and other soil microbes impact plant
137 community assembly have generally attempted to do so directly, measuring growth differences
138 between plant hosts with mycorrhizal inoculation, or indirectly, using plant-soil feedback (PSF)
139 experiments; others have tried to quantify the microbial effect *in vivo* by using plant invasions as
140 natural experiments⁷. These types of studies have been critical in better understanding the role of
141 microbes in plant competitive ability^{8,19,28,31–34} and have highlighted how microbes may stabilize
142 plant interactions^{35–37}. For example, a recent meta-analysis found that fitness differences generated
143 by microbes tended to be greater than stabilization³⁵. Conversely, the development of con-

144 mycorrhizal networks could lead to positive feedbacks that destabilize coexistence if the presence
145 of con-mycorrhizal individuals facilitates conspecific host growth^{38,39}. Yet relatively few studies
146 have explored how the enhanced nutrient uptake conferred by mycorrhizal fungi may directly
147 influence heterospecific versus conspecific competitive ability of hosts⁴⁰⁻⁴⁵, and none have
148 investigated these interactions simultaneously for EM and AM plants or employed MCT to predict
149 outcomes of competition. Recent theoretical developments have simplified methods to include
150 microbial communities into plant coexistence using MCT^{29,46}, but they have not yet been directly
151 applied to mycorrhizal fungi.

152 To help fill the need for theoretically driven tests of how positive interactions shape plant
153 communities¹⁸, we test how the presence of the two most common mycorrhizal types (AMF and
154 EMF) mediate coexistence of their respective host plants. To determine the roles of these two
155 distinct mycorrhizal types in plant coexistence, we employed the MCT framework, enabling us to
156 disentangle the stabilizing and equalizing mechanisms of mycorrhizal fungi on plant competition.
157 We tested these dynamics by simulating plant interactions from forest-shrubland boundaries where
158 AMF and EMF hosts coexist at the landscape scale⁴⁷, but where at the local scale the distribution
159 of mycorrhizal fungi is patchy⁴⁸⁻⁵⁰ and these hosts often form monodominant stands⁵¹. We focused
160 on *Baccharis pilularis* and *Pinus muricata* as focal species as they are two of the most dominant
161 taxa in our study system and because *Baccharis* is AMF-associated and *Pinus* is EMF
162 associated^{8,51}. Using a climate-controlled growth chamber, we grew these plant hosts with and
163 without their fungal partners as well as with differing conspecific and heterospecific competitor
164 densities. In addition to plant growth, we also measured foliar N, $\delta^{15}\text{N}$, and P, stomatal
165 conductance, and photosynthesis to see how mycorrhizal fungi affected resource use under
166 different competition scenarios and looked for mechanisms underlying the stabilizing and
167 equalizing effects. Consistent with our expectations from the literature², we found that the presence
168 of host-specific mycorrhizal fungi increased nutrient uptake and growth rates. Based on functional
169 differences between AMF and EMF⁴, we also expected that the presence of multiple mycorrhizal
170 types would promote coexistence by shifting resource use and increasing conspecific relative to
171 heterospecific competition. In partial support of this expectation, we found that the presence of
172 AMF promoted coexistence by shifting patterns of host resource use in ways that increased
173 conspecific relative to heterospecific competition. While the presence of EMF changed host
174 resource use, EMF plants were able to grow larger without discernible changes in the strength of

175 conspecific versus heterospecific competition. These results illustrate a general framework for
176 predicting when and why mycorrhizal fungi (de)stabilize coexistence and can help explain patterns
177 in natural communities, such as the propensity for monodominance in EMF forests and the higher
178 plant diversity often found in AMF stands^{12,52}. Our study indicates that explicitly including
179 mutualistic interactions may help reconcile differences between coexistence theory and
180 observation⁵³, and that mycorrhizal fungi may provide a missing link to better understanding plant
181 species interactions.

182

183 **Results**

184 To assess how mycorrhizal fungi contribute to dynamics of plant competition and coexistence, we
185 established a baseline of the impacts of mycorrhizal fungi on their hosts in the absence of
186 competition (Fig. 1). Both *Baccharis* (AMF-associated) and *Pinus* (EMF-associated) exhibited
187 positive growth responses to their host-specific fungi (ANOVA $F_{3,45}=5.375$; $p=0.003$ and
188 $F_{3,43}=4.635$; $p=0.0362$, respectively; Fig. 2a). We found no evidence that *Baccharis* growth was
189 impacted by EMF inoculation when AMF were absent (Tukey's HSD, $p=0.2314$). In line with
190 previous work, however, we found that even in the absence of *Baccharis*, AMF were slightly
191 parasitic on *Pinus* growth (Tukey's HSD, $p=0.0201$)^{54,55}.

192 Consistent with the paradigm of mycorrhizal fungi as nutritional symbioses, host-specific
193 mycorrhizal fungi increased total baseline P uptake for both *Baccharis* (ANOVA $F_{3,26}=5.164$,
194 $p=0.0062$; Fig. 2b) and *Pinus* (ANOVA $F_{3,20}=6.612$, $p=0.0028$). Mycorrhization improved total N
195 uptake for *Pinus* (ANOVA $F_{3,20}=5.105$, $p=0.0087$; Fig. 2c), but not for *Baccharis* (ANOVA
196 $F_{3,20}=1.139$, $p=0.3570$). To test if mycorrhizal fungi enabled hosts to utilize different sources of N
197 (e.g. organic versus mineral), we compared values of $\delta^{15}\text{N}$ by treatment. $\delta^{15}\text{N}$ was not impacted
198 by mycorrhization for *Baccharis* (ANOVA $F_{3,20}=0.518$; $p=0.674$), however, we did find evidence
199 for differences in $\delta^{15}\text{N}$ values across mycorrhizal treatments for *Pinus* (ANOVA; $F_{3,20}=4.532$;
200 $p=0.0140$), indicating that the presence of EMF increased the variety of N sources available to
201 *Pinus* and/or host dependence on mycorrhizal N as EMF preferentially pass on lighter isotopes to
202 their hosts (fractionation), resulting in more negative values of $\delta^{15}\text{N}$ ⁵⁶ (Tukey's HSD $p=0.1179$
203 and $p=0.0118$ for EMF and EMF+AMF, respectively). Curiously, though there was no difference
204 in the amount of N uptake for *Pinus* in the AMF compared to nonmycorrhizal treatment (Tukey's
205 HSD $p=0.8406$), $\delta^{15}\text{N}$ values for *Pinus* in the AMF treatment were lower than those observed for

206 nonmycorrhizal *Pinus* (Tukey's HSD $p=0.0529$), indicating that AMF may directly impact *Pinus*
207 N uptake/utilization. N:P ratios differed across mycorrhizal treatments for both *Baccharis*
208 (ANOVA; $F_{3,20}=45.683$; $p=0.0055$) and *Pinus* (ANOVA; $F_{3,20}=11.06$; $p=0.0002$). Specifically,
209 alleviation of P limitation led to increases in N limitation for *Baccharis* (Tukey's HSD $p=0.0594$
210 and $p=0.0979$ for AMF and AMF+EMF treatments, respectively; Fig. 2d). In contrast, EMF+
211 treatments reduced P limitation for *Pinus* while simultaneously increasing N uptake, resulting in
212 more optimal nutritional ratios (Tukey's HSD $p=0.0022$ and $p=0.0009$ for EMF and AMF+EMF
213 treatments, respectively). The availability of limiting nutrients associated with mycorrhization also
214 had functional consequences for plant physiological performance. As EMF colonization promoted
215 both N and P uptake, we observed increased photosynthetic capacity of *Pinus* in the presence of
216 EMF (ANOVA; $F_{3,19}= 6.891$; $p= 0.0025$, Fig. S1). Conversely, while AMF enhanced *Baccharis*
217 growth by increasing P uptake, we found that photosynthesis eventually became constrained, likely
218 as a result of N limitation, as there were no significant differences in photosynthetic capacity across
219 mycorrhizal treatments (ANOVA; $F_{3,18}= 1.532$; $p= 0.2404$, Fig. S1).

220 Baseline EMF percent root length colonization (PRLC) rates ranged from $31.1 \pm 14.7\%$
221 to $26.5 \pm 8.66\%$ in the EMF and AMF+EMF treatments, respectively; colonization did not differ
222 between these groups (Tukey's HSD, $p=0.5396$) and no EM colonization was observed in EMF-
223 treatments. *Pinus* biomass increased with EMF colonization (linear mixed effects; marginal
224 $R^2=0.198$, slope=0.6209, $p=0.0462$; Fig. S2). For *Baccharis*, we confirmed colonization by spot-
225 checking samples; observed PRLC ranged from $84.0 \pm 21.8\%$ ($n=16$) to $15.8 \pm 34.4\%$ ($n=13$) in
226 the AMF+ and AMF- treatments, respectively. Despite soil sterilization (see Methods), two
227 samples in AMF- treatments were well-colonized (98% and 87% PRLC, respectively). While
228 arbuscules:vesicles ratios ranged from 1:1 and 1:2 for AMF+ treatments, we observed a 1:10 ratio
229 of arbuscules:vesicles and only vesicles (0 arbuscules) in these two samples. Accordingly, this
230 contamination likely derived from a less mutualistic AMF species from the background soil.
231 Neither sample was a statistical outlier for any measurements compared to other nonmycorrhizal
232 controls; consequently, we retained these samples in their original treatment groups. Background
233 colonization excluding these samples otherwise remained low ($1.9 \pm 4.49\%$).

234 In the presence of competition, mycorrhizal fungi had important consequences for plant
235 fitness (Fig. 3). When no mycorrhizal fungi were present, the intensity of competition for
236 *Baccharis* was similar between heterospecific and conspecific competitors (Fig. 3a). When AMF

were present, *Baccharis* was more sensitive to conspecific compared to heterospecific competition; these patterns held when EMF were added (see Fig. 3c). Though the average biomass of *Pinus* was consistently lower than that of *Baccharis*, *Pinus* was also generally less sensitive to competition (Fig. 3e-h). With no mycorrhizae, there was little difference in *Pinus* biomass across competition treatments (Fig. 3e). The addition of EMF slightly relaxed conspecific competition for *Pinus* relative to heterospecific competition (Fig. 3f) and these results were consistent even with the addition of AMF (Fig. 3h). With only EMF, both *Pinus* biomass and EMF colonization slightly increased under low-density conspecific competition, prompting us to test for potential conspecific facilitation. However, model selection favored the simpler models showing a steady decline in both *Pinus* biomass (AIC: 38.5048 on 6 DF for the higher-order model versus 31.5118 on 5 DF for the simple model) and EMF colonization with increasing competitor density (AIC: 5.1662 on 6 DF for the higher-order model versus -3.6461 on 5 DF for the simple model). In the AMF treatment, *Pinus* was relatively insensitive to either heterospecific or conspecific competition, likely because the plants were already so small due to slight parasitism of AMF on *Pinus*.

We also found evidence that mycorrhizal fungi might help shape host niches under competition by shifting their nutrient uptake profiles and physiology. Foliar P data indicate that AMF enabled *Baccharis* to specialize in P uptake, where the concentration of foliar P significantly differed by both mycorrhizal treatment and competition type for *Baccharis* (ANOVA $F_{3,56}=16.295$, $p<0.0001$ and $F_{2,56}=39.941$, $p<0.0001$, respectively; Fig. 4b) and we observed strong evidence of an interaction between these factors; P uptake was higher for *Baccharis* in heterospecific compared to conspecific competition where AMF were present (ANOVA $F_{6,56}=3.051$, $p=0.0118$). For *Pinus*, we found strong evidence that mycorrhizal treatment (ANOVA $F_{3,46}=28.306$, $p<0.0001$; Fig. 4b), but not competition treatment (ANOVA $F_{2,56}=0.037$, $p=0.6922$) impacted P uptake and we observed moderate evidence for an interaction between these factors ($F_{6,56}=2.192$, $p=0.0572$) where P was higher in heterospecific competition when only EMF were present, but lower when both mycorrhizal types were present. Altogether, we found that AMF enabled *Baccharis* to better compete for P, limiting the growth of *Pinus* in heterospecific competition and limiting itself under conspecific competition. Our data further indicate that N uptake also increased for *Baccharis* in heterospecific compared to conspecific competition when both mycorrhizal types were present (Tukey's HSD $p=0.0066$; Fig. 4a), perhaps as AMF

268 colonization of *Baccharis* induced some degree of P limitation for *Pinus* (Fig. 4d), resulting in
269 decreased competitive ability of *Pinus* for N. Consistent with this interpretation, $\delta^{15}\text{N}$ data for
270 *Baccharis* revealed differences in isotopic leaf N across competition treatments (ANOVA $F_{2,56}=60.279$,
271 $p<0.0001$; Fig. 4c), but not across mycorrhizal treatment (ANOVA $F_{3,56}=0.724$,
272 $p=0.5420$), indicating that while the quantity of N taken up by *Baccharis* shifted, the source of N
273 remained consistent.

274 Patterns of water use further indicate how mycorrhizal fungi influenced host competition
275 for resources (Fig. S3). While we found little evidence that mycorrhizal fungi influence *Baccharis*
276 stomatal conductance in the absence of competition (g_s ; ANOVA; $F_{3,62}=2.107$, $p=0.1084$), we
277 observed that g_s was significantly lower in conspecific compared to heterospecific competition,
278 indicating greater competition for water resources amongst conspecifics versus heterospecifics for
279 *Baccharis* (Tukey's HSD $p=0.0208163$). In *Pinus*, we found strong evidence that transpiration
280 increases with mycorrhization (ANOVA; $F_{3,53}=6.787$, $p=0.0005$) and varies across competition
281 type (ANOVA; $F_{2,53}=3.480$, $p=0.0380$). Additionally, we observed an interaction between these
282 mycorrhizal treatment and competition types for *Pinus* (ANOVA; $F_{6,53}=2.389$, $p=0.0407$) where
283 when only EMF were present, g_s was higher for *Pinus* in heterospecific compared to conspecific
284 competition, but when both mycorrhizal types were present, g_s was lower for *Pinus* in
285 heterospecific compared to conspecific competition (Fig. S3). Together, these data indicate that
286 AMF helped *Baccharis* compete with *Pinus* for water resources, thus potentially helping to limit
287 the growth of *Pinus* where AMF were present.

288 Whereas EM colonization declined with increasing heterospecific competitor density
289 (linear mixed effects; marginal $R^2=0.237$, slope=-0.03566, $p=0.0009$; Fig. S1a), EMF colonization
290 rates remained consistent with an increasing density of conspecific competitors (linear mixed
291 effects; marginal $R^2=0.237$, slope=-0.0004, $p=0.9636$), suggesting that the presence of con-
292 mycorrhizal hosts facilitated conspecific colonization. *Pinus* biomass and P and N uptake were
293 positively correlated with EMF colonization (linear mixed effects; marginal $R^2=0.477$,
294 slope=0.820, $p<0.0001$; linear mixed effects; marginal $R^2=0.464$, slope=1.7233, $p=0.0006$; Fig.
295 S1b; linear mixed effects; marginal $R^2=0.440$, slope=5.0903, $p=0.0058$; Fig. S1c, respectively).
296 $\delta^{15}\text{N}$ declined with increasing EMF colonization (linear mixed effects; marginal $R^2=0.157$, slope=-
297 4.3727, $p=0.0465$; Fig. S1d), suggesting that hosts were either outsourcing N uptake to fungal

298 partners as lighter isotopes (lower $\delta^{15}\text{N}$ values) were likely being passed from fungal mutualists
299 to hosts, and/or that different N sources were being accessed.

300 To integrate the diversity of mycorrhizal effects on plant growth and resource use, we
301 utilized a recent derivation of modern coexistence theory to predict how mycorrhizal fungi might
302 mediate processes of plant coexistence²⁹ (Fig. 5, Table 1). In the absence of mycorrhizal fungi, our
303 models predicted that *Pinus* has a strong fitness advantage against *Baccharis* ($f_{Pi}/f_{Ba} =$
304 1.6670). This effect was largely driven by the low sensitivity of *Pinus* to competition from either
305 species ($\alpha_{PiBa} = -0.0619$ and $\alpha_{PiPi} = -0.0591$) relative to *Baccharis* ($\alpha_{BaPi} = -0.0994$ and $\alpha_{BaBa} =$
306 -0.1022) in this treatment. Adding each mycorrhizal type promoted the fitness of its host: EMF
307 slightly affected fitness ratio in favor of *Pinus* ($f_{Pi}/f_{Ba} = 1.8100$), while AMF reversed the fitness
308 hierarchy in favor of *Baccharis* ($f_{Pi}/f_{Ba} = 0.8234$). Finally, when both mycorrhizal types were
309 present, we observed nearly equal fitness between hosts ($f_{Pi}/f_{Ba} = 0.9597$). Meanwhile, niche
310 difference was lowest in the nonmycorrhizal treatment ($1-\rho = 0.0090$), followed by the EMF
311 treatment ($1-\rho = 0.0716$), which in both cases was insufficient for coexistence due to strong fitness
312 imbalances. On the other hand, niche difference was higher in the AMF+EMF treatment ($1-\rho =$
313 0.1597) and highest in the AMF treatment ($1-\rho = 0.2681$), both of which were sufficient for
314 coexistence. These differences in the treatments involving AMF were largely driven by
315 *Baccharis*'s greatly reduced sensitivity to heterospecific competition ($\alpha_{BaPi} = -0.0444$ in the
316 AMF+EMF and $\alpha_{BaPi} = -0.0363$ in the AMF treatment versus $\alpha_{BaPi} = -0.0994$ in the
317 nonmycorrhizal treatment). Using non-parametric bootstrapping to understand the effect of
318 experimental variation on our inferences, we found considerable uncertainty in niche/fitness
319 metrics and inferred coexistence outcomes (Figure 5; Table 1) due to underlying demographic
320 variation captured by our experimental biomass measurements. Nonetheless, results from the
321 bootstrapping distribution support our inference that AMF may create the possibility of
322 coexistence in this system: coexistence was predicted in 60% of bootstrap samples for the AMF
323 treatment, compared to 42% from AMF+EMF treatments, and only 0.83% and 0.67% in the
324 nonmycorrhizal and EMF treatments, respectively (Table S1).

325

326 **Discussion**

327 Microbial communities are critical to the function of diverse ecosystem processes⁵⁷. Within plant
328 roots, microbial mutualists, especially mycorrhizal fungi, mediate host access to key limiting

329 nutrients and have important repercussions for plant growth². By simultaneously measuring the
330 stabilizing and equalizing effects of mycorrhizal fungi on plant competition, we provide a
331 framework for investigating and predicting how the presence of different types of mycorrhiza
332 (AMF and EMF) regulate processes of plant coexistence. In particular, we find that EMF enable
333 hosts to maintain heterospecific exclusion. While AMF boosted host competitive ability, they also
334 promoted stabilizing effects that were large enough to increase the frequency of coexistence
335 predicted between the two hosts in this system. The presence of both types of mycorrhiza nullified
336 fitness differences between hosts, but stabilizing forces were dampened from the AMF-only
337 treatment. As a result, in the AMF+EMF treatment, predictions for coexistence were slightly less
338 favored compared to AMF alone. The results of our study demonstrate that different mycorrhizal
339 fungi can fundamentally alter plant competitive strategies and thus should be considered as
340 potential explanations for community assembly patterns observed in natural systems^{21,22}.

341 A number of recent studies have demonstrated that forest stands tend to be dominated by
342 trees of a single mycorrhizal type^{13,30}, perhaps the most extreme case of which is monodominant
343 EMF tree stands that occur in otherwise diverse (and AMF-dominated) tropical rainforests^{12,58}.
344 Previous studies have provided evidence that such differences can arise from feedback loops. For
345 example, positive feedbacks can develop when EMF trees with recalcitrant litter modify soil
346 nutrients in a way that favors EMF¹². Similarly, while susceptibility to host-specific pathogens can
347 create negative feedbacks that promote diverse AMF tree communities^{15,31,59}, EMF provide a
348 physical shield that reduces pathogen-induced negative feedbacks⁶⁰. In the present study, we used
349 sterilized and homogenized soil to isolate the nutrient and growth benefits of mycorrhiza on
350 dynamics of plant competition and coexistence. Consequently, our results add to this picture by
351 showing that intrinsic demographic differences may arise from EMF and AMF, even in the absence
352 of external factors such as leaf chemistry or soil pathogens. While our model predicts coexistence
353 in the presence of AMF, we demonstrate how the tendency of EMF to promote host-specific
354 growth and decrease conspecific competition is likely a major contributor to EM monodominance,
355 especially where the viability or density of AMF inoculum is low, for example following fire⁶¹.

356 Though our study was not designed to test why differences in negative conspecific density
357 dependence arise between plant associations with AMF and EMF, there are some well-established
358 biological differences between mycelial network potential and dispersal capacity between these
359 mycorrhizal types that may explain these observations. EMF produce extensive extra-radical

360 mycelium that can link root systems³⁸ and may translocate nutrients over large scales⁶². While
361 there is debate about the extent to which EMF transfer nutrients between hosts⁶³, the low sensitivity
362 of EMF-associated *Pinus* to conspecific competition may be explained by these mycorrhizal
363 networks. For example, at low competitor densities, EM colonization declined with increasing
364 heterospecific competitor density, however, colonization was maintained and potentially weakly
365 facilitated with conspecific competition. Thus, greater EMF host density may enhance host
366 colonization (and subsequently, host growth) by enabling the development of more robust
367 mycorrhizal networks^{64,65}. In contrast, while *Baccharis* growth was quite responsive to AMF
368 colonization, AMF also intensified conspecific competition. Findings of AMF disfavoring
369 conspecific growth have been reported in other systems^{31,60}. Our data indicate that by enhancing
370 host growth, AMF also intensify conspecific competition, disfavoring monodominance. While
371 AMF networks are not as well studied, these networks are generally considered less robust than
372 those formed by EMF⁶³. Consequently, while EMF networks may facilitate conspecific
373 colonization and access to nutrients, AMF colonization may better promote individual host growth,
374 thus exacerbating conspecific nutrient stress. Recent work also suggests that coordinated
375 evolutionary strategies between plant traits and mycorrhizal fungi⁶⁶. This evolutionary
376 coordination may extend beyond foliar or root traits to life history strategies⁶⁷. For example, EMF
377 hosts are perhaps adapted to the more limited availability of EMF partners in landscapes,
378 employing a strategy of resisting diverse types of competition, but growing very little in the
379 absence of EMF (the “waiting for the fungi” hypothesis⁶⁸). By contrast, AMF are more broadly
380 distributed^{3,4}, conceivably enabling plants to more readily depend on them for their growth
381 benefits, but with less capacity for functional differentiation.

382 Though mycorrhizal fungi are broadly known to improve host growth through increased
383 nutrient uptake, we show the potential for mycorrhizal diversity to facilitate coexistence through
384 niche partitioning (i.e. the “mutualistic niche”^{19,34}). Our results are consistent with previous work,
385 with EMF increasing plant access to organic nutrients that are otherwise not plant-available⁶, and
386 AMF generally improving P uptake relative to N⁶⁹. However, linking these differences to
387 coexistence depended on the nuances of nutrient uptake in different competitive scenarios. For
388 example, N uptake conferred to *Pinus* by EMF was relatively insensitive to the presence of
389 competitors. Thus, while a large literature has developed around the capacity for EMF to access
390 novel organic N sources relative to AMF^{3,12,30,70–72}, EMF may simply be better all-around N

391 competitors. In contrast, while AMF promoted P uptake for *Baccharis*, they also intensified
392 conspecific competition for nutrients. However, when both mycorrhizal types were present, we
393 found that this facilitated niche differentiation, promoting uptake of N and P for *Baccharis* in
394 heterospecific relative to conspecific competition. Our $\delta^{15}\text{N}$ results indicate that while AMF-hosts
395 enhance the draw-down of inorganic N in conspecific competition^{69,73}, EMF potentially enabled
396 *Pinus* competitors to access organic N, thereby relieving competition for inorganic N. While our
397 study used a single AMF plant and fungus, these host-specific effects on nutrient and competition
398 are consistent with similar experiments showing that increased mycorrhizal diversity leads to
399 higher plant diversity³². A better link between specific fungal genes and patterns of host nutrient
400 uptake during competition will help to connect mycorrhizal diversity to observed diversity in plant
401 communities.

402 Our measurements of plant water use based on g_s also demonstrated how AMF might help
403 *Baccharis* better compete for water resources, as g_s declined for *Pinus* when growing in
404 competition with *Baccharis* only when AMF were present. AMF have recently been shown to
405 transport water to host plants⁵, highlighting an important, but less well studied aspect of the
406 mycorrhizal niche. The ways in which mycorrhizal fungi impact plant competition for water is an
407 important area of future research.

408 Adding to our understanding of the role of plant-soil feedbacks in shaping plant
409 communities, recent theoretical work has highlighted the importance of identifying how these
410 feedbacks arise from specific underlying mechanisms⁷⁴. By better understanding the dynamics of
411 the mutualistic and pathogenic organisms responsible for feedbacks^{18,75,76}, researchers may be
412 better able to classify and predict the consequences of feedbacks. Our data add to a growing
413 recognition that apparently complicated dynamics contributing to coexistence can be better
414 understood by identifying underlying mechanisms⁷⁷. In conducting an empirical study to
415 investigate both the equalizing and stabilizing mechanisms of mycorrhizal fungi on coexistence,
416 we were able to better understand some of the patterns which occur in nature (e.g. EMF
417 monodominance). Although our study focused on local interactions between plants and their
418 mycorrhizal partners, not on how these interactions might vary over time and space, our results
419 also provide a starting point from which future work could address the additional stabilizing role
420 of temporal or spatial heterogeneity in nutrients or mycorrhizal fungi^{23,26}. Additionally, while we
421 have implicitly focused on competition from the plant perspective, direct competition for resources

422 must occur between AM and EM fungi and is a topic requiring further investigation⁷⁸. We
423 emphasize that modern coexistence theory offers important tools for connecting mycorrhizal
424 effects to their consequences for ecological communities^{29,79,80}.

425 While we cannot generalize as to whether all EMF and AMF alter host demography in this
426 way more globally, the principles that we have identified will apply when fungi are host-specific
427 and functionally differentiated, as they generally appear to be for plants forming relationships with
428 AMF and EMF^{60,81,82}. Our findings should also apply to differences within plants that share the
429 same mycorrhizal type and have host-specific fungi³², or when shared fungal partners have host-
430 specific effects on niche or fitness differences. In the present experiment, we were able to examine
431 the relationships between two co-dominant hosts in a relatively simplified community, however,
432 approaches which are able to assess coexistence in multispecies communities will be important in
433 better understanding the role of mycorrhizal fungi in landscape-scale dynamics of plant
434 assembly⁸³. Because, as our results show, plant competition depends on the composition of the
435 local mycorrhizal community, whether plant species successfully migrate to new climates or
436 persist in changed environments should depend on both their own physiological capabilities but
437 also the ecological details of local partnerships with mycorrhizal fungi. More generally, because
438 microbial communities are not evenly distributed across landscapes or environments^{84,85}, results
439 from plant competition studies may be misleading without explicit consideration of the spatial
440 distribution of mycorrhizal fungi.

441

442 **Materials and Methods**

443 *Study system*

444 Point Reyes National Seashore (Point Reyes), USA is located in coastal Northern California
445 characterized by a Mediterranean climate, maritime fog in the summer⁸⁶ and a high severity fire
446 regime⁴⁷. Dominant plant species include coyote brush (*Baccharis pilularis* DC), Bishop pine
447 (*Pinus muricata* D. Don), blue blossom (*Ceanothus thyrsiflorus* Eschsch.), and Douglas-fir
448 (*Pseudotsuga menziesii* [Mirb.] Franco)⁴⁷. For the present study, we specifically chose to work
449 with *Baccharis* and *Pinus* as: (1) these two plant species associate with different mycorrhizal types
450 (*Baccharis* associates with AMF and *Pinus* associates with EMF); (2) the dynamics of EMF
451 dispersal are well-studied at this site^{84,85}; (3) the presence of EMF have previously been linked to
452 increased competitive ability of *Pinus* with *Baccharis*⁸. Additionally, Point Reyes is dominated by

453 only a few plant species, which allows us to articulate the mechanisms of plant species coexistence
454 more fully across this landscape. In this way, Point Reyes acts as a natural lab in which we can
455 test the role of mycorrhizal fungi in plant ecological dynamics.

456

457 *Seed origin and germination*

458 *Baccharis* seeds were collected from Point Reyes in 2018 from various location at Point Reyes
459 and multiple individual plants. The achene was removed from the pappus via physical perturbation,
460 separated based on density, and stored at 4°C prior to germination. *Pinus* seeds were ordered from
461 Sheffield's seeds, which were sourced from California-based populations, and stored at 4°C prior
462 to germination. Seeds were germinated in 6 cohorts as both planting and harvesting seedlings took
463 approximately 6 and 8 weeks, respectively. *Pinus* seeds were soaked in distilled water in a covered
464 auto stirrer for 24 hours. Seeds were then soaked in 30% H₂O₂ for 30 minutes, washed thoroughly
465 in distilled water, and then let to soak in distilled water in a covered auto stirrer for an additional
466 24 hours. Seeds were then plated onto 1% water agar and placed in growth chamber with a 16-
467 hour photoperiod to germinate. *Baccharis* seeds are very small and fragile, and we had little
468 success recovering them from sterilization trials. Consequently, we chose to plate *Baccharis* seeds
469 directly onto water agar as above and allowed these seeds to germinate in a 16-hour photoperiod.
470 Seeds were allowed to germinate for approximately 7 days prior to planting.

471

472 *Experimental design and planting*

473 This experiment utilized a fully factorial design with 4 mycorrhizal treatments, 2 focal plant
474 species, conspecific/heterospecific competition, and 4 different competition densities (Fig. 1). This
475 experimental design (across the different microbial treatments, densities, and competitors) was
476 selected as it enabled us to employ recently developed models which incorporate microbial
477 communities into modern coexistence theory^{29,87,88}, allowing us to explicitly test the role of EMF
478 and AMF in plant species coexistence. With each focal seedling, we planted 0, 1, 4, or 8 either
479 conspecific or heterospecific competitors. Each planting combination was performed across 4
480 different mycorrhizal treatments: (1) no mycorrhizal fungi, (2) EMF, (3) AMF, (4) both EMF and
481 AMF. Each unique combination was replicated 6 times for a total of 2 focal plant species * 4
482 planting densities * 2 competitor types * 4 mycorrhizal treatments * 6 replicates = 384 pots.

483

484 *Field and biological collections*

485 Field soils were collected from Point Reyes in November 2019 from a mixed scrub-grassland site
486 previously established to have a low density of ectomycorrhizal fungi (at least 4.2 km away from
487 the nearest edge of *Pinus* stands)⁸⁴. We specifically selected EMF-free soils as EMF spores are
488 often more heat resistant and thus more likely to carry over into our different mycorrhizal
489 treatments than AMF spores, even after autoclaving⁸⁹. Soils were collected using ethanol-sterilized
490 shovels and stored at 4°C. To characterize the nutrient availability from these soils, we planted
491 PRS probes (plant root simulators; Western Ag. Innovations Inc., Saskatoon, Saskatchewan) in the
492 same pots used for the experiment for 9 weeks; soil nutrient data can be found in Table S2.

493 For the EMF inoculum, we used *Suillus pungens*, an EMF species with the capacity for
494 long-distance dispersal, which is found especially on young *Pinus* seedlings and trees^{84,85}. In this
495 way, *S. pungens* likely plays a role in the establishment of *Pinus* stands throughout Point Reyes.
496 Different populations of *Suillus pungens* fruiting bodies were collected from San Francisco and
497 Marin counties in CA, USA and prepared for spore collection (see section on Mycorrhizal
498 treatments below). DNA was extracted from fruiting body populations using Extract 'N Amp
499 buffer and the ITS region was sequenced using fungal-specific primers ITS-1F (5'-
500 CTTGGTCATTAGAGGAAGTAA-3') and ITS-4 (5'-TCCTCCGCTTATTGATATGC-3') to
501 ensure that collections were from the target species⁹⁰. For AMF inoculum, we selected
502 *Rhizophagus intraradices*, which was previously found to be a top colonizer of *Baccharis*⁹¹. A
503 total of 2 L of AMF inoculum was obtained from the International Collection for (Vascular)
504 Arbuscular Mycorrhizal Fungi (INVAM; *R. intraradices* Accessions: WV115A, WV116, WV229,
505 SW101; combined and well-mixed).

506

507 *Soil preparation, mycorrhizal treatments, and growth conditions*

508 Field collected soils were sieved to 2 mm to homogenize soils and remove rocks and coarse roots.
509 Soils were placed into autoclave containers and spread about 4 cm deep. Autoclave tape was placed
510 in Eppendorf tubes at the lowest soil layer to confirm sterilization across the soil depth. After
511 autoclaving soils, we allowed them to rest for 24 hours and then repeated the same autoclave
512 process. Soils were then mixed 50:50 with autoclaved coarse sand and this mixture was used for
513 planting.

514 Pots were randomized across all treatments and planted in this randomized design over the
515 course of 6 weeks. For planting, we used Deepots (Stuewe & Sons, Tangent, OR, USA; D27L,
516 volume 444 ml) with polyfill placed at the bottom of each pot and the filled with the 50:50 mix of
517 autoclaved field soils and sand. AMF inoculum consisted of a mixture of spores, fine roots, and
518 soil obtained through trap culture (grown using sudangrass, *Sorghum drummondii* at INVAM).
519 We chopped fine roots into smaller 1-2 cm fragments and homogenized the inoculum prior to
520 adding it to our AMF+ treatments. Because we were adding roots and soils to these AMF pots, we
521 wanted to ensure that the potential effects seen in the experiment were not related to a fertilization
522 effect from adding this root mixture or due to other components of the microbial community
523 present in the AMF inoculum. Accordingly, for AMF- treatments, we used a bacterial/viral wash
524 to collect these components of the AMF inoculum and then autoclaved the remaining root and soil
525 slurry using 2*40-minute cycles to kill the AMF and the autoclave slurry and bacterial/viral wash
526 were added to AMF- treatments in equivalent volumes to the live inoculum. To do so, we first
527 filtered the inoculum in a series of steps; first, through a 20 μm mesh overnight and then, through
528 filter paper (#1 Whatman) for about 8 hours (total volume was allowed to filter). The 20 μm mesh
529 was selected as this diameter of filter should remove most species of fungal spores and many
530 hyphae. The #1 Whatman filter maintains an approximately 10 μm diameter, which was aimed to
531 remove additional hyphal fragments or any AMF spores that might have gotten through. The
532 filtrate was then kept at 4°C prior to using for inoculations. The control inoculum (what remained
533 after filtering) was autoclaved for 30 minutes, allowed to sit overnight, and then re-autoclaved the
534 next day. The control inoculum was then allowed to dry at 60°C overnight to help reduce any
535 phytotoxic compounds that might have been released through autoclaving process. All pots that
536 did not receive live AMF inoculum (the EMF and non-mycorrhizal treatments) received an
537 equivalent volume of autoclaved inoculum plus the bacterial filtrate.

538 For treatments with live AMF, 5 mL of AMF inoculum was added to each pot and mixed
539 into the top layer of soil. For treatments that did not include live AMF, we added 5 mL of sterilized
540 AMF inoculum. In addition to the sterilized AMF inoculum used in non-AMF treatments, we
541 added 2 mL of the bacterial filtrate to these pots and treatments with live AMF received 2 mL of
542 DI water as a control. *S. pungens* spores were obtained from field collections by placing the
543 hymenial layer of the fruiting body onto tin foil, letting the spores drop, and then collecting them
544 into distilled water and storing at 4°C prior to inoculation. Because EMF spores were collected

545 into distilled water, no root or soil biomass was added for these treatments and the relative volume
546 of other microbes on collected on the spores was assumed to be quite low. Consequently, for EMF-
547 treatments, we used an equivalent volume of DI water as a negative control. We added 2 mL of
548 EMF inoculum at a concentration of 500,000 spores per mL to the appropriate pots. For treatments
549 that did not include EMF, we added the equivalent volume of DI water.

550 Germinated seedlings were planted into each Deepot using sterilized forceps with the
551 appropriate focal plant and competitors. Seedlings were monitored and individuals that did not
552 survive transplantation were replanted for up to 2 weeks following initial cohort planting.
553 Seedlings were grown in a controlled-environment walk-in growth chamber (R.W. Smith & Co.,
554 San Diego, CA, USA) for 8 months. Relative humidity was set at 60.0% and temperature was at
555 20.0°C for an 18-hour photoperiod from 5a to 11p. Pots were kept well-watered by watering plants
556 with approximately 10 mL of tap water three times per week.

557

558 *Plant harvesting*

559 For each pot, aboveground biomass was separated from the belowground biomass for focal plants
560 and competitors. For *Pinus* seedlings, we assessed extent of EMF colonization for all treatments
561 by sectioning entire fine root systems into small root fragments and counting the number of EMF
562 root tips using the grid intersect method⁸. For *Baccharis*, approximately 0.25-0.5 g of fine roots
563 were collected from a random subset of focal seedlings throughout the harvest (both where live
564 AMF and sterilized AMF inoculum were added) to assess AMF colonization. The wet mass of the
565 *Baccharis* total root system was recorded along with the wet mass of the fine roots subset for
566 assessment of AMF colonization and wet:dry biomass ratios were used to estimate the total dry
567 root biomass for *Baccharis* root systems as described below. Fine roots for assessment of AMF
568 colonization were stored in 70% ethanol and kept at 4°C prior to clearing and staining (enumerated
569 below). For the high-density conspecific treatments, it was often difficult to distinguish if roots
570 belonged to competitors or focal plant, particularly for the conspecific competition treatments. In
571 these cases, the roots remaining after separating the competitor seedlings from the focal plant root
572 system were weighed and then that mass was subdivided based on the total number of competitors
573 plus the focal plant. Root systems, stems, and leaf tissue for focal plants and competitors were
574 placed in separate coin envelopes and dried at 65°C for at least one week to ensure that they were
575 fully dried. Dried biomass was measured for each of these components on an electronic balance

576 with accuracy to 0.001 g (model XS205, Mettler Toledo, Columbus, OH, USA). After these steps
577 were completed, AMF root colonization was measured by clearing roots in 10% KOH in a 20-
578 minute autoclave cycle, acidifying roots in 2% HCl for 30 minutes, and boiling roots in Trypan
579 blue dye solution for 30 minutes⁹². Roots were left in DI water for at least 5 days to remove excess
580 dye prior to fixing the roots on glass slides with Polyvinyl-Lacto-Glycero (PVLG). The gridline-
581 insect method was then used to access percent mycorrhizal root length⁹³.

582

583 *Nutrient content and stable isotope analyses*

584 Dried leaf material was used to assess carbon ($\delta^{13}\text{C}$ and % C) and nitrogen ($\delta^{15}\text{N}$ and % N) content
585 and total leaf nutrient content. Briefly, leaf samples were ground into a fine powder and
586 approximately 7 mg of dried leaf material were weighed into tin capsules for analysis using an
587 elemental analyzer/continuous flow isotope ratio mass spectrometer at the University of
588 California, Berkeley Center for Stable Isotope Biogeochemistry. This facility uses an Isoprime100
589 continuous flow mass spectrometer using dual-element analysis mode interfaced with a CHNOS
590 elemental analyzer. Long-term precision for C and N isotope determinations is $\pm 0.10\text{\textperthousand}$ and
591 $\pm 0.20\text{\textperthousand}$, respectively. The $\delta^{13}\text{C}$ results were reported in values relative to the Vienna Pee Dee
592 Belemnite standard and the $\delta^{15}\text{N}$ measure of the ratio of the two stable isotopes of nitrogen,
593 $^{15}\text{N}:^{14}\text{N}$ and the standard is atmospheric N^2 (0.3663 atom% $\sim ^{15}\text{N}$).

594 Dried and homogenized samples were also used to determine leaf P content at University
595 of California, Davis Analytical Lab using a closed vessel microwave digestion in nitric
596 acid/hydrogen peroxide and Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-
597 AES). Long-term method detection limits for P at this lab is 0.01%.

598

599 *Determination of leaf-level gas exchange*

600 After 8 months, seedlings were harvested by cohort for a period of approximately 6 weeks. Prior
601 to cutting stems, leaf-level gas exchange was determined for each focal plant using a LI-COR 6800
602 with the conifer chamber attachment (LI-COR, Lincoln, NE, USA). Conifer chamber conditions
603 were set to match the growth chamber conditions as closely as possible where chamber relative
604 humidity was set to 60%, CO₂ concentrations were set at 400 ppm, light was set at 1000 $\mu\text{mols}/\text{m}^2\text{s}$,
605 and the fan speed was set at 5000 rpm. As the leaves for both species were not able to fill the
606 entirety of the chamber, leaf area encapsulated by the chamber was marked using permanent

607 marker and this leaf area was subsequently digitally scanned for determination of leaf area using
608 a silhouette leaf area method⁹⁴ and Leafscan v1.3.21⁹⁵. Where Leafscan was unable to process
609 photos due to continuity of leaf area or errors identifying leaf boundaries, leaf area was measured
610 using ImageJ2⁹⁶ and the scale bars from the Leafscan guide used for the digital scans. These values
611 were then adjusted in the LI-COR 6800 datasheet to reflect the actual leaf area measured with the
612 LI-COR 6800. To try to minimize differences in measurement error, we standardized the amount
613 and type of tissue measured as much as possible, encapsulating as much of the terminal end of the
614 *Pinus* shoots as possible and encapsulating ~5 of the most terminal leaves/stem of the *Baccharis*
615 seedlings.

616

617 *Statistical analysis*

618 All data were analyzed in R version 4.2.2⁹⁷. Prior to analysis, to correct for the small proportion
619 fresh root mass that was needed to assess AMF colonization on a subset of samples for *Baccharis*,
620 we ran a linear regression between wet:dry fine root mass to then back-calculate the corrected total
621 dry mass for these plants. These data corrections are all included in our analysis pipeline.

622 Our first expectation was that, in the absence of competition, host-specific mycorrhizal
623 fungi would increase plant growth, which is often a proxy for overall plant fitness. To assess this,
624 we compared total plant biomass data across mycorrhizal treatments using an ANOVA with the
625 ‘aov’ function. We also expected that mycorrhizal fungi would increase host access to soil
626 nutrients, expanding host’s nutritional niche. We tested this prediction by comparing plant nutrient
627 status across mycorrhizal treatments. Differences within treatments were then assessed with a post-
628 hoc Tukey’s HSD test using the ‘TukeyHSD’ function.

629 Because EMF form more robust mycorrhizal networks^{4,63} and potentially enable hosts to
630 access novel sources of N, our second prediction was that EMF would reduce the strength of
631 conspecific relative to heterospecific competition. Additionally, we predicted that AMF would
632 have the opposite effect, improving host growth in isolation, but exacerbating conspecific
633 competition as conspecific hosts would become better competitors for the same pool of nutrients³⁹.
634 To test this prediction, we first employed linear mixed effects models via the ‘lmer’ function from
635 the lme4 package⁹⁸, allowing us to compare changes in focal plant biomass across increasing
636 densities of both conspecific and heterospecific competitors. For these models, we included a
637 random effect of tray location in the growth chamber to account for microclimatic variability

638 within the growth chamber. Additionally, because the y-intercept for these linear mixed-effects
639 models represented the condition when no competitors were present, we forced a shared intercept
640 and only included an interaction term between competitor density and competition treatment
641 (heterospecific versus conspecific competition)⁸⁸. The biomass data for this study were right-
642 skewed, so prior to fitting these models, the data were transformed by taking the square root of
643 plant total biomass for all models and model residuals were visually inspected to for normality⁸⁸.

644 To test the role of mycorrhizal fungi in modifying niche and fitness differences of their
645 hosts simultaneously, we used the MCT framework to examine the response of focal plant biomass
646 to both con and heterospecific competition across increasing competitor densities relative to the
647 biomass of the plant growing without mycorrhizal fungi and with no plant competition. We
648 calculated competition coefficients according to the following formulas²⁹:

$$649 \quad \alpha_{BaPi, MYCO} = \frac{M_{BaPi, MYCO} - M_{Ba,0, None}}{\Delta N_{Pi} * M_{Ba,0, None}} \quad (1)$$

$$650 \quad \alpha_{BaBa, MYCO} = \frac{M_{BaBa, MYCO} - M_{Ba,0, None}}{\Delta N_{Ba} * M_{Ba,0, None}} \quad (2)$$

651
652 Here, (Ba) is *Baccharis* as the focal plant and (Pi) is *Pinus* as its heterospecific competitor, ΔN_{Ba}
653 and ΔN_{Pi} respectively represent the change in density of competitors Ba and Pi relative to the no
654 competitor treatment (in our case, we used the values for our highest density treatment where N=8).
655 $M_{Ba,0, None}$ represents the biomass of a single focal plant growing in the nonmycorrhizal treatment;
656 α_{BaPi} and α_{BaBa} represent the per capita effect of *Pinus* on *Baccharis* and *Baccharis* on *Baccharis*,
657 respectively. The values for focal plant *Pinus* (Pi) can be calculated analogously across each of the
658 mycorrhizal treatments (MYCO; no mycorrhizal fungi, AMF, EMF, and AMF&EMF). The choice
659 to use the nonmycorrhizal treatment as a reference assumes the availability of mutualists to be part
660 of the density-dependent competitive effect of plants (i.e. PSF; mutualists are nearly absent when
661 their hosts are rare)²⁹. On the other hand, using the single individual biomass from the same
662 inoculum treatment as a reference assumes that mutualist availability is fixed and thus not part of
663 density-dependent competitive effects (i.e. mutualists remain just as available even when their
664 hosts are rare). As we were interested in the conditioning effect in the former scenario, we use the
665 nonmycorrhizal treatment as a reference here. In addition to this approach, we also tried calculating
666 alpha values from our regression analysis using the full competition gradient⁸⁸. However, we found

667 poor model fits for some treatments, so we instead applied the formula with solo/competitor
668 biomass using the maximum number of competitors as this provides the best approximation of
669 competitive dynamics near the monoculture equilibrium²⁹.

670 Assuming that plant performance responds linearly to competitor density⁸⁸, we were then
671 able to we were then able to use a modified model from modern coexistence theory to calculate
672 niche overlap (ρ) and fitness differences $\left(\frac{f_{Pi}}{f_{Ba}}\right)$ across these treatments based on the calculated α
673 values⁸⁸:

$$674 \quad \rho = \sqrt{\frac{\alpha_{BaPi}\alpha_{PiBa}}{\alpha_{BaBa}\alpha_{PiPi}}} \quad (3)$$

$$675 \quad \frac{f_{Pi}}{f_{Ba}} = \sqrt{\frac{\alpha_{BaPi}\alpha_{BaBa}}{\alpha_{PiBa}\alpha_{PiPi}}} \quad (4)$$

676

677 where coexistence occurs when $\rho < \frac{f_{Pi}}{f_{Ba}} < \frac{1}{\rho}$ and an alternative stable state occurs when $\frac{1}{\rho} < \frac{f_{Pi}}{f_{Ba}} <$
678 ρ . These data were then plotted using the original MCT formulation of niche and fitness
679 differences⁹⁹. We evaluated the effect of experimental variation on coexistence metrics and
680 outcomes using non-parametric bootstrapping. Stratifying by all levels of the experimental design,
681 we sampled 10,000 bootstrap replicates and recalculated competition coefficients, niche
682 difference, fitness ratio, and predicted outcome using the resampled data, generating 95%
683 confidence intervals using the percentile method¹⁰⁰. We then visualized the distribution of
684 outcomes (the bootstrapping distribution) as contours on the MCT phase plane plot and tabulated
685 the proportion of coexistence outcomes for each treatment^{35,101}.

686 In addition to calculating these niche and fitness differences within the MCT framework,
687 we also examined the possible biological basis for niche and fitness differences by measuring leaf
688 nutrient content and leaf-level photosynthesis. These data were compared using ANOVA and post-
689 hoc tests as described above. Additionally, while we were unable to assess AMF colonization
690 across all treatments due to logistical constraints, we were able to compare rates of EMF
691 colonization across mycorrhizal and competition treatments using this linear mixed-effects
692 modeling approach, enabling us to compare how rates of colonization corresponded to nutrient
693 uptake and were impacted by the different competition treatments.

694

695

696 **Data Availability:** All data are available via the Dryad Digital Repository:
697 <https://doi.org/10.5061/dryad.rxwdbryjb>

698

699 **Code Availability:** All code for analysis is available via Github:
700 <https://github.com/ClaireWilling/MycorrhizaCoexist.git>

701

702 **Acknowledgments:** We thank K.N. Chin and J.M.M. Ferré for their help in planting seedlings for
703 this experiment. Additionally, we thank K.N. Chin for her help in creating art for this manuscript.
704 We thank L.D.L Anderegg for his input on the study design and feedback on early versions of this
705 manuscript. K.G.P. is a CIFAR Fellow in the program Fungal Kingdom: Threats and Opportunities
706 and is supported by DOE Award DE-SC0023661. C.E.W., J.J.Y., A.M.C., and K.G.P were all
707 supported by the NSF Early Career Award 1845544 for this work which was awarded to K.G.P..
708

709

710 **Author Contributions Statement:** C.E.W. and K.G.P. planned and designed the research. C.E.W.
711 and K.G.P. conducted field work and C.E.W., J.J.Y., A.M.C. conducted the lab work. C.E.W.
712 analyzed and interpreted the data with critical contributions from J.W., J.J.Y., A.M.C., and K.G.P.
713 The manuscript was written by C.E.W. and all coauthors provided important contributions and
714 critical revisions. All authors approve of the final version of this manuscript.

715

716 **Competing Interests Statement:** The authors declare no competing interests.
717

718

719

720

721

722

723

724

725

726

727

728

729 **Tables**

730 **Table 1.** Modern coexistence theory interaction coefficients (α) and niche (1- ρ) and fitness
 731 differences $\left(\frac{f_{Pi}}{f_{Ba}}\right)$ calculated from Ke and Wan (2020) based on n=8 competitors. (Ba) refers to
 732 *Baccharis* and (Pi) refers to *Pinus*, where α_{BaPi} refers to the growth of *Baccharis* growing in
 733 heterospecific competition and where α_{BaBa} refers to the growth of *Baccharis* growing in
 734 conspecific competition. We sampled 10,000 bootstrap replicates and recalculated competition
 735 coefficients, niche differences, fitness ratios; 95% confidence intervals using the percentile
 736 method¹⁰².

737

Mycorrhizal Treatment	α_{BaBa}	α_{BaPi}	α_{PiBa}	α_{PiPi}	Fitness Ratio $\log\left(\frac{f_{Pi}}{f_{Ba}}\right)$	Niche Difference $\log(1-\rho)$
None	-0.1022 \pm 0.0058	-0.0994 \pm 0.0070	-0.0619 \pm 0.0102	-0.0591 \pm 0.0199	0.5110 \pm 0.3456	-0.0090 \pm 0.7531
EMF	-0.1034 \pm 0.0039	-0.1119 \pm 0.0078	-0.0530 \pm 0.0157	-0.0666 \pm 0.0201	0.5931 \pm 0.3687	0.0716 \pm 0.3909
AMF	-0.0889 \pm 0.0113	-0.0363 \pm 0.0196	-0.0790 \pm 0.0218	-0.0602 \pm 0.0168	-0.1943 \pm 0.4395	0.2681 \pm 0.3411
AMF& EMF	-0.0915 \pm 0.0129	-0.0444 \pm 0.0176	-0.0801 \pm 0.0192	-0.0551 \pm 0.0175	-0.0411 \pm 0.4414	0.1597 \pm 0.3598

738

739

740 **Figure Captions**

741 **Fig. 1.** Experimental design for quantifying competitive ability^{29,87}. The two focal species were
 742 grown with either 0, 1, 4, or 8 competitors; competitors were either of conspecific (identical to the
 743 focal species) or heterospecific identity (the competitor species). This design was fully factorial
 744 across 4 different mycorrhizal treatments as shown above with n=6 replicates. Art by Karly
 745 Nobuko Chin.

746

747 **Fig. 2.** The effects of mycorrhizal fungi on plant growth and nutritional niche in the absence of
748 competition. (a) Total plant biomass was significantly different across mycorrhizal treatments for
749 both *Baccharis* ($P=0.0030$) and *Pinus* ($P=0.0362$) based on ANOVA ($n=6$). (b) mg of leaf P per
750 plant; %P was similarly standardized to total leaf dry biomass. (c) mg of leaf N per plant; %N was
751 standardized to total leaf dry biomass in order to determine total plant N accumulated through the
752 experiment across treatments. (d) N:P ratios by treatment; 15:1 is generally considered the optimal
753 N:P ratio for plant growth and plants tend to become either N limited below 14:1 or P limited
754 above 16:1. For each plot, the boxplots show the 25–75% quantile range and the 50% quantile
755 center line. Whiskers depict data points within 1.5 times the interquartile range. Different letters
756 indicate significant differences between mycorrhizal treatments ($P < 0.05$) according to *post hoc*
757 Tukey HSD tests ($n=6$) for each plant host species, respectively.

758

759 **Fig. 3.** The role of mycorrhizal fungi in the competitive dynamics between plant species. Biomass
760 is plotted against number of competitors and colors represent competition treatment (no
761 competitors, conspecific competitors, or heterospecific competitors). Regression lines are shown
762 from linear mixed-effects models for each treatment and shading represent 95% C.I. bands;
763 includes jittered data points ($n=6$).

764

765 **Fig. 4.** The effects of mycorrhizal fungi on plant nutritional niche under different types of
766 competition. (a) mg of leaf N per plant; % N was standardized to total leaf dry biomass in order to
767 determine total plant N accumulated through experiment across treatments. (b) mg of leaf P per
768 plant; %P was similarly standardized to total leaf dry biomass. (c) $\delta^{15}\text{N}$ across mycorrhizal
769 treatments and competition types. (d) N:P ratios by treatment; 15:1 is generally considered the
770 optimal N:P ratio for plant growth and plants tend to become either N limited below 14:1 or P
771 limited above 16:1. Each boxplot shows the 25–75% quantile range and the 50% quantile center
772 line. Whiskers depict data points within 1.5 times the interquartile range. Different letters indicate
773 significant differences ($P < 0.05$) across mycorrhizal treatments and competition type (no
774 competitors, 8 heterospecific competitors, 8 conspecific competitors) according to *post hoc* Tukey
775 HSD tests ($n=6$) for each host plant species, respectively.

776

777 **Fig. 5.** Symbiotic mutualisms help to structure dynamics of plant coexistence. (a) Results are
778 visualized on the parameter space of niche difference (-log ρ , x-axis) and fitness ratio ($\log f_{Pi}/f_{Ba}$,
779 y-axis); note here that we have used log-transformed versions of these metrics to improve
780 visualization¹⁰². Areas shaded in gray represent where coexistence versus priority effects are
781 predicted to occur and areas where *Pinus* versus *Baccharis* are predicted to occur are labeled in
782 the top and bottom portions of the phase plane. (b) A stacked bar plot displaying the proportion of
783 predicted outcomes; we sampled 10,000 bootstrap replicates and recalculated competition
784 coefficients, niche difference, fitness ratio, and predicted outcome using the resampled data,
785 generating 95% confidence intervals using the percentile method¹⁰². When no mycorrhizal fungi
786 are present or when only EMF are present, *Pinus* is predicted to invade. The addition of AMF,
787 however, drives the system towards stable coexistence through both equalizing (decreasing the
788 fitness differences between hosts) and stabilizing forces (increasing niche differentiation between
789 hosts).

790

791

792 **References:**

- 793 1. Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A. & Dufresne, A. The
794 importance of the microbiome of the plant holobiont. *New Phytologist* **206**, 1196–1206
795 (2015).
- 796 2. Smith, S. E. & Read, D. J. *Mycorrhizal Symbiosis*. (Academic Press, 2010).
- 797 3. Steidinger, B. S. *et al.* Climatic controls of decomposition drive the global biogeography of
798 forest-tree symbioses. *Nature* **569**, 404–408 (2019).
- 799 4. van der Heijden, M. G. A. van der, Martin, F. M., Selosse, M.-A. & Sanders, I. R.
800 Mycorrhizal ecology and evolution: the past, the present, and the future. *New Phytologist*
801 **205**, 1406–1423 (2015).
- 802 5. Kakouridis, A. *et al.* Routes to roots: direct evidence of water transport by arbuscular
803 mycorrhizal fungi to host plants. *New Phytologist* **236**, 210–221 (2022).

804 6. Pellitier, P. T. & Zak, D. R. Ectomycorrhizal fungi and the enzymatic liberation of nitrogen
805 from soil organic matter: why evolutionary history matters. *New Phytologist* **217**, 68–73
806 (2018).

807 7. Hodge, A. & Fitter, A. H. Microbial mediation of plant competition and community
808 structure. *Functional Ecology* **27**, 865–875 (2013).

809 8. Peay, K. G. Timing of mutualist arrival has a greater effect on *Pinus muricata* seedling
810 growth than interspecific competition. *Journal of Ecology* **106**, 514–523 (2018).

811 9. Wagg, C., Jansa, J., Stadler, M., Schmid, B. & van der Heijden, M. G. A. Mycorrhizal fungal
812 identity and diversity relaxes plant–plant competition. *Ecology* **92**, 1303–1313 (2011).

813 10. Scheublin, T. R., Van Logtestijn, R. S. P. & Van Der Heijden, M. G. A. Presence and
814 identity of arbuscular mycorrhizal fungi influence competitive interactions between plant
815 species. *Journal of Ecology* **95**, 631–638 (2007).

816 11. Hoeksema, J. D. *et al.* Ectomycorrhizal Plant-Fungal Co-invasions as Natural Experiments
817 for Connecting Plant and Fungal Traits to Their Ecosystem Consequences. *Front. For. Glob.*
818 *Change* **3**, 84 (2020).

819 12. Corrales, A., Mangan, S. A., Turner, B. L. & Dalling, J. W. An ectomycorrhizal nitrogen
820 economy facilitates monodominance in a neotropical forest. *Ecology Letters* **19**, 383–392
821 (2016).

822 13. Lu, M. & Hedin, L. O. Global plant–symbiont organization and emergence of
823 biogeochemical cycles resolved by evolution-based trait modelling. *Nature Ecology &*
824 *Evolution* **3**, 239–250 (2019).

825 14. Averill, C. *et al.* Alternative stable states of the forest mycobiome are maintained through
826 positive feedbacks. *Nat Ecol Evol* **6**, 375–382 (2022).

827 15. Laliberté, E., Lambers, H., Burgess, T. I. & Wright, S. J. Phosphorus limitation, soil-borne
828 pathogens and the coexistence of plant species in hyperdiverse forests and shrublands. *New*
829 *Phytologist* **206**, 507–521 (2015).

830 16. Bever, J. D. *et al.* Rooting theories of plant community ecology in microbial interactions.
831 *Trends in Ecology & Evolution* **25**, 468–478 (2010).

832 17. Bever, J. D., Platt, T. G. & Morton, E. R. Microbial Population and Community Dynamics
833 on Plant Roots and Their Feedbacks on Plant Communities. *Annual Review of Microbiology*
834 **66**, 265–283 (2012).

835 18. Hart, S. P. How does facilitation influence the outcome of species interactions? *Journal of*
836 *Ecology Advance online publication*, (2023).

837 19. Peay, K. G. The Mutualistic Niche: Mycorrhizal Symbiosis and Community Dynamics.
838 *Annu. Rev. Ecol. Evol. Syst.* **47**, 143–164 (2016).

839 20. Van Nuland, M. E. & Peay, K. G. Symbiotic niche mapping reveals functional specialization
840 by two ectomycorrhizal fungi that expands the host plant niche. *Fungal Ecology* **46**, 100960
841 (2020).

842 21. Chomicki, G., Weber, M., Antonelli, A., Bascompte, J. & Kiers, E. T. The Impact of
843 Mutualisms on Species Richness. *Trends in Ecology & Evolution* **34**, 698–711 (2019).

844 22. Tedersoo, L., Bahram, M. & Zobel, M. How mycorrhizal associations drive plant population
845 and community biology. *Science* **367**, eaba1223 (2020).

846 23. Chesson, P. Mechanisms of Maintenance of Species Diversity. *Annual Review of Ecology*
847 *and Systematics* **31**, 343–366 (2000).

848 24. Westoby, M. & Wright, I. J. Land-plant ecology on the basis of functional traits. *Trends in*
849 *Ecology & Evolution* **21**, 261–268 (2006).

850 25. Kraft, N. J. B., Godoy, O. & Levine, J. M. Plant functional traits and the multidimensional
851 nature of species coexistence. *Proc Natl Acad Sci USA* **112**, 797–802 (2015).

852 26. Barabás, G., D’Andrea, R. & Stump, S. M. Chesson’s coexistence theory. *Ecological
853 Monographs* **88**, 277–303 (2018).

854 27. Song, C., Barabás, G. & Saavedra, S. On the Consequences of the Interdependence of
855 Stabilizing and Equalizing Mechanisms. *The American Naturalist* **194**, 627–639 (2019).

856 28. Kandlikar, G. S., Johnson, C. A., Yan, X., Kraft, N. J. B. & Levine, J. M. Winning and
857 losing with microbes: how microbially mediated fitness differences influence plant diversity.
858 *Ecology Letters* **22**, 1178–1191 (2019).

859 29. Ke, P.-J. & Wan, J. Effects of soil microbes on plant competition: a perspective from modern
860 coexistence theory. *Ecological Monographs* **90**, e01391 (2020).

861 30. Averill, C., Turner, B. L. & Finzi, A. C. Mycorrhiza-mediated competition between plants
862 and decomposers drives soil carbon storage. *Nature* **505**, 543–545 (2014).

863 31. Bever, J. D. Negative feedback within a mutualism: host-specific growth of mycorrhizal
864 fungi reduces plant benefit. *Proc Biol Sci* **269**, 2595–2601 (2002).

865 32. van der Heijden, M. G. A. *et al.* Mycorrhizal fungal diversity determines plant biodiversity,
866 ecosystem variability and productivity. *Nature* **396**, 69–72 (1998).

867 33. Bever, J. D. Soil community feedback and the coexistence of competitors: conceptual
868 frameworks and empirical tests. *New Phytologist* **157**, 465–473 (2003).

869 34. Afkhami, M. E., McIntyre, P. J. & Strauss, S. Y. Mutualist-mediated effects on species’
870 range limits across large geographic scales. *Ecology Letters* **17**, 1265–1273 (2014).

871 35. Yan, X., Levine, J. M. & Kandlikar, G. S. A quantitative synthesis of soil microbial effects
872 on plant species coexistence. *PNAS* **119**, e2122088119 (2022).

873 36. Crawford, K. M. *et al.* When and where plant-soil feedback may promote plant coexistence:
874 a meta-analysis. *Ecology Letters* **22**, 1274–1284 (2019).

875 37. Xi, N. *et al.* Relationships between plant–soil feedbacks and functional traits. *Journal of*
876 *Ecology* **109**, 3411–3423 (2021).

877 38. Beiler, K. J., Durall, D. M., Simard, S. W., Maxwell, S. A. & Kretzer, A. M. Architecture of
878 the wood-wide web: Rhizopogon spp. genets link multiple Douglas-fir cohorts. *New*
879 *Phytologist* **185**, 543–553 (2010).

880 39. Hart, M. M., Reader, R. J. & Klironomos, J. N. Plant coexistence mediated by arbuscular
881 mycorrhizal fungi. *Trends in Ecology & Evolution* **18**, 418–423 (2003).

882 40. Endlweber, K. & Scheu, S. Interactions between mycorrhizal fungi and Collembola: effects
883 on root structure of competing plant species. *Biol Fertil Soils* **43**, 741–749 (2007).

884 41. Guo, Y. *et al.* The interspecific competition presents greater nutrient facilitation compared
885 with intraspecific competition through AM fungi interacting with litter for two host plants in
886 karst soil. *Journal of Plant Ecology* **15**, 399–412 (2022).

887 42. Hartnett, D. C., Hetrick, B. A. D., Wilson, G. W. T. & Gibson, D. J. Mycorrhizal Influence
888 on Intra- and Interspecific Neighbour Interactions among Co-Occurring Prairie Grasses.
889 *Journal of Ecology* **81**, 787–795 (1993).

890 43. Marler, M. J., Zabinski, C. A. & Callaway, R. M. Mycorrhizae Indirectly Enhance
891 Competitive Effects of an Invasive Forb on a Native Bunchgrass. *Ecology* **80**, 1180–1186
892 (1999).

893 44. Moora, M. & Zobel, M. Effect of arbuscular mycorrhiza on inter- and intraspecific
894 competition of two grassland species. *Oecologia* **108**, 79–84 (1996).

895 45. Schroeder-Moreno, M. S. & Janos, D. P. Intra- and inter-specific density affects plant growth
896 responses to arbuscular mycorrhizas. *Botany* **86**, 1180–1193 (2008).

897 46. Kandlikar (康德利卡), G. S., Yan (严心怡), X., Levine, J. M. & Kraft, N. J. B.
898 Soil Microbes Generate Stronger Fitness Differences than Stabilization among California
899 Annual Plants. *The American Naturalist* **197**, E30–E39 (2021).

900 47. Forrestel, A. B., Moritz, M. A. & Stephens, S. L. Landscape-Scale Vegetation Change
901 Following Fire in Point Reyes, California, USA. *Fire Ecol* **7**, 114–128 (2011).

902 48. A. Dickie, I. & Reich, P. B. Ectomycorrhizal fungal communities at forest edges. *Journal of*
903 *Ecology* **93**, 244–255 (2005).

904 49. Peay, K. G. & Bruns, T. D. Spore dispersal of basidiomycete fungi at the landscape scale is
905 driven by stochastic and deterministic processes and generates variability in plant–fungal
906 interactions. *New Phytologist* **204**, 180–191 (2014).

907 50. Smith, G. R., Steidinger, B. S., Bruns, T. D. & Peay, K. G. Competition–colonization
908 tradeoffs structure fungal diversity. *The ISME Journal* **12**, 1758–1767 (2018).

909 51. Harvey, B. J. & Holzman, B. A. Divergent successional pathways of stand development
910 following fire in a California closed-cone pine forest. *Journal of Vegetation Science* **25**, 88–
911 99 (2014).

912 52. Teste, F. P. *et al.* Plant-soil feedback and the maintenance of diversity in Mediterranean-
913 climate shrublands. *Science* **355**, 173–176 (2017).

914 53. Simha, A., Pardo-De la Hoz, C. J. & Carley, L. N. Moving beyond the “Diversity Paradox”:
915 The Limitations of Competition-Based Frameworks in Understanding Species Diversity. *The*
916 *American Naturalist* **200**, 89–100 (2022).

917 54. Horton, T. R., Cázares, E. & Bruns, T. D. Ectomycorrhizal, vesicular-arbuscular and dark
918 septate fungal colonization of bishop pine (*Pinus muricata*) seedlings in the first 5 months
919 of growth after wildfire. *Mycorrhiza* **8**, 11–18 (1998).

920 55. Wagg, C., Antunes, P. M. & Peterson, R. L. Arbuscular mycorrhizal fungal phylogeny-
921 related interactions with a non-host. *Symbiosis* **53**, 41–46 (2011).

922 56. Hobbie, E. A., Macko, S. A. & Shugart, H. H. Insights into nitrogen and carbon dynamics of
923 ectomycorrhizal and saprotrophic fungi from isotopic evidence. *Oecologia* **118**, 353 (1999).

924 57. Banerjee, S., Schlaeppi, K. & van der Heijden, M. G. A. Keystone taxa as drivers of
925 microbiome structure and functioning. *Nat Rev Microbiol* **16**, 567–576 (2018).

926 58. Peh, K. S.-H., Lewis, S. L. & Lloyd, J. Mechanisms of monodominance in diverse tropical
927 tree-dominated systems. *Journal of Ecology* **99**, 891–898 (2011).

928 59. Mangan, S. A. *et al.* Negative plant–soil feedback predicts tree-species relative abundance in
929 a tropical forest. *Nature* **466**, 752–755 (2010).

930 60. Bennett, J. A. *et al.* Plant-soil feedbacks and mycorrhizal type influence temperate forest
931 population dynamics. *Science* **355**, 181–184 (2017).

932 61. Enright, D. J., Frangioso, K. M., Isobe, K., Rizzo, D. M. & Glassman, S. I. Mega-fire in
933 redwood tanoak forest reduces bacterial and fungal richness and selects for pyrophilous taxa
934 that are phylogenetically conserved. *Molecular Ecology* **n/a**, (2022).

935 62. Klein, T., Siegwolf, R. T. & Körner, C. Belowground carbon trade among tall trees in a
936 temperate forest. *Science* **352**, 342–344 (2016).

937 63. Karst, J., Jones, M. D. & Hoeksema, J. D. Positive citation bias and overinterpreted results
938 lead to misinformation on common mycorrhizal networks in forests. *Nat Ecol Evol* 1–11
939 (2023) doi:10.1038/s41559-023-01986-1.

940 64. Kretzer, A. M., Dunham, S., Molina, R. & Spatafora, J. W. Microsatellite markers reveal the
941 below ground distribution of genets in two species of Rhizopogon forming tuberculate
942 ectomycorrhizas on Douglas fir. *New Phytologist* **161**, 313–320 (2004).

943 65. Bergemann, S. E. & Miller, S. L. Size, distribution, and persistence of genets in local
944 populations of the late-stage ectomycorrhizal basidiomycete, *Russula brevipes*. *New*
945 *Phytologist* **156**, 313–320 (2002).

946 66. Averill, C., Bhatnagar, J. M., Dietze, M. C., Pearse, W. D. & Kivlin, S. N. Global imprint of
947 mycorrhizal fungi on whole-plant nutrient economics. *PNAS* **116**, 23163–23168 (2019).

948 67. Grime, J. P. Vegetation classification by reference to strategies. *Nature* **250**, 26–31 (1974).

949 68. Collier, F. A. & Bidartondo, M. I. Waiting for fungi: the ectomycorrhizal invasion of
950 lowland heathlands. *Journal of Ecology* **97**, 950–963 (2009).

951 69. Thirkell, T. J., Cameron, D. D. & Hodge, A. Resolving the ‘nitrogen paradox’ of arbuscular
952 mycorrhizas: fertilization with organic matter brings considerable benefits for plant nutrition
953 and growth. *Plant Cell Environ* **39**, 1683–1690 (2016).

954 70. Shah, F. *et al.* Ectomycorrhizal fungi decompose soil organic matter using oxidative
955 mechanisms adapted from saprotrophic ancestors. *New Phytologist* **209**, 1705–1719 (2016).

956 71. Terrer, C., Vicca, S., Hungate, B. A., Phillips, R. P. & Prentice, I. C. Mycorrhizal association
957 as a primary control of the CO₂ fertilization effect. *Science* **353**, 72–74 (2016).

958 72. Phillips, R. P., Brzostek, E. & Midgley, M. G. The mycorrhizal-associated nutrient economy:
959 a new framework for predicting carbon–nutrient couplings in temperate forests. *New*
960 *Phytologist* **199**, 41–51 (2013).

961 73. Herman, D. J., Firestone, M. K., Nuccio, E. E. & Hodge, A. Interactions between an
962 arbuscular mycorrhizal fungus and a soil microbial community mediating litter
963 decomposition. *FEMS Microbiology Ecology* **80**, 236–247 (2012).

964 74. Abbott, K. C., Eppinga, M. B., Umbanhowar, J., Baudena, M. & Bever, J. D. Microbiome
965 influence on host community dynamics: Conceptual integration of microbiome feedback
966 with classical host–microbe theory. *Ecology Letters* **24**, 2796–2811 (2021).

967 75. Jiang, J. *et al.* Pathogens and Mutualists as Joint Drivers of Host Species Coexistence and
968 Turnover: Implications for Plant Competition and Succession. *The American Naturalist* **195**,
969 591–602 (2020).

970 76. Collins, C. D., Bever, J. D. & Hersh, M. H. Community context for mechanisms of disease
971 dilution: insights from linking epidemiology and plant–soil feedback theory. *Annals of the
972 New York Academy of Sciences* **1469**, 65–85 (2020).

973 77. Letten, A. D. & Stouffer, D. B. The mechanistic basis for higher-order interactions and non-
974 additivity in competitive communities. *Ecology Letters* **22**, 423–436 (2019).

975 78. Fernández, N., Knoblochová, T., Kohout, P., Janoušková, M. & Rydlová, J. Asymmetric
976 Interaction Between Two Mycorrhizal Fungal Guilds and Consequences for the
977 Establishment of Their Host Plants. *Front. Plant Sci.* **13**, (2022).

978 79. Letten, A. D., Ke, P.-J. & Fukami, T. Linking modern coexistence theory and contemporary
979 niche theory. *Ecological Monographs* **87**, 161–177 (2017).

980 80. Ellner, S. P., Snyder, R. E., Adler, P. B. & Hooker, G. Toward a “modern coexistence
981 theory” for the discrete and spatial. *Ecological Monographs* **92**, e1548 (2022).

982 81. Van Der Heijden, M. G. A. & Horton, T. R. Socialism in soil? The importance of
983 mycorrhizal fungal networks for facilitation in natural ecosystems. *Journal of Ecology* **97**,
984 1139–1150 (2009).

985 82. Delavaux, C. S. *et al.* Mycorrhizal feedbacks influence global forest structure and diversity.
986 *Commun Biol* **6**, 1–11 (2023).

987 83. Chang, C.-Y., Bajic, D., Vila, J. C. C., Estrela, S. & Sanchez, A. Emergent coexistence in
988 multispecies microbial communities. *Science* **381**, 343–348 (2023).

989 84. Peay, K. G., Schubert, M. G., Nguyen, N. H. & Bruns, T. D. Measuring ectomycorrhizal
990 fungal dispersal: macroecological patterns driven by microscopic propagules. *Molecular
991 Ecology* **21**, 4122–4136 (2012).

992 85. Peay, K. G., Bruns, T. D., Kennedy, P. G., Bergemann, S. E. & Garbelotto, M. A strong
993 species-area relationship for eukaryotic soil microbes: island size matters for
994 ectomycorrhizal fungi. *Ecology Letters* **10**, 470–480 (2007).

995 86. Dawson, T. E. Fog in the California redwood forest: ecosystem inputs and use by plants.
996 *Oecologia* **117**, 476–485 (1998).

997 87. Hart, S. P., Freckleton, R. P. & Levine, J. M. How to quantify competitive ability. *Journal of
998 Ecology* **106**, 1902–1909 (2018).

999 88. Ke, P.-J. & Wan, J. A general approach for quantifying microbial effects on plant
1000 competition. *Plant and Soil* 1–14 (2022).

1001 89. Bruns, T. D., Hale, M. L. & Nguyen, N. H. *Rhizopogon olivaceotinctus* increases its
1002 inoculum potential in heated soil independent of competitive release from other
1003 ectomycorrhizal fungi. *Mycologia* **111**, 936–941 (2019).

1004 90. Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes -
1005 application to the identification of mycorrhizae and rusts. *Molecular Ecology* **2**, 113–118
1006 (1993).

1007 91. Duhamel, M. *et al.* Plant selection initiates alternative successional trajectories in the soil
1008 microbial community after disturbance. *Ecological Monographs* **89**, e01367 (2019).

1009 92. Phillips, J. M. & Hayman, D. S. Improved procedures for clearing roots and staining
1010 parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection.
1011 *Transactions of the British Mycological Society* **55**, 158-IN18 (1970).

1012 93. Giovannetti, M. & Mosse, B. An Evaluation of Techniques for Measuring Vesicular
1013 Arbuscular Mycorrhizal Infection in Roots. *New Phytologist* **84**, 489–500 (1980).

1014 94. Smith, W. K., Schoettle, A. W. & Cui, M. Importance of the method of leaf area
1015 measurement to the interpretation of gas exchange of complex shoots. *Tree Physiology* **8**,
1016 121–127 (1991).

1017 95. Anderson, C. J. R. & Rosas-Anderson, P. J. Leafscan. (2017).

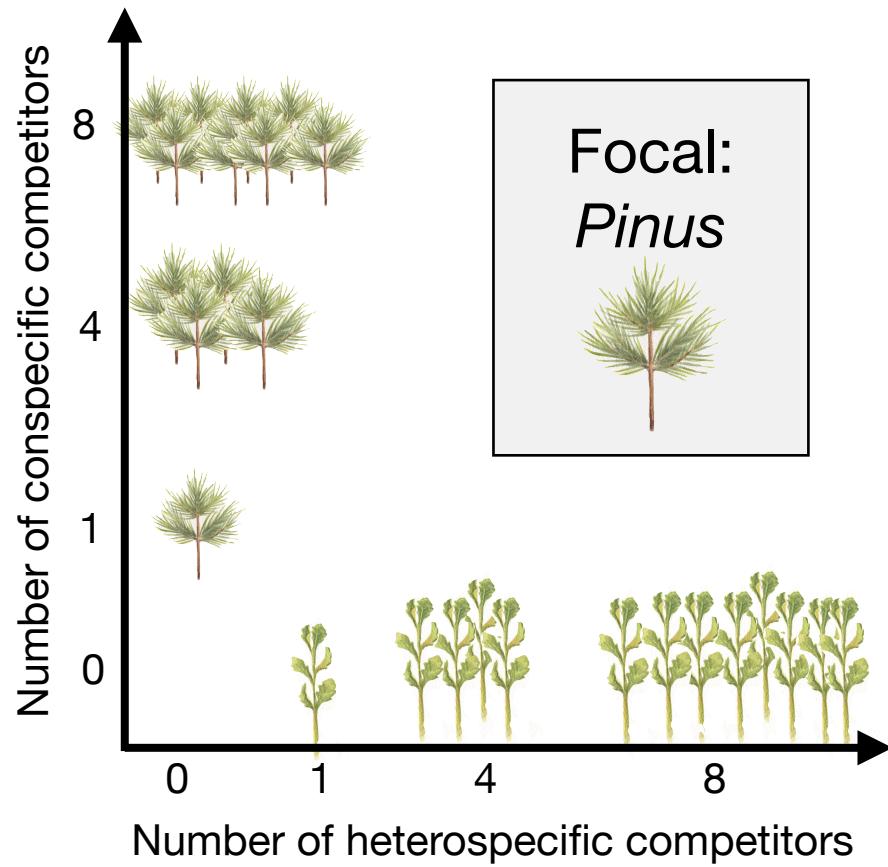
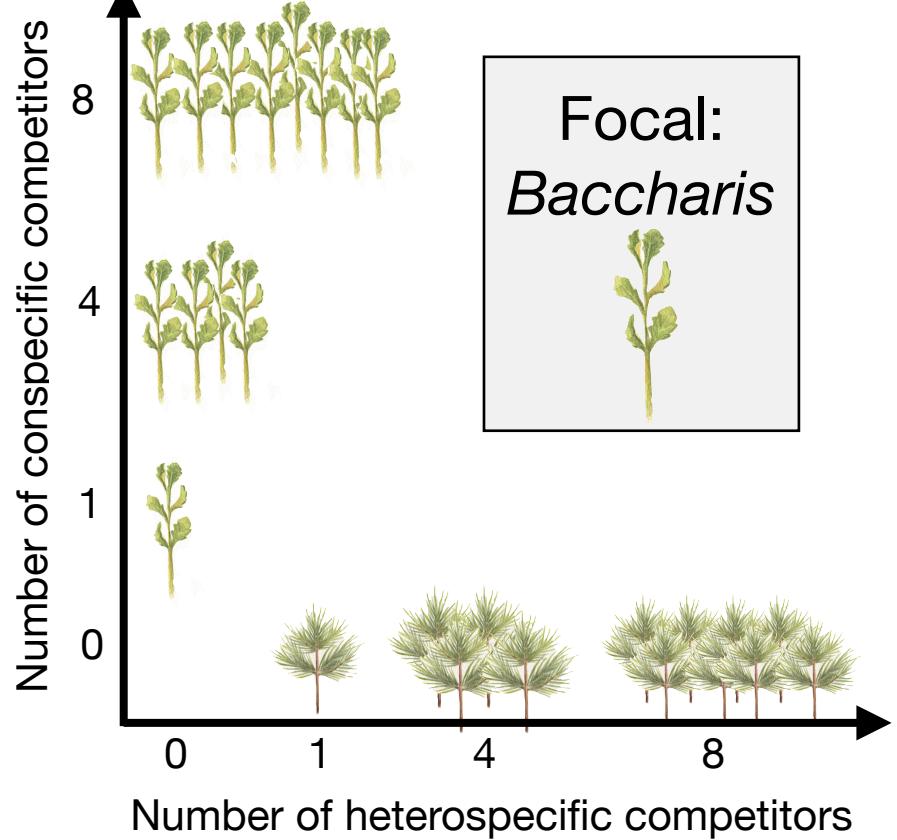
1018 96. Rueden, C. T. *et al.* ImageJ2: ImageJ for the next generation of scientific image data.
1019 Preprint at <https://doi.org/10.48550/arXiv.1701.05940> (2017).

1020 97. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
1021 Statistical Computing (2022).

1022 98. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using
1023 lme4. *Journal of Statistical Software* **67**, 1–48 (2015).

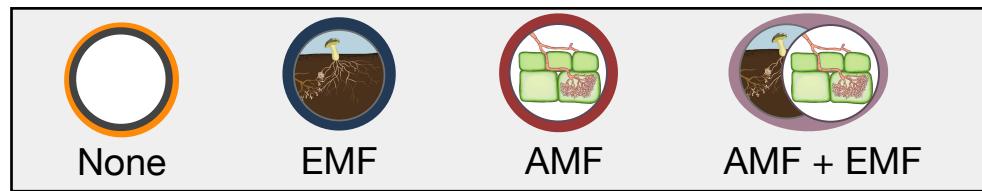
1024 99. Chesson, P. & Kuang, J. J. The interaction between predation and competition. *Nature* **456**,
1025 235–238 (2008).

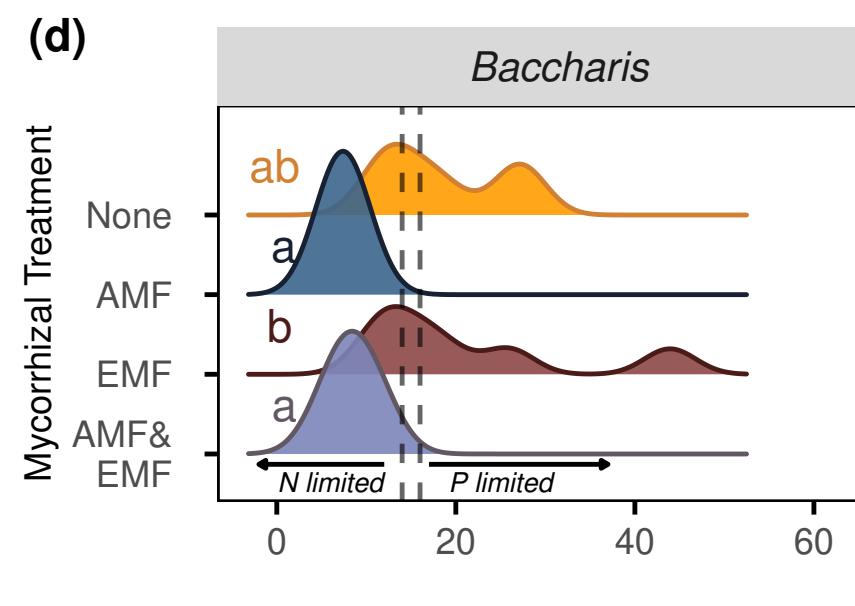
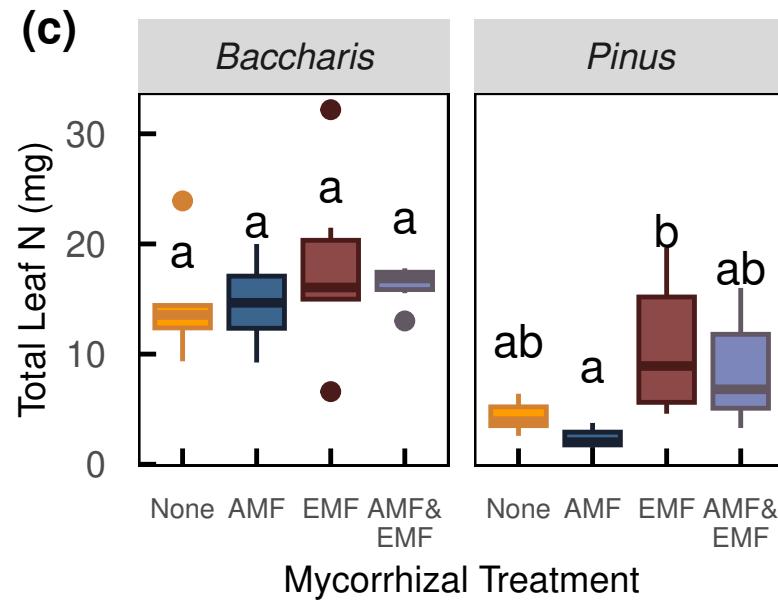
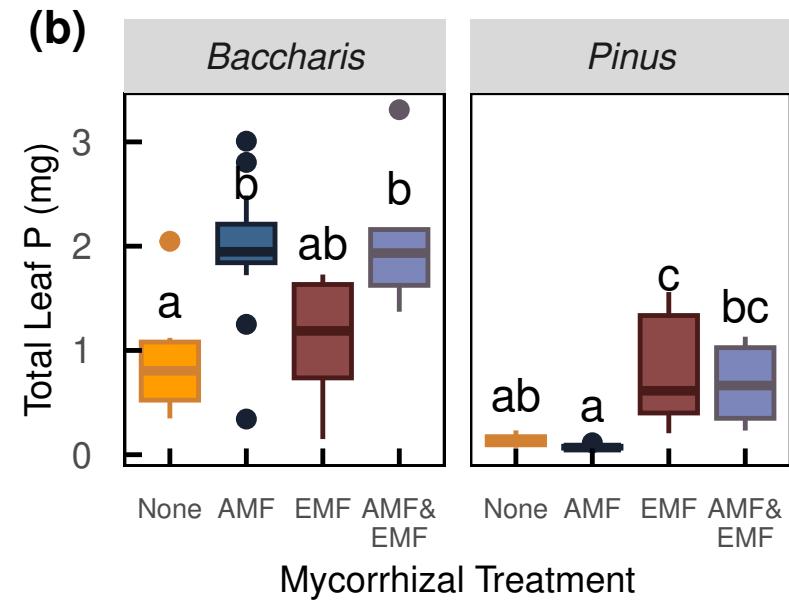
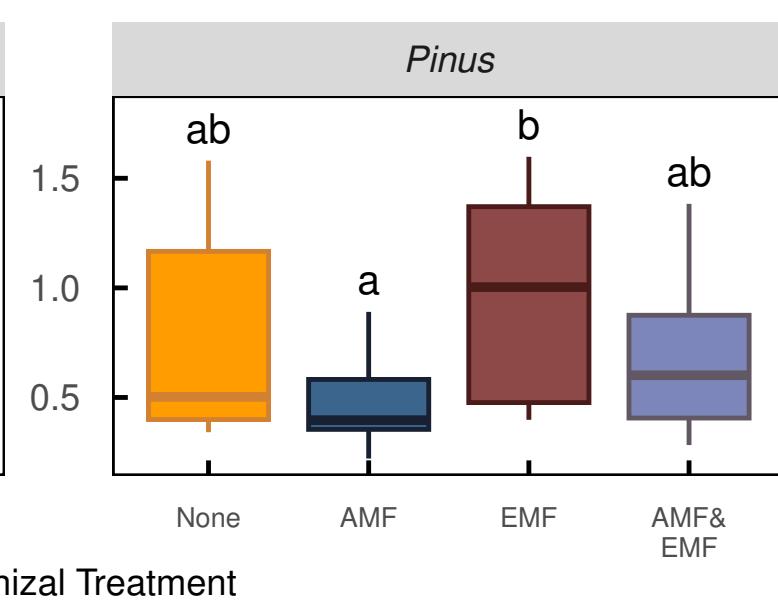
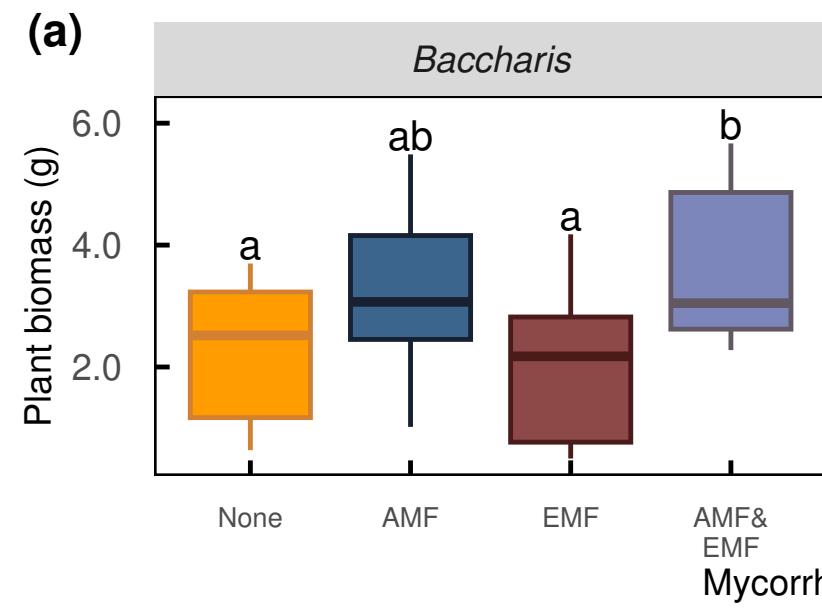
1026 100. Rousselet, G. A., Pernet, C. R. & Wilcox, R. R. The Percentile Bootstrap: A Primer With
1027 Step-by-Step Instructions in R. *Advances in Methods and Practices in Psychological Science*
1028 **4**, (2021).

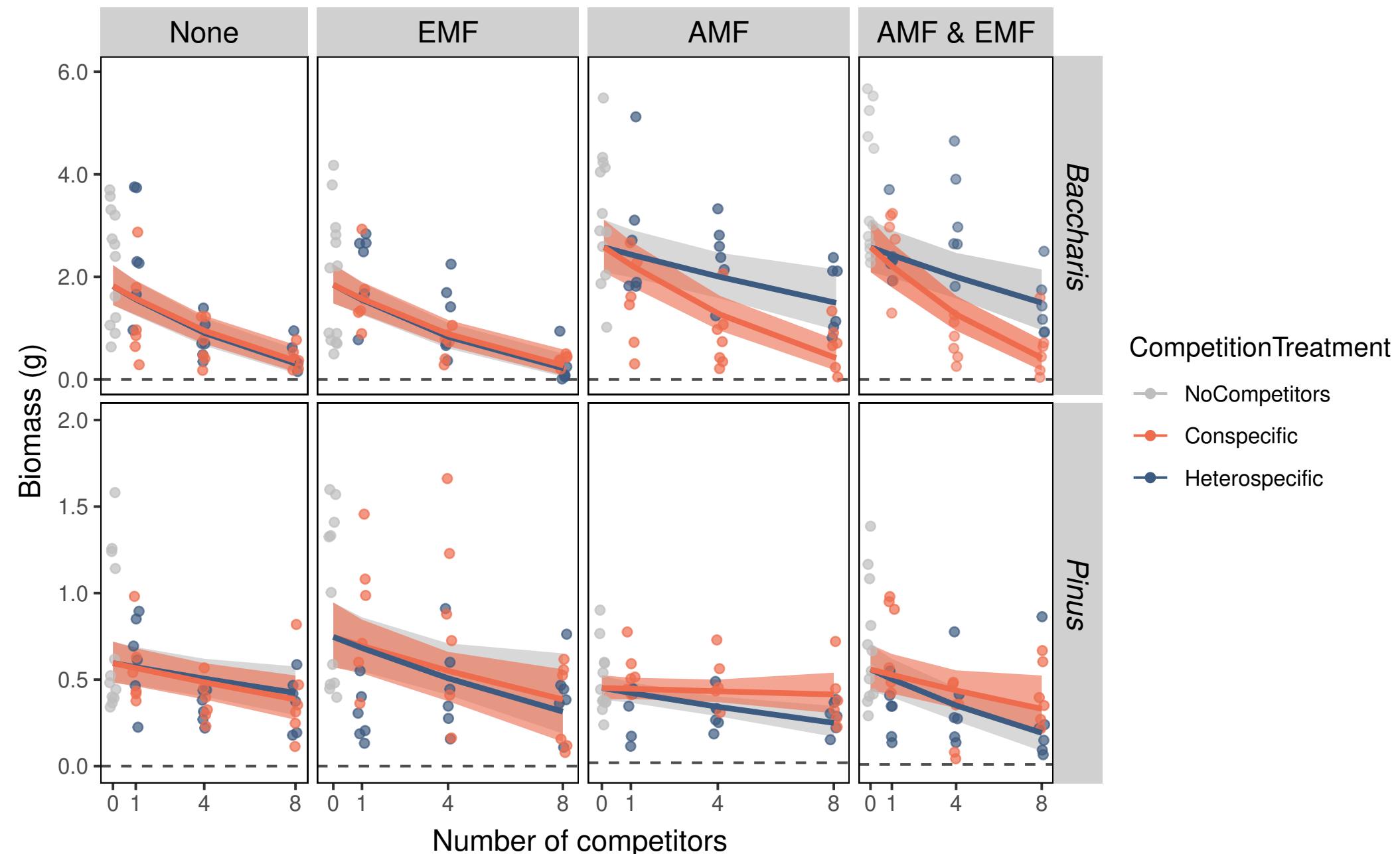


1029 101. Terry, J. C. D. & Armitage, D. W. Widespread analytical pitfalls in empirical coexistence
1030 studies and a checklist for improving their statistical robustness. 2023.07.04.547661 Preprint
1031 at <https://doi.org/10.1101/2023.07.04.547661> (2023).

1032 102. Johnson, C. A., Dutt, P. & Levine, J. M. Competition for pollinators destabilizes plant
1033 coexistence. *Nature* **607**, 721–725 (2022).

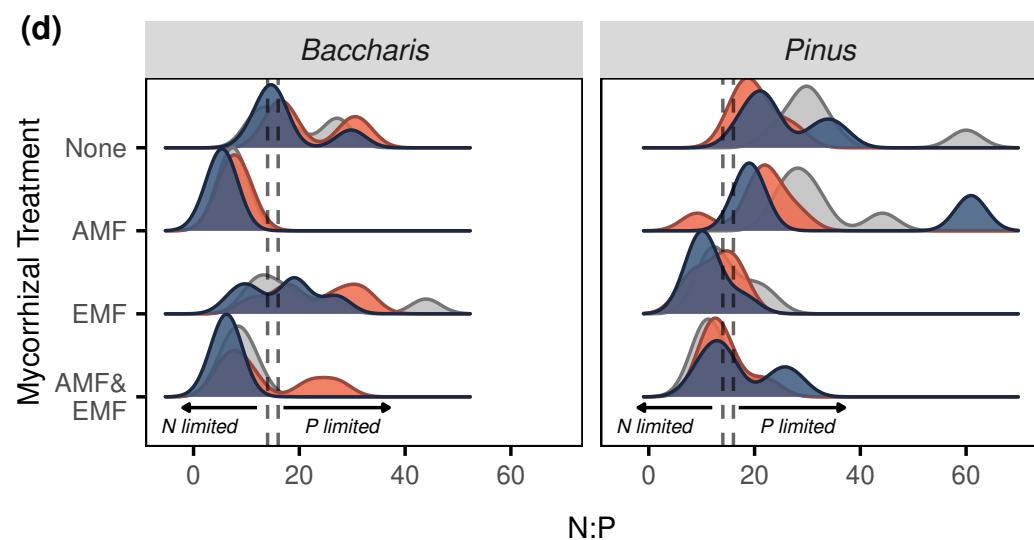
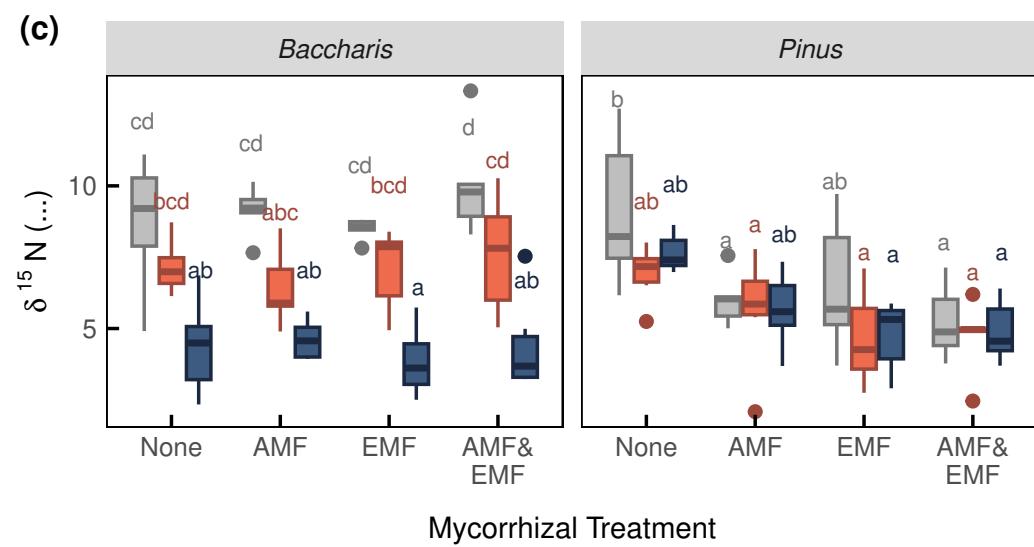
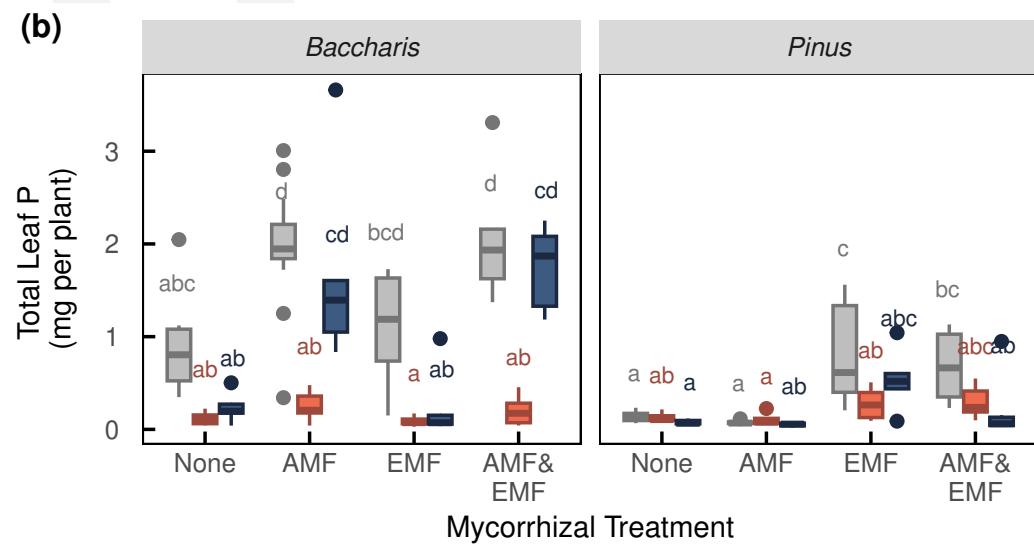
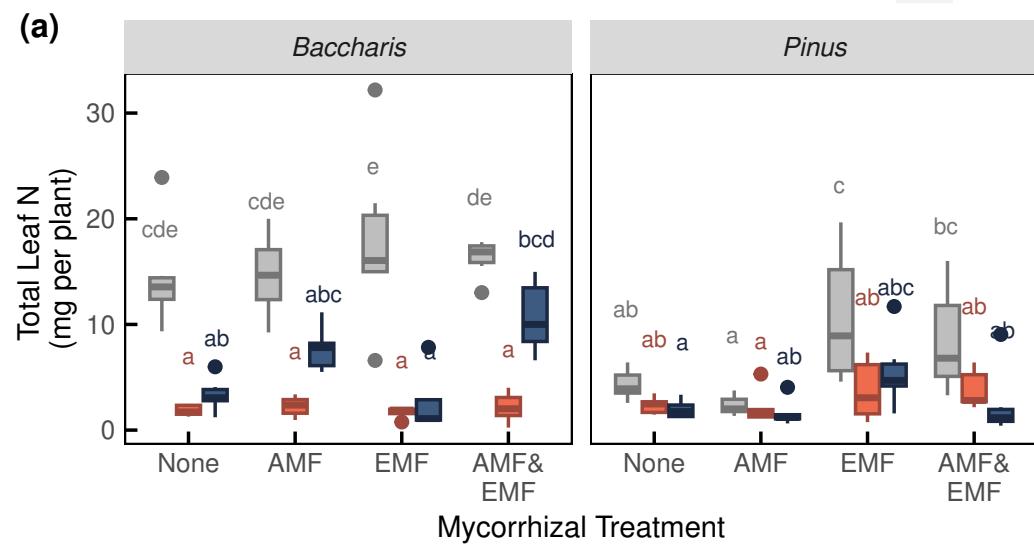
1034

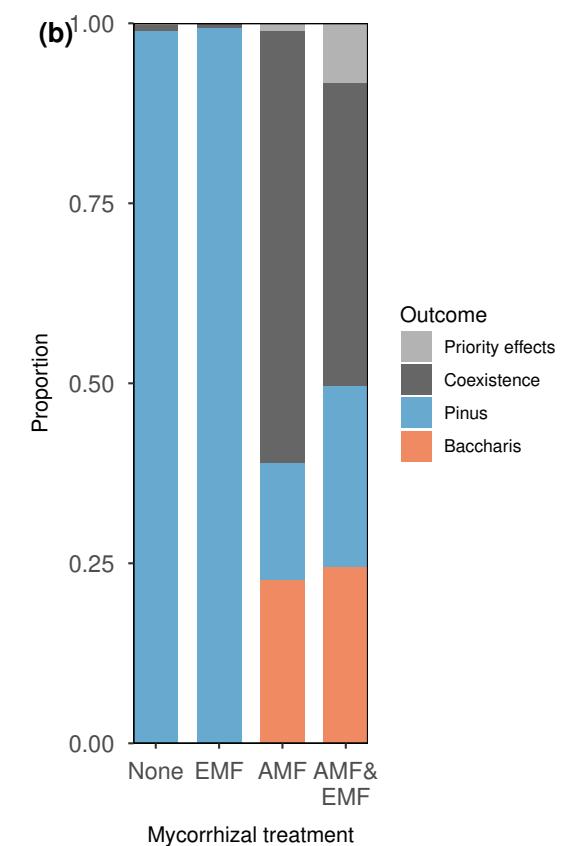
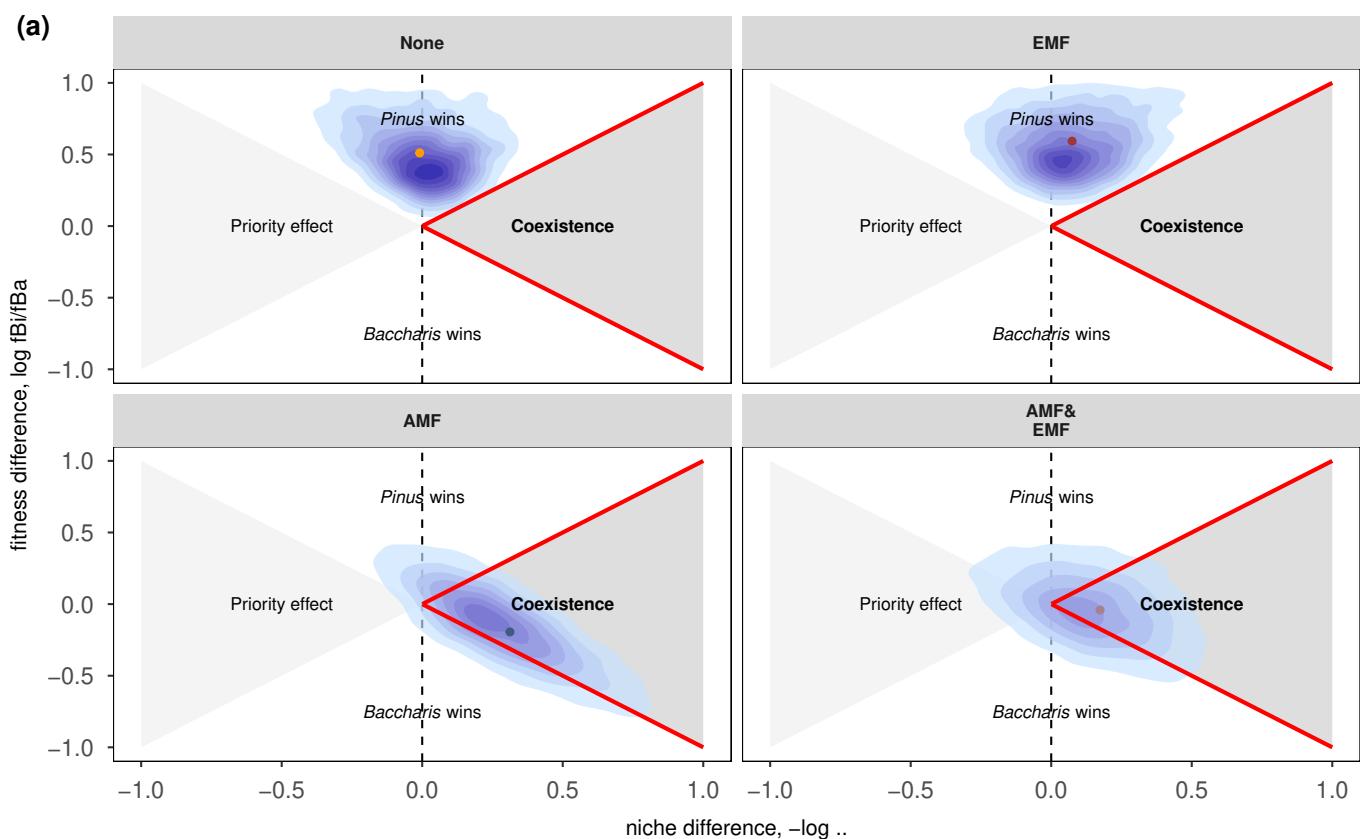

1035






1036



X





4 Mycorrhizal treatments

Competition Treatment

Table 1. Modern coexistence theory interaction coefficients (α) and niche and fitness differences calculated from Ke and Wan (2020) based on n=8 competitors. (A) refers to *B. pilularis* and (B) refers to *P. muricata* where α_{AB} refers to the growth of *B. pilularis* growing in conspecific competition and where α_{AB} refers to the growth of *B. pilularis* growing in conspecific competition.

Mycorrhizal Treatment	α_{AB}	α_{AA}	α_{BB}	α_{BA}	Fitness Ratio	Niche Difference
None	-0.0994	-0.1022	-0.0591	-0.0619	1.6669	-0.0090
EMF	-0.1119	-0.1034	-0.0666	-0.0530	1.8097	0.0716
AMF&EMF	-0.0444	-0.0915	-0.0551	-0.0801	0.9597	0.1597
AMF	-0.0363	-0.0889	-0.0602	-0.0790	0.8234	0.2681